第4章 微机继电保护的软件原理.
继电保护(4章5节)
3. 闭锁式方向纵联保护的基本原理
① 闭锁式方向纵联保护概念: 以正常无高频电流而在区外故障时(短时发信)发出闭锁信 号的方式构成。此闭锁信号由短路功率为负的一侧发出,这个 信号被两端的收信机所接收,而把保护闭锁,故称闭锁式方向 纵联保护。
② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ 11
闭锁式方向纵联保护基本原理 高频闭锁方向保护的原理接线 高频闭锁方向保护的工作分析 两端起动元件灵敏度配合问题 闭锁式方向纵联保护的构成 高频闭锁方向保护的优缺点 高频闭锁方向保护的原理改进 高频闭锁负序方向保护的原理接线 高频闭锁距离保护的原理接线 长期发信的闭锁方向高频保护
因此可以根据线路两端功率元件的方向来判别线路 内部或者外部短路。
M N
UM
IM
IN
通讯媒介
N侧 功率 方向 M侧 功率 方向
UN
WM
&
跳闸
&
WN
2、按逻辑通讯协议细分
① 闭锁式方向高频保护(高频闭锁方向保护) ② 允许式方向高频保护 ③ 跳闸式方向高频保护
分别对应常用三种高频信号。
第五节 输电线路高频保护
一.基本概念和构成 二.方向高频保护:比较被保护 线路两端的功率方向 三.相差高频保护:比较被保护 线路两端电流的相位
一、基本概念和构成
高频保护:以输电线载波通道为通信通道的纵联 保护,广泛应用于高压和超高压输电线 • 不反应于被保护输电线范围以外的故障 • 定值无需与下一条线路配合,可不带延时动作 • 与纵联差动保护(传递电气物理量本身波形或数 值,两侧电气交流回路相连)相比,信道传递的 是高频信号(逻辑信号量),不是与对端构成电 流回路(两侧逻辑信号回路相连)
继电保护-第4章 电网的纵联保护
输电线路纵联保护
Pilot Protection for Transmission Lines
4.1
输电线路纵联保护概述
4.1.1 引言( 纵联保护的提出 )
1. 电流、距离保护的缺陷
M 1 2 N 3
k1
k2
反映:一侧电气量,即只采集线路一侧的电气量 缺陷:Ⅱ段有延时,无法实现全线速动,
N
正常运行时:两侧的测量阻抗都是负荷阻抗, 距离Ⅱ段都不启动 外部故障时:至少有一侧的距离Ⅱ段不启动(反方向)
I U M M
M
U I N N
N
区内故障时:两侧的距离Ⅱ段同时启动
4.1.3 纵联保护的基本原理
1、纵联电流差动保护
基本原理:利用输电线路两端电流波形和或电流相量和的特征。
I U M M
M SM SN
U I N N
N
正常运行或区外故障时:远故障点的功率方向是从母线流向 线路,功率方向为正;近故障点的功率方向是由线路流向母 线,功率方向为负。两端功率方向相反。 U I I U N
M
M
N
M SM SN
N
区内故障时:两端的功率方向都是从母线流向线路,同为正。
优点:不受系统振荡的影响,不受非全相的影响,简单可靠
缺点:导引线不能太长
4.2.2 电力线载波通信
将线路两端的电流相位(或功率方向)信息转变为高 频信号,经过高频耦合设备将高频信号加载到输电线 路上,输电线路本身作为高频信号的通道将高频载波 信号传输到对侧,对端再经过高频耦合设备将高频信 号接收,以实现各端电流相位(或功率方向)的比较, 称为高频保护。
缺点: a. 施工的要求高,“焊接”难(熔纤机); b. 光纤断裂难以查找; c. 通信距离还不够长。 光纤通讯网是电力通讯网的主干网,基于光纤通信的纵联保 护成为主流模式。
微机继电保护的原理及发展
保护 中 , 以上任 务则 是 由微机 系 统 中 的各 程 序运 行 来
实 现的 。结 构 上 的 差 异 造 成 了 微 机 保 护 的 优 越 性 :
( 1 ) 保 护性 能及可 靠性 大 幅提高 。 ( 2 ) 运行 维 护灵 活 、 便捷 , 定期 校 验 简 易化 。 ( 3 ) 各种 附加 功 能 获 取 更 加 便捷 。( 4 ) 各种保 护动 作正 确率 提 高 。( 5 ) 经 济性 强 。 但 同时微机 保 护也 存 在 一定 的局 限性 如 : 装 置 的硬 件 长 期性更新 换代 和装 置 的软 件不 可移植性 』 。
c a l ma i n e q u i p me n t p r o t e c t i o n.
