叶绿体色素的提取分离理化性质和叶绿素含量的测定
叶绿体色素的提取、分离、理化性质和叶绿素含量的测定

实验报告课程名称: 植物生理学及实验(甲) 实验类型:实验名称: 叶绿体色素的提取、分离、理化性质和叶绿素含量的测定姓名: 专业: 学号:同组学生姓名: 指导老师:实验地点: 实验日期:一、实验目的和要求二、实验内容和原理 三、主要仪器设备 四、操作方法与实验步骤五、实验数据记录和处理 六、实验结果与分析七、讨论、心得一、实验目的和要求 1、掌握植物中叶绿体色素的分离和性质鉴定、定量分析的原理和方法。
2、熟悉在未经分离的叶绿体色素溶液中测定叶绿素a 和b 的方法及其计算。
二、实验内容和原理以青菜为材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。
原理如下: 装 订 线1、叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,常用95%的乙醇或80%的丙酮提取。
2、皂化反应。
叶绿素是二羧酸酯,与强碱反应,形成绿色的可溶性叶绿素盐,就可与有机溶剂中的类胡萝卜素分开。
COOCH3COO-C32H30ON4Mg + 2KOH C32H30ON4Mg + 2KOH +CH3OH +C20H39OHCOOC20H39COO-3、取代反应。
在酸性或加温条件下,叶绿素卟啉环中的Mg++可依次被H+和Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。
(H+取代Mg2+, Cu2+ (Zn2+)取代H+ )褐色绿色4、叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。
5、定量分析。
叶绿素吸收红光和兰紫光,红光区可用于定量分析,其中645和663用于定量叶绿素a,b及总量,而652可直接用于总量分析。
根据朗伯-比尔定律,最大吸收光谱不同的两个组分的混合液,它们的浓度C与吸光值之间有如下的关系: OD1=Ca*ka1+Cb*kb1OD2=Ca*ka2+Cb*kb2查阅文献得,叶绿素a和b的80%丙酮溶液,当浓度为1g/L时,比吸收系数k值如下。
波长/nm比吸收系数k叶绿素a叶绿素b66382.049.2764516.7545.60将数值代入式子得:OD663=82.04*Ca+9.27*Cb OD645=16.75*Ca+45.60*Cb经整理后,得到式子:Ca=0.0127 OD663 - 0.00269 OD645 Cb=0.0229 OD645 - 0.00468 OD663三、主要仪器设备天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等四、操作方法与实验步骤1、定性分析:鲜叶5g+95%30ml(逐步加入),磨成匀浆,过滤入三角瓶中,观察荧光现象。
实验三十四植物叶绿体色素的提取、分离、表征及含量测定

实验三十四植物叶绿体色素的提取、分离、表征及含量测定摘自王尊本主编,综合化学实验(第二版),第226-244页,北京:科学出版社,2007年9月。
实验三十四植物叶绿体色素的提取、分离、表征及含量测定[1-27]一、叶绿体色素的提取(一) 实验目的1)掌握有机溶剂提取叶绿体色素等天然化合物的原理和实验方法。
2)了解皂化-萃取提取胡萝卜素的原理。
3)了解1,4-二氧六环沉淀法提取叶绿素的原理。
(二) 实验原理植物光合作用是自然界最重要的现象,它是人类所利用能量的主要来源。
在把光能转化为化学能的光合作用过程中,叶绿体色素起着重要的作用。
高等植物体内的叶绿体色素有叶绿素和类胡萝卜素两类,主要包括叶绿素a、叶绿素b、胡萝卜素和叶黄素四种。
它们所呈现的颜色和在叶绿体中含量大约比例见表34.1。
表34.1 高等植物体内叶绿体色素的种类、颜色及含量项目叶绿素类胡萝卜素叶绿素a 叶绿素b 胡萝卜素叶黄素颜色蓝绿色黄绿色橙黄色黄色在叶绿体内各色素含量比例 3 1 2 13 1 叶绿素chlorophylls是叶绿酸的酯,它在植物进行光合作用中吸收可见光,并将光能转变为化学能。
叶绿素是植物进行光合作用所必需的催化剂。
在绿色植物中叶绿素主要以叶绿素a(C55H72O5N4Mg)和叶绿素b(C55H70O6N4Mg)两种结构相似的形式存在,其差别仅是叶绿素a中一个甲基被叶绿素b中的甲酰基所取代。
叶绿素的基本结构见图34.1。
在叶绿素分子结构中含有四个吡咯环,它们由四个甲烯基联结成卟啉环,在卟啉环中央有一个镁原子,它以两个共价键和两个配位键与4个吡咯环的氮原子结合成内配盐,形成镁卟啉。
在叶绿素分子中还有两个羧基,其中一个与甲醇酯化成COOCH3,另一个与叶绿醇酯化成COOC20H39长链。
类胡萝卜素carotenoids是一类不饱和的四萜类碳氢化合物(例如胡萝卜素,carotenes,或它们的氧化衍生物(例如叶黄素类,xanthophylls。
色素的提取与分离实验

