解析几何部分周末检测题
解析几何检测
解析几何检测题(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.过两点(-1,1)和(0,3)的直线在x 轴上的截距为( ) A .-32B.32 C .3 D .-3答案:A2.与直线x -y -4=0和圆x 2+y 2+2x -2y =0都相切的半径最小的圆的方程是( ) A .(x +1)2+(y +1)2=2 B .(x +1)2+(y +1)2=4 C .(x -1)2+(y +1)2=2 D .(x -1)2+(y +1)2=4 答案:C3.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( ) A .-14B .-4C .4 D.14答案:A4.(2011年青岛质检)以坐标轴为对称轴,原点为顶点且过圆x 2+y 2-2x +6y +9=0圆心的抛物线方程是( )A .y =3x 2或y =-3x 2B .y =3x 2C .y 2=-9x 或y =3x 2D .y =-3x 2或y 2=9x答案:D5.(2011年安徽高考)设变量x ,y 满足|x |+|y |≤1,则x +2y 的最大值和最小值分别为( ) A .1,-1 B .2,-2 C .1,-2D .2,-1答案:B6.(2010年福建高考)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8答案:C7.(2010年四川高考)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )A .(0,22] B .(0,12]C .[2-1,1)D .[12,1)答案:D8.(2011年东北三校联考)已知双曲线x 29-y 216=1,过其右焦点F 的直线交双曲线于P 、Q 两点,PQ 的垂直平分线交x 轴于点M ,则|MF ||PQ |的值为( )A.53B.56 C.54 D.58答案:B9.(2011年广西百所重点中学阶段检测)抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,点P 在抛物线C 上,若点P 到l 的距离等于点P 与坐标原点O 的距离,则tan ∠POF 等于( )A .3B .2 C.2D .2 2 解析:设P (x P ,y P ),由题易知|PO |=|PF |,∴x P =p 4,得y P =±p2,∴tan ∠POF =p 2p 4=2 2.答案:D10.(2011年福州质检)已知F 1、F 2为椭圆x 225+y 216=1的左、右焦点,若M 为椭圆上一点,且△MF 1F 2的内切圆的周长等于3π,则满足条件的点M 有( )个.( )A .0B .1C .2D .4答案:C11.(2011年福建高考)设圆锥曲线 Γ的两个焦点分别为F 1,F 2,若曲线Γ上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A.12或32 B.23或2 C.12或2 D.23或32 答案:A12.(2011年湖北高考)将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正角形三个数记为n ,则( )A .n =0B .n =1C .n =2D .n ≥3答案:C二、填空题(本大题共4小题,每小题5分,共20分)13.(2011年昆明模拟)过点P (0,2)的直线和抛物线y 2=8x 交于A ,B 两点,若线段AB 的中点横坐标为2,则弦AB 的长为________.答案:21514.(2010年重庆高考)已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点到准线的距离为________.答案:8315.(2011年江南十校联考)设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.答案:1516.直线x =t 过双曲线x 2a 2-y 2b 2=1的右焦点且与双曲线的两条渐近线分别交于A 、B 两点,若原点在以AB 为直径的圆内,则双曲线离心率的取值范围是________.答案:(2,+∞)三、解答题(本大题共6小题,共70分,17题10分,18~22题,每题12分.解答应写出文字说明,证明过程或演算步骤.)17.求经过7x +8y =38及3x -2y =0的交点且在两坐标轴上截得的截距相等的直线方程.解:易得交点坐标为(2,3)设所求直线为7x +8y -38+λ(3x -2y )=0, 即(7+3λ)x +(8-2λ)y -38=0, 令x =0,y =388-2λ,令y =0,x =387+3λ,由已知,388-2λ=387+3λ,∴λ=15,即所求直线方程为x +y -5=0.又直线方程不含直线3x -2y =0,而当直线过原点时,在两轴上的截距也相等,故3x -2y =0亦为所求.18.设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且与直线x -y +1=0相交的弦长为22,求圆的方程.