Ke y wo r ds r e l a y; t h e c o mp u t e r p r o t e c t i o n; t r o u b l e s h o o t i n 的安全运行程度要 求越 来越 高,安全指 标成为 电力系统一项重要的性
指 标 ,微 机 保 护 的产 生与 应 用将 电力 安 全 提 升 到 一 个 新 的 高度 。 目前 , 国 内无 论是 输 电线 路 的保 护 、 变压 器保 护 或 其
他 电力主设 备保 护均有 实用的一套微机保护装置 ,以保 障电网的安全运行 。
关键词 继 电保 护 ;微 机 保 护 ;故 障 处 理 T M7 7 1 文献标识码 A 文 章编 号 1 0 0 7— 7 8 2 0 ( 2 0 1 3 ) 0 8—1 7 8— 0 3 中图分类号
Mi c r o pr o c e s s o r Li n e Pr o t e c t i o n Pr i n c i p l e s a n d i t s Fut u r e Tr e n d
139-电子教材-中低压线路保护程序逻辑
第四章 输电线路保护程序逻辑原理在微机保护故障处理程序中,最主要的部分是保护逻辑程序。
各种不同的保护因功能和原理不相同,它们的逻辑程序也不同。
第一节 中低压线路保护程序逻辑原理一、方向元件软件原理三段方向电流保护的方向元件,可以由软压板选择正方向、反方向动作方式。
现以正方向来说明方向元件原理。
为了保证在各种相间短路故障时,方向元件能可靠而灵敏动作,微机保护的方向元件的“接线方式”仍然采用900接线方式。
例如A 相方向元件(称DA 元件)电流量rI 取a I ,电压量r U 取bc U ,电流量与电压量的相位差为r ϕ。
为了使方向元件具有最大灵敏度,类似模拟电路型方向保护,引入转移相量αj e K- ,α角为方向元件内角,并把αj e I - 称为A 相量,bcU 称为B 相量,则绝对值比较方向元件的正方向动作方程式为B A+≥B A - (4-1)当a I 落在最大灵敏线M 方向时,I K 相量落在bc U 方向附近,B A +具有最大值,B A-具有最小值,方向元件处于最灵敏状态。
相量图如图4-1所示。
由相量图4-1分析可见,若以r U 为基准相量,如要使式(4-1)表示的保护正方向元件临界动作,则A和B 相量相位差角αϕ-r 应为 90±,当满足下式关系时保护动作9090-≥-≥αϕr )90(90αϕα--≥≥+ r (4-2)即rI 落在图中动作区域内时,方向元件动作。
如果方向元件内角取 30,而35kV 线路阻抗角 60=L ϕ,显然上述方向元件在3090==-=αϕϕL r 时,相量A和B 方向相同,保护具有最大的灵敏度。
由于微机保护可利用软件十分方便地完成移相和相位比较,因此在微机保护中采用相位比较式方向元件要比绝对值比较方式简单得多。
在微机保护中相位比较式方向元件,就是利用采样计算结果,比较方向元件电流相量r I 和电压相量rU 的相位角,检查其相位差角是否在正方向的取值范围内。
微机型继电保护
3.能操作保护出口回路压板、动作信息的复归; 4.管理好打印机和打印报告,防止其卡纸和报告丢失,熟悉打印信息; 5.了解保护装置现有定值; 6.熟悉保护装置的运行环境要求。
检修基本要求
(一)检修时间 在装置无故障的情况下,建议6年检修,每两年可作一次小修。 (二)小修内容
1.检修电源; 2.输入通道检查; 3.检查定值; 4.出口检测; 5.插件完好性检查; 6.校正时钟。 (三)大检修基本内容 1.清洁处理; 2.检查端子; 3.保护静态测试; 4.小修中各项试验 5.保护联动试验。
(五)电源系统 通常这种电源是逆变电源,即将直流逆变为交流,再把交流整定为 微机系统所需的直流电压。 作用:它把水电站的强电系统的直流电源与微机的弱点系统电源完 全隔离开。 微机继电保护装置的抗干扰措施 可靠性是对继电保护的基本要求之一,它包括不误动和不拒动两方面。 除了保护的基本原理应满足可靠性要求,还有两个因素影响保护 的可靠性,这就是干扰和元件损坏,这些都不应该引起误动和拒 动。 为了防止由于干扰使保护的可靠性下降,微机保护通常在硬件及软件 方面采取以下防范:
电流差动保护
差 动 保 护 的 动 作 特 性
各相差动保护判据如下: 1、 当 Iop Icd ,且 Iop 3Icd 时,
Iop 0.6Ires 时满足动作条件; 2、 当 Iop 3Icd ,且 Iop I res 2Icd 时,满足动作条件。 I res 其中,分相差动电流 Iop IM I N , I M I N 分相制动电 I 流 ;I M 、 N 分别是任一相两侧的电流。
中性点直接接点系统的110KV输电线路一般可以配置三段式相间距 离及接地距离保护、四段式零序电流保护、双回路相继速动保护、 不对称故障相继速动保护、三相一次重合闸等保护。
微机继电保护原理
微机继电保护原理1.数据采集:微机继电保护通过连接电流互感器和电压互感器对电力系统的电流和电压进行采集,将采集到的数据转换为电压或电流信号输入到微处理器中进行分析。
2.信号处理:微机继电保护通过模拟电路将采集到的电压和电流信号进行放大、滤波和线性化处理,保证信号的精度和稳定性,并将处理后的信号送入A/D转换器中进行数字化处理。
3.数字化处理:微机继电保护中的微处理器通过A/D转换器将采集到的模拟信号转换为数字信号,以便进行后续的数字处理和判断。
