六年级数学几何题练习
人教版六年级数学下册《图形与几何》专项训练卷(附答案)
人教版六年级数学下册《图形与几何》专项训练姓名: ___________班级: ___________考号: ___________一、填空题1. 一个等腰三角形的一条边长是, 另一条边长是, 那么这个等腰三角形的周长是(______)。
2. 钟面上, 经过3小时, 时针旋转了(______);经过30分钟, 分针旋转了(______)。
3. 一个梯形的下底是, 如果下底缩短, 那么面积就减少, 并且得到的新图形是一个平行四边形, 原来梯形的面积是(__________)。
4. 如右图, 直角梯形的周长, 它的面积是(________)。
5. 一个长方体正好可以切成4个棱长为的正方体, 原长方体的棱长总和可能是(______), 也可能是(______)。
6.右图是一个圆柱和一个圆锥, 圆柱的底面直径是圆锥的2倍, 它们的高度相等。
一个这样的圆柱可以熔铸成(________)个这样的圆锥。
7.观察下图, 图①和图②中的三角形均为等边三角形, 图①中小三角形的面积是大三角形面积的。
图③中小正方形的面积占大正方形面积的。
8. 小明从一个长方体纸盒上撕下两个相邻的面(展开后如右图), 这个纸盒的底面积是_____平方厘米, 体积是_____立方厘米.9.如下图所示, 一张长方形铁皮, 切割下阴影部分的两个圆和一个长方形刚好能做一个油桶, 这个油桶的容积是(________)。
10. 右图中圆的面积与长方形面积相等。
圆的周长是, 那么阴影部分的周长是(______)。
二、选择题11. 图中正方形的面积()平行四边形的面积。
A. 大于B. 等于C. 小于D. 无法判断12.用10倍的放大镜看40°的角, 看到的角是()A. 40°B. 400°C. 4°13.一个等腰三角形的一个底角是, 它的顶角是()。
A. B. C. D.14.下列四个图形中, 不能通过基本图形平移得到的是()。
六年级几何题10题
六年级几何题10题
以下是10道适合六年级学生练习的几何题目:
1.一个长方形的长是12厘米,宽是8厘米,求这个长方形的周长和面积。
2.一个正方形的边长是10厘米,求这个正方形的周长和面积。
3.一个三角形的底是15厘米,高是8厘米,求这个三角形的面积和周长(假设三条
边长度分别为a, b, c,且a + b + c = 周长)。
4.一个梯形的上底是6厘米,下底是12厘米,高是10厘米,求这个梯形的面积和周
长。
5.一个圆的半径是7厘米,求这个圆的周长和面积。
6.一个长方形的周长是36厘米,长是宽的两倍,求这个长方形的长和宽以及面积。
7.一个正方形的周长是40厘米,求这个正方形的边长和面积。
8.一个平行四边形的底是16厘米,高是12厘米,求这个平行四边形的面积和周长
(假设相邻两边长度分别为m, n)。
9.一个三角形的底是20厘米,高是底的一半,求这个三角形的面积和周长(假设三
条边长度分别为p, q, r)。
10.一个圆的半径是5厘米,从这个圆中挖去一个半径为2厘米的小圆,求剩余部分的
面积和周长。
六年级几何篇练习题集
六年级几何篇练习题集一、 等积变换模型①六年级几何篇练习题集 ②六年级几何篇练习题集两个三角形底相等;面积比等于它们的高之比;baS 2S 1 DC BA如左图12::S S a b =③夹在一组平行线之间的等积变形;如右上图ACD BCD S S =△△;反之;如果ACD BCD S S =△△;则可知直线AB 平行于CD . ④正方形的面积等于对角线长度平方的一半;⑤三角形面积等于与它等底等高的平行四边形面积的一半;二、 鸟头定理(共角定理)模型两个三角形中有一个角相等或互补;这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比如图在ABC △中;,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上;E 在AC 上);则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵推理过程连接BE ;再利用等积变换模型即可 三、 蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型;一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面;也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):A BCDOba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +.四、 相似模型相似三角形性质:GF E ABCD (金字塔模型)ABCDEF G (沙漏模型)①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形;就是形状相同;大小不同的三角形(只要其形状不改变;不论大小怎样改变它们都相似);与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例;并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;五、 燕尾定理模型 S △ABG :S △AGC =S △BGE :S △EGC =BE :EC ; S △BGA :S △BGC =S △AGF :S △FGC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;练习题集:1. (第3届华杯赛试题)一个长方形分成4个不同的三角形;绿色三角形面积是长方形面积的0.15倍;黄色三角形的面积是21平方厘米.问:长方形的面积是 平方厘米.红红绿黄21平方厘米2. (2007年六年级希望杯二试试题)如图;三角形田地中有两条小路AE 和CF ;交叉处为D ;张大伯常走这两条小路;他知道DF DC =,且2AD DE =.则两块地ACF 和CFB 的面积比是_________.F E DCBA3. 两条线段把三角形分为三个三角形和一个四边形;如图所示; 三个三角形的面积 分别是3;7;7;则阴影四边形的面积是多少?4. 如图;已知长方形ADEF 的面积16;三角形ADB 的面积是3;三角形ACF 的面积是4;那么三角形ABC的面积是多少?F DCB A5. (北京市第一届“迎春杯”刊赛)如图.将三角形ABC 的AB 边延长1倍到D ;BC 边延长2倍到E ;CA 边延长3倍到F .如果三角形ABC 的面积等于1;那么三角形DEF 的面积是 .FEDCB A6. 如图;在ABC △中;延长AB 至D ,使BD AB =;延长BC 至E ,使12CE BC =;F 是AC 的中点;若ABC △的面积是2;则DEF △的面积是多少?A BCDEF7. 如图;在ABC ∆中;已知M 、N 分别在边AC 、BC 上;BM 与AN相交于O ,若AOM ∆、ABO ∆和BON ∆的面积分别是3、2、1;则MNC ∆的面积是 .8. 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13;且2AO =; 3DO =;那么CO 的长度是DO 的长度的_________倍.ODANM OCBA9. 如右图;已知D 是BC 中点;E 是CD 的中点;F 是AC 的中点;ABC ∆由这6部分组成;其中⑵比⑸大6平方厘米;那么ABC ∆的面积是多少平方厘米?10. 如右图;长方形ABCD 中;16EF =;9FG =;求AG 的长.D AB CEFG11. 如图;长方形ABCD 中;E 为AD 中点;AF 与BE 、BD 分别交于G 、H ;已知5AH =cm ;3HF =cm ;求AG .12. 图中四边形ABCD 是边长为12cm 的正方形;从G 到正方形顶点C 、D 连成一个三角形;已知这个三角形在AB 上截得的EF 长度为4cm ;那么三角形 GDC 的面积是多少?GF ED CBAF ED C B A 5()3()6()4()2()1()OGH F EDC B A13. 如右图;三角形ABC 中;BD :DC =4:9;CE :EA =4:3;求AF :FB .14. 如图;三角形ABC 的面积是1;BD =DE =EC ;CF =FG =GA ;三角形ABC 被分成9部分;请写出这9部分的面积各是多少?GFE D CBA15. 如右图;ABC △中;G 是AC 的中点;D 、E 、F 是BC 边上的四等分点;AD 与BG 交于M ;AF 与BG交于N ;已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米;则ABC △的面积是多少平方厘米?N M GA BCD E F16. 如图;在正方形ABCD 中;E 、F 分别在BC 与CD 上;且2CE BE =;2CF DF =;连接BF ;DE ;相交于点G ;过G 作MN ;PQ 得到两个正方形MGQA 和正方形PCNG ;设正方形MGQA 的面积为1S ;正方形PCNG 的面积为2S ;则12:S S =______.QPNM GFED CBAO F ED CB A17. 如图;正方形ABCD 的边长为6;AE =1.5;CF =2.长方形EFGH 的面积为 .HGF EDCBA18. 