浙教版八年级上册数学第二章特殊三角形全部知识点、考点及练习
浙教版八年级数学上册特殊三角形知识点归纳及练习
A.2 个 B.4 个 C.6 个 D.8 个
9.如图所示,已知△ABC 中,AB=6,AC=9,AD⊥BC 于 D,M 为 AD 上任一点,则 MC2=MB2 等 于( ) A.9 B.35 C.45 D.无法计算 10.若△ABC 是直角三角形,两条直角边分别为 5 和 12,在三角形内有一 点 D,D 到△ABC 各边的距离都相等,则这个距离等于 ( ) A.2 B.3 C.4 D.5
①等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对 __________);
②等腰三角形三线合一,这三线是指 ________________、________________、________________,也就是说这三线为同一条线 段;
③等腰三角形是________图形,它的对称轴有_________条。 2.等腰三角形的判定:
22.如图,已知点 B,C,D 在同一条直线上,△ABC 和△CDE 都是等边三角形,BE 交 AC 于 点 F,AD 交 CE 于点 H.(1)说明:△BCE≌△ACD;(2)说明:CF=CH;(3)判断△CFH 的形状 并说明理由.
19.如图,△ABC 是等边三角形,ABCD 是等腰直角三角形,其中∠BCD=90°,求∠BAD 的 度数.
20.如图,E 为等边三角形 ABC 边 AC 上的点,∠1=∠2,CD=BE,判断△ADE 的形状.
21.如图所示,已知:在△ABC 中,∠A=80°,BD=BE,CD=CF.求∠EDF 的度数.
例 2:如图,AB=AC,BD=BC,若∠A=40°,则∠ABD 的度数是( )
A.20°
B.30°
C.35°
D.40°
例 3:如图所示,在等腰△ABC 中,AD 是 BC 边上的中线,点 E 在 AD 上。求证:BE=CE。
浙教版八上数学期末复习-第二章 特殊三角形
课题:第二章特殊三角形一、等腰三角形分类讨论1.1等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则这个等腰三角形顶角的度数为:1.2等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm.等腰三角形的腰长为:1.3.等腰三角形一腰上的高等于该三角形另一边长的一半.则其顶角等于:钢架问题2.1.如图1,已知∠AOB=10°,且OC=CD=DE=EF=FG=GH,则∠BGH=图1 图2 图3 图4 图52.2如图2钢架中,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…恰能加8根钢架,且P1A=P1P2,求∠A范围.2.3如图3,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1B2,△A2B2B3,△A3B3B4,…均为等边三角形.若OB1=1,则△A8B8B9的边长为:性质应用3.1如图4,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若BD=1,BC=3,求AC的长3.2如图5,等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M.(1)求∠E的度数.(2)求证:M是BE的中点.3.3如图6,等腰△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE作图:4直线L上有一点O,点A为直线外一点,连接OA,在直线L上找一点B,使得△AOB是等腰三角形,这样的点B最多有个二、等边三角形性质应用1.1如图7,等边三角形ABC,BC=2,D是AB的中点,作DF⊥AC于点F,作EF⊥BC于点E,BE的长为:图6 图7 图8 图9 图10 图111.2.如图8,等边△ABC中,BD=CE,连接AD、BE交于点F。
∠AFE=______面积法:2.1如图9,在等腰△ABC中,AB=AC=5,BC=6,P为底边BC上任一点,PE⊥AB,PF⊥AC,求PE+PF的值。
浙教版-8年级-上册-数学-第2章《特殊三角形》分节知识点
浙教版-8年级-上册-数学-第2章《特殊三角形》分节知识点一、轴对称要点一、轴对称图形1、轴对称图形的定义:一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:(1)轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.要点二、轴对称1、轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点.要点诠释:(1)轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2、轴对称与轴对称图形的区别与联系(1)轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.要点三、轴对称与轴对称图形的性质1、轴对称、轴对称图形的性质(1)在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等要点诠释:(1)若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.二、等腰三角形性质定理要点一、等腰三角形的定义1、等腰三角形(1)有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(2)如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.2、等腰三角形的作法(1)已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1、作线段BC=a;2、分别以B,C为圆心,以b为半径画弧,两弧相交于点A;3、连接AB,AC.△ABC为所求作的等腰三角形.3、等腰三角形的对称性(1)等腰三角形是轴对称图形;(2)∠B=∠C;(3)BD=CD,AD为底边上的中线.(4)∠ADB=∠ADC=90°,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4、等边三角形(1)三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰直角三角形的两个底角相等,且都等于45°,等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).∠A=180°-2∠B,∠B=∠C=.(2)用尺规作图时,画图的痕迹一定要保留,这些痕迹一般是画的轻一些,能看清就可以了,题目中要求作的图要画成实线,最后一定要点题,即“xxx即为所求”.(3)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.(4)等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是,面积是.要点二、等腰三角形的性质1、等腰三角形的性质(1)性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”.(2)推论:等边三角形的各个内角都等于60°.(3)性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”.2、等腰三角形的性质的作用(1)证明两条线段或两个角相等的一个重要依据.3、尺规作图:已知底边和底边上的高(1)已知线段a,h(如图)用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高线为h.作法:1、作线段BC=a.2、作线段BC的垂直平分线l,交BC与点D.3、在直线l上截取DA=h,连接AB,AC.△ABC就是所求作的等腰三角形.