4.过电流保护:微机继电保护根据电流信号的大小判断系统是否存在过电流现象。
当电流超过设定的保护值时,微机继电保护会发出指令关闭相应的断路器,以保护电力系统的安全运行。
5.过压保护:微机继电保护通过分析电压信号的大小判断系统是否存在过压现象。
当电压超过设定的保护值时,微机继电保护会通过控制指令断开电力系统的电源,以避免设备损坏或火灾等安全隐患。
6.欠压保护:微机继电保护根据电压信号的大小判断系统是否存在欠压现象。
当电压低于设定的保护值时,微机继电保护会发出指令关闭相应的电力设备,以防止设备受损或引起电路故障。
7.过负荷保护:微机继电保护通过分析电流信号的大小和持续时间来判断系统是否存在过负荷现象。
当电流超过设定的保护值并持续一定时间时,微机继电保护会发出指令关闭相应的设备,以防止设备受损或引起火灾等安全事故。
8.故障记录:微机继电保护具有故障记录功能,可以记录系统出现的故障信息,如过流记录、过压记录、欠压记录等,以便维护人员进行故障分析和故障排查。
总之,微机继电保护利用微处理器技术进行数据采集、处理和判断,通过对电流和电压信号的分析,判断系统是否存在过电流、过压、欠压、过负荷等异常情况,并通过发出控制指令来保护电力系统的安全运行。
同时,微机继电保护具有故障记录功能,方便维护人员进行故障分析和处理。
微机继电保护硬件系统的构成与原理
图4 采样保持电路原理
它由一个电子模拟开关K,电容C以及两个阻抗变换 器组成。开关K受逻辑输入端电平控制。在高电平时 K闭合,此时,电路处于采样状态,C迅速充电或放 电到电容上电压等于该采样时刻的电压值(Ui)。K的 闭合时间应满足使C有足够的充电或放电时间即采样 时间。为了缩短采样时间,这里采用阻抗变换器l, 它在输入端呈现高阻抗,输出端呈现低阻抗,使C上 电压能迅速跟踪等于Ui值。K打开时,电容C上保持 住K打开瞬间的电压,电路处于保持状态。同样为了 提高保持能力,电路中亦采用了另一个阻抗变换器2, 它对C呈现高阻抗。采样保持的过供电1班 第四组
§1.1 微机保护装置硬件系统构成
微机保护装置硬件系统包含以下五个部分: (1)数据采集单元即模拟量输入系统。包括电压形成、模拟滤波、采样保 持、多路转换以及模数转换等功能块,完成将模拟输入量准确地转换为所需 的数字量的功能。 (2)数据处理单元即微机主系统。包括微处理器、只读存储器、随机存取 存储器以及定时器等.微处理器执行存放在只读存储器中的程序,对由数据 采集系统输入至随机存取存储器中的数据进行分析处理,以完成各种继电保 护的功能。 (3)数字量输入/输出接口即开关量输入输出系统。由若干并行接口、光电 隔离器及中间继电器等组成,以完成各种保护的出口跳闸、信号警报、外部 接点输入及人机对话等功能。 (4)通信接口。包括通信接口电路及接口以实现多机通信或联网。 (5) 电源。供给微处理器、数字电路、A/D转换芯片及继电器所需的电源。 保护装置的硬件示意图如下所示 :
图5 采样保持过程示意图 Tc为采样脉冲宽度,Ts为采样周期(或称采样间隔)。可见, 采样保持输出信号已经是离散化的模拟量,再经A/D转换后就成 为离散化的数字量。
图5所示采样间隔Ts的倒数称为采样频率fs。采 样频率的选择是微机保护硬件设计中的一个关 键问题。采样频率越高,要求微处理器的速度 越高。因为微机保护是一个实时系统,数据采 集系统以采样的频率不断地向微处理器输入数 据,微处理器必须要来得及在两个相邻采样间 隔时间Ts内处理完对每一组采样值所必须作的 各种操作和运算,否则,微处理器将跟不上实时 节拍而无法工作。相反,采样频率过低,将不 能真实反映被采样信号的情况。
微机继电保护原理
微机继电保护原理
微机继电保护原理是基于微处理器控制的电气保护装置,其作用是保护电力系统设备和电路免受过载、短路、接地故障等电气故障的损害。
微机继电保护原理主要包括以下几个方面:
1. 数据采集和处理:微机继电保护通过传感器采集电气量如电流、电压、功率等的实时数据,然后通过模数转换器将模拟信号转换为数字信号,进一步通过采样和计算等处理手段得到电气量的准确数值。
2. 故障识别和判别:基于采集的数据,微机继电保护通过一系列算法和比较判断手段,识别出电气故障的类型和位置,如过载、短路等,并判别故障是否需要断开电路以保护设备。
3. 控制和动作:一旦识别出电气故障,微机继电保护便会向断路器或其他保护设备发送控制信号,触发其动作来切断故障电路。
同时,微机继电保护会生成警报信号,向操作人员发出故障报警。
4. 通信与监控:为了实现对电力系统的远程监控和管理,微机继电保护通常与其他设备进行通信,如与上位计算机、SCADA系统等进行数据交互,向操作人员提供实时信息和动作记录。
总的来说,微机继电保护通过数据采集、故障识别、控制动作和通信监控等方式实现对电力系统的准确保护和管理,提高了
电气故障的检测速度和准确性,从而有效增强了电力系统的可靠性和安全性。
(电力知识)微机继电保护系统的原理、作用和特点
微机继电保护系统的原理、作用和特点微机继电保护系统的原理、作用和特点1.高压(电力)系统继电保护技术的原理是(电气)测量器件对被保护对象实时检测其有关电气量(电流、电压、功率、频率等)的大小、性质、输出的逻辑状态、顺序或它们的组合,还有检测其他的(物理)量(如(变压器)油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高等)作为继电保护装置的输入信号,通过数学或逻辑运算与给定的整定值进行比较,然后给出一组逻辑信号来判断相应的保护是否应该启动,并将有关命令传给执行机构,由执行机构完成保护的工作任务(跳闸或发出报警信号等)。