要求:实验作业当堂交
★
Mg偏向带正电荷,N 偏向带负电荷,亲水 “头部”
亲脂性“尾巴”
光合色素的光学性质 spectrum) ----吸收光谱(absorption spectrum)
光合色素对不同波长光吸收后形成的光谱
叶绿素a 叶绿素a、b:红光和蓝紫光,吸收绿光最少 红光和蓝紫光, 类胡萝卜素:吸蓝紫光,不吸收红、 类胡萝卜素:吸蓝紫光,不吸收红、橙、黄光 藻红素—— ——绿光 藻蓝素—— ——橙红光 藻 胆 素:藻红素——绿光 藻蓝素——橙红光
实验五
叶绿体中色素的提取、理 叶绿体中色素的提取、 化性质的鉴定和主要色素是叶绿素和类胡萝卜素 1.叶绿体中主要色素是叶绿素和类胡萝卜素 2.种 2.种 类:叶a 、 叶b 类:叶 与碱反应生成叶 3.结 构:双羧酸酯 3.结 构:双羧酸酯 绿素盐、 绿素盐、叶醇 含N、Mg的极性头,叶绿醇非极性尾 Mg的极性头, 4.物理性质:不溶于水,易溶于有机溶剂 。 4.物理性质:不溶于水,易溶于有机溶剂 和甲醇。 和甲醇 5.化学性质:皂化反应 5.化学性质:皂化反应 置换反应 镁可被銅、 镁可被銅、 6.功 能:吸收光能、电子传递、光能转化 氢 6.功 等置换。 等置换。 (少量叶绿素a (少量叶绿素a) 7.光合色素的光学性质 7.光合色素的光学性质
叶绿素的荧光和磷光现象说明 叶绿素能被光所激发, 叶绿素能被光所激发, 而叶绿素的激发是 将光能转变为化学能的第一步。 将光能转变为化学能的第一步。
荧光现象和磷光现象
荧光现象:叶绿素溶液在透射光下呈绿色, 荧光现象:叶绿素溶液在透射光下呈绿色, 而在反射光下呈红色的现象。 而在反射光下呈红色的现象。 Chl + hν 基态 光子能量 chl*激发态
叶绿体色素的提取、分离及含量测定

叶绿体色素的提取、分离及含量测定实验目的叶绿素是植物吸收太阳光能进行光合作用的重要物质,主要有叶绿素a、叶绿素b、胡萝卜素和叶黄素组成。
叶绿素a与叶绿素b是高等植物叶绿体色素的重要组分,约占到叶绿体色素总量的75%左右。
叶绿素在光合作用中起到吸收光能、传递光能的作用(少量的叶绿素a还具有光能转换的作用),因此叶绿素的含量与植物的光合速率密切相关,在一定范围内,光合速率随叶绿素含量的增加而升高。
另外,叶绿素的含量是植物生长状态的一个反映,一些环境因素如干旱、盐渍、低温、大气污染、元素缺乏都可以影响叶绿素的含量与组成,并因之影响植物的光合速率。
因此叶绿素含量a与叶绿素b含量的测定对植物的光合生理与逆境生理具有重要意义。
实验原理从植物叶片中提取和分离叶绿体色素是对其认识和了解的前提。
利用叶绿体色素能溶于有机溶剂的特性,可用95%乙醇提取。
分离色素的方法有多种,如纸层析、柱层析等。
纸层析是其中最简单的一种。
当溶剂不断地从层析滤纸上流过时,由于混合色素中各种成分在两相(即流动相和固定相)间具有不同的分配系数,它们的移动速度不同,使样品中的各种成分得到分离。
强光可以破坏离体的叶绿素,因为植物体内本来有还原酶,可以破坏光产生的强氧化物质。
而离体的叶绿素提取液中不含有还原酶,光产生的强氧化物质会破坏叶绿素。
叶绿素提取液中同时含有叶绿素a和叶绿素b,二者的吸收光谱虽有不同,但又存在着明显的重叠,在不分离叶绿素a和叶绿素b的情况下同时测定叶绿素a和叶绿素b的浓度,可分别测定在663nm和645nm(分别是叶绿素a和叶绿素b在红光区的吸收峰)的光吸收,然后根据Lambert-Beer定律,计算出提取液中叶绿素a和叶绿素b的浓度。
A663=82.04Ca+9.27Cb(1)A645=16.75Ca+45.60Cb(2)公式中Ca为叶绿素a的浓度,Cb为叶绿素b浓度(单位为g/L),82.04和9.27分别是叶绿素a和叶绿素b在663nm下的比吸收系数(浓度为1g/L,光路宽度为1cm时的吸光度值);16.75和45.60分别是叶绿素a和叶绿素b在645nm下的比吸收系数。
植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定