三、等腰三角形的判定定理要点一、等腰三角形的判定定理1、等腰三角形的判定定理(1)如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边.2、等边三角形的判定定理(1)三个角相等的三角形是等边三角形.(2)有一个角是60°的等腰三角形是等边三角形.要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)等边三角形是中考中常考的知识点,需要记住一下数据:边长为a的等边三角形它的高是,面积是.要点二、命题与逆命题,定理与逆定理(1)在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.每个命题都有它的逆命题,但每个真命题的逆命题不一定是真命题.(2)如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫做互逆定理.要点诠释:(1)每一个定理不一定都有逆定理,如果它存在逆定理,那么它一定是正确的.要点三、线段垂直平分线定理的逆定理(1)到线段两端距离相等的点在线段的垂直平分线上.已知:AB是一条线段,P是一点,且PA=PB.求证:点P在线段AB的垂直平分线上.证明:(1)当点P在线段AB上时,结论显然成立.(2)当点P不在线段AB上时,作PC⊥AB于点O.PA=PB,PO⊥AB,∵OA=OB,∴PC是AB的垂直平分线.∴点P在线段AB的垂直平分线上.四、直角三角形要点一、直角三角形的概念(1)有一个角是直角的三角形是直角三角形.直角三角形表示方法:Rt△.如下图,可以记作“Rt△ABC”.要点诠释:(1)三角形有六个元素,分别是:三个角,三个边,在直角三角形中,有一个元素永远是已知的,就是有一个角是90°.直角三角形可分为等腰直角三角形和含有30°的直角三角形两种特殊的直角三角形,每种三角形都有其特殊的性质.要点二、直角三角形的性质(1)直角三角形的两个锐角互余.(2)直角三角形斜边上的中线等于斜边的一半.要点诠释:(1)直角三角形的特征是两锐角互余,反过来就是直角三角形的一个判定:两个角互余的三角形是直角三角形.(2)含有30°的直角三角形中,同样有斜边上的中线等于斜边的一半,并且30°的角所对的直角边同样等于斜边的一半.要点三、直角三角形判定(1)两个角互余的三角形是直角三角形.(2)在一个三角形中,如果一边的中线等于这边的一半,那么这个三角形是直角三角形.如图:已知:CD为AB的中线,且CD=AD=BD,求证:△ABC是直角三角形.证明:∵AD=CD,∴∠A=∠1.同理∠2=∠B.∵∠2+∠B+∠A+∠1=180°,即2(∠1+∠2)=180°,∴∠1+∠2=90°,即:∠ACB=90°,∴△ABC是直角三角形.五、勾股定理要点一、勾股定理(1)直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用(1)已知直角三角形的任意两条边长,求第三边;(2)用于解决带有平方关系的证明问题;(3)利用勾股定理,作出长为的线段.六、勾股定理的逆定理要点一、勾股定理的逆定理(1)如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.要点诠释:(1)当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、互逆命题(1)如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:(1)原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数(1)满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.(1)熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3)(是自然数)是直角三角形的三条边长;七、直角三角形全等判定要点一、判定直角三角形全等的一般方法(1)由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理(1)斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“HL”时,虽只有两个条件,但必须先有两个Rt△的条件.要点三、角平分线的第二个性质定理(1)角的内部,到角两边距离相等的点,在这个角的平分线上.要点诠释:(1)这个性质定理和“角平分线上的点到角两边的距离相等”是互逆定理.它们的题设和结论交换了位置,运用的时候,一定要分清题设是什么,求证的结论又是什么.切不可发生混淆.。
(完整版)浙教版初中数学八年级上册知识点及典型例题
数学八年级上册知识点及典型例题第一章平行线1.1同位角、内错角、同旁内角所截,构成了八个角。
如图:直线l , l被直线l321L3 a3L1 14a12358L2 a267的同旁,并且分别位于直线l , ll 的相同一侧,这样的一51. 观察∠1与∠的位置:它们都在第三条直线231对角叫做“同位角”。
2. 观察∠3与∠5的位置:它们都在第三条直线l的异侧,并且都位于两条直线l , l 之间,这样的一对213角叫做“内错角”。
3. 观察∠2与∠5的位置:它们都在第三条直线l的同旁,并且都位于两条直线l , l之间,这样的一对角231叫做“同旁内角”。
想一想问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线)寻找构成的角(八角)确定构成角中的关系角问题2:在上面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
1.2 平行线的判定(1)复习画两条平行线的方法:A A L12L1o抽象成几何图形(图形的平移变换)L1oL B2B.21)怎样用语言叙述上面的图形?提问:(1 被AB所截)(直线l,l 21(2)画图过程中,什么角始终保持相等?2)(同位角相等,即∠1=∠位置关系如何?,3)直线ll (21)l∥l (21(4)可以叙述为:2∵∠1=∠)(∥∴ll ? 1 2。
语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单地说:同位角相等,两直线平行。
21=∠几何叙述:∵∠l∥l(同位角相等,两直线平行)∴ 2 1想一想c a21b若a⊥b,b⊥c则a c2在同一平面内,垂直于同一条直线的两条直线互相平行。
平行线判定方法的特殊情形:2)1.2 平行线的判定(CDAB与=180°,则AB与CD平行吗?②若∠2+∠4图中,直线AB 与CD被直线EF所截,①若∠3=∠4,则平行吗?E1A B432 C DF°42+∠=180°,∠2+∠3=180 ,∠①∵∠3=∠41=∠4 ②∵∠=∠4 ∴∠3 1∴∠=∠3)()∴AB∥CD (∥∴ABCD内错角相等,两直线平行两条直线被第三条直线所截,如果内错角相等,则两条直线平行。
浙教版-8年级-上册-数学-第2章《特殊三角形》等腰三角形综合
浙教版-8年级-上册-数学-第2章《特殊三角形》知识点一:等腰三角形、腰、底边1、有两边相等的三角形叫等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角。
知识点二:等腰三角形的性质1、性质1:等腰三角形的两个底角相等(简称“等边对等角”).2、性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”)。
知识点三:等腰三角形的判定定理1、定理内容及证明:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。
知识点四:等边三角形1、等边三角形定义:三边都相等的三角形叫等边三角形。
知识点五:等边三角形的性质1、等边三角形的性质:等边三角形三个内角都相等,并且每一个内角都等于60°知识点六:等边三角形的判定1、等边三角形的判定:(1)三个角都相等的三角形是等边三角形;(2)有一个角是60°的等腰三角形是等边三角形.类型一:探究型题目【练1-1】如图所示:∠ABC的平分线BF与△ABC中∠ACB 的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有几个等腰三角形?为什么?(2)BD,CE,DE之间存在着什么关系?请证明.【1-练2】如图,在直角△ABC 中,∠ACB=90°,∠CAB=30°,请你设计三种不同的分法,把△ABC 分割成两个三角形,且要求其中有一个是等腰三角形。