系统工作原理图:2.微机继电保护系统的硬件组成:(1).模拟量输入系统(数据采集系统):包括电压形成、模拟量信号的滤波、采样保持、多路转换(MPX)以及模拟转换等主要环节,最后完成将模拟量输入准确地转换为数字量。
(2).CPU主系统:微处理器、只读存储器(ROM)或闪存内存单元、随机存取存储器(RAM)、定时器、并行以及串行接口等。
微处理器通过执行编制好的程序,完成各种继电保护测量、逻辑和控制功能。
(3).开关量(数字量)输入/输出系统:并行接口(PIA或PIO)、光电隔离器件及有触点的(中间(继电器))等组成,完成保护的出口跳闸、信号、外部接点输入及人机对话等功能。
3.高压电力系统微机继电保护系统的作用是专业对电力系统的正常运行工况进行监测显示,对异常工况进行及时的故障报警、故障诊断或快速切断异常线路(或设备等)的电力保护系统,进而为用户的正常生产、生活(用电)提供保证。
4.高压电力系统的微机继电保护系统特点是:(1).可靠性:继电保护装置有非常好的可靠性,不误动不拒动等。
(2).选择性:正确选择故障部位,保护动作执行时仅将故障部位从电力系统中切除,保证无故障部分继续正常(安全)运行。
(3).速动性:快速反应及时切除故障。
(4).灵敏性:灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。
继电微机保护课程设计
前言电系统的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。
但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。
继电保护(包括安全自动装置)是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。
许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。
因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。
因此,继电保护技术得天独厚,在几十年的时间里完成了发展的4个历史阶段。
(1)机电式继电保护阶段。
(2)晶体管式继电保护阶段。
(3)集成电路式继电保护阶段。
(4)计算机式继电保护阶段。
随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。
可以说从20 世纪90 年代开始我国继电保护技术已进入了微机保护的时代。
本次课程设计主要任务是通过对某简单电网进行继电保护系统设计,掌握继电保护的配置方法、基本原理和整定计算的基本方法,深化对线路、变压器、母线等元件的继电保护基本原理和装置结构的理解,掌握各种元件的保护配置和故障后的动作特性,掌握微机保护中各种保护的整定方法、接线方法。
掌握判定微机继电保护装置正确动作的方法。
第一章继电保护的配置按照《继电保护和安全自动装置技术规程》(GB14285-93)及《电力装置的继电保护和安全自动装置设计规范》(GB50062-92)的要求,35kV及以上中性点非直接接地电力网的线路,对相间短路和单相接地,应按本节的规定装设相应的保护。
保护装置采用远后备方式。
对单侧电源线路,可装设一段或两段式电流速断保护和过电流保护。
对单相接地故障,应在发电厂和变电站母线上,装设单相接地监视装置,监视装置反映零序电压,动作于信号。
继电保护原理书
继电保护原理书
继电保护是电力系统中一种常见的保护方式,其原理是通过电气信号来控制继电器实现对电力设备的保护。
继电保护系统通常由故障检测、信号传输、判断及动作四个部分组成。
在继电保护系统中,故障检测是最关键的环节。
它通过监测电力设备(如变压器、发电机等)的电流、电压等参数,以及通过采集和处理这些参数的变化来检测潜在的故障。
当检测到异常情况时,信号将被传输到继电器中。
信号传输部分通常使用传统的有线通信方式,如电缆或光纤,来传递检测到的故障信号。
这些信号经过调制和解调的处理后,可在继电器中进行判断和处理。
继电保护系统的判断部分采用各种算法和逻辑,根据接收到的信号来判断故障的类型、位置和程度。
这些算法和逻辑通常包括比较、计算和逻辑运算等。
最后,当判断部分确定故障情况后,动作部分将会触发相应的继电器动作,如切断电源、跳闸等。
这样可以保证电力设备和系统免受故障的影响,从而保障电网的稳定运行。
继电保护系统的可靠性和准确性对于电力系统的安全运行至关重要。
因此,继电保护原理的研究与应用一直是电力工程的重要领域。
通过不断的研究和改进,继电保护系统的性能和功能得到了显著提升,为电力系统的运行提供了可靠的保障。
微机综合继电保护原理及操作
WXB---11键盘命令 WXB---11键盘命令
WXB---11运行方式下键盘命令试验 WXB---11运行方式下键盘命令试验
WXB-11 进入运行方式: 进入运行方式: 人机对话----运行 人机对话----运行 保护CPU---运行 保护CPU---运行 巡检开关---投入 巡检开关---投入 复位”按纽. 按”复位”按纽. “运行”灯亮. 运行”灯亮.