解:设所求圆的圆心为(a ,b ),半径为r ,∵点A (2,3)关于直线x +2y =0的对称点A ′仍在这个圆上, ∴圆心(a ,b )在直线x +2y =0上,∴a +2b =0,① (2-a )2+(3-b )2=r 2②又直线x -y +1=0截圆所得的弦长为22, ∴r 2-(a -b +12)2=(2)2③解由方程①、②、③组成的方程组得: ⎩⎪⎨⎪⎧b =-3,a =6,r 2=52.或⎩⎪⎨⎪⎧b =-7,a =14,r 2=244,∴所求圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244. 19.(2011年福建高考)已知直线l :y =x +m ,m ∈R .(1)若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程; (2)若直线l 关于x 轴对称的直线为l ′,问直线l ′与抛物线C :x 2=4y 是否相切?说明理由.解:解法一:(1)依题意,点P 的坐标为(0,m ). 因为MP ⊥l ,所以0-m2-0×1=-1,解得m =2,即点P 的坐标为(0,2)从而圆的半径 r =|MP |=(2-0)2+(0-2)2 =2 2.故所求圆的方程为(x -2)2+y 2=8. (2)因为直线l 的方程为y =x +m 所以直线l ′的方程为y =-x -m .由⎩⎪⎨⎪⎧y =-x -m ,x 2=4y得x 2+4x +4m =0. Δ=42-4×4m =16(1-m ).①当m =1,即Δ=0时,直线l ′与抛物线C 相切; ②当m ≠1,即Δ≠0时,直线l ′与抛物线C 不相切.综上,当m =1时,直线l ′与抛物线C 相切,当m ≠1时,直线l ′与抛物线C 不相切. 解法二:(1)设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2.依题意,所求圆与直线l :x -y +m =0相切于点P (0,m ),则⎩⎪⎨⎪⎧4+m 2=r 2,|2-0+m |2=r ,解得⎩⎨⎧m =2,r =2 2.所以所求圆的方程为(x -2)2+y 2=8. (2)同解法一.20.(2011年北京高考)已知椭圆G 1:x 24+y 2=1,过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值. 解:(1)由已知得a =2,b =1, 所以c =a 2-b 2=3,所以椭圆G 的焦点坐标为(-3,0),(3,0), 离心率为e =c a =32.(2)由题意知,|m |≥1,当m =1时,切线l 的方程为x =1,点A ,B 的坐标分别为(1,32),(1,-32), 此时|AB |=3,当m =-1时,同理可得|AB |=3, 当|m |>1时,设切线l 的方程为y =k (x -m ).由⎩⎪⎨⎪⎧y =k (x -m )x 24+y 2=1,得(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0 设A ,B 两点的坐标分别为(x 1,y 1)(x 2,y 2),则 x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2-41+4k 2又由l 与圆x 2+y 2=1相切,得|km |k 2+1=1, 即m 2k 2=k 2+1,所以|AB |=(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)[64k 4m 2(1+4k 2)2-4(4k 2m 2-4)1+4k 2]=43|m |m 2+3由于当m =±1时,|AB |=3,所以|AB |=43|m |m 2+3,m ∈(-∞,-1]∪[1,+∞). 因为|AB |=43|m |m 2+3=43|m |+3|m |≤2,且当m =±3时,|AB |=2, 所以|AB |的最大值为2.21.(2011年湖南十二校联考)已知双曲线G 的中心在原点,它的渐近线与圆x 2+y 2-10x +20=0相切,过点P (-4,0)作斜率为14的直线l ,使得l 和G 交于A ,B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足|P A |·|PB |=|PC |2.(1)求双曲线G 的渐近线的方程; (2)求双曲线G 的方程;(3)椭圆S 的中心在原点,它的短轴是G 的实轴,如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解:(1)设双曲线G 的渐近线的方程为y =kx , 则由渐近线与圆x 2+y 2-10x +20=0相切可得|5k |k 2+1=5, 所以k =±12,即双曲线G 的渐近线的方程为y =±12x .(2)由(1)可设双曲线G 的方程为x 2-4y 2=m , 把直线l 的方程y =14(x +4)代入双曲线方程,整理得3x 2-8x -16-4m =0, 则x A +x B =83,x A x B =-16+4m 3.(*)∵|P A |·|PB |=|PC |2,P 、A 、B 、C 共线且P 在线段AB 上, ∴(x P -x A )(x B -x P )=(x P -x C )2,即(x B +4)(-4-x A )=16, 整理得4(x A +x B )+x A x B +32=0. 将(*)代入上式得m =28, ∴双曲线的方程为x 228-y 27=1.