(在等腰三角形的两个底角处标明度数)【练1-3】已知等边△ABC 和点P,设点P 到△ABC3边的AB、AC、BC 的距离分别是h 1,h 2,h 3,△ABC 的高为h,(1)若点P 在一边BC 上(图1),此时h=0,可得结论h 1+h 2+h 3=h,请简要说明理由;(2)当点P 在△ABC 内(图2)和点P 在△ABC 外(图3)这两种情况时,h 1、h 2、h 3与h 之间有怎样的关系,请写出你的猜想,并简要说明理由。
浙教版数学八年级上册第二章特殊三角形之考点专练(等腰三角形)
第二章特殊三角形上(等腰三角形)考点专练考点一:图形的轴对称1.下列图中不是轴对称图形的是()2.如图,四边形ABCD 中,点M,N 分别在AB,BC 上, 将△BMN 沿MN翻折, 得△FMN ,若MF∥AD ,F N∥D C,则∠F=()A.115° B。
105°C。
95° D。
85°3.如图,请用三种方法,在已知图上再添一个小正方形后,使其成为轴对称图形,并画出对称轴.4.如图,已知E、F 分别是△ABC 的边AB、AC 上的两个定点,问在边BC 上能否找到一点M,使得△EFM 的周长最小?如果能,请作出来.5.如图,把△ABC 纸片的∠A 沿DE 折叠,点A 落在四边形CBDE 外,求∠1、∠2 与∠A 的关系考点二:等腰三角形结合代数1.等腰三角形的一个外角是80°,则其底角是()2.若△A BC 的三边a、b、c 满足(a-b)(b2-2b c+c2)(c-a)=0,那么△A BC 的形状是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形3.已知等腰三角形的一边长为4,另一边长为8,则它的周长是()4.如图,△A BC 中,AB=BC=AD,D 在BC 的延长线上,则角α和角β的关系是()5.如图,AA′、BB′分别是∠E A B、∠D BC 的平分线,若AA′=BB′=A B,则∠B A C的度数为.考点三:等腰三角形结合几何定理1.如图,在△ABC 中,AB=AC,D 为BC 的中点,E 为AD 上任意一点,过点C 作CF∥AB 交BE 的延长线于点F,交AC于点G,连结C E.则下列结论正确的是()(1)AD 平分∠B A C;(2)B E=C F;(3)B E=C E;(4)△A E B≌△A E C;(5)若EG=CG,则△ECF 为等腰三角形;(6)若BE=5,GE=4,则GF=9/42.如图,在△ABC 中,BC=5cm,BP、CP 分别是∠ABC 和∠ACB 的角平分线,PD∥AB,PE∥AC,求△PDE 的周长。
浙教版八年级数学上册第二章知识点+注意点+经典例题
八年级上册第二章《特殊三角形》2.1图形の轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁の部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它の对称轴.2.有の轴对称图形の对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合の点是对应点,叫做对称点。
[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合の点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.[图形轴对称の性质]①关于某直线对称の两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段の垂直平分线。
③轴对称图形の对称轴,是任何一对对应点所连线段の垂直平分线。
④如果两个图形の对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
[轴对称与轴对称图形の区别][线段の垂直平分线](1)经过线段の中点并且垂直于这条线段の直线,叫做这条线段の垂直平分线.(2)线段の垂直平分线上の点与这条线段两个端点の距离相等;反过来,与一条线段两个端点距离相等の点在这条线段の垂直平分线上.因此线段の垂直平分线可以看成与线段两个端点距离相等の所有点の集合.2.2 等腰三角形+2.3等腰三角形性质定理+2.4等腰三角形判定定理[等腰三角形]★1. 有两条边相等の三角形是等腰三角形。
★2. 在等腰三角形中,相等の两条边叫做腰,另一条边叫做底边.两腰所夹の角叫做顶角,腰与底边の夹角叫做底角.[等腰三角形の性质]★性质1:等腰三角形の两个底角相等(简写成“等边对等角”)★性质2:等腰三角形の顶角平分线、底边上の中线、底边上の高互相重合(三线合一).特别の:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上の中线、角平分线、高线对应相等.[等腰三角形の判定定理]★如果一个三角形有两个角相等,那么这两个角所对の边也相等(简写成“等角对等边”).特别の:(1)有一边上の角平分线、中线、高线互相重合の三角形是等腰三角形.(2)有两边上の角平分线对应相等の三角形是等腰三角形.(3)有两边上の中线对应相等の三角形是等腰三角形.(4)有两边上の高线对应相等の三角形是等腰三角形.[等边三角形]三条边都相等の三角形叫做等边三角形,也叫做正三角形.[等边三角形の性质]★等边三角形の三个内角都相等,•并且每一个内角都等于60°[等边三角形の判定方法]★(1)三条边都相等の三角形是等边三角形;★(2)三个角都相等の三角形是等边三角形;★(3)有一个角是60°の等腰三角形是等边三角形.2.5 逆命题和逆定理[逆命题和逆定理]命题:一般地,对某一件事情作出正确或不正确の判断の句子叫做命题。
浙教版八年级数学上册第2章 特殊三角形 全章热门考点整合(课件)【新版】
夯实基础·固练
10.已知:点O到△ABC的两边AB,AC所在直线的距离相等, 且AB=AC. (1)如图①,若点O在边BC上,求证:OB=OC.
证明:过点O分别作OE⊥AB于点E,OF⊥AC于点F,连结AO. 由题意知,OE=OF, ∴点O在∠BAC的平分线上,即AO为∠BAC的平分线. 又∵AB=AC,∴OB=OC.
【答案】A
14.如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB, 求∠A的度数.
【点拨】本题运用了方程思想.题中含有4个等腰三角形, 若反复运用“等边对等角”和三角形外角的性质,比较复杂 且易出错,而用列方程的方法可使问题变得简单明了.
解:设∠ABD的度数为x. ∵AD=DE=EB,∴∠A=∠AED=2∠ABD=2x. ∵BC=BD,∴∠C=∠BDC=∠ABD+∠A=3x. ∵AB=AC,∴∠ABC=∠C=3x. ∴∠A+∠C+∠ABC=8x=180°. ∴x=22.5°. ∴∠A=2x=45°.
夯实基础·巩固练
(3)若点O在△ABC的外部,OB=OC成立吗?请画图表示并证明.
解:成立,如图②.过点 O 分别作 OE⊥AB 的延长线于点 E,OF⊥AC 的延长线于点 F.连结 AO. 根据(1)(2)知,AO 平分∠BAC.
AB=AC, 在△BAO 与△CAO 中,∠BAO=∠CAO,
13.【中考·安顺】已知等腰三角形的两边长分别为 a,b,且 a,
b 满足 2a-3b+5+(2a+3b-13)2=0,则此等腰三角形的
周长为( )
A.7 或 8
B.6 或 10
C.6 或 7
D.7 或 10
【点拨】∵ 2a-3b+5+(2a+3b-13)2=0, ∴22aa-+33bb+-51=3=0,0,解得ab==23,. 当 a 为底边长时,三角形的三边长分别为 2,3,3,则周长为 8; 当 b 为底边长时,三角形的三边长分别为 2,2,3,则周长为 7. 综上所述,此等腰三角形的周长为 7 或 8.