微机型继电保护装置 原理与运行
微机保护基本原理
一、微机型继电保护的构成: 微机型继电保护的构成 微机型继电保护的构成: 传统保护——布线逻辑 传统保护——布线逻辑 微机保护——数字逻辑 微机保护——数字逻辑 硬件系统 软件系统 二、微机型继电保护的基本系统: 微机型继电保护的基本系统:
微机保护——硬件系统 微机保护——硬件系统
数据采集系统 数据处理系统 输入、 输入、输出接口 电源部分
数据采集系统
数据采集系统的作用——将模拟信 数据采集系统的作用——将模拟信 号变成数字信号。它包括: 号变成数字信号。它包括: 辅助变换器 低通滤波器(ALF) 低通滤波器(ALF) 采样保持器( H) 采样保持器(S / H) MPX) 多路开关 (MPX) 数变换器( D) 模/数变换器(A / D)
光、电隔离器(光耦) 电隔离器(光耦)
电源部分
电源部分的作用—提供装置正常工作所 电源部分的作用 提供装置正常工作所 需要的各等级电压: 需要的各等级电压: +5V—微机系统用; 微机系统用; 微机系统用 +15V、+12V—数据采集系统用; 数据采集系统用; 、 数据采集系统用 +24V—继电器回路用。 继电器回路用。 继电器回路用 各级电压不共地。 注:各级电压不共地。
电力系统继电保护 第四章
第4章输电线路纵联保护电流、电压保护和距离保护都是只反映被保护线路一侧的电量,为了获得选择性,其瞬时切除的故障范围只能是被保护线路的一部分,即使性能较好的距离保护,在单侧电源线路上也只能保护线路全长的80%左右,在双侧电源线路上瞬时切除故障的范围大约只有线路全长的60%左右。
在被保护线路其余部分发生故障时,都只能由延时保护来切除。
这对于很多重要的高压输电线路是不允许的,为了电力系统的安全稳定,线路上要求设置具有无延时切除线路上任意处故障的保护装置,输电线的纵联保护就是在这种背景下产生的。
因此仅反映线路一侧的电气量是不可能区分本线路末端和对侧母线(或相邻线路始端)故障的,只有反应线路两侧的电气量才可能区分上述两点故障,达到有选择性地快速切除全线故障的目的。
为此需要将线路一侧电气量的信息传输到另一侧去,即在线路两侧之间发生纵向的联系,这种保护装置称为输电线的纵联保护。
4.1 输电线路纵联保护的基本原理与类型仅反映线路一侧的电气量是不可能区分本线路末端和对侧母线(或相邻线路始端)故障的,只有反映线路两侧的电气量才能区分上述两点故障,达到有选择性地快速切除全线故障的目的。
为此需要将线路一侧电气量的信息传输到另一侧去,即在线路两侧之间发生纵向的联系。
这种保护装置就称为输电线的纵联保护。
4.1.1 输电线路纵联保护的基本原理当输电线路内部发生如图4.1所示的k1点短路故障时,流经线路两侧断路器的故障电图4.1 输电线路纵联保护的基本原理示意图流如图中实线箭头所示,均从母线流向线路(规定电流或功率从母线流向线路为正,反之为负)。
而当输电线路MN的外部发生短路时(如图中的k2点),流经MN 侧的电流如图中的虚线箭头所示,M侧的电流为正,N侧的电流为负。
利用线路内部短路时两侧电流方向同相而外部短路时两侧电流方向相反的特点,保护装置就可以通过直接或间接比较线路两侧电流(或功率)方向来区分是线路内部故障还是外部故障。
继电保护原理第4章-纵联
输电线路纵联电流差动保护原理的特点
1、保护范围明确。保护范围是线路两侧电流互感器之间的范围。 2、动作速度快,可实现全线速动,即全线路瞬时切除区内故障。 这是由于纵联电流差动保护不需与相邻元件的保护配合。 3、不受系统振荡、系统运行方式变化的影响。
三、输电线路两侧电气量的故障特征
1. 两端电流相量和 (正方向:母线线路)
M IM
k1
IN N
M IM
IN N k2
区内故障
0
区外故障
180
4. 两端测量阻抗
区内故障:两端距离Ⅱ段 ZII 均启动 区外故障:近端距离Ⅱ段 ZII 不启动,远端启动。
四、纵联保护基本原理
利用不同特征差异的电气量可以构成不同的纵联保护原理
(1)纵联电流差动保护原理(两端电流相量的故障特征)
第二节 纵联保护两侧信息的交换
一、导引线通信(Pilot Wire Communication)
保护原理:电流差动原理
适用于短线路
动作线圈 动作线圈 制动线圈 制动线圈
制动线圈
i
导引线
制动线圈
(a)环流式
i
动作线圈
动作线圈
(b)均压式
二、电力线载波通信(Power Line Carrier Communication)
正常运行和外部故障时(K2):两侧电流相位相差约为180°。 内部故障时(K1):两侧电流相位相差约为0°。
(4)距离纵联保护原理(两端测量阻抗的故障特征) 正常运行和外部故障时(K2):两端的距离Ⅱ段测量阻抗一侧 为反方向,另一侧为正方向。
内部故障时(K1):两端的距离Ⅱ段方向阻抗元件都在正方向, 同时启动。
闭锁信号
k1 IN N
微机继电保护精品课件教材课程
大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。
大数据技术还可以用于对历史故障数 据进行挖掘和分析,找出故障发生的 规律和原因,为预防和解决故障提供 科学依据。
大数据技术还可以用于对电力系统的 运行状态进行实时监测和预警,及时 发现潜在的故障风险,提高电力系统 的安全性和稳定性。
详细描述