(3)由题可设椭圆S 的方程为x 228+y 2a2=1(a >27),设垂直于l 的平行弦的两端点分别为M (x 1,y 1),N (x 2,y 2),MN 的中点为P (x 0,y 0), 则x 1228+y 12a 2=1,x 2228+y 22a2=1, 两式作差得(x 1-x 2)(x 1+x 2)28+(y 1-y 2)(y 1+y 2)a 2=0.由于y 1-y 2x 1-x 2=-4,x 1+x 2=2x 0,y 1+y 2=2y 0,所以x 028-4y 0a2=0,所以,垂直于l 的平行弦中点的轨迹为直线x 28-4ya 2=0截在椭圆S 内的部分.又由已知,这个轨迹恰好是G 的渐近线截在S 内的部分,所以a 2112=12,即a 2=56,故椭圆S 的方程为x 228+y 256=1.22.(2011年湖南高考)如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b 截得的线段长等于C 1的长半轴长.(1)求C 1,C 2的方程;(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交于点D ,E .①证明:MD ⊥ME ;②记△MAB ,△MDE 的面积分别为S 1,S 2.问:是否存在直线l ,使得S 1S 2=1732?请说明理由.解:(1)由题意知e =c a =32,从而a =2b ,又2b =a ,解得a =2,b =1,故C 1,C 2的方程分别为x 24+y 2=1,y =x 2-1.(2)①由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,y =x 2-1 得x 2-kx -1=0.设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=k ,x 1x 2=-1. 又点M 的坐标为(0,-1),所以k MA ·k MB =y 1+1x 1·y 2+1x 2=(kx 1+1)(kx 2+1)x 1x 2=k 2x 1x 2+k (x 1+x 2)+1x 1x 2=-k 2+k 2+1-1=-1.故MA ⊥MB ,即MD ⊥ME .②设直线MA 的斜率为k 1,则直线MA 的方程为y =k 1x -1.由⎩⎪⎨⎪⎧ y =k 1x -1y =x 2-1解得⎩⎪⎨⎪⎧ x =0,y =-1或⎩⎪⎨⎪⎧x =k 1,y =k 12-1.则点A 的坐标为(k 1,k 12-1).又直线MB 的斜率为-1k 1,同理可得点B 的坐标为(-1k 1,1k 12-1).于是S 1=12|MA |·|MB |=121+k 12·|k 1|·1+1k 12·|-1k 1|=1+k 122|k 1|.由⎩⎪⎨⎪⎧y =k 1x -1.x 2+4y 2-4=0得(1+4k 12)x 2-8k 1x =0, 解得⎩⎪⎨⎪⎧x =0,y =-1或⎩⎪⎨⎪⎧x =8k 11+4k 12,y =4k 12-11+4k12.则点D 的坐标为⎝ ⎛⎭⎪⎫8k 11+4k 12,4k 12-11+4k 12.又直线ME 的斜率为-1k 1,同理可得点E 的坐标为⎝ ⎛⎭⎪⎫-8k 14+k 12,4-k 124+k 12.于是S 2=12|MD |·|ME |=32(1+k 12)·|k 1|(1+4k 12)(k 12+4). 因此S 1S 2=164(4k 12+4k 12+17).由题意知,164(4k 12+4k 12+17)=1732,解得k 12=4,或k 12=14.又由点A 、B 的坐标可知,k =k 12-1k 12k 1+1k 1=k 1-1k 1,所以k =±32.故满足条件的直线l 存在,且有两条,其方程分别为y =32x 和y =-32x .。
解析几何专题评估测试题及详细答案
解析几何专题评估测试题[时间120分钟,满分150分]一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·珠海模拟)经过圆C :(x +1)2+(y -2)2=4的圆心且斜率为1的直线方程为 A .x -y +3=0 B .x -y -3=0 C .x +y -1=0D .x +y +3=0解析 圆C :(x +1)2+(y -2)2=4的圆心的圆心坐标为(-1,2), 则所求的直线方程为y -2=x -(-1),即x -y +3=0. 答案 A2.(2013·延庆模拟)已知直线l 1:ax +(a +1)y +1=0,l 2:x +ay +2=0,则“a =-2”是“l 1⊥l 2”A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 当a =-2时,kl 1=-2,kl 2=12, 所以kl 1·kl 2=-1,即l 1⊥l 2; 当l 1⊥l 2时,a (a +1)+a =0, 解得a =-2,或a =0,所以“a =-2”是“l 1⊥l 2”的充分不必要条件. 答案 A3.(2013·莱芜模拟)点P (2,-1)为圆(x -1)2+y 2=25内弦AB 的中点,则直线AB 的方程为 A .x +y -1=0 B .2x +y -3=0 C .x -y -3=0D .2x -y -5=0解析 设圆心为C ,则C (1,0),k PC =-1,由圆的几何性质可知,PC ⊥AB ,所以k AB =1,则直线AB 的方程为y -(-1)=x -2,即x -y -3=0.