浙教版八年级数学(上册)第二章知识点+注意点+经典例题
八年级上册第二章《特殊三角形》2.1图形の轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁の部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它の对称轴.2.有の轴对称图形の对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合の点是对应点,叫做对称点。
[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合の点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.[图形轴对称の性质]①关于某直线对称の两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段の垂直平分线。
③轴对称图形の对称轴,是任何一对对应点所连线段の垂直平分线。
④如果两个图形の对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
[轴对称与轴对称图形の区别][线段の垂直平分线](1)经过线段の中点并且垂直于这条线段の直线,叫做这条线段の垂直平分线.(2)线段の垂直平分线上の点与这条线段两个端点の距离相等;反过来,与一条线段两个端点距离相等の点在这条线段の垂直平分线上.因此线段の垂直平分线可以看成与线段两个端点距离相等の所有点の集合.2.2 等腰三角形+2.3等腰三角形性质定理+2.4等腰三角形判定定理[等腰三角形]★1. 有两条边相等の三角形是等腰三角形。
★2. 在等腰三角形中,相等の两条边叫做腰,另一条边叫做底边.两腰所夹の角叫做顶角,腰与底边の夹角叫做底角.[等腰三角形の性质]★性质1:等腰三角形の两个底角相等(简写成“等边对等角”)★性质2:等腰三角形の顶角平分线、底边上の中线、底边上の高互相重合(三线合一).特别の:(1)等腰三角形是轴对称图形.(2)等腰三角形两腰上の中线、角平分线、高线对应相等.[等腰三角形の判定定理]★如果一个三角形有两个角相等,那么这两个角所对の边也相等(简写成“等角对等边”).特别の:(1)有一边上の角平分线、中线、高线互相重合の三角形是等腰三角形.(2)有两边上の角平分线对应相等の三角形是等腰三角形.(3)有两边上の中线对应相等の三角形是等腰三角形.(4)有两边上の高线对应相等の三角形是等腰三角形.[等边三角形]三条边都相等の三角形叫做等边三角形,也叫做正三角形.[等边三角形の性质]★等边三角形の三个内角都相等,•并且每一个内角都等于60°[等边三角形の判定方法]★(1)三条边都相等の三角形是等边三角形;★(2)三个角都相等の三角形是等边三角形;★(3)有一个角是60°の等腰三角形是等边三角形.2.5 逆命题和逆定理[逆命题和逆定理]命题:一般地,对某一件事情作出正确或不正确の判断の句子叫做命题。
浙教版八上第二章:特殊三角形知识点复习
类型之一轴对称及轴对称图形1.下列图形中,是轴对称图形的为()A B C D2.如图2-1,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD 的周长为____.(第2题图)(第8题图)(第9题图)类型之二等腰三角形的性质与判定3. 等腰三角形的一个角是80°,则它的顶角度数是.4.已知实数x,y满足|x-4|+y-8=0,则以x,y的值为两边长的等腰三角形的周长_____ 5.等腰三角形的周长为40,其中一边长为15,那么它的底边长为.6.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为_______.7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为.8.如图2-3,在△ABC中,△ABC=63°,点D,E分别是△ABC的边BC,AC上的点,且AB=AD=DE=EC,则△C的度数是()A.21°B.19°C.18°D.17°9.已知等边三角形ABC的边长为12,D是AB上的动点,过D作DE△AC于点E,过E作EF△BC于点F,过F作FG△AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.910.如图,点C ,E 和点B ,D ,F 分别在△GAH 的两边上,且AB =BC =CD =DE =EF.若△A =18°,则△GEF 的度数是 .11.如图,在等腰△ABC 中,△ABC =90°,D 为AC 边上的中点,过点D 作DE △DF ,交AB 于点E ,交BC 于点F .若AE =4,FC =3,则EF 的长为 .12.如图,在等边三角形ABC 中,D ,E 分别为AB ,BC 边上的两动点,且总使AD =BE ,AE 与CD 交于点F ,AG△CD 于点G ,则△FAG = .13.△ABC ,△CDE 均为等边三角形,BD ,AE 交于点O ,BC 与AE 交于点P .求证:△AOB =60°.14.已知:在△ABC 中,AD △BC ,垂足为D ,BE △AC ,垂足为E ,M 为AB 边的中点,连结ME ,MD ,ED .求证: (1)△MED 为等腰三角形; (2)△EMD =2△DAC .(第13题图)(第14题图)(第11题图)(第10题图)(第12题图)类型之三 勾股定理的应用1.将下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A.3,4, 5 B .1,2,3 C .6,7,8 D .2,3,4 2.若一个三角形的三边长a ,b ,c 满足(a +c )(a -c )=b 2,则该三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .都有可能3.如图,以三角形的三边长为直径向外作三个半圆,若较小的两个半圆的面积之和等于较大的半圆的面积,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形 4.如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数是( )A. 6B. 7C. 8D. 95.四个全等的直角三角形按图2-7的方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt△ABM 较长直角边,AM =22EF ,则正方形ABCD 的面积为( ) A .12S B .10S C .9S D .8S6.在△ABC 中,BC =42,AB =9,AC =7,则△C =_____.7. 某个直角三角形斜边上的中线是5 cm ,其周长为24 cm ,则此三角形的面积是____cm 2. 8.若三角形的三边长分别为n +1,n +2,n +3,当n =____时,这个三角形是直角三角形. 9.在△ABC 中,AB =AC =12,BC =12,则BC 边上的中线AD =_____.10.△ACB =90°,AB =5,AC =3,CD 是AB 边上的高线,则CD =_____.11.一张三角形纸片ABC ,△C =90°,AC =8 cm ,BC =6 cm ,现将纸片折叠:使点A 与点B 重合,那么折痕长等于____cm.(第11题图)(第9题图)(第10题图)(第5题图)(第3题图)(第4题图)12.如图是一块地的平面示意图,已知AD =4 m ,CD =3 m ,AB =13 m ,BC =12 m ,△ADC =90°,则这块地的面积为__ _m 2.13.如图,长方体的底面边长分别为 2 cm 和 4 cm ,高为5 cm.若一只蚂蚁从点P 开始经过4个侧面爬行一圈到达点Q ,则蚂蚁爬行的最短路径长为____cm.14.如图,在△ABC 中,CD 是边AB 上的高线,BC =2,CD =3,AC =2 3.求证:△ABC 是直角三角形.15.如图,已知AC △BC ,垂足为C ,AC =4,BC =33,将线段AC 绕点A 按逆时针方向旋转60°,得到线段AD ,连结DC ,DB . (1)线段DC =____; (2)求线段DB 的长度.16.如图△,一架梯子AB 长2.5 m ,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5 m ,梯子滑动后停在DE 的位置上,如图△所示,测得BD =0.5 m ,求梯子顶端A 下滑的距离.类型之四 直角三角形(第13题图)(第12题图)1.在全等三角形的判定方法中,一般三角形不具有,而直角三角形具有的判定方法是( ) A .SSS B .SAS C .ASA D .HL 2.