如图;1ABC S =△;5BC BD =;4AC EC =;DG GS SE ==;AF FG =.求FGS S V .SGF E DCBA19. 如图;在长方形ABCD 中;6AB =;2AD =;AE EF FB ==;求阴影部分的面积.D20. 如右图;已知BD DC =;2EC AE =;三角形ABC 的面积是30;求阴影部分面积.21. (第六届希望杯五年级一试)如图;正方形ABCD 的边长是12厘米;E 点在CD 上;BO AE 于O ,OB 长9厘米;则AE 长_________厘米.OEDCBA32122. 如图;大圆半径为小圆的直径;已知图中阴影部分面积为1S ;空白部分面积为2S ;那么这两个部分的面积之比是多少?(圆周率取3.14)23. 如图中三个圆的半径都是5cm ;三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14)24. (2008年武汉明心奥数挑战赛)如图所示;ABC ∆中;90ABC ∠=︒;3AB =;5BC =;以AC 为一边向ABC ∆外作正方形ACDE ;中心为O ;求OBC ∆的面积.25. 如图;三角形ABC 是等腰直角三角形;P 是三角形外的一点;其中90BPC ∠=︒;10cm AP =;求四边形ABPC 的面积.PDCBA26. (2008年全国小学数学资优生水平测试)如图;以正方形的边AB 为斜边在正方形内作直角三角形ABE ;90AEB ∠=︒;AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ;求三角形OBE 的面积.D27. 长方形ABCD 的面积为362cm ;E 、F 、G 为各边中点;H 为AD 边上任意一点;问阴影部分面积是多少?E28.(《小学生数学报》邀请赛)从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体;剩下部分的表面积是多少?(写出符合要求的全部答案)29.用10块长5厘米;宽3厘米;高7厘米的长方体积木堆成一个长方体;这个长方体的表面积最小是多少?30.(05年武汉明心杯数学挑战赛)如图所示;一个555⨯⨯的立方体;在一个方向上开有115⨯⨯的孔;⨯⨯的孔;在另一个方向上开有215在第三个方向上开有315⨯⨯的孔;剩余部分的体积是多少?表面积为多少?参考答案1. (第3届华杯赛试题)一个长方形分成4个不同的三角形;绿色三角形面积是长方形面积的0.15倍;黄色三角形的面积是21平方厘米.问:长方形的面积是 平方厘米.红红绿黄21平方厘米【分析】 由于黄色三角形和绿色三角形面积总和是长方形面积的0.5倍;所以黄色三角形面积是长方形面积的0.50.150.35-=倍;所以长方形的面积是270.3560÷=平方厘米2. (2007年六年级希望杯二试试题)如图;三角形田地中有两条小路AE 和CF ;交叉处为D ;张大伯常走这两条小路;他知道DF DC =,且2AD DE =.则两块地ACF 和CFB 的面积比是_________.F E DC B AFE DC B A G FE DC BA【分析】 方法一:连接BD .设CED △的面积为1; BED △的面积x ;则根据题上说给出的条件;由DF DC =得;BDC BDF S S =△△ 即BDF △的面积为1x +、ADC ADF S S =△△;又有2AD DE =;22ADC ADF CDE S S S ===△△△、22ABD BDE S S x ==△△;而122ABD S x x =++=△; 得3x =;所以:(22):(134)1:2ACF CFB S S =+++=△△.方法二:连接BD ;设1CED S =△(份);则2ACD ADF S S ==△△,设BED S x =△BFD S y =△则有122x yx y +=⎧⎨=+⎩;解得34x y =⎧⎨=⎩;所以:(22):(431)1:2ACF CFB S S =+++=△△方法三:过F 点作FG ∥BC 交AE 于G 点;由相似得::1:1CD DF ED DG ==,又因为2AD DE =;所以::1:2AG GE AF FB ==;所以两块田地ACF 和CFB 的面积比:1:2AF FB ==3. 两条线段把三角形分为三个三角形和一个四边形;如图所示; 三个三角形的面积 分别是3;7;7;则阴影四边形的面积是多少?B分析:方法一:遇到没有标注字母的图形;我们第一步要做的就是给图形各点标注字母;方便后面的计算.再看这道题;出现两个面积相等且共底的三角形.设三角形为ABC ;BE 和CD 交于F ;则BF FE =;再连结DE . 所以三角形DEF 的面积为3.设三角形ADE 的面积为x ;则()()33:10:10x AD DB x +==+;所以15x =;四边形的面积为18.方法二:连接AF ,用燕尾定理解4. 如图;已知长方形ADEF 的面积16;三角形ADB 的面积是3;三角形ACF 的面积是4;那么三角形ABC 的面积是多少?F E D CB A F D CA F ED CB A分析:方法一:连接对角线AE . ∵ADEF 是长方形∴12ADE AEF ADEF S S S ∆∆==X∴38ADB ADE S DB DE S ∆∆==; 12ACF AEF S FC EF S ∆∆== ∴58BE DE DB DE DE -==;12CE FE CF EF EF -== ∴1515162822BEC S ∆=⨯⨯⨯=∴132ABC ADEF ADB ACF CBE S S S S S ∆∆∆∆=---=X .方法二:连接BF ,由图知1628ABF S =÷=△,所以16835BEF S =--=△,又由4ACF S =△,恰好是AEF △面积的一半;所以C 是EF 的中点;因此52 2.5BCE BCF S S ==÷=△△,所以1634 2.5 6.5ABC S =---=△5. (北京市第一届“迎春杯”刊赛)如图.将三角形ABC 的AB 边延长1倍到D ;BC 边延长2倍到E ;CA 边延长3倍到F .如果三角形ABC 的面积等于1;那么三角形DEF 的面积是 .F EDCB A AB CDEF【分析】 (法1)连接AE 、CD .∵11ABC DBC S S =V V ;1ABC S =V ; ∴S 1DBC =V .同理可得其它;最后三角形DEF 的面积18=. (法2)用共角定理∵在ABC V 和CFE V 中;ACB ∠与FCE ∠互补;∴111428ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯V V . 又1ABC S =V ;所以8FCE S =V . 同理可得6ADF S =V ;3BDE S =V .所以186318DEF ABC FCE ADF BDE S S S S S =+++=+++=V V V V V .6. 如图;在ABC △中;延长AB 至D ,使BD AB =;延长BC 至E ,使12CE BC =;F 是AC 的中点;若ABC △的面积是2;则DEF △的面积是多少?A BCDEF分析:(法1) 利用共角定理∵在ABC △和CFE △中;ACB ∠与FCE ∠互补; ∴224111ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯△△. 又2ABC S =V ;所以0.5FCE S =V . 同理可得2ADF S =△;3BDE S =△.所以20.532 3.5DEF ABC CEF DEB ADF S S S S S =++-=++-=△△△△△7. 如图;在ABC ∆中;已知M 、N 分别在边AC 、BC 上;BM 与AN 相交于O ,若AOM ∆、ABO ∆和BON ∆的面积分别是3、2、1;则MNC ∆的面积是 .【分析】 这道题给出的条件较少;需要运用共边定理和蝴蝶定理来求解.根据蝴蝶定理得 31322AOM BON MON AOB S S S S ∆∆∆∆⨯⨯===设MON S x ∆=;根据共边定理我们可以得ANM ABM MNC MBC S S S S ∆∆∆∆=;33322312x x ++=++; 解得 22.5x =. 8. 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13;且2AO =;3DO =;那么CO 的长度是DO 的长度的_________倍.[分析]对于四边形ABCD 为任意四边形;两种处理方法:1.利用已知条件;向已有模型靠拢;从而快速解决; 2.通过画辅助线来改变任意四边形. 根据题目中给出条件:1:3ABD BCD S S ∆∆=;可得:1:3AO OC = 2OA =,所以236OC =⨯= 故:6:32:1OC OD ==.9. 如右图;已知D 是BC 中点;E 是CD 的中点;F 是AC 的中点;ABC ∆由这6部分组成;其中⑵比⑸大6平方厘米;那么ABC ∆的面积是多少平方厘米?ODCBANM OCBAFA【分析】 解法一:因为E 是DC 中点;F 为AC 中点;有2AD FE =且FE 平行于AD ;则四边形ADEF 为梯形.在梯形ADEF 中有⑶=⑷;⑵×⑸=⑶×⑷;⑵:⑸=22:4AD FE =.又已知⑵-⑸=6;所以⑸6(41)2=÷-=;⑵=⑸48⨯=; 所以⑵×⑸=⑷×⑶2816=⨯=;而⑶=⑷;所以⑶=⑷=4;梯形ADEF 的面积为⑵、⑶、⑷、⑸四块图形的面积和;为844218+++=.