答案 C4.直线3x +4y -9=0与圆x 2+(y -1)2=1的位置关系是 A .相离B .相切C .直线与圆相交且过圆心D .直线与圆相交但不过圆心解析 已知圆的圆心坐标为(0,1),则圆心到直线的距离为d =1, 而r =1,所以d =r ,即直线和圆相切. 答案 B5.(2013·青浦模拟)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为A .y =±2xB .y =±2xC .y =±12xD .y =±22x解析 由题意知2b =2,2c =23,所以b =1,c =3, a =c 2-a 2=2,所以双曲线的渐近线方程为y =±b a x =±12x =±22x ,选D. 答案 D6.已知圆x 2+y 2-2x +my -4=0上两点M 、N 关于直线2x +y =0对称,则圆的半径为 A .9B .3C .23D .2解析 已知圆的圆心坐标为⎝ ⎛⎭⎪⎫1,-m 2,因为圆x 2+y 2-2x +my -4=0上两点M 、N 关于直线2x +y =0对称,则直线2x +y =0必过圆心⎝ ⎛⎭⎪⎫1,-m 2,代入直线方程可解得m =4,则圆的半径r=12(-2)2+42-4×(-4)=3.答案 B7.若椭圆x 2a 2+y 2b 2=1过抛物线y 2=8x 的焦点,且与双曲线x 2-y 2=1有相同的焦点,则该椭圆的方程为A.x 24+y 22=1 B.x 23+y 2=1 C.x 22+y 24=1D .x 2+y 23=1解析 抛物线y 2=8x 的焦点坐标为(2,0),因为椭圆过该点, 代入可得a 2=4,双曲线x 2-y 2=1的焦点坐标为(±2,0), 所以椭圆的焦点在x 轴上,且a 2>b 2, 故a 2-b 2=4-b 2=(2)2,即b 2=2,则所求的椭圆的方程为x 24+y 22=1. 答案 A8.(2013·门头沟一模)已知P (x ,y )是中心在原点,焦距为10的双曲线上一点,且yx 的取值范围为⎝ ⎛⎭⎪⎫-34,34,则该双曲线方程是 A.x 29-y 216=1 B.y 29-x 216=1 C.x 216-y 29=1D.y 216-x 29=1解析 由题意知2c =10,所以c =5. 又y x 的取值范围为⎝ ⎛⎭⎪⎫-34,34,所以双曲线的渐近线斜率k =34,且焦点在x 轴上. 即b a =34,所以b =34a , 解得a 2=16,b 2=9,所以双曲线的方程为x 216-y 29=1,选C. 答案 C9.已知双曲线x 24-y 25=1上一点P 到F (3,0)的距离为6,O 为坐标原点,OQ→=12(OP →+OF →),则|OQ→|等于 A .1B .2C .2或5D .1或5解析 设双曲线的左焦点为F 1, 因为OQ→=12(OP →+OF →), 所以点Q 是线段PF 的中点,而O 是F 1F 的中点, 故线段OQ 是三角形PF 1F 的中位线, 故|OQ→|=12|PF 1|, 据双曲线的定义得||PF 1|-|PF ||=||PF 1|-6|=4, 即|PF 1|=10或|PF 1|=2,所以|OQ |=5或1. 答案 D10.(2013·济宁一模)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交抛物线y 2=4cx 于点P ,O 为原点,若OE→=12(OF →+OP →),则双曲线的离心率为A.1+52B.3+33C.52D.1+32解析 因为OE→=12(OF →+OP →),所以E 是FP 的中点.设右焦点为F 1,则F 1也是抛物线的焦点. 连接PF 1,则|PF 1|=2a ,且PF ⊥PF 1, 所以|PF |=4c 2-4a 2=2b .设P (x ,y ),则x +c =2a ,则x =2a -c ,过点F 作x 轴的垂线,点P 到该垂线的距离为2a , 由勾股定理得y 2+4a 2=4b 2, 即4c (2a -c )+4a 2=4(c 2-a 2), 解得e =5+12,选A.答案 A11.(2013·青岛一模)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,P A ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于A.7π12B.2π3C.3π4D.5π6解析 抛物线的焦点坐标为F (1,0), 准线方程为x =-1.由题意|PF |=|P A |=4,则x P -(-1)=4,即x P =3,所以y 2P =4×3,即y P =±23,不妨取P (-1,23),则设直线AF 的倾斜角等于θ, 则tan θ=23-1-1=-3,所以θ=2π3,选B.答案 B12.已知双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,若点(-1,0)与点(1,0)到直线x a -yb =1的距离之和为S ,且S ≥45c ,则离心率e 的取值范围是A .[2,7] B.⎣⎢⎡⎦⎥⎤52,5 C.⎣⎢⎡⎦⎥⎤52,7D .