植物生理学实验报告叶绿体色素的提取分离理化性质和叶绿素含量的测定引言:叶绿体是植物细胞中的一个重要细胞器,其中主要存在着叶绿素等色素,它们在光合作用中起着重要的作用。
研究叶绿体色素的提取、分离、理化性质和叶绿素含量的测定,对于了解光合作用的机理以及研究植物生理生化过程具有重要意义。
本实验旨在通过实验手段提取叶绿体色素,进行色素的分离、理化性质的研究和叶绿素含量的测定。
材料与方法:材料:菠菜叶片、研钵、磨杵、丙酮、乙醇、石油醚、叶绿素提取液、测色皿、高锰酸钾溶液、浓硫酸。
方法:1.取适量菠菜叶片放入研钵中,加入适量丙酮,用磨杵捣碎成糊状。
2.将捣碎的菠菜糊状物转移到玻璃漏斗中,用石油醚冲洗3次,使叶绿体附着物进一步析出。
3.将漏斗中的上清液收集,并加入适量乙醇,振摇混合,使叶绿素慢慢析出。
4.将释放出的叶绿体颗粒通过离心机离心沉淀10分钟,收集沉淀。
5.取收集到的叶绿体沉淀,加入适量叶绿素提取液,用乳钙酸钠解离剂进行叶绿素含量的测定。
6.将其中一部分叶绿体溶液加入高锰酸钾溶液,观察颜色变化。
7.将其余叶绿体溶液与浓硫酸混合,观察颜色变化。
结果与讨论:通过上述方法,我们成功地提取并分离出菠菜叶片中的叶绿体色素。
加入石油醚可以去除一部分杂质,使叶绿体进一步纯化。
加入乙醇可以使叶绿素从叶绿体中溶出。
通过离心沉淀,我们收集到了叶绿体的沉淀物。
叶绿体的提取液与高锰酸钾溶液反应后呈现蓝色或紫色,这是由于高锰酸钾通过氧化反应将一些具有现菌酮结构的物质氧化为合成叶绿素的前体物质所引起的。
这种反应也证实了叶绿体的存在。
叶绿体溶液与浓硫酸混合后呈现蓝绿色,这是由于浓硫酸通过剥离叶绿体周围的蛋白质和其他有机物质,将叶绿素分子释放出来,产生颜色变化。
叶绿素的含量测定是通过与乳钙酸钠解离剂反应来进行的。
乳钙酸钠解离剂能够与叶绿体中的叶绿素结合,并形成稳定的叶绿素-乳钙酸钠络合物。
这种络合物通过光密度的测定,可以根据比色法来测量叶绿素的含量。
叶绿体色素的提取分离及其理化性质

实验名称:叶绿体色素的提取分离及其理化性质【中文摘要】本实验在提取叶绿体色素(叶绿素和类胡萝卜素)后,分别进行色素的分离和植物叶绿素理化性质的观察与检验。
【英文摘要】In this study, the extraction of chloroplast pigments (chlorophyll and carotenoids), the pigments were separated and the physical and chemical properties of chlorophyll observation and testing.【实验原理】提取: 叶绿体中含有叶绿素(叶绿素a与b)和类胡萝卜素(胡萝卜素和叶黄素),这两类色素均不溶于水,而溶于有机溶剂,故常用乙醇、丙酮等有机溶剂提取。
分离: 当溶剂沿支持物不断向前推进时,由于叶绿体中不同色素分子结构不同,在两相(流动相与固定相)间具有不同的分配系数,因此它们移动速率不同。
对叶绿体色素进行层析可将不同色素分离。
理化性质的观察: 叶绿素是一种二羧酸酯,在碱作用下,发生皂化反应;在弱酸作用下,叶绿素中镁可被氢原子取代而成为褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素,叶绿素具有荧光,故从与入射光相垂直的方向观察叶绿素溶液呈血红色。
叶绿素的化学性质不稳定,易受强光氧化,特别是当叶绿素与蛋白质分离后,破坏更快。
【实验目的】以植物叶片组织为材料,提取叶绿体色素;以纸层析法分离其成分;鉴定叶绿体色素的理化性质.【实验器材和试剂】1、材料:菠菜2、用具:天平、研钵、三角漏斗、滤纸、层析缸、毛细管、分光镜、量筒、烧杯、试管等3、试剂:丙酮、碳酸钙、层析液(石油醚:丙酮=25:3),20%KOH-甲醇、乙醚、1%HCl、醋酸铜【实验步骤】1.叶绿体色素的提取1).取新鲜菠菜叶片2克,擦干,去中脉,剪碎放入研钵;2).加入少许石英砂和CaCO,再加入无水丙酮10ml,研磨成匀浆,再加丙酮15ml;33).用漏斗滤去残渣,得叶绿体色素提取液(置于暗处).2.纸层析分离叶绿体色素1).层析样纸制备,将优质滤纸剪成3cm×9cm的长条,将一端剪成中央留约1cm×0.5cm 的窄条;2).点样,用细玻璃棒蘸取叶绿体色素提取液点于层析纸的窄条上端中央部,用吹风机吹干后在原处重复点样7-8次;3).展层,在层析缸中加入3-5ml层析推动液,然后将已点样的层析纸插入缸的側壁槽内,调节纸条使窄条1/2部分浸入推动液中,盖好盖子,于阴暗处展层约10min,即可在层析纸上分辨出4种不同的清楚色层;3.叶绿体理化性质的观察1).荧光现象的观察取浓的叶绿体色素提取液化3ml,在透射光和反射光下观察叶绿体色素提取液的颜色.2).皂化作用在观察过荧光现象的叶绿体色素提取液中加入2ml的20%KOH-甲醇溶液,充分混匀.吹打5分钟;沿试管壁缓慢加入3ml乙醚+4ml的蒸馏水,边滴加边摇动,直至看到溶液逐渐分为两层为止. 对照不加KOH-甲醇溶液.3).叶绿素分子中Mg2+的取代作用取2只试管,分别加入2ml叶绿体色素提取液,第1只作为对照,第2只加入数滴5%HCl,摇匀,观察溶液颜色变化.当溶液变褐后,再加入少量醋酸铜粉末,并微加热.与对照比较,观察溶液颜色变化.【实验结果】1、纸层析分离叶绿体色素2、叶绿体理化性质的观察1)荧光现象的观察溶液的透射光为绿色,反射光为暗红色。
叶绿素的提取、分离和测定