如图,用“HL ”判定Rt △ABC 和Rt △DEF 全等的条件可以是( ) A .AC =DF ,BC =EF B .△A =△D ,AB =DE C .AC =DF ,AB =DE D .△B =△E ,BC =EF3.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD△△ACD 的条件是( ) A .AB =AC B .△BAC =90° C .BD =AC D .△B =45°4.如图,P 是AD 上一点,PE △AC 于点E ,PF △AB 于点F .若PE =PF ,△CAD =20°,则△BAD 为( ) A. 10° B. 20° C. 30° D. 40°5.已知点P 在△BAC 的角平分线OD 上,且PE △AB 于点E,PF △AC 于点F .若PE =3cm,则PF = cm. 6.如果Rt△ABC △Rt△DEF ,AC =DF =4,AB =7, △C =△F =90°,则DE = ,EF = .7.如图,AB =AC ,CD △AB 于点D ,BE △AC 于点E ,BE 与CD 相交于点O ,图中有 对全等的直角三角形.8.如图,CA △AB ,垂足为点A ,AB =8 cm ,AC =4 cm ,射线BM △AB ,垂足为点B ,一动点E 从A 点出发以2 cm /s 的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED =CB ,当点E 运动 秒时,△DEB 与△BCA 全等.9.如图,Rt △ABC 中,△ACB 是直角,D 是AB 上一点,BD =BC ,过D 作AB 的垂线交AC 于点E ,求证:CD △BE .10.在Rt△ABC 中,△A =90°,D 为斜边BC 上一点,且BD =BA ,过点D 作BC 的垂线交AC 于点E .求(第2题图)(第4题图)(第3题图)(第8题图)(第7题图)(第9题图)证:点E在△ABC的平分线上.11.如图,在△ABC中,AB=CB,△ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE△Rt△CBF;(2)若△CAE=30°,求△ACF的度数.(第11题图)12.(1)如图△,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高线AG与正方形的边长相等,求△EAF的度数;(2)如图△,在Rt△BAD中,△BAD=90°,AB=AD,点M,N是BD边上的任意两点,且△MAN=45°.将△ABM 绕点A逆时针旋转90°至△ADH位置,连结NH,试判断MN,ND,DH之间的数量关系,并说明理由;专项训练:思想方法荟萃名师点金:本章涉及的数学思想方法有:(1)分类讨论思想:在等腰三角形中,当角没确定是底角还是顶角时,当边没确定是底边还是腰时常用分类讨论思想;(2)方程思想:在解决有关等腰三角形边角问题时常通过设适当的边或角为未知数,列方程求解;(3)数形结合思想:在解决有关实际问题时,常从实际问题中抽象出几何图形,借助几何图形来解决;(4)转化思想:证线段的和,差关系时,通常将分散的线段转化到同一条线段上,使复杂的问题简单化.分类讨论思想1.等腰三角形的一个外角等于110°,则这个三角形的顶角应该为____________.2.已知等腰三角形的两边长分别为a,b,且a,b满足2a-3b+5+(2a+3b-13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10方程思想3.如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,求∠A的度数.4.如图,P是等边三角形ABC边AB上任一点,AB=2,PE⊥BC于E,EF⊥AC于F,FQ⊥AB 于Q,设BP=x.(1)用含有x的式子表示AQ;(2)当x等于多少时,点P和点Q重合?数形结合思想5.上午8时,一条渔船从海岛A出发,以15海里/时的速度匀速向正北航行,10时到达海岛B处.已知在海岛A测得灯塔C在北偏西42°方向上,在海岛B测得灯塔C在北偏西84°方向上.求海岛B到灯塔C的距离.转化思想6.如图,已知在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于E,求证:BE=12(AC-AB).。
浙教版八年级上册数学第二章特殊三角形全部知识点考点及练习
浙教版数学八年级上册第二章?特殊三角形?复习一、知识构造本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、定理等知识,这些知识点之间的构造如以下图所示:等腰Rt两直角三角形全等的判定直角三角形的性质和判定等边三角形的性质和判定等腰三角形的性质和判定直角三角形等边三角形等腰三角形特殊三角形二、重点回忆1.等腰三角形的性质:等腰三角形两腰;等腰三角形两底角(即在同一个三角形中,等边对);等腰三角形三线合一,这三线是指、、,也就是说一条线段充当三种身份;等腰三角形是图形,它的对称轴有条。
2.等腰三角形的判定:有边相等的三角形是等腰三角形;有相等的三角形是等腰三角形〔即在同一个三角形中,等角对〕。
注意:有两腰相等的三角形是等腰三角形,这句话对吗? 3.等边三角形的性质:等边三角形各条边,各内角,且都等于;等边三角形是图形,它有条对称轴。
4.等边三角形的判定:有边相等的三角形是等边三角形;有三个角都是的三角形是等边三角形;有两个角都是的三角形是等边三角形;有一个角是的 三角形是等边三角形。
5.直角三角形的性质:直角三角形两锐角;直角三角形斜边上的中线等于;直角三角形两直角边的平方和等于〔即勾股定理〕。
30°角所对的直角边等于斜边的6.直角三角形的判定:有一个角是的三角形是直角三角形;有两个角的三角形是直角三角形;两边的平方和等于的三角形是直角三角形。
一条边上的中线等于该边长度的一半,那么该三角形是直角三角形,但不能直接拿来判断某三角形是直角三角形,但有助于解题。
7.直角三角形全等的判定:斜边和对应相等的两个直角三角形全等。
8.角平分线的性质:在角内部到角两边在这个角的平分线上。
三、重点解读1.学习特殊三角形,应重点分清性质与判定的区别,两者不能混淆。
一般而言,根据边角关系判断一个图形形状通常用的是判定,而根据图形形状得到边角关系那就是性质;2.等腰三角形的腰是在一个三角形是等腰三角形的情况下才给出的名称,即先有等腰三角形,后有腰,因此在判定一个三角形是等腰三角形时千万不能将理由说成是“有两腰相等的三角形是等腰三角形〞;3.直角三角形斜边上的中线不仅可以用来证明线段之间的相等关系,而且它也是今后研究直角三角形问题较为常用的辅助线,熟练掌握可以为解题带来不少方便;4.勾股定理反映的是直角三角形两直角边和斜边之间的平方关系,解题时应注意分清哪条是斜边,哪条是直角边,不要一看到字母“c〞就认定是斜边。
浙教版八年级上册期末复习讲义 第2章 特殊三角形
教学目标知识点:特殊三角形考点:等腰三角形的性质与判定难点重点等腰三角形“三线合一”“等边对等角”课堂教学过程课前检查作业完成情况:优□良□中□差□建议__________________________________________过程【本章知识点回顾】两腰______,两底角______(等边对等角)性质定理顶角平分线、底边的中线和高线________(三线合一)等边三角形三条边相等,各内角都等于60°等腰三角形等腰三角形:(1)两边相等;(2)两角相等判定定理等边三角形:(1)三边相等;(2)三角相等;(3)有一个角是60°的等腰三角形(4)有两个角是60°的三角形【巩固训练】1.下列说法中错误的是()A.等腰三角形至少有两个角相等B.等腰三角形的底角一定是锐角C.等腰三角形顶角的外角是底角的2倍D.等腰三角形中有一个角是45︒,那它一定是等腰直角三角形2. 在等腰ABC△中,D为线段BC上一点,AD BC⊥,若5AB=,3AD=,CD=______.3. 已知等腰三角形一个内角的度数为100︒,则其余两个内角的度数分别为_______.4.等腰三角形一腰长为10,一边上的高为6,则底边长为_____________.5. 如图,在ABC△中,70B∠=︒,D为BC上的一点,若2ADC x∠=,则x的度数可能为下列选项中的()A.30B.60C.90D.100CDBAP2P5P6P7P4P3P1CBA第5题第6题6. 如图钢架10A∠=︒,焊上等长的钢条加固钢架,若112P A PP=,则这种钢条至多需要()A.6根B.7根C.8根D.9根7. 如图 ,在等边ABC △中,10AB =,4BD =,2BE =,点P 从点E 出发沿EA 方向运动,连接PD ,以PD 为边,在PD 右侧按如图方式作等边DPE △,当点P 从点E 运动都点A 时,点F 运动的路径长是( )A.8B.10C.3πD.5πP FE DCBAKNMP BA第7题 第8题 8. 