[2,5]解析 直线x a -yb =1方程为bx -ay -ab =0, 则S =|-b -ab |+|b -ab |a 2+b 2=b +ab -b +ab a 2+b 2=2aba 2+b2, 而c =a 2+b 2,所以2ab a 2+b2≥45a 2+b 2, 化简得2⎝ ⎛⎭⎪⎫b a 2-5⎝ ⎛⎭⎪⎫b a +2≤0,解得12≤ba ≤2,所以e 2=c 2a 2=1+⎝ ⎛⎭⎪⎫b a 2∈⎣⎢⎡⎦⎥⎤54,5,即e ∈⎣⎢⎡⎦⎥⎤52,5.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.(2013·日照一模)抛物线y 2=16x 的准线方程为________. 解析 在抛物线中2p =16,p =8, 所以准线方程为x =-p2=-4. 答案 x =-414.(2013·黄浦模拟)若双曲线x 24-y 2b 2=1(b >0)的一条渐近线过点P (1,2),则b 的值为________. 解析 双曲线的渐近线方程为y =±b 2x ,因为点P (1,2)在第一象限, 所以点P (1,2)在渐近线y =b 2x 上,所以有2=b2,所以b =4. 答案 415.(2013·南京模拟)如图,已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 2与圆x 2+y 2=b 2相切于点Q ,且点Q 为线段PF 2的中点,则椭圆C 的离心率为________.解析 据题意知|OQ |=r =b . 又OQ 是三角形PF 1F 2的中位线, 故|PF 1|=2b ,所以|PF 2|=2a -2b , |QF 2|=a -b ,在直角三角形OQF 2中, 由勾股定理得b 2+(a -b )2=c 2. 又c 2=a 2+b 2,代入化简得b a =23, 所以e 2=1-⎝ ⎛⎭⎪⎫b a 2=59,即e =53.答案 e =5316.(2013·潍坊二模)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,上顶点为A ,离心率为12,点P 为第一象限内椭圆上的一点,若S △PF 1A ∶S △PF 1F 2=2∶1,则直线PF 1的斜率为________.解析 因为椭圆的离心率为12, 所以e =c a =12,即a =2c .设直线PF1的斜率为k(k>0),则直线PF1的方程为y=k(x+c).因为S△PF1A∶S△PF1F2=2∶1,即S△PF1A=2S△PF1F2,即12·|PF1|·|kc-b|k2+1=2×12·|PF1|·|2kc|k2+1,所以|kc-b|=4|kc|,解得b=-3kc(舍去),或b=5kc. 又a2=b2+c2,即a2=25k2c2+c2,所以4c2=25k2c2+c2,解得k2=3 25,所以k=3 5.答案3 5三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y -6=0,点T(-1,1)在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)若动圆P过点N(-2,0),且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程.解析(1)因为AB边所在直线的方程为x-3y-6=0,且AD与AB垂直,所以直线AD的斜率为-3.又因为点T(-1,1)在直线AD上,所以AD边所在直线的方程为y-1=-3(x+1).3x +y +2=0.(3分) (2)由⎩⎨⎧x -3y -6=0,3x +y +2=0,解得点A 的坐标为(0,-2).因为矩形ABCD 两条对角线的交点为M (2,0). 所以M 为矩形ABCD 外接圆的圆心. 又|AM |=(2-0)2+(0+2)2=2 2.从而矩形ABCD 外接圆的方程为(x -2)2+y 2=8.(6分) (3)因为动圆P 过点N ,所以|PN |是该圆的半径. 又因为动圆P 与圆M 外切, 所以|PM |=|PN |+22, 即|PM |-|PN |=2 2.故点P 的轨迹是以M ,N 为焦点,实轴长为22的双曲线的左支. 因为实半轴长a =2,半焦距c =2. 所以虚半轴长b =c 2-a 2= 2. 从而动圆P 的圆心的轨迹方程为 x 22-y 22=1(x ≤-2).(10分)18.(12分)(2013·门头沟一模)已知椭圆与双曲线x 2-y 2=1有相同的焦点,且离心率为22. (1)求椭圆的标准方程;(2)过点P (0,1)的直线与该椭圆交于A 、B 两点,O 为坐标原点,若AP →=2PB →,求△AOB 的面积. 解析 (1)设椭圆方程为x 2a 2+y 2b 2=1,a >b >0, 由c =2,可得a =2,b 2=a 2-c 2=2, 即所求方程为x 24+y 22=1.(4分) (2)设A (x 1,y 1),B (x 2,y 2), 由AP →=2PB →有⎩⎨⎧-x 1=2x 21-y 1=2(y 2-1)设直线方程为y =kx +1,代入椭圆方程整理,得(2k 2+1)x 2+4kx -2=0,(6分) 解得x =-2k ±8k 2+22k 2+1,不妨设x 1=-2k -8k 2+22k 2+1,x 2=-2k +8k 2+22k 2+1,因为-x 1=2x 2,则--2k +8k 2+22k 2+1=2·-2k +8k 2+22k 2+1,解得k 2=114.