Ca=12.7OD663-2.69OD645 Cb=22.9OD645-4.68OD663 Ct=Ca+Cb=20.2D645+8.02D663
解方程式得
(二)步骤
称取0.5g叶片,剪碎后置于玻璃匀浆器中加纯丙酮5mL,研成匀浆,用80%丙酮10mL洗匀浆器,用80%丙酮定容到25mL,避光静置5min。用移液管吸取上面的绿色清液1mL置于一大试管中,加入丙酮4ml稀释,摇动试管,作测定用。
测量光密度值 取上述提取液以80%丙酮作为空白对照,于663及645nm下读取光密度值
计算结果代入公式求出各来自绿素的含量(单位mg/L)最后计算时需考虑稀释因子
叶绿素a含量(mg/g鲜重)=CA*5 *25*2/1000 =0.25CA
叶绿素b的含量(mg/g鲜重)=0.25CB
研钵、吸管、小烧杯、试管、培养皿等
01
95%酒精、石油醚
02
碳酸钙
03
(二)仪器和药品
(三)步骤
用天平称取15g鲜叶,剪碎放入研钵中,加少量的CaCO3粉末及95%酒精5-10mL研成糊状,再加95%酒精20mL,充分混匀以提取叶片匀浆中的色素,5-10分钟后,过滤入三角烧瓶中加塞待用。
取一张色层分析纸或定性滤纸代用,剪成圆形,直径应略大于培养皿的直径;将圆形滤纸平放在培养皿上,用滴管吸取叶绿素提取液,滴在滤纸的中心位置,稍干后,再重复操作几次;然后取另一滴管吸取石油醚,慢慢地推动叶绿素提取液,不久即可看到分离的各种色素的同心圆环,由内到外依次为:叶绿素a为蓝绿色、叶绿素b为黄绿色、叶黄素呈鲜黄色、胡萝卜素为橙黄色。
叶绿素a、b在长波方面的最大吸收峰分别为为663nm和645nm。
叶绿体色素的提取分离、理化性质和含量测定

叶绿体色素的提取分离、理化性质和含量测定1 实验目的(1)学习用薄层色谱法分离叶绿体色素的实验方法;(2)验证叶绿体素的理化性质。
2 实验原理2.1 叶绿素的提取叶绿体是进行光合作用的细胞器。
叶绿体中的叶绿素a、叶绿素b、胡萝卜素和叶黄素与类囊体膜结合称为色素蛋白复合体。
这些色素都不溶于水,而溶于有机溶剂,故可用乙醇等有机溶剂提取。
提取液可用薄层色谱法加一分离和鉴别。
2.2 叶绿素的分离薄层层析色谱法是将吸附剂均匀的涂在玻璃板上称一薄层,将此吸附剂薄层作为固定相,把待分离的样品溶液点在薄层板的下端,然后用一定量的溶剂做流动相,将薄层板的下端浸入到展开剂当中。
流动相通过毛细血管作用由下而上浸润薄层板,并带动样品在板上也向上移动,样品中各组分在吸附剂和展开剂之间发生连续不断地吸附、脱吸附、再吸附、再脱附……的过程。
由于吸附剂对不同物质的吸附能力大小不同,吸附力强的物质相对移动慢一点,而吸附力弱的物质则相对移动快一些,从而使各组分有不同的移动速度而彼此分开。
2.3 叶绿素理化性质测定叶绿素是一种由叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成甲醇和叶绿醇及叶绿酸盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。
叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。
叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较为稳定。
叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素。
去镁叶绿素遇铜则成为铜代叶绿素,铜带叶绿素很稳定,在光下不易被破坏,故常用此法制作绿色多只植物的浸渍标本。
2.4 叶绿素含量的测定根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长测定其吸光度,即可用公式计算出提取液中各色素的含量。
根据朗伯—比尔定律,某有色溶液的吸光度A与其中溶质浓度C和液层厚度L成正比,即A=αCL式中:α比例常数。
实验四:叶绿体色素的提取

实验四:叶绿体色素的提取、分离及叶绿素a、b含量的测定实验目的1、了解叶绿素分离与提取的原理和方法2、了解它们的光学特性和理化性质3、了解叶绿素a、b含量测定的方法。
实验原理1.脂溶性叶绿体色素提取:可用乙醇、丙酮等有机溶剂提取。
2.分离:(1)叶绿体色素的分离<纸层析法>因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各种成分在两相(固定相和流动相)间具有不同的分配系数,所以移动速度不同,经过一定时间后,可将各种色素分开。
纸层析是以滤纸纤维为固定相,而以有机溶剂作为流动相。
由于样品中各物质有不同的分配系数,移动速度因此而不同,从而达到分离的目的。
(2)叶绿素与类胡萝卜素的分离<皂化反应>叶绿素是一种二羧酸——叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇与叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开。
3.叶绿素a、b含量的测定:根据朗伯—比尔定律,某有色溶液的吸光度A与其溶液浓度c和液层厚度L成正比,即:A=φCL(φ为吸光系数) 因此,根据叶绿体色素提取液对可见光谱的吸收,利用分光光度计在某一特定波长下测定其吸光度,用公式即可计算出提取液中各色素含量。
测定663nm 和645nm两个特定波长下的吸光度A,并根据叶绿素a、b在对应波长下的吸光系数即可求出叶绿素a、b含量。
其校正过的公式为:Ca=12.7A663-2.69A645 Ca:叶绿素a浓度,mg/LCb=22.9A645-4.68A663 Cb:叶绿素b浓度,mg/LCT=Ca + Cb CT:叶绿素总浓度,mg/L实验器材:1、仪器:剪刀、漏斗、烧杯、分光光度计、分液漏斗、铁架台、移液管、吸耳球、试管、毛细管、平底大试管、天平、研钵、滤纸2、试剂:石英砂、碳酸钙、丙酮、乙醚、四氯化碳、无水硫酸钠、30%KOH-甲醇溶液3、材料:菠菜实验步骤:1、叶绿素的提取称取去中脉叶片2g左右,剪碎放入研钵中加丙酮5ml,少许碳酸钙和石英砂,研磨成浆,再加入丙酮10ml,用漏斗过滤即为色素提取液,暗处备用。
叶绿体色素实验