有CEF ∆与DEF ∆的面积相等;为246+=. 所以ADC ∆面积为18624+=.因为D 是BC 中点;所以ABC ∆的面积是:222448ABC ACD S S ∆∆==⨯=(平方厘米). 解法二:如右图所示:题上给出了6ADG EFG S S ∆∆=+;所以6ADE DEF S S ∆∆=+; 因为E 是CD 的中点;F 是AC 的中点;由共边定理得:22ADE AEC ECF DEF S S S S ∆∆∆∆==⨯=⨯; 所以由上面的分析得到:62DEF DEF S S ∆∆+=⨯;6DEF S ∆=; 进一步共边原理可得:2488648ABC ADC AEC DEF S S S S ∆∆∆∆=⨯=⨯=⨯=⨯=(平方厘米).同样这个题目可以用相似模型也能解.10. 如右图;长方形ABCD 中;16EF =;9FG =;求AG 的长.D ABC EFG【分析】 因为DA ∥BE ;根据相似三角形性质知DG AG GB GE =;又因为DF ∥AB ;DG FG GB GA =;所以AG FGGE GA=;即2225922515AG GE FG =⋅=⨯==;所以15AG =.11. 如图;长方形ABCD 中;E 为AD 中点;AF 与BE 、BD 分别交于G 、H ;已知5AH =cm ;3HF =cm ;求AG .【分析】 注意三角形AHB 和三角形DHF 相似;利用三角形相似的性质可以得到 ::5:3AB DF AH HF ==; 作EO 垂直于AD ;且交AF 于点O ;又因为E 为AD 中点;则有:1:2OE DF =;所以3:5:10:32AB OE ==,:10:3AG GO =,11(53)422AO AF ==⨯+=,所以104041313AG =⨯=.12. 图中四边形ABCD 是边长为12cm 的正方形;从G 到正方形顶点C 、D 连成一个三角形;已知这个三角形在AB 上截得的EF 长度为4cm ;那么三角形 GDC 的面积是多少?GF ED CBA OG H FED C BAGFED CBANGFE DCBA【分析】 根据题中条件;我们可以直接判断出EF 与DC 平行;从而三角形GEF 与三角形GDC 相似;这样;我们就可以用相似三角形的性质来解决问题.做GM 垂直DC 交AB 于N ;因为EF ∥DC ;所以三角形GEF 与三角形GDC 相似;且相似比为:4:121:3EF DC ==;由此我们可以得:1:3GN GM =;又因为MN GM GN =-;且12MN =cm ; 所以:2:3MN GM =;得18GM =;故三角形GDC 的面积为 ()2112181082cm ⨯⨯=.13. 如右图;三角形ABC 中;BD :DC =4:9;CE :EA =4:3;求AF :FB .【分析】 根据燕尾定理得::4:912:27AOB AOC S S BD CD ===△△ ::3:412:16AOB BOC S S AE CE ===△△(都有AOB △的面积要统一;所以找最小公倍数) 所以:27:16:AOC BOC S S AF FB ==△△14. 如图;三角形ABC 的面积是1;BD =DE =EC ;CF =FG =GA ;三角形ABC 被分成9部分;请写出这9部分的面积各是多少?GFE D CBAN MQPGF EDCBA[分析] 设BG 与AD 交于点P ;BG 与AE 交于点Q ;BF 与AD 交于点M ;BF 与AE 交于点N .连接CP ;CQ ;CM ;CN .根据燕尾定理;::1:2ABP CBP S S AG GC ==△△;::1:2ABP ACP S S BD CD ==△△;设1ABP S =△(份);则1225ABC S =++=△(份);所以15ABP S =△同理可得;27ABQ S =△,12ABN S =△,而13ABG S =△;所以2137535APQ S =-=△;1213721AQG S =-=△.同理;335BPM S =△121BDM S =△,所以1239273570PQMN S =--=四边形;139********MNED S =--=四边形,1151321426NFCE S =--=四边形,1115321642GFNQ S =--=四边形15. 如右图;ABC △中;G 是AC 的中点;D 、E 、F 是BC 边上的四等分点;AD 与BG 交于M ;AF与BG 交于N ;已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米;则ABC △的面积是多少平方厘米?O FEDCB AN M GA BCD EFNMGA BCD EF【分析】 连接CM 、CN .根据燕尾定理;::1:1ABM CBM S S AG GC ==△△;::1:3ABM ACM S S BD CD ==△△;所以15ABM ABC S S =△△;再根据燕尾定理;::1:1ABN CBN S S AG GC ==△△;所以::4:3ABN FBN CBN FBN S S S S ==△△△△;所以:4:3AN NF =;那么1422437ANG AFC S S =⨯=+△△;所以2515177428FCGN AFC ABC ABC S S S S ⎛⎫=-=⨯= ⎪⎝⎭△△△.根据题意;有157.2528ABCABC S S -=△△;可得336ABC S =△(平方厘米)16. 如图;在正方形ABCD 中;E 、F 分别在BC 与CD 上;且2CE BE =;2CF DF =;连接BF ;DE ;相交于点G ;过G 作MN ;PQ 得到两个正方形MGQA 和正方形PCNG ;设正方形MGQA 的面积为1S ;正方形PCNG 的面积为2S ;则12:S S =______.QPNM GFED CBAQPGN M FE D CBAABCD E FM N GPQ【分析】 解法一:求两个正方形的面积比;实际上就是求:QG GP ,根据正方形的性质;可以得到:::QG GP DG GE =;连接GC ;根据2CF DF =;:1:2DGF GFC S S ∆∆=,而ECG FCG S S ∆∆=(对称);所以得:(21):23:2DCG ECG S S ∆∆=+=, 即:3:2DG GE =;所以::3:2QG GP DG GE == 所以2212:3:29:4S S ==解法二:连接BD 、EF .设正方形边长为3;则2CE CF ==;1BE DF ==;所以;2EF =22+22=8;2BD =23+23=18.因为;22EF BD ⋅=8×18=144=212;所以;EF BD ⋅=12.由梯形蝴蝶定理;得GEF S ∆∶BDG S ∆∶DFG S ∆∶BGE S ∆2EF =∶2BD ∶EF BD ⋅∶EF BD ⋅8:18:12:124:9:6:6==所以;66496625BEG BDFE BDFE S S S ∆==+++四边形四边形.因为93322BCD S ∆=⨯÷=;12222CEF S ∆=⨯⨯=;所以; 52BDFE BCD CEF S S S ∆∆=-=;所以;BEG S ∆=625×52=35.因为正方形PCNG 的边长等于BEG 底边BE 对应的高;所以;CN =35×2÷1=65;ND =3-65=95.因为1S =95×95=8125;2S =65×65=3625;所以;1S ∶2S =8125∶3625=9∶4.17. 如图;正方形ABCD 的边长为6;AE =1.5;CF =2.长方形EFGH 的面积为 .HGF ED CBA A BCDEF GH【分析】 连接DE ;DF ;则长方形EFGH 的面积是三角形DEF 面积的二倍.三角形DEF 的面积等于正方形的面积减去三个三角形的面积66 1.562262 4.54216.5DEF S =⨯-⨯÷-⨯÷-⨯÷=△,所以长方形EFGH 面积为3318. 如图;1ABC S =△;5BC BD =;4AC EC =;DG GS SE ==;AF FG =.求FGS S V .SGF E DCBA【分析】 本题题目本身很简单;但它把本讲的两个重要知识点融合到一起;既可以看作是“当两个三角形有一个角相等或互补时;这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用;也可以看作是找点;最妙的是其中包含了找点的3种情况.最后求得FGS S △的面积为4321115432210FGS S =⨯⨯⨯⨯=△.19. 如图;在长方形ABCD 中;6AB =;2AD =;AE EF FB ==;求阴影部分的面积.DD【分析】 如图;连接DE ;DE 将阴影部分的面积分为两个部分;其中三角形AED 的面积为26322⨯÷÷=.由于:1:3EF DC =;根据梯形蝴蝶定理;:3:1DEO EFO S S =V V ;所以34DEO DEF S S =V V ;而2DEF ADE S S ==V V ;所以32 1.54DEO S =⨯=V ;阴影部分的面积为2 1.5 3.5+=.20. 如右图;已知BD DC =;2EC AE =;三角形ABC 的面积是30;求阴影部分面积. 分析:连接CF ,因为BD DC =;2EC AE =;三角形ABC 的面积是30; 所以1103ABE ABC S S ∆∆==;1152ABD ABC S S ∆∆==.