(10分)又△AOB 的面积S =12|OP |·|x 1-x 2|=12·28k 2+22k 2+1=1268.∴△AOB 的面积为1268.(12分)19.(12分)(2013·吉安模拟)已知平面内一动点P 到点F (0,1)的距离与点P 到x 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB→的最小值. 解析 (1)设动点P 的坐标为(x ,y ),由题意得x 2+(y -1)2-|y |=1, 化简得x 2=2y +2|y |,当y ≥0时x 2=4y ; 当y <0时,x =0,所以动点P 的轨迹C 的方程为x 2=4y 和x =0(y <0).(4分) (2)由题意知,直线l 1的斜率存在且不为0,设为k , 则l 1的方程为y =kx +1.由⎩⎨⎧y =kx +1x 2=4y 得x 2-4kx -4=0,(6分) 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4,y 1+y 2=4k 2+2,y 1y 2=1. 因为l 1⊥l 2,所以l 2的斜率为-1k .设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=-4k , x 3x 4=-4,y 3+y 4=4k 2+2,y 3y 4=1,(8分) AD →·EB →=(AF →+FD →)·(EF →+FB →) =AF →·EF →+FD →·EF →+AF →·FB →+FD →·FB → =FD →·EF →+AF →·FB →=|FD →||EF →|+|AF →||FB →| =(y 3+1)(y 4+1)+(y 1+1)(y 2+1) =y 3y 4+(y 3+y 4)+1+y 1y 2+(y 1+y 2)+1=8+4k 2+4k 2=8+4⎝ ⎛⎭⎪⎫k 2+1k 2≥8+4×2=16,(10分)当且仅当k 2=1k 2,即k =±1时,AD →·EB→取最小值为16.(12分)20.(12分)在平面直角坐标系xOy 中,抛物线C 的顶点在原点,焦点F 的坐标为(1,0). (1)求抛物线C 的标准方程;(2)设M 、N 是抛物线C 的准线上的两个动点,且它们的纵坐标之积为-4,直线MO 、NO 与抛物线的交点分别为点A 、B ,求证:动直线AB 恒过一个定点.解析 (1)设抛物线的标准方程为y 2=2px (p >0),则p2=1,p =2, 所以抛物线方程为y 2=4x .(4分)(2)证明 抛物线C 的准线方程为x =-1, 设M (-1,y 1),N (-1,y 2),其中y 1y 2=-4, 直线MO 的方程:y =-y 1x ,将y =-y 1x 与y 2=4x , 联立解得A 点坐标⎝ ⎛⎭⎪⎫4y 21,-4y 1.同理可得B 点坐标⎝ ⎛⎭⎪⎫4y 22,-4y 2,(8分) 则直线AB 的方程为:y +4y1-4y 2+4y 1=x -4y 214y 22-4y 21,(10分) 整理得(y 1+y 2)y -4x +4=0, 故直线AB 恒过定点(1,0).(12分)21.(12分)(2013·济宁一模)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为12,短轴长为4 3.(1)求椭圆C 的标准方程;(2)直线x =2与椭圆C 交于P 、Q 两点,A 、B 是椭圆O 上位于直线PQ 两侧的动点,且直线AB 的斜率为12.①求四边形APBQ 面积的最大值;②设直线P A 的斜率为k 1,直线PB 的斜率为k 2,判断k 1+k 2的值是否为常数,并说明理由.解析 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由已知b =23,离心率e =c a =12,a 2=b 2+c 2,得a =4,所以,椭圆C 的方程为x 216+y 212=1.(4分)(2)①由(1)可求得点P 、Q 的坐标为P (2,3),Q (2,-3),则|PQ |=6,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =12x +t ,代入x 216+y 212=1,得:x 2+tx +t 2-12=0.由Δ>0,解得-4<t <4,由根与系数的关系得⎩⎨⎧x 1+x 2=-t x 1x 2=t 2-12. 四边形APBQ 的面积S =12×6×|x 1-x 2|=3×(x 1+x 2)2-4x 1x 2=348-3t 2,故当t =0,S max =12 3.(8分)②由题意知,直线P A 的斜率k 1=y 1-3x 1-2,直线PB 的斜率k 2=y 2-3x 2-2, 则k 1+k 2=y 1-3x 1-2+y 2-3x 2-2=12x 1+t -3x 1-2+12x 2+t -3x 2-2=12(x 1-2)+t -2x 1-2+12(x 2-2)+t -2x 2-2=1+t -2x 1-2+t -2x 2-2 =1+(t -2)(x 1+x 2-4)x 1x 2-2(x 1+x 2)+4, 由①知⎩⎨⎧ x 1+x 2=-t x 1x 2=t 2-12可得k 1+k 2=1+(t -2)(-t -4)t 2-12+2t +4=1+-t 2-2t +8t 2+2t -8=1-1=0, 所以k 1+k 2的值为常数0.