叶绿体色素的提取、分离、理化性质和含量测定实验一、叶绿体色素的提取、分离1.实验名称叶绿体色素的提取、分离实验2.实验原理叶绿体中色素与内囊体膜结合成为色素蛋白复合体。
这些色素不溶于水,而溶于有机溶剂,可用乙醇等有机溶剂提取。
提取液用薄层色谱法加以分离和鉴别。
本实验采用酒精提取。
层析法原理: K=Cs/Cm。
3.实验试剂与材料新鲜菠菜叶体积分数百分之九十五的乙醇,碳酸钙粉末,展开剂(石油醚:丙酮:苯=7:5:1)天平,研钵,漏斗,三角瓶,剪刀,点样毛细管,层析缸,硅胶预制板,滤纸4.实验步骤1.叶绿体色素的提取(1)取菠菜或其他植物新鲜叶片4~5片(2g左右),洗净,擦干,去掉中脉,剪碎,放入研钵中。
(2)研钵中加入少量石英砂及碳酸钙粉,加2~3ml 95%乙醇,研磨至糊状,再加10ml 95%乙醇,暗处放置3~5min,上清液过滤于三角瓶中,残渣用10ml 95%乙醇冲洗,一同过滤于三角瓶中。
2.色素分离:取硅胶预制板一个,用毛细管吸取提取液,在板短边据下端1厘米处划一细线,待干后再次划线,重复3,4次。
在层析缸中加入层析液,高度0.5厘米,将预制板放入层析液中进行层析。
改好缸盖。
待色素较好分离后,取出硅胶预制板,迅速用铅笔标出展开剂前沿和各色素带的位置。
5.实验结果与分析滤纸条上出现4条色素带,从上到下依次是:橙黄色胡萝卜素(最快)黄色叶黄素蓝绿色叶绿素a(最多)黄绿色叶绿素b(最慢)二.理化性质1.实验目的验证叶绿素的理化性质。
2.实验原理叶绿素是一种二羧酸——叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开;叶绿素与类胡萝卜素都具有光学活性,叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。
叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。
叶绿体色素的提取

叶绿体色素的提取、分离、定量及理化性质的鉴定【实验目的】1.掌握提取和分离叶绿体色素的方法;2.掌握测定叶绿体色素含量的方法;3.熟悉叶绿体色素的理化性质及吸光特性;4.了解植物叶绿体色素组成及其与生境的相关性。
【实验原理】1.叶绿体色素是植物进行光合作用的重要物质,叶绿体色素包含绿色素(包括叶绿素a 和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类,这两类色素都不溶于水,而溶于有机溶剂,故可用乙醇或丙酮等有机溶剂提取。
提取液可用色层分析的原理加以分离。
因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各成分在两相(流动相和固定相)间具有不同的分配系数,所以它们的移动速度不同,经过一定时间层析后,便将混合色素分离。
2.叶绿素是一种二羧酸——叶绿酸与甲醇和叶绿醇形成的复杂酯,故可与碱起皂化反应而生成醇(甲醇和叶绿醇)和叶绿酸的盐,产生的盐能溶于水中,可用此法将叶绿素与类胡萝卜素分开图一:叶绿素的结构3.叶绿素与类胡萝卜素都具有光学活性,叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。
图二:叶绿素对光能的吸收与能量转变示意图4.叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素。
铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。
5.叶绿体色素具有吸光特性,可利用分光光度计在某一特定波长下测定色素溶液光密度,即可用公式计算出其中各色素的含量。
各种色素含量计算如下:Chla(μg /ml)=12.7 OD663-2.69OD645Chlb(μg /ml)=22.9 OD645-4.68 OD663ChlT(μg /ml)=Chla + Chlb0.1ml提取液Chla含量(μg )=Chla(μg /ml)*0.1ml*稀释倍数0.1ml提取液Chlb含量(μg)=Chlb(μg /ml)*0.1ml*稀释倍数0.1ml提取液ChlT含量(μg )=ChlT(μg /ml)*0.1ml*稀释倍数(菠菜:稀释倍数=0.1ml/3ml=30,玉米:稀释倍数=0.3ml/3ml=10)每种叶绿素含量计算(以Chla为例):FW总V)μg含量(Chla提取1ml)/gμg含量(Chla ⨯=液其中FW为样品总重(2.0g菠菜叶片,0.2g玉米叶片),V总=10ml6.叶绿体色素易受光氧化,提取色素应在弱光中进行,并避光保存色素。
实验一_叶绿素的提取、理化性质和含量测定