通信故障通常表现为通信指示灯不亮、通信数据异常等。这 可能是由于通信接口接触不良、通信线缆损坏或通信协议不 匹配等原因造成的。处理通信故障需要检查通信接口和线缆 是否正常,同时确保通信协议的一致性。
通信故障
总结词
通信故障是指微机继电保护装置与其他设备或系统之间的通 信出现问题,导致信息传输受阻或数据错误。
物联网技术在微机继电保护中的应用
物联网技术可以实现电力设备和 保护装置之间的信息交互和远程 控制,提高保护装置的自动化和
智能化水平。
物联网技术还可以用于对电力设 备的运行状态进行实时监测和预 警,及时发现设备的异常情况,
提高设备的可靠性和安全性。
物联网技术还可以用于实现电力 系统的远程管理和控制,提高电 力系统的运行效率和可靠性。
靠性。
距离保护
距离保护通过测量故障点到保护装 置的距离,判断故障位置,实现选 择性保护。
方向保护
方向保护通过比较故障电流的方向, 判断故障是否发生在被保护线路的 内部,实现选择性保护。
微机继电保护的软件算法
电流差动保护
电流差动保护通过比较线路两侧 电流的大小和相位来判断故障是 否发生,具有较高的灵敏度和可
大数据技术在微机继电保护中的应用
大数据技术可以对大量的电力系统运 行数据进行分析和处理,提取出有用 的信息,用于优化保护装置的配置和 整定值。
电力系统微机继电保护技术导则
电力系统微机继电保护技术导则一、引言电力系统是现代社会不可或缺的基础设施之一,而微机继电保护技术在电力系统中起着至关重要的作用。
本文将详细介绍电力系统微机继电保护技术的相关内容,包括其定义、发展历程、应用领域、工作原理等。
二、定义与发展历程2.1 定义微机继电保护技术是指利用微处理器和相应的软件实现对电力系统进行故障检测、故障定位和故障切除等操作的一种保护技术。
2.2 发展历程微机继电保护技术起源于20世纪70年代,当时计算机技术正处于迅速发展阶段。
最早的微机继电保护装置采用离散元件构成的逻辑线路来实现逻辑控制功能。
随着集成电路技术的进步,20世纪80年代中期出现了第一代真正意义上的微机继电保护装置。
经过几十年的发展,到了21世纪初,微机继电保护装置已经成为电力系统保护的主流技术。
随着计算机硬件和软件技术的不断进步,微机继电保护装置在功能、可靠性和性能上得到了显著提升。
三、应用领域微机继电保护技术广泛应用于各类电力系统,包括发电厂、变电站、配电网等。
它可以实现对电力系统各个环节的保护,包括线路、变压器、发电机等。
四、工作原理微机继电保护装置由硬件和软件两部分组成。
硬件部分包括微处理器、采样模块、通信模块等;软件部分则是通过编程实现各种功能。
4.1 采样与数据处理微机继电保护装置通过采样模块对电力系统的信号进行采样,获取相应的数据。
然后,通过数据处理算法对采样得到的数据进行处理,以便进行故障检测和定位。
4.2 故障检测与定位基于采样得到的数据,微机继电保护装置可以实时监测电力系统中的故障情况,并通过判断故障类型和位置来进行相应的保护操作。
常见的故障检测和定位算法包括差动保护、过电流保护和距离保护等。
4.3 故障切除当微机继电保护装置检测到电力系统中存在故障时,它会根据预设的逻辑控制策略,切除故障部分,以避免故障扩大和对系统造成更大的损害。
五、优势与挑战5.1 优势微机继电保护技术相比传统的继电保护技术具有如下优势:•功能强大:微机继电保护装置可以实现多种复杂的功能,如差动保护、距离保护等。
微机保护原理
近三十年来,计算机技术发展很快,计算机的应用已广泛而深入的影响着科学技术、生产、和生活的各个领域。
它给各部门的面貌带来了巨大的并且往往是质的变化。
计算机技术同样影响到继电保护技术的发展。
传统的继电保护基本上已被新型的微机保护所替换。
下面简单介绍一下微机保护。
一、微机保护装置的构成微机保护与传统继电保护的最大区别就在于前者不仅有实现继电保护功能的硬件电路,而且还必须有保护和管理功能的软件———程序;而后者则只有硬件电路。
微机保护装置的硬件构成可分为四部分:数据采集、微型计算机模块、开出开入、人机接口、其它(通讯,电源等)。
(一)数据采集传统保护是把电压互感器(TV)二次侧电压信号及电流互感器(TA)二次电流信号直接引入继电保护装置,或者把二次电压、电流经过变换(信号幅值变化或相位变化)组合后再引入继电保护装置。
因此,无论是电磁型、感应型继电器还是整流型、晶体管型继电保护装置都属于反应模拟信号的保护。
尽管在集成电路保护装置中采用数字逻辑电路,但从保护装置测量元件原理来看,它仍属于反应模拟量的保护。
而微机保护中的微机则是处理数字信号的,即送入微型计算机的信号必须是数字信号。
这就要求必须有一个将模拟信号变换成数字信号的系统,这就是数据采集系统的任务。
(二)微型计算机模块微型计算机是微机保护装置的核心。
数字信号采集进来后对其进行数字虑波,然后通过各种不同的算法对其进行计算处理,逻辑判断,动作出口,事故纪录等等处理。
目前计算机保护的计算机部分都是由微型计算或单片微型计算机构成的,这也是微机保护名称的由来。
由一片微处理器配以程序存贮器、数据存贮器、接口芯片(包括并行接口芯片、串行接口芯片)、定时器、计数器芯片等构成的微机系统称为单微机系统。
而在一套微机型保护装置中有两片或两片以上的微处理器构成的微机系统则称为多微机系统。
由单片微型计算机配以部分接口芯片也可以构成微机系统。
同样地,在一套微机保护装置中仅有一个微处理器称为单微机系统,而在一套保护装置中有两片或两片以上微处理器则称为多微机系统。