(12分)22.(12分)(2013·南京模拟)设椭圆E :x 2a 2+y 2b 2=1(a ,b >0)过M (2,2),N (6,1)两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心为原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B 且OA→⊥OB→?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在,说明理由. 解析 (1)因为椭圆E :x 2a 2+y 2b 2=1(a ,b >0)过M (2,2),N (6,1)两点,所以⎩⎪⎨⎪⎧ 4a 2+2b 2=16a 2+1b 2=1解得⎩⎪⎨⎪⎧ 1a 2=181b 2=14所以⎩⎨⎧a 2=8b 2=4. 椭圆E 的方程为x 28+y 24=1.(4分)(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B 且OA→⊥OB →,设该圆的切线方程为y =kx +m ,联立方程得⎩⎪⎨⎪⎧ y =kx +m x 28+y 24=1得x 2+2(kx +m )2=8, 即(1+2k 2)x 2+4kmx +2m 2-8=0,则Δ=16k 2m 2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0,即8k 2-m 2+4>0⎩⎪⎨⎪⎧ x 1+x 2=-4km 1+2k 2x 1x 2=2m 2-81+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2(2m 2-8)1+2k 2-4k 2m 21+2k 2+m 2=m 2-8k 21+2k 2.(6分) 要使OA →⊥OB →,需使x 1x 2+y 1y 2=0, 即2m 2-81+2k 2+m 2-8k 21+2k 2=0, 所以3m 2-8k 2-8=0,所以k 2=3m 2-88≥0. 又8k 2-m 2+4>0,所以⎩⎨⎧m 2>23m 2≥8, 所以m 2≥83,即m ≥263或m ≤-263.因为直线y =kx +m 为圆心在原点的圆的一条切线, 所以圆的半径为r =|m |1+k 2, r 2=m 21+k 2=m 21+3m 2-88=83,r =263, 所求的圆为x 2+y 2=83,此时圆的切线y =kx +m 都满足m ≥263或m ≤-263,而当切线的斜率不存在时切线为x =±263与椭圆x 28+y 24=1的两个交点为⎝ ⎛⎭⎪⎫263,±263或⎝⎛⎭⎪⎫-263,±263满足OA →⊥OB →, 综上,存在圆心在原点的圆x 2+y 2=83,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA→⊥OB →. 因为⎩⎪⎨⎪⎧ x 1+x 2=-4km 1+2k 2x 1x 2=2m 2-81+2k 2, 所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-81+2k 2=8(8k 2-m 2+4)(1+2k 2)2, |AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)(x 1-x 2)2=(1+k 2)8(8k 2-m 2+4)(1+2k 2)2 =323·4k 4+5k 2+14k 4+4k 2+1=323⎣⎢⎡⎦⎥⎤1+k 24k 4+4k 2+1,(10分) ①当k ≠0时,|AB |=323⎣⎢⎢⎡⎦⎥⎥⎤1+14k 2+1k 2+4. 因为4k 2+1k 2+4≥8,所以0<14k 2+1k 2+4≤18, 所以323<323⎣⎢⎢⎡⎦⎥⎥⎤1+14k 2+1k 2+4≤12,所以436<|AB |≤23, 当且仅当k =±22时取“=”.②当k =0时,|AB |=463. ③当AB 的斜率不存在时,两个交点为⎝ ⎛⎭⎪⎫263,±263或⎝ ⎛⎭⎪⎫-263,±263,所以此时|AB |=463, 综上,|AB |的取值范围为436≤|AB |≤23,即:|AB |∈⎣⎢⎡⎦⎥⎤436,23.(12分)。
高中数学解析几何测试题(答案版)
高中数学解析几何测试题(答案版)高中数学解析几何测试题(答案版)第一部分:平面解析几何1. 已知平面P1:2x + 3y - 4 = 0和平面P2:5x - 7y + 2z + 6 = 0,求平面P1和平面P2的夹角。
解析:首先,我们需要根据平面的一般式方程确定法向量。
对于平面P1,法向量为(n1, n2, n3) = (2, 3, 0),对于平面P2,法向量为(n4, n5,n6) = (5, -7, 2)。
根据向量的内积公式,平面P1和平面P2的夹角θ可以通过以下公式计算:cosθ = (n1 * n4 + n2 * n5 + n3 * n6) / √[(n1^2 + n2^2 + n3^2) * (n4^2 + n5^2 + n6^2)]代入数值计算,得到cosθ ≈ 0.760,因此夹角θ ≈ 40.985°。
2. 已知四边形ABCD的顶点坐标为A(1, 2, 3),B(4, 5, 6),C(7, 8, 9)和D(10, 11, 12),判断四边形ABCD是否为平行四边形,并说明理由。