根据燕尾定理;12ABF CBF S AE S EC ∆∆==;1ABF ACF S BDS CD==V V ,所以17.54ABF ABC S S ∆∆==;157.57.5BFD S ∆=-=.所以阴影部分面积是30107.512.5--=.21. (第六届希望杯五年级一试)如图;正方形ABCD 的边长是12厘米;E 点在CD 上;BO AE ⊥于O ,OB 长9厘米;则AE 长_________厘米.OEDCBA321【分析】 在四边形OECB 中;2180OEC ∠+∠=o;因为3180OEC ∠+∠=o;所以32∠=∠;1DAC ∠=∠,所以,AB OB AE AD =,即12912AE =,所以16AE =22. 如图;大圆半径为小圆的直径;已知图中阴影部分面积为1S ;空白部分面积为2S ;那么这两个部分的面积之比是多少?(圆周率取3.14)【分析】 如图添加辅助线;小圆内部的阴影部分可以填到外侧来;这样;空白部分就是一个圆的内接正方形.设大圆半径为r ;则222S r =;2212S r r π=-;所以()12: 3.142:257:100S S =-=.移动图形是解这种题目的最好方法;一定要找出图形之间的关系.23. 如图中三个圆的半径都是5cm ;三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14)[分析] 将原图割补成如图;阴影部分正好是一个半圆;面积为255 3.14239.25cm ⨯⨯÷=24. (2008年武汉明心奥数挑战赛)如图所示;ABC ∆中;90ABC ∠=︒;3AB =;5BC =;以AC 为一边向ABC ∆外作正方形ACDE ;中心为O ;求OBC ∆的面积.解析: 如图;将OAB ∆沿着O 点顺时针旋转90︒;到达OCF ∆的位置.由于90ABC ∠=︒;90AOC ∠=︒;所以180OAB OCB ∠+∠=︒.而OCF OAB ∠=∠; 所以180OCF OCB ∠+∠=︒;那么B 、C 、F 三点在一条直线上.由于OB OF =;90BOF AOC ∠=∠=︒;所以BOF ∆是等腰直角三角形;且斜边BF 为538+=;所以它的面积为218164⨯=.根据面积比例模型;OBC ∆的面积为516108⨯=.25. 如图;三角形ABC 是等腰直角三角形;P 是三角形外的一点;其中90BPC ∠=︒;10cm AP =;求四边形ABPC 的面积.P DCBAP'PDCBA[分析] 因为BAC ∠和BPC ∠都是直角;和为180︒;所以ABP ∠和ACP ∠的和也为180︒;可以旋转三角形APC ;使AC 和AB 重合;则四边形的面积转化为等腰直角三角形'AP P ;面积为1010250⨯÷=平方厘米.26. (2008年全国小学数学资优生水平测试)如图;以正方形的边AB 为斜边在正方形内作直角三角形ABE ;90AEB ∠=︒;AC 、BD 交于O .已知AE 、BE 的长分别为3cm 、5cm ;求三角形OBE 的面积.DFD[分析] 如图;连接DE ;以A 点为中心;将ADE ∆顺时针旋转90︒到ABF ∆的位置.那么90EAF EAB BAF EAB DAE ∠=∠+∠=∠+∠=︒;而AEB ∠也是90︒;所以四边形AFBE 是直角梯形;且3AF AE ==;所以梯形AFBE 的面积为:()1353122+⨯⨯=(2cm ). 又因为ABE ∆是直角三角形;根据勾股定理;222223534AB AE BE =+=+=;所以21172ABD S AB ∆==(2cm ).那么()17125BDE ABD ABE ADE ABD AFBE S S S S S S ∆∆∆∆∆=-+=-=-=(2cm );所以12.52OBE BDE S S ∆∆==(2cm ).。
六年级数学上册几何图形专项综合练习
六年级数学上册几何图形专项综合练习1. 油漆圆柱形柱子,要计算油漆的面积有多大,就是求()A .体积B .表面积C .侧面积2. 一个圆形台面,半径是6分米,这个台面的面积是()A .18.84平方分米B .36平方分米C .113.04平方分米D .103.04平方分米3. 将一个周长12cm的正方形变换成周长为36cm的正方形。
实际是按()的比放大的。
A .1:3B .2:1C .3:1D .4:14. 把一个圆柱削成一个最大的圆锥,削去部分的体积是这个圆柱体积的()A .B .C .2倍5. 用一张长50厘米,宽20厘米的纸,以两种不同的方法围成一个圆柱,那么围成的圆柱()A .侧面积和高都相等B .高一定相等C .侧面积一定相等D .侧面积和高都相等6. 一张正方形纸对折后再对折,写出一个田字,打开后看见()个田字。
A .1B .2C .47. 做一根长2米,半径为10厘米的圆柱体水管需要多少铁皮,就是要计算这个圆柱体水管的()A .侧面积B .表面积C .底面面积D .体积8. 一个圆锥的体积是6立方分米,与它等底、等高的圆柱的体积是()立方分米.A .2B .6C .189. 如图中的五个半圆,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿A .甲先到B点B .乙先到B点C .甲、乙同时到B点D .无法确定10. 如下图所示的比赛场中(弯道部分为半圆R=150m、r=50m),左右轮子的距离为2.5米.如果把弯道半径都扩大2倍,若绕赛场一圈,两个轮子行走的距离之差()A .不变B .扩大2倍C .缩小2倍D .无法确定11. 观察图形并填空。
①图1绕点“O”逆时针旋转90°到达图______的位置;②图1绕点“O”逆时针旋转180°到达图______的位置;③图1绕点“O”顺时针旋转______°到达图4的位置;④图2绕点“O”顺时针旋转______°到达图4的位置;⑤图2绕点“O”顺时针旋转90°到达图______的位置;⑥图4绕点“O”逆时针旋转90°到达图______的位置。
小学六年级数学几何体练习试题
小学六年级数学几何体练习试题一、选择题1、一个正方体的棱长总和是 60 厘米,它的表面积是()平方厘米。
A 150B 125C 216解题思路:正方体有 12 条棱,且每条棱长度相等。
已知棱长总和是 60 厘米,所以每条棱的长度是 60÷12 = 5 厘米。
正方体的表面积=棱长×棱长×6,即 5×5×6 = 150 平方厘米。
答案选 A。
2、用一根 52 厘米长的铁丝,恰好可以焊成一个长 6 厘米、宽 4 厘米、高()厘米的长方体框架。
A 2B 3C 4解题思路:长方体有 4 条长、4 条宽和 4 条高。
先算出长、宽、高的总和:52÷4 = 13 厘米,然后用总和减去长和宽,即 13 6 4 = 3 厘米。
答案选 B。
3、一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是()A 1:πB 1:2πC 2:π解题思路:圆柱的侧面展开图是正方形,说明圆柱的底面周长和高相等。
底面周长=π×直径,设直径为 d,高为 h,则 h =πd,所以直径与高的比是 d : h = d :πd = 1 :π。
答案选 A。
4、把一个圆柱削成一个最大的圆锥,削去部分的体积是圆锥体积的()A 2 倍B 3 倍C 2/3解题思路:等底等高的圆柱体积是圆锥体积的 3 倍。
把圆柱削成最大的圆锥,圆锥与圆柱等底等高。
所以削去部分的体积是圆锥体积的 2 倍。
答案选 A。
5、一个圆锥的体积是 36 立方分米,底面积是 9 平方分米,它的高是()分米。
A 4B 12C 3解题思路:圆锥的体积= 1/3×底面积×高,所以高=体积×3÷底面积,即 36×3÷9 = 12 分米。
答案选 B。
二、填空题1、一个长方体的长、宽、高分别是 8 厘米、6 厘米、4 厘米,这个长方体的棱长总和是()厘米,表面积是()平方厘米,体积是()立方厘米。
小学数学六年级几何练习册(附详细答案)
【练习1】【练习2】【练习3】【练习4】【练习5】【练习6】【练习7】【练习8】【练习9】【练习10】、相交于点;已知三角形与三角平方厘米,那么梯形的面积是平方厘【练习11】【练习12】,问阴影部分面积为多少?【练习13】【练习14】,三角形的面积为,那么三【练习15】【练习16】【练习17】【练习18】【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.【练习23】【练习24】【练习25】【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm【练习34】计算下面各圆锥体积(单位:厘米)(取)【练习35】【练习36】【练习1】【练习2】几何四边形一半模型等积变形【练习3】【练习4】,所以【练习5】【练习6】【练习7】【练习8】【练习9】:,所以【练习10】根据梯形中的蝴蝶模型(平方厘米),方厘米),故总面积为(平方厘米).蝴蝶模型【练习11】,根据蝴蝶模型和一半模型求出每一块的面积如图上标几何四边形蝴蝶模型基本梯形蝴蝶模型【练习12】如图,梯形面积为,四边形连接,在梯形中,;在梯形中,,并且四边形面积为,所以梯形空白部分的面积是,所以阴影的面积是【练习13】【练习14】.【练习15】【练习16】.【练习17】【练习18】平方厘米.【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.可以看成三角形的“假高”(都是从顶点到底边连线,且两条“高”共线),【练习23】【练习24】【练习25】,【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm(3)(4)【练习34】【练习35】【练习36】圆柱与圆锥圆柱与圆锥基本概念运用。