继电保护原理第4章-纵联动画
信信 TA
方向判别、停信元件: ZII 独立跳闸元件: ZI
结合电容器
特点:区内故障瞬时动作,区外故障作为后备。
12/123
3.3.4高频闭锁距离保护举例:原理接线图
一般t2为4~16ms
三个时间的作用
(等对侧信号发过来)
延时比较
t2 0
跳闸
(保证有两侧信号)
Z II
I
短时开放 150ms
0 t1
以M侧为例说明工作过程
22/123
区外故障逻辑过程的简单归纳: 1)故障时,两侧先启动,并且都发信。 2)正方向元件动作——仅停止本侧发信。 3)反方向侧继续发信——闭锁两侧保护。 利用的特征:任一侧为负,就闭锁保护。
23/123
M 2、区内故障
N
t2 0
跳闸
Z II
I
短时开放 150 ms
启动和发信
2. 闭锁式方向纵联保护的构成-逻辑结构图
Y1
Y2
&
t2 0
跳闸 &
1)区外短路
KW+ KA2 KA1
TV TA
0 t1
发收 信信
2)区内短路 3)单电源区内短路
结合电容器
11/123
三、闭锁式距离(零序)纵联保护
跳闸
tII
tIII
t2 0 &
故障启动发信元件: ZIII
ZI
ZII
ZIII
TV
0 t1 发 收
发收
0 t1
信 信 的过程与前
面是一致的
结合电容器 信号交换
以M侧为例说明工作过程
24/123
M 2、区内故障
N
M侧阻抗动作 Z II
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TV断线自检
N TV自检通过? Y TA断线自检
调试方式 Y
置TA断线标志 修改中断返回地址
N TA自检通过? Y
Y 起动元件动作? N
中断出口
7
第4章 微机继电保护的软件原理
4.2.3 TA断线的自检 在TA二次回路断线或电流通道的中间环节接触不良时,
有的保护(例如变压器差动保护)有可能误动作,因此对TA 二次回路必须监视,在断线时闭锁保护并应报警。
不同型号的微机线路或元件保护的起动元件程序各 有不同。
例如:在线路成套保护装置中常采用以相电流突变量 起动方式为主,以零序电流为辅助起动方式的算法。
10
第4章 微机继电保护的软件原理
4.2.5 故障处理程序原理 故障处理程序包括保护软压板的投切检查、各 种保护的动作判据计算及定值比较、逻辑判断、跳 闸处理和后加速以及事件报告等部分。
➢ 为保证实时任务的并行性,必须对所有任务进 行分类、分时管理。
13
第4章 微机继电保护的软件原理
按照任务执行的时间界限,可把任务划分三类
➢ 第一类任务有严格的时间起点和终点,有执行 周期和任务周期。
➢ 执行周期——完成任务所需要的时间。 ➢ 任务周期——两次执行同一任务的时间间隔。
第一类任务周期的最小公约数作为最小任务周 期,它是任务调度的控制依据,所有这类任务 的调用周期都是最小任务周期的整数倍。 ➢ 在微机继电保护的任务调度设计中,基本用采 样任务周期为最小任务周期,也叫基本任务周 期。
第4章 微机继电保护的软件原理
第4章 微机继电保护的
软件原理
1
第4章 微机继电保护的软件原理
4.1 微机保护主程序框图原理
微机保护装置接通电源(上电)或整组复归时,CPU响应复 位中断,进入主程序入口 。 4.1.1 初始化
“初始化”是指保护装置在上电或整组复归时首先执行的 程序,它主要是对微机系统及其可编程扩展芯片的工作方式初 始化、各种标志设置、参数的设置、整定值加载等,以便在后 面的程序中按预定方案工作。
在开放中断后必须延时2~3个工频周期(40~60ms), 以确保采样数据的完整性和正确性。4Leabharlann 第4章 微机继电保护的软件原理
4.1.4 自检循环
在开放了中断后,所有准备工作就绪了,主程序就进 入相应的主循环程序。
主循环程序主要包括自检循环程序和故障处理程序。
自检循环程序:在保护装置正常运行且系统无故障时运 行,主要包括查询检测报告,专用及通用自检等内容。
14
第4章 微机继电保护的软件原理
➢ 第二类任务没有严格的起始点,但有严格的终止点。 终止点可以是到达某个规定时刻或出现某种事件。
包括开关量输出、故障录波、通信及各种随机事件的处 理。这类仟务多用中断方式来触发任务的调度。
➢ 第三类任务是除上述两类任务以外其它所有任务。 这类任务称为通用任务,既没有严格的起始点,也
故障处理程序:如果检测到故障启动标志,则进入故障 处理程序。故障处理程序中进行各种保护的算法计算, 跳闸逻辑判断与时序处理,告警与跳闸出口处理,及事 件报告、故障报告的整理等。
5
第4章 微机继电保护的软件原理
4.2 采样中断服务程序与故障处理程序原理 采样中断服务程序框图如图4-2所示。采样中断服务
6
第4章 微机继电保护的软件原理
4.2.2 TV断线的自检
在保护判断起动之前,先检查 电压互感器TV二次是否断线。 在小接地电流系统中,可简单 地按以下两个判据检查TV二次 是否断线。
1、正序电压小于30V,而任一 相电流大于0.1A。
2、负序电压大于8V。
采样中断入口
置TV断线标志
采样计算
工作方式? 运行
初始化包括初始化(一)、初始化(二)及数据采集系统 初始化三个部分。
2
第4章 微机继电保护的软件原理
初始化(一):
主要是对微处理器CPU及其扩 展芯片的初始化,及保护输出的 开关量出口初始化,赋以正常初 值,以保证出口继电器均不动作。