如图,在PAB △中,PA PB =,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM BK =,BN AK =,若43MKN ∠=︒,则P ∠的度数为___________度.【综合例题讲解】1. 如图,已知D 是ABC △内一点.(1)求作ADE △,使得D ,E 分别在AC 的两侧,且AD AE =,DAE BAC ∠=∠; (2)在(1)的条件下,若AB AC =,连BD ,EC ,求证:BD EC =.DCB A2. 如图,等边ABC △中,AO 是BAC ∠的角平分线,D 为AO 上一点,以CD 为一边且在CD 下方作等边CDE △,连结BE . (1)求证:ACD BCE △≌△;(2)延长BE 至Q ,P 为BQ 上一点,连结CP 、CQ 使5CP CQ ==,若8BC =时,求PQ 的长.Q EPO DCBA3. 如图AB CD ∥,AC 平分BAD ∠,BD 平分ADC ∠,AC 和BD 交于点E ,F 为AD 的中点,连结EF .(1)找出图中所有的等腰三角形,并证明其中的一个; (2)若8AE =,6DE =,求EF 的长.F E DCBA4. 如图,在ABC △中,90BAC ∠=︒,3cm AB =,5cm BC =,点D 在线段AC 上,且1cm CD =,动点P 从BA 的延长线上距A 点5cm 的E 点出发,以每秒2cm 的速度沿射线EA 的方向运动了t 秒.(1)直接用含有t 的代数式表示PE =____________;(2)在运动过程中,是否存在某个时刻,使ABC △与以A 、D 、P 为顶点的三角形全等?若存在,请求出t 的值;若不存在,请说明理由.(3)求CPB △的面积S 关于t 的函数表达式,并画出图象.PEDC BA5. 如图,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A 、B 分别在x 轴与y 轴上,已知5OA =,3OB =,点D 坐标为()0,1,点P 从点B 出发以每秒1个单位的速度沿线段BC —CA 的方向运动,当点P 与点A 重合时停止运动,运动时间为t 秒. (1)点P 运动到与点C 重合时,求直线DP 的函数解析式;(2)求OPD △的面积S 关于t 的函数解析式,并写出对应t 的取值范围;(3)点P 在运动过程中,是否存在某些位置使ADP △为等腰三角形,若存在,求出点P 的坐标,若不存在,请说明理由.DP 987C B A -3-2-1-3-2-17654321654321 yxO O xy1234561234567-1-2-3-1-2-3A B C 789。
2024年浙教版八年级上第二章特殊三角形复习课件
2024年浙教版八年级上第二章特殊三角形复习课件一、教学内容1. 等腰三角形的性质与判定(2.1节)2. 等边三角形的性质与判定(2.2节)3. 直角三角形的性质与判定(2.3节)4. 等腰直角三角形的性质与判定(2.4节)二、教学目标1. 让学生掌握等腰三角形、等边三角形、直角三角形及等腰直角三角形的性质与判定方法。
2. 培养学生运用特殊三角形知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点1. 教学难点:等腰三角形和等边三角形的判定方法,直角三角形的性质。
2. 教学重点:特殊三角形的性质及其应用。
四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体课件。
2. 学具:三角板、直尺、圆规、练习本。
五、教学过程1. 实践情景引入:展示一些特殊三角形在实际生活中的应用,如建筑、设计等,激发学生学习兴趣。
细节:通过多媒体课件展示图片,引导学生观察并思考。
2. 例题讲解:例1:已知一个三角形是等腰三角形,求证:这个三角形的底角相等。
例2:已知一个三角形是等边三角形,求证:这个三角形的三个角都相等。
例3:已知一个三角形是直角三角形,求证:这个三角形的两个锐角互余。
细节:通过讲解例题,引导学生运用特殊三角形的性质进行证明。
3. 随堂练习:让学生完成教材课后练习题,巩固所学知识。
细节:学生独立完成练习题,教师巡回指导,解答学生疑问。
六、板书设计1. 特殊三角形的性质与判定等腰三角形:性质、判定等边三角形:性质、判定直角三角形:性质、判定等腰直角三角形:性质、判定2. 例题及解答七、作业设计1. 作业题目:(1)已知一个三角形的两边长分别为5cm和12cm,第三边长为x cm。
判断这个三角形是什么类型的三角形。
(2)已知一个等边三角形的边长为a,求这个三角形的面积。
2. 答案:(1)根据在三角形中任意两边之和大于第三边,可得:x<5+12=17cm。
当x=5cm或12cm时,为等腰三角形;当x=13cm时,为直角三角形。
数学(浙教版)第二章 特殊三角形 总复习 知识点+典型例题+同步练习(试题版)
第二章复习知识讲解一、轴对称图形1.对称轴的性质:轴对称图形的对称轴垂直平分连接两个对称点的线段。
2.成轴对称的两个图形是全等图形。
3.折叠问题二、等腰三角形的性质及判定(一)性质1.等边对等角。
2.三线合一(同一顶点)。
3.两腰上的中线相等。
4.两底角平分线相等。
(二)判定满足以上四条性质即可判定为等腰三角形。
注:等边三角形的性质与等腰三角形的性质相似,但判定不可。
(二)等边三角形的判定1.有一个角为60°的等腰三角形为等边三角形。
2.三条边相等或两角为60°的三角形为等边三角形。
三、逆命题与逆定理1.逆命题:原命题的条件和结论互换位置的命题称为该命题的逆命题。
2.逆定理:一定是真命题。
3.定理一定是真命题,但不是所有的真命题都是定理。
四、直角三角形的性质1.两锐角互余。
2.斜边上的中线为斜边的一半。
3.30°角所对直角边为斜边一半。
且两直角边成3倍关系。
五、勾股定理1.a²+b²=c²,两直角边平方和等于斜边的平方。
2.常见勾股数:3,4,5;5,12,13;6,8,10;9,12,13.3.利用勾股定理会求第三边,会算距离,构建直角三角形,会算方向,会画出一些特殊线段。
六、直角三角形的判定1.有两个角互余的角为直角三角形。
2.如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(勾股定理的逆定理)3.一条直角边和斜边对应相等的两个直角三角形全等。
(HL)七、补充点1.垂直平分线逆定理:到线段两端点距离相等的点在线段的垂直平分线上。
2.角平分线逆定理:角的内部,到角两边距离相等的点,在这个角的平分线上。
典型例题例1 有下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形的最短边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A.1个B.2个C.3个D.4个例2 下列说法中正确的是()A.已知c b a ,,是三角形的三边,则222c b a =+B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,∠C =90°,所以222c b a =+ (a ,b ,c 分别为∠A , ∠B, ∠C 的对边)D.在Rt △ABC 中,∠B =90°,所以222c b a =+ (a ,b ,c 分别为∠A , ∠B, ∠C 的对边)例3 如图,已知OP 平分∠AOB ,∠AOB=60°,CP=2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是( )A.2B.2C.3D.23例4 如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形茶杯中,设筷子露在杯子外面的长为acm (茶杯装满水),则a 的取值范围是例5 已知等边三角形的高为23,则它的边长为例6 如图,已知∠BAC =130°,AB=AC ,AC 的垂直平分线交BC 于点D ,则∠ADB=例7 如图,AB ⊥BC ,DC ⊥BC ,E 是BC 上一点,∠BAE=∠DEC=60°,AB=CE=3,则AD=一、选择题1.如图所示,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,则图中与CD相等的线段有()A. AD与BDB. BD与BCC. AD与BCD. AD,BD与BC2. 若等腰三角形中两条边的长度分别为3和1,则此等腰三角形的周长为()A. 5B. 7C. 5或7D. 63.如图所示,在△ABC中,∠ACB=90°,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于()A.44°B. 60°C. 67°D. 77°4.