一、实验原理叶绿素是植物光合作用色素,主要有chla chlb ,不溶于水,可溶于酒精.丙酮和石油醚。
叶绿素是叶绿酸的酯,叶绿酸是双羧酸,其中一个羧基被甲醇酯化,另一个被叶醇酯化,能发生皂化反应。
叶绿素分子含有一个卟啉环的“头部”和一个叶绿醇( 植醇,phytol) 的“尾巴”。
卟啉环中的镁原子可被H+、Cu2 +、Zn2 +所置换。
用酸处理叶片,H+易进入叶绿体,置换镁原子形成去镁叶绿素,使叶片呈褐色。
去镁叶绿素易再与铜离子结合,形成铜代叶绿素,颜色比原来更稳定。
人们常根据这一原理用醋酸铜处理来保存绿色植物标本。
叶绿素溶液在透射光下呈绿色,而在反射光下呈红色,这种现象称为叶绿素荧光现象。
原因是当叶绿素分子吸收光量子后,就由最稳定的、能量的最低状态-基态(ground state)上升到不稳定的高能状态-激发态(excited state)。
叶绿素荧光指被激发的叶绿素分子从第一单线态回到基态所发射的光。
寿命很短。
处于第一三线态的叶绿素返回到基态所发射的光称为叶绿素磷光。
二、实验目的1.学会提取和分离叶绿体中色素的方法。
2.观察叶绿体中的各种色素。
3.掌握叶绿素的物理和化学性质三、实验用品1.材料与试剂:菠菜、脱脂棉等、固体碳酸钠或碳酸钙、丙酮、石油醚、蒸馏水、饱和NaCL水溶液、醋酸铜结晶、KOH-甲醇溶液等。
2.仪器设备:载玻片、盖玻片、镊子、解剖针、解剖刀、玻璃漏斗、分液漏斗中、研钵、试管、具塞锥形瓶等等。
四、方法和步骤1、叶绿体色素的提取• 将新鲜菠菜叶片洗净擦干,去叶柄及中脉,称取10g 去中脉的叶片,剪碎置研钵内,加入少许固体碳酸钠或碳酸钙和10 mL丙酮,迅速研磨成匀浆,再加15 mL丙酮充分研磨提取叶绿素。
• 在玻璃漏斗底部垫一小团脱脂棉,将匀浆通过脱脂棉过滤到已装有15 mL石油醚的分液漏斗中,再用少量丙酮冲洗叶片残渣和研钵,合并滤液。
• 沿分液漏斗的壁小心加入30mL蒸馏水,轻轻转动加入4 -8mL饱和NaCl水溶液,静止几分钟待分层清楚后,弃去下面的丙酮一水层。
叶绿体色素的提取、分离、理化性质和叶绿素含量的测定

• 2、叶绿素的荧光现象
透射光下呈绿色
反射光下呈暗红色
• 3、取代反应
CH2 CH C C C CH3 N C CH —CH3 H3C— C H3C R1—C C C C N
H3C R1—C HC C C C N
C
C
HH
HC
H3C—
Cu
C
CH2 CH C C C CH3 N C CH
—CH3
褐色
绿色
4、皂化反应
COOCH3 C32H30ON4Mg COOC20H39 COO— + 2K+ +CH3OH +C20H39OH COO—
+ 2KOH
C32H30ON4Mg
?
?
5、定量分析:叶绿素吸收红光和兰紫光,红
光区可用于定量分析,其中665 和649用于定量 叶绿素a,b及总量,而652可直接用于总量测定
180 160 140 120 100 80 60 40 20 0 400 500 Waverlength(nm) 600 700
abBiblioteka • 实验步骤 1.定性分析:
取鲜叶3-5g+95%乙醇15-25ml(逐步加入),磨成匀浆
过滤入三角瓶中
观察荧光现象 透射光 色,反射 光 光。
定性实验 无需移液管量 皂化反应(约1ml)
省培项目
叶绿体色素的提取、分离、 理化性质和叶绿素含量的测定
• 一、实验目的和要求:掌握植物中叶绿 体色素的提取分离和性质鉴定、定量分 析的原理和方法。
• 二、实验内容和原理:以菠菜为材料, 提取和分离叶绿体色素并进行理化性质 分析和叶绿素含量测定。
1、叶绿素和类胡 萝卜素均不溶于 水而溶于有机溶 剂,常用95%的 乙醇或80%的丙 酮提取。
叶绿体色素的提取理化性质与含量测定

2)取代反应
卟啉环中旳Mg处于不稳定旳状态,可被H+、Cu2+ 、Zn2+等离子取代。 稀酸:叶绿素溶液与稀酸作用,Mg能够被H+所取代而成褐色旳去镁叶绿 素,去镁叶绿素遇Cu2+则成为深绿色旳铜代叶绿素,铜代叶绿素很稳定, 在光下不易破坏(常用醋酸铜处理来保存绿色植物标本)。
7. 思索题
1)用不含水旳有机溶剂提取植物材料尤其是干材料旳叶绿 体色素往往效果不佳,原因何在?
2)研磨提取叶绿素时加入MgCO3,有什么作用? 3)叶绿素a、叶绿素b在蓝光区也有吸收峰,能否用这一吸
收峰波长进行叶绿素a、叶绿素b旳定量分析?为何?
加入少许碳酸钙旳目旳是为了预防在研磨过程中,叶绿素受到破坏。 详细旳情况是这么旳:叶绿体中旳色素所处旳环境具微碱性,试验中, 因为研磨会使细胞构造遭到破坏,细胞液(具微酸性)流出,酸性旳 细胞液就会直接接触叶绿体中色素,致使叶绿素旳分子构造遭到破坏, 使叶绿素失镁,呈黄褐色,所以加入少许碳酸钙是为了中和细胞液旳 酸性,可起到保护叶绿素旳作用 。
5. H+和Cu2+对叶绿素分子中Mg2+旳取代作用
1)吸收叶绿体色素提取液2ml放入试管中,逐滴加入36%乙酸数滴,摇 匀,观察溶液颜色旳变化。 (成果与分析4.1)
2)当溶液变褐色后,倾出二分之一于另一试管中,投入几粒醋酸铜粉, 水浴加热,观察溶液颜色变化,与未加醋酸铜(同步加热)旳一管相比 较。(成果与分析4.2)
试验 叶绿体色素旳提取、理化性 质与含量测定
1. 试验目旳及意义
➢ 提取叶绿体色素 ➢ 分析叶绿素旳物理、化学性质 ➢ 测定叶绿素旳含量 ➢ 提取和测定植物组织中旳光合色素是研究光
实验3 叶绿体色素的提取、分离、性质