小学六年级数学几何图形练习题及答案
小学六年级数学几何图形练习题及答案本文将为小学六年级的学生提供一些数学几何图形的练习题及答案,帮助他们巩固和提高几何图形的认知和理解能力。
以下是一些常见的几何图形及其练习题:一、直线、线段、射线1. 完成下图:画出两条不同的线段,并用字母标记它们。
答案:答案因为文字发不了图片二、点、面、角1. 下图中的阴影部分是什么?答案:阴影部分是一个三角形。
三、正方形1. 下图中的图形是什么?答案:下图中的图形是一个正方形。
2. 画出一个边长为5cm的正方形。
答案:答案因为文字发不了图片四、长方形1. 下图中哪个图形是长方形?答案:图形B是长方形。
2. 画出一个长6cm、宽3cm的长方形。
答案:答案因为文字发不了图片五、圆形1. 下图中哪个图形是圆形?答案:图形A是圆形。
2. 画出一个直径为8cm的圆。
答案:答案因为文字发不了图片六、三角形1. 画出一个任意形状的三角形。
答案:答案因为文字发不了图片2. 判断下列各形状是否是三角形:(1)正方形 (2)长方形 (3)梯形答案:(1)正方形不是三角形 (2)长方形不是三角形 (3)梯形是三角形七、梯形1. 下图中哪个图形是梯形?答案:图形C是梯形。
2. 画出一个上底为4cm,下底为8cm,高为3cm的梯形。
答案:答案因为文字发不了图片以上是一些小学六年级数学几何图形的练习题及答案,希望能帮助学生们更好地理解和掌握这些几何图形的特性和性质。
学习数学要多做题多练习,通过实际操作加深对知识的理解,才能在数学学习中取得好成绩。
祝愿学生们能够在几何图形的学习中取得更进一步的进展!。
小学六年级简单几何证明练习题
小学六年级简单几何证明练习题一、选择题(每题2分,共20分)1. 对于下面的几何图形,相对于A点对角线BD与AC的交点称为O点,下面哪个等式成立?A. AO = OAB. AO = OBC. BO = OCD. AO = OC2. 以下哪个命题是正确的?A. 直线与平面最多有2个交点。
B. 平面与平面最多有3个交点。
C. 直线与直线最多有1个交点。
D. 平面与平面最多有1个交点。
3. 下面哪个关系是正确的?A. 直线上的两个点可以共线。
B. 平面上的两个点可以共线。
C. 直线上的三个点可以共线。
D. 平面上的三个点可以共线。
4. 在一个四边形ABCD中,AB = BC,CD = DA,下面哪个等式成立?A. ∠ABC = ∠CDAB. ∠ABC = ∠ACDC. ∠BAD = ∠BCDD. ∠ABC = ∠CAD5. 下面哪个条件不足以证明两个三角形全等?A. SSAB. SSSC. SASD. ASA6. 在三角形ABC中,AC = BC,下面哪个命题是正确的?A. ∠ABC < ∠ACBB. ∠ABC = ∠ACBC. ∠ABC > ∠ACBD. 无法确定∠ABC 和∠ACB 的大小关系7. 在正方形ABCD中,连接AC和BD,下面哪个等式成立?A. AD = BCB. AB = BDC. AC = BDD. AD = AC8. 在平行四边形ABCD中,对角线AC与BD相交于点O,下面哪个等式成立?A. AO = OCB. AD = BCC. BA = CDD. BO = OD9. 垂直于同一直线的两条直线上的点,它们的纵坐标之和等于多少?A. 0B. -1C. 1D. 无法确定10. 在一个等边三角形中,下面哪个命题是正确的?A. 所有的角都是直角。
B. 所有的角都是锐角。
C. 所有的角都是钝角。
D. 无法确定角的大小。
二、填空题(每题2分,共20分)1. 在一个矩形中,对角线的长度是15 cm,长和宽的关系是_______。
小学数学六年级下册总复习《图形与几何》专项练习(附参考答案和相关知识整理汇总)
六年级数学下册图形与几何练习题班级考号姓名总分一、填空题。
1. 3.5平方米=()平方分米2立方分米3立方厘米=()立方分米5.02升=()升()毫升公顷=()平方米2.在钟面上,6时的时候,分针和时针所夹的角的度数是(),是一个()角。
3.一个三角形中,∠1=∠2=35°,∠3=(),按边分是()三角形。
4.一个三角形与一个平行四边形等底等高,如果三角形的面积是3.6平方分米,那么平行四边形的面积是()平方分米。
5.一个圆柱的底面直径是8厘米,高是1分米,它的侧面积是()平方厘米。
把它沿着底面直径垂直切成两半,表面积会增加()平方厘米。
6.三个棱长为2厘米的正方体拼成一个长方体,这个长方体的体积是()立方厘米,表面积是()平方厘米。
7.一个长方体相交于同一个顶点的三条棱的长度之比是3∶2∶1,这个长方体的棱长总和是72厘米。
长方体的表面积是()平方厘米,体积是()立方厘米。
8.一个圆柱和一个圆锥等底等高,圆柱与圆锥的体积之和是60立方厘米,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
二、判断题。
(对的画“√”,错的画“✕”)1.平角是一条直线。
()2.三角形具有稳定性,四边形不具有稳定性。
()3.两个面积相等的梯形,可以拼成一个平行四边形。
()4.一个玻璃容器的体积与容积相等。
()5.一个棱长是6厘米的正方体的表面积和体积相等。
()三、选择题。
(把正确答案的序号填在括号里)1.射线()端点。
A.没有B.有一个C.有两个2.下面图形中对称轴最少的是()。
A.长方形B.正方形C.等腰梯形3.下面的立体图形从左边看到的图形是()。
4.下图中,甲和乙两部分面积的关系是()。
A.甲>乙B.甲<乙C.甲=乙5.一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()。
A.πB.2πC.r四、计算题。
1.计算下面图形中阴影部分的面积。
(单位:厘米)2.计算以红色直线为轴旋转形成的立体图形的体积。
小学六年级几何练习题
小学六年级几何练习题
几何学是数学的一个分支,主要研究空间和形状的性质以及它们之间的关系。
在小学六年级的几何学学习中,掌握基本的几何概念和运算方法是非常重要的。
下面我将为你提供一些小学六年级几何的练习题,帮助你巩固和拓展自己的几何知识。
1. 直线、射线和线段之间的区别是什么?请分别举例说明。
2. 描述一个平面图形是如何称为正方形的,列举正方形的特点。
3. 把一个矩形两个相邻的顶点用直线连接,形成一个三角形。
这个三角形的名称是什么?为什么?
4. 两条线段相交的点是什么?两条线段平行的点是什么?
5. 给出一个例子,说明直角三角形的定义和性质。
6. 描述一个五边形的形状,并列举出一个五边形的例子。
7. 画一个平行四边形,用尺子测量它的边长并计算其面积。
8. 观察下图,确定其中的几何图形,并写出你对每个图形的描述。
(插入一张图片,包含多个几何图形)
9. 列举一个正方形和一个长方形的相同点和不同点。
10. 根据下图,回答问题:两个长方形是否相似?为什么?
(插入一张包含两个长方形的图片)
以上是一些小学六年级几何的练习题,希望能够帮助你复习和巩固几何知识。
在解答题目时,你可以结合实际例子和图形进行描述和计算,以加深理解。
通过多次的练习和实践,相信你能够掌握几何学的基本概念和技巧,取得优异的成绩。
祝你学习进步!。
六年级数学专题思维训练—立体几何(含答案及解析)
六年级数学专题思维训练—立体几何1、下面四个图形都是由六个相同的正方形组成的,其中,折叠后不能围成正方体的是______________.(填序号)2、如下图所示,棱长分别为1厘米、2厘米、3厘米的三个正方体紧贴在一起,则所得到的立体图形的表面积是平方厘米.3、下图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形,问这个直三棱柱的体积是多少?4、有一个足够深的水槽,底面是长为16厘米、宽为12厘米的长方形,原本在水槽里盛有6厘米深的水和6厘米深的油(油在水的上方).在水槽中放人一个长、宽、高分别为8厘米、8厘米、12厘米的铁块,那么此时油层的层高是厘米。
5、圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是立方厘米。
(结果用兀表示)6、如下图所示,从正方形ABCD 上截去长方形DEFG ,其中AB=1厘米,DE=21厘米, DG=31厘米,将ABCGFE 以GC 边为轴旋转一周,所得几何体的表面积是 平方厘米,体积是 _____________ 立方厘米。
(结果用兀表示)7、若长方体的三个侧面的面积分别是6,8,12,则长方体的体积是 。
8、一个圆柱和一个圆锥(如下图所示),它们的高和底面直径都标在图上,单位是厘米。
请回答:圆锥体积与圆柱体积的比是多少?9、如下图所示,一个圆柱体形状的木棒,沿着底面直径竖直切成两部分,已知这两部分的表面积之和比圆柱体的表面积大2008平方厘米,则这个圆柱体木棒的侧面积是 平方厘米。
(兀取3. 14)10、两个同样材料做成的球A 和B ,一个实心,一个空心。
A 的直径为7、重量为22,B 的直径为10.6、重量为33.3。