初始化(二):
包括采样定时器的初始化、对 RAM区中所有运行时要使用的软 件计数器及各种标志位清零等程 序。
11
第4章 微机继电保护的软件原理
4.3 基于实时操作系统的继电保护软件设计思想
在以上第一、二节中所讲的是传统微机保护的软件设计 结构,这种结构采用的是主循环加中断的线性结构,可称之为 前后台系统。 这种程序机制的特点:简单直观,易于控制,但缺乏灵活性。
因此借鉴PC操作系统的进程管理和调度思想,建立一个基于实 时操作系统(Real-Time Operation System,RTOS)的微机保 护软件系统,统一安排微机保护装置所有与硬件和软件资源有 关的管理、调配与控制相关的程序模块,将会大大提高提高软 件的灵活性和可扩充性。
在TA断线期间,软件发出运行异常“TA断线”信号,并置 TA断线标志位,而且根据整定的控制字决定是否退出运行。
9
第4章 微机继电保护的软件原理
4.2.4 起动元件原理
为了提高保护动作的可靠性,保护装置的出口均经起动 元件闭锁,只有在保护起动元件起动后,保护装置出口 闭锁才被解除。在微机保护装置里,起动元件是由软件 来完成的。起动元件起动后,启动标志位“KST”置1。
4.1.2 全面自检的内容 在完成初始化(二)之后进入全面自检程序,全面自
检包括对RAM、EPROM、开关量输入、输出等回路的自检。 如果检查出存在错误,则驱动显示器显示故障信号(故 障字符代码)和故障时间及故障类型说明。自检的方式 将在第7章中详细说明。 4.1.3 开放中断与等待中断
初始化之后,进入运行之前应开始模数变换,并进行 一系列采样计算。所以必须开放采样中断。进入运行之 前应开放串行口中断,以保证接口CPU对保护CPU的正常 通信。
23
19
第4章 微机继电保护的软件原理
4.4.2 任务划分
将装置任务模块分解为以下 3 类任务: 1、保证微机保护基本功能实现的任务。包括保护判断、 数据预处理、驱动输出、故障录波、报警等。本类任务 要求实时性、可靠性最高,因此是优先级最高的任务, 又以保护判断优先级最高。 2、其他主要功能的任务。包括测量、通信、人机交互等。 除了保护基本功能的硬实时任务之外,这些任务要求能 够尽可能快的完成,但是比保护基本功能的性能要求低 一些。 3、最后是自检任务。
12
第4章 微机继电保护的软件原理
4.3.1 任务的划分
➢ 任务—般是指程序连同它操作的数据在处理器 中动态运行的过程。
➢ 在微机继电保护软件中,每项任务都应完成一 项独立的功能或实时数据的处理过程。如保护 判断、数据预处理、电压、电流有效值计算、 驱动输出、故障录波,液晶显示,键盘管理, 通信等都可以看成是独立完成的任务。
没有严格的终止点。通常把实时性要求不高的任务归入 这类,如人机对话,通用计算和数据处理都是典型的通 用任务。
15
第4章 微机继电保护的软件原理
➢μC/OS-Ⅱ系统中每个任务有休眠态、就绪态、运行态、
挂起和中断态。 ➢运行态是指任务获得 CPU 控制权,正在运行中 。 ➢就绪态指任务进入就绪状态,但其优先级比正在运行的 任务优先级低,暂时还不能运行。等待态是执行条件尚不 满足,暂时不接受任务。
程序设计整体框 架
22
第4章 微机继电保护的软件原理
删除任务
挂起态 数据预处理,人
机接口 通信,自检
休眠态 驱动输出,故障
录波,报警
事件发生 时间到
等待事件 延时
中断态 定时中断 外部中断
删除任务
建立任务
删除任务
中断
退出中断
就绪态 测量
任务切换 任务被抢占
运行态 保护判断
图4-4 基于μC/OS-Ⅱ的微机线路保护装置的任 务状态和任务切换示意图
20
第4章 微机继电保护的软件原理 4.4.3 优先级分配
21
第4章 微机继电保护的软件原理
上电或复位
初始化
优先级占先 测量任务
故障录波
建立用户任务
自检任务
定时采样中断
Sem1触发
数据预处理
Sem2触发
保护判断
建立任务
通信中断
Sem3触发
键盘中断
延时
通信任务 人机接口
驱动输出
报警
图4-3基于实时多 任务操作系统的
在中低压变压器保护中采用负序电流来判断TA断线的两个判据: 1、TA断线时产生的负序电流仅在断线一侧出现,而在故障时至 少有两侧会出现负序电流。 2、以上判据当在变压器空载时出现故障的情况下,会因为仅有 电源侧出现负序电流,将误判TA断线。因此要求另加条件:降 压变压器低压侧三相都有一定的负荷电流。
数据采集系统的初始化:
主要指采样值存放地址指针初 始化,如果是VFC式采样方式, 则还需对可编程计数器初始化。
上电或复位
初始化(一)
工作方式? 运行 初始化(二)
调试 调试任务
全面自检? 通过 数据采集初始化
不通过
告警
开中断 延时
N 故障启动?
自检循环程序
Y
故障处理程 序
整组复归
3
第4章 微机继电保护的软件原理
对开关量输出、故障录波等无固定起始时刻,且实时性 要求很高的第二类任务,一般通过中断方式来起动任务调度, 用内部调度模块管理。
18
第4章 微机继电保护的软件原理
4.4 基于实时操作系统的继电保护软件设计举例
本节以6-10kV线路微机保护装置为例,介绍采用实时操 作系统的方法。 4.4.1 装置的功能模块划分 1、定时采样模块 2、数据预处理模块 3、保护判断模块 4、开关量输入模块 5、开关量输出模块 6、测量和监视模块 7、人机交互模块 8、通讯模块 9、自检模块