实验三叶绿体色素的提取、分离、性质及含量一、实验目的1、掌握叶绿体色素的提取方法;2、掌握纸层析法分离叶绿体色素的原理和步骤;3、掌握叶绿体色素的部分理化性质。
二、实验原理叶绿体中含有绿色素(包括叶绿素a和叶绿素b)和黄色素(包括胡萝卜素和叶黄素)两大类。
它们与类囊体膜上的蛋白质相结合,而成为色素蛋白复合体,这两类色素都不溶于水,而溶于有机溶剂,故可用乙醇或丙酮等有机溶剂提取。
提取液可用色层分析的原理加以分离。
因吸附剂对不同物质的吸附力不同,当用适当的溶剂推动时,混合物中各成分在两相(流动相和固定相)间具有不同的分配系数,所以它们的移动速度不同,经过一定时间层析后,便将混合色素分离。
叶绿素与类胡萝卜素都具有光学活性,表现出一定的吸收光谱,可用分光光度计精确测定。
叶绿素吸收光量子而转变成激发态,激发态的叶绿素分子很不稳定,当它变回到基态时可发射出红光量子,因而产生荧光。
叶绿素的化学性质很不稳定,容易受强光的破坏,特别是当叶绿素与蛋白质分离以后,破坏更快,而类胡萝卜素则较稳定。
叶绿素中的镁可以被H+所取代而成褐色的去镁叶绿素,后者遇铜则成为绿色的铜代叶绿素,铜代叶绿素很稳定,在光下不易破坏,故常用此法制作绿色多汁植物的浸渍标本。
三、实验仪器及材料仪器及试剂:吹风机、定性滤纸、脱脂棉、火柴、碘钨灯、95%乙醇、汽油、醋酸铜、浓盐酸、CaCO3材料:菠菜叶片四、实验步骤1、提取称菠菜叶子10g,加少许石英砂、CaCO3、乙醇研磨,研成匀浆,过滤,用乙醇定容至50ml,分装于5个试管内。
2、分离用滤纸条浸色素提取液(试管1),吹干,反复多次;将带色素的滤纸条卷成灯芯,将表面皿放在培养皿内,注上汽油,把灯芯浸在汽油内,加盖,色素层分清后,取下吹干,即可看到分离的各种色素:叶绿素a为蓝绿色,叶绿素b为黄绿色,叶黄素为鲜黄色,胡萝卜素为橙黄色。
用铅笔标出各种色素的位置和名称。
3、叶绿体色素吸收光谱曲线取1ml提取液于比色杯中(试管2),加3ml95%乙醇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
植物生理学及实验(甲)实验类型:课程
名称:实验名称:叶绿体色素的提取、分离、理化性质和叶
绿素含量的测定姓名:专业:学
号:指导老师:同组学生姓名:
实验日期:实验地点:
二、实验内容和原理一、实验目的和要求装
四、操作方法与实验步骤三、主要仪器设备订
六、实验结果与分析五、实验数据记录和处理
七、讨论、心得一、实验目的和要求、掌握植物中叶绿体色素的分离和
性质鉴定、定量分析的原理和方法。
1 和b的方法及其计算。
a2、熟悉在
未经分离的叶绿体色素溶液中测定叶绿素二、实验内容和原理以青菜为
材料,提取和分离叶绿体色素并进行理化性质测定和叶绿素含量分析。
原理如下:80%的乙醇或95%叶绿素和类胡萝卜素均不溶于水而溶于有机溶剂,1、常用的丙酮提取。
、皂化反应。
叶绿素是二羧酸酯,与强碱反应,
形成绿色的可溶性叶绿素2.
盐,就可与有机溶剂中的类胡萝卜素分开。
- COOCHCOO3 Mg + 2KOH C32H30ON4Mg + 2KOH +CH3OH
HONC43230+C20H39OH
、3H+可依次被在酸性或加温条件下,叶-COOCOOCH39 20
绿素卟啉环中的Mg++取代反应。
Mg2+, Cu2+ 取代Cu++取代形成褐色的去镁叶绿素和绿色的铜代叶绿素。
(H+和H+ )
取代(Zn2+) 绿色褐色
、叶绿素受光激发,可发出红色荧光,反射光下可见红色荧光。
4645其中叶绿素吸收红光和兰紫光,红光区可用于定量分析,5、定量分析。
652可直接用于总量分析。
663用于定量叶绿素a,b及总量,而和C最大吸收光谱不同的两个组分的混合液,它们的浓度根据朗伯-比尔定律,
*k+C*kOD=Ca*k与吸光值之间有如下的关系: OD=Ca*k+C b2
1g/L和b的80查阅文献得,2b1 b1a1a2b时,比吸收系%丙酮溶液,当浓度为
叶绿素a 值如下。
数k
k
比吸收系数波长/nm
b 叶绿素a
叶绿素
9.27 82.04 663
45.60
645
16.75
将数值代入式子得:OD663=82.04*Ca+9.27*Cb
OD645=16.75*Ca+45.60*Cb