问:哪个球是实心球?(球的体积公式V=34πr ³)11、铁路油罐车由两个半球面和一个圆柱面钢板焊接而成,尺寸如下图所示.问:该油罐车的容积是多少立方米?(兀=3. 1416)(球的体积公式V=34πr ³)12、某工厂原用长4米,宽1米的铁皮围成无底无顶的的正方体形状的围栏,现要将围栏容量增加27%,问:能否还用原来的铁皮围成?13、一个正方体的纸盒中,恰好能放人一个体积为6. 28立方厘米的圆柱体,纸盒的容积有多大?(兀=3. 14).14、用若干个小正方体拼成下图所示的造型.其中有一个小孔分别由左至右、由上至下以及由前至后穿透整个造型.拼成此造型共需使用多少个小正方体?15、一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如下图所示,若用甲容器取水来注满乙容器,问:至少要注水多少次?(球的体积公式:V=34πr ³)16、下图是一个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内,当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为立方厘米.(取兀=3. 14)17、威力集团生产的某种洗衣机的外形是长方体,装衣物部分是圆柱形的桶,直径40厘米,深36厘米,已知该洗衣机装衣物的空间占洗衣机体积的25% ,长方体外形的长为52厘米,宽50厘米.问:高是多少厘米?(兀取3. 14,结果保留整数)18、有两个高度一样的水瓶,瓶子的底部被钉子分别戳了一个同样大的小洞.粗瓶子的水12分钟可以漏完,细瓶子的水8分钟可以漏完.若两个瓶子同时漏水,过了一段时间后,粗瓶子中水的高度是细瓶子中的2倍.这两个瓶子同时漏了分钟.19、世界上最早的灯塔建于公元270年,塔分三层,如下图所示,每层都高27米,底座呈正四棱柱,中间呈正八棱柱,上部呈正圆锥.上部的体积是底座的体积的 。
六年级数学下册《图形与几何》练习题及答案解析(北师大版)
六年级数学下册《图形与几何》练习题及答案解析(北师大版) 学校:___________姓名:___________班级:___________考号:___________一、选择题(16分)1.计算鱼缸能装水多少升,是求鱼缸的()。
A.表面积B.棱长总和C.体积D.容积2.营养学家建议:儿童每天水的摄入量应不少于1500mL。
要达到这个要求,小明每天用底面直径6cm,高10cm的圆柱形水杯喝水,至少喝水()杯。
A.4 B.5 C.6 D.73.两个圆柱形容器内原来的水面高度都是6cm。
它们的底面直径都是10cm。
①号容器内放入一个小球后,水面高度为10cm。
②号容器内放入一个小球和一个大球,水面高度为16cm。
两个容器内的小球完全相同,水也均未溢出,小球的体积与大球的体积的比是()。
A.5∶8 B.2∶5 C.2∶3 D.5∶124.制作一个无盖的圆柱形容器,应该选择()。
A.①和③B.①和④C.②和③D.②和④5.下面各图中,()是不正确的。
A.B.C.D.6.如图是由7个立方体摆成的几何体,从右面观察到的图形是()。
A.B.C.D.7.一个三角形,三个内角度数比是2∶3∶1,这个三角形按角分是()。
A.钝角三角形B.锐角三角形C.直角三角形D.无法确定8.如图,甲与乙的周长相比,()。
A.甲的周长>乙的周长B.甲的周长<乙的周长C.甲的周长=乙的周长D.无法比较二、填空题(26分)9.如图,有两个边长是6厘米的正方形,把其中一个正方形的顶点固定在另一个正方形的中心点上。
旋转其中一个正方形,重叠部分的面积是( )平方厘米。
10.将一个长方体的高增加3厘米后变成一个正方体,它的表面积比原来增加84平方厘米,原来长方体的体积是( )立方厘米。
11.在一幅比例尺为1∶3000的图纸上,量得一个三角形菜地的底是20厘米,高15厘米,这块菜地的实际面积是( )公顷。
12.一顶帽子,上面是直径2dm,高1dm的圆柱形(有帽顶),帽檐部分是一个宽1dm的圆环,做这顶帽子,至少要用( )的布料。
六年级数学上册几何图形专项练习
六年级数学上册几何图形专项练习1. 圆的直径是50米,面积是()A .188.4米B .314平方米C .1962.5平方米2.A .平移B .旋转C .既平移又旋转3. 把一个圆柱削成一个最大的圆锥,削去部分的体积是这个圆柱体积的()A .B .C .2倍4. 一个圆锥的体积是6立方分米,与它等底、等高的圆柱的体积是()立方分米.A .2B .6C .185. 用一张长50厘米,宽20厘米的纸,以两种不同的方法围成一个圆柱,那么围成的圆柱()A .侧面积和高都相等B .高一定相等C .侧面积一定相等D .侧面积和高都相等6. 将下列图形绕着各自的中心点旋转120°后,不能与原来的图形重合的是()A .B .C .D .7. 在下面物体中,表面是圆形的物体是()A .硬币B .数学课本C .方木条8. 下面()的运动是平移.A .转动着的呼啦圈B .电风扇的运动C .拔算珠9. 做一根长2米,半径为10厘米的圆柱体水管需要多少铁皮,就是要计算这个圆柱体水管的()A .侧面积B .表面积C .底面面积D .体积10. 图形的各边按相同的比放大法或缩小后所得的图形与原图形比较()A .形状相同,大小不变B .形状不同,大小不变C .形状相同,大小改变D .形状不同,大小改变11. 看图填一填图①向______平移了______格。
图②向______平移了______格。
图③向______平移了______格。
图④向______平移了______格。
12. 动物园在书店的______ 1.5千米处13. r=4cm,求C和S.C:______;S:______.14. 图形平移有二个关键要素,一是平移的______,二是平移的______。
15. 站在不同的位置看粉笔盒,最多看到它的______个面。
16. 圆是轴对称图形,它有______条对称轴。
在我们学习认识过的平面图形中,是轴对称图形的还有______。
六年级数学几何图形相关问题试题
六年级数学几何图形相关问题试题1.下图中不能一笔画成,请你在下图中添加最少的线段,将其改成一笔画的图形,并画出路线图.【答案】不能【解析】不能一笔画出,因为图中有E H G F四个奇点,连结EH就可以使图形一笔画出。
2.观察下面的图,看各至少用几笔画成?【答案】图(1)要4笔画出,图(2)能1笔画出,图(3)能1笔画出。
【解析】图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出,图(3)能一笔画出。
3.如图,一条直线上放着一个长和宽分别为和的长方形Ⅰ.它的对角线长恰好是.让这个长方形绕顶点顺时针旋转后到达长方形Ⅱ的位置,这样连续做三次,点到达点的位置.求点走过的路程的长.【答案】6π【解析】因为长方形旋转了三次,所以点在整个运动过程中也走了三段路程(如右上图所示).这三段路程分别是:第1段是弧,它的长度是();第2段是弧,它的长度是();第3段是弧,它的长度是();所以点走过的路程长为:().4.将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【答案】【解析】图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点.5.学习与思考对小学生的发展是很重要的,学习改变命运,思考成就未来,请你将下图分成形状和大小都相同的四个图形,并且使其中每个图形都含有“学习思考”这四个字.应怎样分?【答案】【解析】看到这道题目,我们想到俄罗斯方块,由题意可知,所分出的每一块图形,必须由4个小正方形组成,它的形状不外乎如右上图所示的五种俄罗斯方块,这就控制了搜索的范围.根据原题中各个字的具体位置,上图中有些图形是必须排除的,例如,如果把图⑵与原题右下角的正方形重叠,其中“考”字出现了两次,不符合题意,因此,图⑵可以先排除掉.现在,再固定某一角上的一个小正方形,按其中的字来考虑.如固定右上角写有“考”的小正方形来分析,只有下列4种可能出现的情况:6.如何把下图中的三个图形分割成两个相同的部分(除了沿正方形的边进行分割外,还可沿正方形的对角线进行分割).【答案】【解析】要把图形分成两个相同的部分,首先要保证分得的两部分面积相同,其次要保证分得的两部分形状相同,从面积入手进行分割会使问题更容易解决.第一个图形一共有6个小正方形,2个三角形,要分割成两块完全相同的部分,每一部分都要有3个正方形、1个三角形,这样很容易就可以解决这个问题了;同样,对第二个图形,一共有7个正方形,2个三角形,因为正方形的个数是奇数,所以,肯定有一个正方形被分成相同的两块,对于这个图形,我们很容易看出有一个正方形的位置很特殊,在最中间,所以考虑将它分成两部分,由对称的原则,从对角线分开;第三个图形更复杂一些,一共有6个正方形,6个三角形,分成的两块每一块都要有3个正方形、3个三角形,因为最上面的两个三角形组合成了一个大的三角形,所以右下方的两个三角形不能分开,再根据对称的原则,就容易解决这个问题了.7.将下图分成两块,然后拼成一个正方形.【答案】【解析】图形的面积等于16个小方格,如果以每个小方格的边长为1,那么拼成的正方形的边长应该是4.因为图形是缺角长方形,长为6,宽为3,应将宽加1,长减去2便可得一个正方形,所以分割成两块后,右边的一块应向上平移1(原来宽为3,向上平移使宽为4),向左平移2(原来长为6,向左平移使长为4).8.将图分成4个形状、大小都相同的图形,然后拼成一个正方形.【答案】【解析】经过计数可以发现,图形是由16个完全一样的正方形组成,所以拼成的正方形每排都有4个这样的小正方形,共有4排把大图形分成完全一样的4个图形,每个图形的面积都是小正方形的4倍.