已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里5.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)同步练习6.如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A.27B.18C.183D.937.如图所示的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则在此网格中与△ABC成轴对称的格点三角形一共有()A. 2个B. 3个C. 4个D. 5个8.有四个三角形,分别满足下列条件:(1)一个角等于另外两个内角之和;(2)三个内角之比为3:4:5;(3)三边之比为5:12:13;(4)三边长分别为5,24,25.其中直角三角形有( )A.1个B.2个C.3个D.4个9.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为( )A.50° B.130° C.55°或130° D.50°或130°10.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A.0B.1C.2D.311.如图所示,已知O是△ABC中∠ABC,∠ACB的平分线的交点,OD∥AB交BC于点D,OE∥AC交BC于点E.若BC=10 cm,则△ODE的周长为()A. 10cmB. 8cmC. 12cmD. 20cm12.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A.AE=EF B.E是AC的中点C.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等二、填空题1.如图,在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是2.如图所示,△ABC是等边三角形,D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F.若BC=2,则DE+DF=3.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行米.4.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为5.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE、FG,得到∠2,则△ABC的边BC的长为AGE=30°,若AE=EG=3三、解答题1. 如图所示,已知AB=AC,D是AB上的一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.试说明:△ADF是等腰三角形.2.如图,已知在Rt△ABC中,∠ACB=90°,AC=4,BC=8,D是AC上的一点,CD=1.5,点P从B点出发沿射线BC方向以每秒1个单位的速度向右运动.设点P的运动时间为t.连接AP(1)求AB的长度;(2)当△ABP为等腰三角形时,求t的值.(3)过点D做DE⊥AP于点E.在点P的运动过程中,能不能使得DE=CD?若能,请求出此时t的值,若不能请说明理由.3.如图,在等边△ABC中,点P在△ABC内,点Q在△ABC外,B,P,Q三点在一条直线上,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.4.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD 的右侧..作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图(1),当点D在线段BC上时,如果∠BAC=90°,则∠BCE= 90 °.(2)设∠BAC=α,∠BCE=β.①如图(2),当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.∠α+∠β=180②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.α=β第二章复习第11页共11页。
新浙教版八年级上册数学第二章《特殊三角形》第二节等腰三角形
新浙教版八年级上册数学第二章《特殊三角形》第二节等腰三角形【课本相关知识点】1、有相等的三角形叫做等腰三角形。
(注意:数学中的“有”表示至少有,我们也曾见过“有且仅有”这样的语言描述)2、的三角形叫做等边三角形,也叫正三角形。
等边三角形是一类特殊的等腰三角形。
3、等腰三角形是轴对称图形,它有条对称轴,它的对称轴是【典型例题】【题型一】作等腰三角形例1、如图所示,已知线段a,b,求作一个等腰三角形,使它的腰长为(b-a),腰长为a注意:对于作图题,若对于某些线段或角度分不清楚,通常可以先根据题意画出草图,然后再具体作出图形。
【题型二】等腰三角形中有关边的计算例1、一个等腰三角形,三边长分别是3x-2,4x-3,6-2x,求等腰三角形的周长。
【题型三】等腰三角形中的相关证明例1、求证:等腰三角形底边上一点到两腰的距离和等于一腰上的高。
巩固练习1、下列说法中正确的是()A. 等腰三角形是轴对称图形,它的对称轴是顶角的平分线B. 等腰三角形是轴对称图形,它有三条对称轴C. 等腰三角形的对称轴垂直平分底边D. 任何一条过底边中点的直线都是这个等腰三角形的对称轴2、关于等腰三角形和等边三角形的描述中,下列说法中不正确的是()A. 等边三角形的范围比等腰三角形的大B. 等腰三角形包括等边三角形C. 等边三角形是等腰三角形的特殊情况D. 等边三角形具有等腰三角形的所有性质3、下列图形:①线段;②角;③数字;④圆;⑤等腰三角形;⑥直角三角形。
其中轴对称图形是4、已知一个等腰三角形的底边长为5,腰长为x,则x的取值范围是5、等腰三角形的两边长分别为4和5,则第三边长为6、若△ABC的三边关系满足a2+b2+c2=ab+bc+ac,则△ABC为()A. 等腰三角形B. 等边三角形C. 直角三角形D. 不能确定7、把18根长度,相等的火柴首尾连接,围成一个等腰三角形,最多能围成个不同的等腰三角形。
8、如图,在△ABC中,AB=AC,点D在AC上,且AD=DB=BC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版数学八年级上册第二章《特殊三角形》复习一、知识结构本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、HL定理等知识,这些知识点之间的结构如下图所示:二、重点回顾1.等腰三角形的性质:等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说一条线段充当三种身份;等腰三角形是________图形,它的对称轴有_________条。
2.等腰三角形的判定:有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即在同一个三角形中,等角对_____)。
注意:有两腰相等的三角形是等腰三角形,这句话对吗?3.等边三角形的性质:等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。
4.等边三角形的判定:有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形。
5.直角三角形的性质:直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。
30°角所对的直角边等于斜边的________6.直角三角形的判定:有一个角是______的三角形是直角三角形;有两个角_______的三角形是直角三角形;两边的平方和等于_______的三角形是直角三角形。
一条边上的中线等于该边长度的一半,那么该三角形是直角三角形,但不能直接拿来判断某三角形是直角三角形,但有助于解题。
7.直角三角形全等的判定:斜边和___________ 对应相等的两个直角三角形全等。
8.角平分线的性质:在角内部到角两边___________在这个角的平分线上。
三、重点解读1.学习特殊三角形,应重点分清性质与判定的区别,两者不能混淆。
一般而言,根据边角关系判断一个图形形状通常用的是判定,而根据图形形状得到边角关系那就是性质;2.等腰三角形的腰是在已知一个三角形是等腰三角形的情况下才给出的名称,即先有等腰三角形,后有腰,因此在判定一个三角形是等腰三角形时千万不能将理由说成是“有两腰相等的三角形是等腰三角形”;3.直角三角形斜边上的中线不仅可以用来证明线段之间的相等关系,而且它也是今后研究直角三角形问题较为常用的辅助线,熟练掌握可以为解题带来不少方便;4.勾股定理反映的是直角三角形两直角边和斜边之间的平方关系,解题时应注意分清哪条是斜边,哪条是直角边,不要一看到字母“c”就认定是斜边。