Ca=0.0127 OD663 - 0.00269 OD645 Cb=0.0229 OD645
经整理后,得到式子:
- 0.00468 OD663
三、主要仪器设备
天平(万分之一)、可扫描分光光度计、离心机、研具、各种容(量)器、洒精灯等
四、操作方法与实验步骤
1、定性分析:
鲜叶5g+950ml(逐步加入),磨成匀浆,过滤入三角瓶中,观察荧光现象。
皂化反应(3ml) :加KOH数片剧烈摇均,加石油醚5ml和H2O 1ml分层后观察
取代反应(1):加醋酸约2ml,取1/2加醋酸铜粉加热。
观察颜色变化。
取代反应(2):鲜叶2-3cm2,加Ac-AcCu 20ml加热。
2、叶绿素和类胡萝卜素的吸收光谱测定:
皂化反应的上层黄色石油醚溶液→稀释(470nm OD 0.5-1)
反复用石油醚粹取,直到无类胡萝卜素,离心得叶绿素(盐)→稀释(663nm OD
0.5-1)
两者在400-700nm处扫描光谱,分别测定类胡萝卜素和叶绿素的吸收峰3、叶绿素定量分析:
鲜叶0.1g,加1.9mlH2O,磨成匀浆,各取0.2ml加80%丙酮4.8ml,摇匀,4000转离心3min,上清液在645,652,663测定OD,计算Chla,Chlb 和Chl总量的值。
五、实验数据记录和处理.
1、定性分析:
观察荧光现象,透射光为绿色,反射光为红褐色光。
皂化反应(3ml) :上层呈黄色,为类胡萝卜素,吸收蓝紫光。
下层呈绿色,为叶绿素,吸收红光和蓝紫光。
取代反应(1):加醋酸约2ml,变褐(去镁叶绿素),取1/2加醋酸铜粉加热变绿色,为铜代叶绿素。
2、叶绿素和类胡萝卜素的吸收光谱测定:
图 1
2图图一在420nm左右及690nm左右波长处吸收光谱出现峰值,两者分
别位于蓝紫光和红光的波长范围内,根据叶绿素吸收蓝紫光和红光的特性,可以推测图一是叶绿素的吸收光谱。
图二在450nm以及475nm波长处吸收光谱出现峰值,都位于蓝紫光的波长范围内,根据类胡萝卜素吸收蓝紫光的特性,可以推测图二是类胡萝卜素的吸收光谱。
3、叶绿素定量分析:
将数值代入式子,计算得:
/nm 波长
645 652 663
0.175 第一组 0.066 0.094 OD
0.172
0.093
0.068
第二组.
平均 0.067 0.0935 0.1735
Ca(mg/L)=12.7OD663-2.69 OD645=12.7*0.1735-2.69*0.067=2.02 mg/L
Cb (mg/L) =22.9OD645-4.68 OD663=22.9*0.067-4.68*0.1735=0.722 mg/L
CT (mg/L) = Ca+ Cb =2.74 mg/L
Chla含量(mg/g.FW)= (Ca(mg/L)/1000)*2/ 0.1 *5/ 0.2=1.01 mg/g.FW Chlb含量(mg/g.FW) = (Cb(mg/L)/1000)*2/ 0.1 *5/ 0.2=0.361 mg/g.FW Chl总含量(mg/g.FW) = (CT(mg/L)/1000)*2/ 0.1 *5/ 0.2=1.37mg/g.FW
六、实验结果与分析
1、定性实验中,各组实验观测是颜色变化基本相同,区别只是颜色的深
浅,与研磨时加入的叶片量、研磨的程度等因素有关。
2、从定量实验所得数据的计算结果来看,实验所用的叶片中,叶绿素a
的含量大约是叶绿素b的三倍左右。
3、邻组所得实验数据与我们的数据有一定差距,分析可能是以下几个原
因造成的:1.研磨的充分程度不同 2.所取叶片位置不同,导致叶绿素含
量有所区别
七、讨论、心得
1、为什么叶绿素吸收红光和兰紫光?
叶绿素有基态(G),第一单线激发态(E1)和第二单线激发态(E2)及第三线态(E3),光子吸收必须遵守普朗克定律。
被吸收光子能量必须等于激发态和基态的能量差。
蓝紫光能量大,可使叶绿素分子中的电子跃迁到E2,而红,故叶绿素只能吸收蓝紫光和红光。
E1光能量小,只能使其跃迁到.
2、为什么可用皂化后的叶绿素盐来测定叶绿素的吸收光谱?
因为由于叶绿素皂化反应后的叶绿素盐并不影响叶绿素分子的骨架结构,叶绿素对光的吸收规律与叶绿素盐对光的吸收规律几乎是相同的,而且皂化反应可以从叶绿体色素中只筛选出叶绿素,排除了其他色素的干扰,所以可用皂化后的叶绿素盐来测定叶绿素的吸收光谱。
.。