现在来考虑形状.由于这个图形具有对称的特点,很容易想到先将它分成两个完全一样的图形,只要沿大图形中间的那条竖线剪开即可,其中上面的一个是图2,再想办法把已经分成的两个图形各分成两个形状、大小都相同的图形即可.下面以上面的图为例,继续探讨分割的办法.如果把上图中每个小正方形的边长看作1个单位,那么这个图形中的最长边有4个单位,其次为3;显然,要把它分成完全一样的两个图形,每个图形的最长边只能为3,具体分法见图3,用同样的方法,可以将与上面的图形完全一样的下面的一个图形分成两个形状、大小都相同的图形,如右上图.9.如下图是某校的平面图,已知线段a=120米,b=130米,c=70米,d=60米,l=250米.杨老师每天早晨绕学校跑3圈,问每天跑多少米?【答案】3780【解析】平移法转化为长方形再求.[(120+130+60)+(70+250)]×2×3=3780(米).10.下图是一面砖墙的平面图,每块砖长20厘米,高8厘米,像图中那样一层、二层…一共摆十层,求摆好后这十层砖墙的周长是多少?【答案】560【解析】我们仍然可以通过平移转化为长方形来求.长方形的长是10块砖的长度,即20×10=200(厘米),宽是10块砖的宽度,即8×10=80(厘米),所以十层砖墙的周长是(200+80)×2=560(厘米).11.右图是由个同样大小的正方形组成的,如果这个图形的面积是平方厘米,那么它的周长是多少厘米?【答案】170【解析】考虑此类问题我们即可以局部分析,各个突破,也可以纵观全局整体思考.每个正方形的面积为(平方厘米),所以每个正方形的边长是厘米.观察右图,这个图形的周长从上下方向来看是由条正方形的边组成,从左右方向来看是由条正方形的边组成,所以其周长为厘米.12.用一块长分米,宽分米的长方形纸板与两块边长分米的正方形纸板拼成一个正方形.拼成的正方形的周长是多少分米?【答案】32【解析】两块边长分米的正方形纸可以拼成一个长分米,宽分米的长方形纸板,与原有的一块分米,宽分米的长方形纸板的面积一样大,而且这两个长方形两条宽的和正好等于一条长.所以,拼法如图所示.然后运用正方形的周长计算公式很容易求出它的周长.拼成的正方形的周长是:(分米)13.如图,,,,,.求.【答案】【解析】本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的种情况.最后求得的面积为.14.一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的,黄色三角形面积是.问:长方形的面积是多少平方厘米?【答案】60【解析】黄色三角形与绿色三角形的底相等都等于长方形的长,高相加为长方形的宽,所以黄色三角形与绿色三角形的面积和为长方形面积的,而绿色三角形面积占长方形面积的,所以黄色三角形面积占长方形面积的.已知黄色三角形面积是,所以长方形面积等于().15.观察这几个图形的变化规律,在横线上画出适当的图形.【答案】七边形【解析】几个图形的边数依次增加,因此横线上应为一个七边形.16.周长是12,各边长都是整数的等腰三角形有几种?长方形有几种?【答案】2;3【解析】2种;3种.17.图中的三个图形都是由A、B、C、D(线段或圆)中的两个组合而成,记为A*B、C*D、A*D.请你画出表示A*C的图形.【答案】【解析】观察上图,第一个图形和第三个图形的共同之处是都有一条竖向线段,而它们共有的字母是A,因此A表示竖向线段;第二个图形与第三个图形的共同之处是都有一条横向线段,它们的共同字母是D,因此D表示横向线段.这样,由第一个图形可知B表示大圆,由第二个图形可知C表示小圆,从而A*C表示的图形应为竖向线段和小圆组合而成,即下图.18.有一个3×4×5的长方体,先把其中相邻的两个面染红,再把它切成60个1×1×1的小正方体,请问:这些小正方体中最多有多少个是恰有一个面被染红的?【答案】25【解析】25.19.己知在每个正方体的6个面上分别写着1,2,3,4,5,6这6个数,并且任意两个相对的面上所写的两个数的和都等于7.等于如图,现在把5个这样的正方体一个挨着一个连接起来,在紧挨着的两个面上的两个数之和都等于8,那么图中标有问号的那个面上所写的数是多少?【答案】3【解析】从正面往后数,1的对面为7-1=6,6的紧贴面为8-6=2,2的对面为7-2=5,5的紧贴面为8-5=3,3的对面为7-3=4,于是从左往右数,第1个不是1、6、3、4,只能是2或5;当是2时,对面为5,5的紧贴面为8-5=3,3的对面为7-3=4,4的紧贴面8-4=4,4的对面对7-4=3,即为标有问号的面;当是5时,对面为2,2的紧贴面的8-2=6,6的对面对7-6=1,1的紧贴面为8-1=7,不满足题意.所以,图中标有问号的那个面上所写的数是3.20.一个人从某点出发步行,前进20米就向右转15度,再前进20米又向右转15度,……,这样走了一圈后回到了出发点.那么当他回到出发点时一共走了多少米?【答案】480【解析】这个人转了一圈回到原出发点,则转了360°,于是转了360÷15=24次,所以共走了24×20=480(米).。
六年级几何篇练习题集
附五大模型概念及用法:一、 等积变换模型①等底等高的两个三角形面积相等;②两个三角形高相等.面积比等于它们的底之比; 两个三角形底相等.面积比等于它们的高之比;baS 2S 1 DC BA如左图12::S S a b =③夹在一组平行线之间的等积变形.如右上图ACD BCD S S =△△;反之.如果ACD BCD S S =△△.则可知直线AB 平行于CD . ④正方形的面积等于对角线长度平方的一半;⑤三角形面积等于与它等底等高的平行四边形面积的一半;二、 鸟头定理(共角定理)模型两个三角形中有一个角相等或互补.这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 如图在ABC △中.,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上.E 在AC 上).则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBAEDCB A图⑴ 图⑵推理过程连接BE .再利用等积变换模型即可 三、 蝴蝶定理模型任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型.一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面.也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):A BCDOba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③梯形S 的对应份数为()2a b +.四、 相似模型相似三角形性质:GF E ABCD (金字塔模型)ABCDEF G (沙漏模型)①AD AE DE AFAB AC BC AG===; ②22:ADE ABC S S AF AG =△△:.所谓的相似三角形.就是形状相同.大小不同的三角形(只要其形状不改变.不论大小怎样改变它们都相似).与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例.并且这个比例等于它们的相似比; ⑵相似三角形的面积比等于它们相似比的平方;五、 燕尾定理模型 S △ABG :S △AGC =S △BGE :S △EGC =BE :EC ;S △BGA :S △BGC =S △AGF :S △FGC =AF :FC ; S △AGC :S △BCG =S △ADG :S △DGB =AD :DB ;练习题集:1. (第3届华杯赛试题)一个长方形分成4个不同的三角形.绿色三角形面积是长方形面积的0.15倍.黄色三角形的面积是21平方厘米.问:长方形的面积是 平方厘米.红红绿黄21平方厘米2. (2007年六年级希望杯二试试题)如图.三角形田地中有两条小路AE 和CF .交叉处为D .张大伯常走这两条小路.他知道DF DC =,且2AD DE =.则两块地ACF 和CFB 的面积比是_________.F E DCBA3. 两条线段把三角形分为三个三角形和一个四边形.如图所示. 三个三角形的面积 分别是3.7.7.则阴影四边形的面积是多少?4. 如图.已知长方形ADEF 的面积16.三角形ADB 的面积是3.三角形ACF 的面积是4.那么三角形ABC 的面积是多少?F ED CB A5. (北京市第一届“迎春杯”刊赛)如图.将三角形ABC 的AB 边延长1倍到D .BC 边延长2倍到E .CA 边延长3倍到F .如果三角形ABC 的面积等于1.那么三角形DEF 的面积是 .FEDCB A6. 如图.在ABC △中.延长AB 至D ,使BD AB =.延长BC 至E ,使12CE BC =.F 是AC 的中点.若ABC △的面积是2.则DEF △的面积是多少?A BCDEF7. 如图.在ABC ∆中.已知M 、N 分别在边AC 、BC 上.BM 与AN 相交于O ,若AOM ∆、ABO ∆和BON ∆的面积分别是3、2、1.则MNC ∆的面积是 .8. 四边形ABCD 的对角线AC 与BD 交于点O (如图所示).如果三角形ABD 的面积等于三角形BCD 的面积的13.且2AO =.3DO =.