不要一看到直角三角形两边长为3和4,就认为另一边一定是5;5.“HL”是仅适用于判定直角三角形全等的特殊方法,只有在已知两个三角形均是直角三角形的前提下,此方法才有效,当然,以前学过的“SSS”、“SAS”、“ASA”、“AAS”等判定一般三角形全等的方法对于A C E C D E M N C DM 直角三角形全等的判定同样有效。
切记!!! 两边及其中一边的对角对应相等的两个三角形不一定全等,也就是边边角,没有边边角定理。
因此在证明全等时千万不要这样做。
本章解题时用到的主要数学思想方法:⑴ 分类讨论思想(特别是在语言模糊的等腰三角形中)(留意后面的例题)⑵ 方程思想:主要用在折叠之后产生直角三角形时,运用勾股定理列方程;还有就是在等腰三角形中求角度,求边长(留意后面的例题)⑶ 等面积法四、典型例题(一)、角平分线+平行线1、在△ABC 中,三内角互不相等,BO 平分∠ABC ,CO 平分∠ACB 。
过O 点作BC 。
(1)图中有几个等腰三角形?(2)猜测线段BE 、CF 、EF2、在△ABC 中,∠ABC=∠ACB ,BO 平分∠ABC , CO 平分∠ACB,过O 点作EF 使EF ∥BC ,且∠EBO=30°。
若BE=5,△ABC 的周长为_________。
(二)、角平分线+垂线3、如图:AB=AC ,∠1=∠2,AE ⊥CD 于F 交BC 于点E ,求证:AB=CE 。
4、如图,△ABC 是等腰直角三角形,其中∠A=90°,BD 平分∠ABC 交AC 于点D ,CE ⊥BD 交BD 的延长线于点E ,求证:BD=2CE(三)、直角三角形的一个锐角平分线+斜边上的高线5、如图,在△ABC 中,∠ACB=90°,AE 平分∠CAB ,CD ⊥AB 于D ,它们交于点F ,△CFE 是等腰三角形吗?试说明理由.(四)、等边三角形的几个基本图形: 6、等边三角形ABC 中,BD=CE ,连接AD 、BE 交于点F AFE=_________。
7、如图点A 、C 、E 在同一直线上,△ABC 和△CDE 三角形,M 、N 分别是AD 、BE 的中点。
说明: △CMN 角形。
8、已知等边△ABC 和点P ,设点P 到△ABC 三边AB 、AC 、的距离分别是h 1,h 2,h 3,△ABC 的高为h ,若点P 在一边BC 上此时h 3=0,可得结论h 1+h 2+h 3=h ,请你探索以下问题:当点P 内(图2)和点P 在△ABC 外(图3)这两种情况时,h 1、h 2、h 3之间有怎样的关系,请写出你的猜想,并简要说明理由.(五)、等腰直角三角形的几个基本应用9、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥M 于E 。
(1)当直线MN 绕点C 旋转到图1位置时,说明△ADC ≌△CEB 的理由;(2)当直线MN 绕点C 旋转到图2位置时,说明DE=AD -BE 的理由;(3)当直线MN 绕点C 旋转到图3位置时,试问DE 、 AD 、BE 有怎样的等量关系?请写出这个等量关系,并说明理由. 10、如图,在直A B C D 角△ABC 中,∠C=90,AC=BC ,D ,E 分别在BC 和AC 上,且BD=CE ,M 是AB 的中点。
求证:△MDE 是等腰直角三角形。
(六)、勾股定理、勾股定理的逆定理、勾股定理与方程11、观察下面表格中所给出的三个数a ,b ,c ,其中a ,b ,c 为正整数,且a<b<c(1):试找出他们的共同点,并证明你的结论(2):当a=21时,求b ,c 的值12、如图,P 是等边三角形ABC 内的一点,连结PA 、PB 、PC ,•以BP 为边作∠PBQ=60°,且BQ=BP ,连结CQ 。
(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论.(2)若PA :PB :PC=3:4:5,连结PQ ,试判断△PQC 的形状,并说明理由. 13、等腰三角形底边上的高为8,周长为32,求这个三角形的面积分析:对于没有图形的大题(指需要过程的题目),最好自己画图,与人方便,与己方便。
解:设这个等腰三角形为ABC ,高为AD ,设BD 为x ,则AB 为(16-x ),由勾股定理得:x 2+82=(16-x)2即x 2+64=256-32x+x 2∴ x=6∴ S ∆ABC =BC•AD/2=2 •6 •8/2=48 14、矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
(七)、需要分类讨论的(主要是由语言的模糊造成要讨论) 有一个角等于50°,另一个角等于__________的三角形是等腰三角形。
有一个直角三角形的两条直角边为3,4,则第三条边长为__________ 如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长。
(八)作图题如图,求作一点P ,使PC=PD,并且使点P 到∠AOB 两边的距离相等,并说明你的理由.作图题的基本要求:结论不能丢。
格式:什么什么即为所求。
【考点精练】一、基础训练1.如图1,在△ABC 中,AB=AC ,∠A=50°,BD 为∠ABC 的平分线,则∠BDC=_____°.(1) (2) (3)2.如图2,是由9个等边三角形拼成的六边形,•若已知中间的小等边三角形的边长是a ,则六边形的周长是_______.3.如图3,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2=________度.4.如图4,在等腰直角△ABC 中,∠B=90°,将△ABC 绕顶点A 逆时针方向旋转60°后得到△AB ′C ′,则∠BAC ′等于________.(4) (5),3,4,5 32+42=52 5,12,13 52+122=132 7,24,25 72+242=252 9,40,41 92+402=412 …….. ……21,b,c 212+b 2=c 2 EG C D B AM A 5.如图5,沿AC 方向开山修渠,为了加快施工进度,•要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=135°,BD=520米,∠D=45°,如果要使A 、C 、E 成一直线,那么开挖点E 离D 的距离约为_______米(精确到1米).6.等腰△ABC 的底边BC=8cm ,腰长AB=5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/秒的速度运动,当点P 运动到PA 与腰垂直的位置时,点P•运动的时间应为________.7.如图7,在△ABC 中,AB=AC ,∠BAD=20•°,且AE=•AD ,则∠CDE=________.(7) (8) (9)8.如图8,在等腰三角形ABC 中,AB=AC ,∠A=44°,CD ⊥AB 于D ,则∠DCB 等于( )A .44°B .68°C .46°D .22°9.如图9,要在离地面5m 处引拉线固定电线杆,•使拉线和地面成60°角,若考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2m ,L 2=6.2m ,L 3=7.8m ,L 4=10m 的四种备用拉线材料中,拉线AC 最好选用( )A .L 1B .L 2C .L 3D .L 410.如图10,在△ABC 中,AB=AC ,D 为AC 边上一点,且BD=BC=AD .•则∠A 等于( )A .30°B .36°C .45°D .72°(10) (11)11.同学们都玩过跷跷板的游戏.如图11所示,•是一跷跷板的示意图,立柱OC 与地面垂直,OA=OB .当跷跷板的一头A 着地时,∠OAC=25°,•则当跷跷板的另一头B 着地时,∠AOA ′等于( )A .25°B .50°C .60°D .130°12、直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h 2B. a 2+b 2=2h 2C. a 1+b 1=h 1D. 21a +21b =21h如图所示,在△ABC 中,AB=6,AC=9,AD ⊥BC 于点D ,M 为AD 上任一点,则MC 2-MB 2等于二、能力提升13.如图,已知等腰三角形一腰上的中线把三角形周长分为12cm 和15cm 两部分,求它的底边长.14.(计算型说理题)已知如图△ABC 是等边三角形,BD 是AC 边上的高,延长BC 到E 使CE=CD .•试判断DB 与DE 之间的大小关系,并说明理由。