那么CO 的长度是DO 的长度的_________倍.9. 如右图.已知D 是BC 中点.E 是CD 的中点.F 是AC 的中点.ABC∆由这6部分组成.其中⑵比⑸大6平方厘米.那么ABC ∆的面积是多少平方厘米?10. 如右图.长方形ABCD 中.16EF =.9FG =.求AG 的长.D ABC EFGODCBANM OCBAFED CBA5()3()6()4()2()1()11. 如图.长方形ABCD 中.E 为AD 中点.AF 与BE 、BD 分别交于G 、H .已知5AH =cm .3HF =cm .求AG .12. 图中四边形ABCD 是边长为12cm 的正方形.从G 到正方形顶点C 、D 连成一个三角形.已知这个三角形在AB 上截得的EF 长度为4cm .那么三角形 GDC 的面积是多少?GF ED CBA13. 如右图.三角形ABC 中.BD :DC =4:9.CE :EA =4:3.求AF :FB .14. 如图.三角形ABC 的面积是1.BD =DE =EC .CF =FG =GA .三角形ABC 被分成9部分.请写出这9部分的面积各是多少?GFE D CBAOGH FE DC B A O F EDCB A15. 如右图.ABC △中.G 是AC 的中点.D 、E 、F 是BC 边上的四等分点.AD 与BG 交于M .AF 与BG 交于N .已知ABM △的面积比四边形FCGN 的面积大7.2平方厘米.则ABC △的面积是多少平方厘米?N M GA BCD E F16. 如图.在正方形ABCD 中.E 、F 分别在BC 与CD 上.且2CE BE =.2CF DF =.连接BF .DE .相交于点G .过G 作MN .PQ 得到两个正方形MGQA 和正方形PCNG .设正方形MGQA 的面积为1S .正方形PCNG 的面积为2S .则12:S S =______.QPNM GFED CBA17. 如图.正方形ABCD 的边长为6.AE =1.5.CF =2.长方形EFGH 的面积为 .HGF EDCBA18. 如图.1ABC S =△.5BC BD =.4AC EC =.DG GS SE ==.AF FG =.求FGSS.SGF E DCBA19. 如图.在长方形ABCD 中.6AB =.2AD =.AE EF FB ==.求阴影部分的面积.D20. 如右图.已知BD DC =.2EC AE =.三角形ABC 的面积是30.求阴影部分面积.21. (第六届希望杯五年级一试)如图.正方形ABCD 的边长是12厘米.E 点在CD 上.BO AE 于O ,OB 长9厘米.则AE 长_________厘米。
六年级简单的几何问题及答案练习题及答案
六年级简单的几何问题及答案练习题及答案练习题一:一、判断下列几何图形是否为正多边形,并用“是”或“不是”回答。
1. 正方形2. 正三角形3. 长方形4. 正五边形二、判断下列几何图形的特征,并选择正确的答案填空。
1. 一个长方形有几条边?A. 2B. 3C. 4D. 52. 一个正方形有几条边?A. 2B. 3C. 4D. 53. 一个正五边形有几个角?A. 3B. 4C. 5D. 64. 一个正三角形有几个边?A. 2B. 3C. 4D. 5三、选择下面几何图形中的最大角,并选择正确的答案填空。
1. 正方形的一个角A. 45°B. 90°C. 120°D. 180°2. 正五边形的一个角A. 45°B. 90°C. 120°D. 180°3. 正三角形的一个角A. 45°B. 90°C. 120°D. 180°4. 长方形的一个角A. 45°B. 90°C. 120°D. 180°四、用直尺和量角器完成下面几个任务,并回答问题。
1. 画一个正方形,并测量它的角度。
2. 画一个正三角形,并测量它的边长。
3. 画一个长方形,并测量它的对角线长度。
4. 画一个正五边形,并测量它的每个角的角度。
练习题二:一、选择正确的答案填空。
1. 一个长方形的对边相等吗?A. 是B. 不是2. 一个正方形的对边相等吗?A. 是B. 不是3. 一个正五边形的对边相等吗?A. 是B. 不是4. 一个正三角形的对边相等吗?A. 是B. 不是二、回答问题。
1. 一个正方形的边长和面积的关系是什么?2. 一个长方形的对角线和边长的关系是什么?3. 一个正五边形的角度和边长的关系是什么?4. 一个正三角形的内角和外角之和是多少度?三、判断下列几何图形是否为对称图形,并用“是”或“不是”回答。
2024年数学六年级上册几何基础练习题(含答案)
2024年数学六年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 长方形B. 矩形C. 正方形D. 三角形2. 一个等边三角形的每个角是多少度?A. 60度B. 90度C. 120度D. 180度3. 一个圆的半径是5厘米,它的直径是多少厘米?A. 2.5厘米B. 5厘米C. 10厘米D. 15厘米4. 一个正方形的周长是36厘米,它的边长是多少厘米?A. 9厘米B. 18厘米C. 27厘米D. 36厘米5. 下列哪个图形的面积可以通过计算长乘以宽得到?A. 三角形B. 正方形C. 圆D. 梯形6. 一个三角形的底边长是10厘米,高是6厘米,它的面积是多少平方厘米?A. 30平方厘米B. 60平方厘米C. 120平方厘米D. 180平方厘米7. 一个长方形的长是8厘米,宽是5厘米,它的面积是多少平方厘米?A. 13平方厘米B. 40平方厘米C. 50平方厘米D. 80平方厘米8. 一个正方形的边长是7厘米,它的面积是多少平方厘米?A. 14平方厘米B. 28平方厘米C. 49平方厘米D. 98平方厘米9. 一个圆的半径是4厘米,它的面积是多少平方厘米?A. 16平方厘米B. 32平方厘米C. 64平方厘米D. 128平方厘米10. 一个梯形的上底是6厘米,下底是8厘米,高是5厘米,它的面积是多少平方厘米?A. 20平方厘米B. 30平方厘米C. 40平方厘米D. 50平方厘米二、判断题(每题2分,共10分)1. 一个正方形的四个角都是直角。
()2. 一个等腰三角形的两个底角相等。
()3. 一个圆的直径是半径的两倍。
()4. 一个长方形的对边平行且相等。
()5. 一个三角形的面积可以通过计算底乘以高的一半得到。
()三、计算题(每题5分,共100分)1. 一个正方形的边长是10厘米,求它的周长和面积。
2. 一个长方形的长是15厘米,宽是8厘米,求它的周长和面积。
六年级下册数学第六单元2图形与几何图形的专项练习(同步练习)
六年级图形专项练习
1.如下图,已知阴影部分的面积是8平方厘米,求圆的面积。
2.下图大正方形的边长是10厘米,求阴影部分的面积。
3.求阴影部分的周长。
(单位:厘米)
4.求阴影部分的面积。
5.如图用31.4米长的篱笆靠墙围一个半圆形的花园,这个花园的面积是多少?
6.求下图阴影部分面积。
(单位:cm;π取3.14)
7.计算图中阴影部分的面积。
(单位:厘米)
2BC,求阴影8.已知如图,三角形ABC的面积为8平方厘米,AE=ED,BD=
3
部分的面积。
9.如图求阴影部分的面积。
(单位:cm π取3.14)
10.求右图中阴影部分的面积。
11.如图R=6.r=4厘米,则阴影部分的周长是多少厘米?
12.如图:ABCD是正方形,形半径是60毫米求明影部分面积。
(5分)
D
13..平行四边形ABCD的周长是102厘米,以CD为底时。
高为14厘米;以BC为底时,高为20厘米,求平行四边形的面积。
(8分)
14.如图所示,两个相邻的正方形边长分别是8cm、3cm,求图中阴影部分的面积和周长。
(结果保留π)
15.如下图所示有一个长方体,现将它切成三个完全一样的长方体。
怎样切使切成的三个长方体表面积的和比原来长方体表面积增加最多,算一算表面积最多增加了多少?
16.求下面图形的侧面积和体积。
单位:分米
17.ABCD 是直角梯形,以CD为轴将梯形旋转一周,得到一个旋转体,它的体积是多少立方厘米?
2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类训练:几何计算题
1.计算下面各图中阴影部分的面积。
(单位:厘米)
2.看图计算。
下左图中阴影部分的面积是37平方厘米,求长方形的周长。
(单位:厘米)
3.上右图中,已知平行四边形中空白部分的面积是77平方厘米,求图中阴影部分面积。
(单位:厘米)
4.下左图中长方形的面积是40平方米,求阴影部分的面积。
5.上右图中平行四边形中空白部分的面积是10平方分米,求阴影部分的面积。
6.用篱笆靠墙围一块花圃(如下左图)。
如果用这个篱笆改围成一个靠墙的正方形,正方形的面积是多少?
7.上左图是一个长方体纸盒的表面展开图,这个纸盒的用料面积至少是多少平方厘米?(单位:厘米)
8.计算下左图形的周长和面积。
(单位:厘米)
9.求上右图形的面积。
(单位:厘米)
10.下左图中,直角三角形AOB的面积是12平方厘米,那么圆的面积是多少平方厘米?
11.上右图中,半圆中三角形ABO的面积(S1)是11平方厘米,O为圆心,半径长5厘米,求阴影部分的面积。
12.下左图是一块土地的形状,可以分割成一个平行四边形和一个三角形。
这块土地的面积是多少公顷。
13.求上右图中圆锥的体积。
(单位:厘米)
14.如右图:ACEG是梯形、BDFG是正方形,GE=30厘米,G B=24厘米,C=39厘米。
求梯形ACEG的面积。