解析:要判断四边形ABCD是否为平行四边形,我们需要比较四边形的对角线的斜率。
四边形ABCD的对角线分别为AC和BD。
根据两点间距离公式,我们可以计算出AC的长度为√99,BD的长度为√99。
同时,我们还需要计算坐标向量AC = (6, 6, 6)和坐标向量BD = (9, 9, 9)。
由于AC和BD的长度相等,且坐标向量AC与坐标向量BD的比值为1∶1∶1,因此四边形ABCD是一个平行四边形。
第二部分:空间解析几何3. 已知直线L1:(x - 1) / 2 = y / 3 = (z + 2) / -1和直线L2:(x - 4) / 3= (y - 2) / 1 = (z + 6) / 2,判断直线L1和直线L2是否相交,并说明理由。
解析:为了判断直线L1和直线L2是否相交,我们可以通过解方程组的方法来求解交点。
高中数学平面解析几何初步检测考试题(附答案)
高中数学平面解析几何初步检测考试题(附答案)试卷分析第2章平面解析几何初步综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线3a_-y-1=0与直线(a-23)_+y+1=0垂直,则a的值是()A.-1或13 B.1或13C.-13或-1 D.-13或1解析:选D.由3a(a-23)+(-1)1=0,得a=-13或a=1.2.直线l1:a_-y+b=0,l2:b_-y+a=0(a0,b0,ab)在同一坐标系中的图形大致是图中的()解析:选C.直线l1:a_-y+b=0,斜率为a,在y轴上的截距为b,设k1=a,m1=b.直线l2:b_-y+a=0,斜率为b,在y轴上的截距为a,设k2=b,m2=a.由A知:因为l1∥l2,k1=k20,m10,即a=b0,b0,矛盾.由B知:k1k2,m10,即ab,b0,矛盾.由C知:k10,m20,即a0,可以成立.由D知:k10,m2m1,即a0,ab,矛盾.3.已知点A(-1,1)和圆C:(_-5)2+(y-7)2=4,一束光线从A经_轴反射到圆C上的最短路程是()A.62-2 B.8C.46 D.10解析:选B.点A关于_轴对称点A(-1,-1),A与圆心(5,7)的距离为5+12+7+12=10.所求最短路程为10-2=8.4.圆_2+y2=1与圆_2+y2=4的位置关系是()A.相离 B.相切C.相交 D.内含解析:选D.圆_2+y2=1的圆心为(0,0),半径为1,圆_2+y2=4的圆心为(0,0),半径为2,则圆心距02-1=1,所以两圆内含.5.已知圆C:(_-a)2+(y-2)2=4(a0)及直线l:_-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()A.2B.2-1C.2-2 D.2+1解析:选B.圆心(a,2)到直线l:_-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.6.与直线2_+3y-6=0关于点(1,-1)对称的直线是()A.3_-2y-6=0B.2_+3y+7=0C.3_-2y-12=0D.2_+3y+8=0解析:选D.∵所求直线平行于直线2_+3y-6=0,设所求直线方程为2_+3y+c=0,由|2-3+c|22+32=|2-3-6|22+32,c=8,或c=-6(舍去),所求直线方程为2_+3y+8=0.7.若直线y-2=k(_-1)与圆_2+y2=1相切,则切线方程为()A.y-2=34(1-_)B.y-2=34(_-1)C._=1或y-2=34(1-_)D._=1或y-2=34(_-1)解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆_2+y2-2_=3与直线y=a_+1的公共点有()A.0个 B.1个C.2个 D.随a值变化而变化解析:选C.直线y=a_+1过定点(0,1),而该点一定在圆内部.9.过P(5,4)作圆C:_2+y2-2_-2y-3=0的切线,切点分别为A、B,四边形PACB的面积是()A.5 B.10C.15 D.20解析:选B.∵圆C的圆心为(1,1),半径为5.|PC|=5-12+4-12=5,|PA|=|PB|=52-52=25,S=122552=10.10.若直线m_+2ny-4=0(m、nR,nm)始终平分圆_2+y2-4_-2y-4=0的周长,则mn的取值范围是()A.(0,1) B.(0,-1)C.(-,1) D.(-,-1)解析:选C.圆_2+y2-4_-2y-4=0可化为(_-2)2+(y-1)2=9,直线m_+2ny-4=0始终平分圆周,即直线过圆心(2,1),所以2m+2n-4=0,即m+n=2,mn=m(2-m)=-m2+2m=-(m-1)2+11,当m=1时等号成立,此时n=1,与“mn”矛盾,所以mn<1.11.已知直线l:y=_+m与曲线y=1-_2有两个公共点,则实数m的取值范围是()A.(-2,2) B.(-1,1)C.[1,2) D.(-2,2)解析:选C. 曲线y=1-_2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l过点(-1,0)时,m=1;当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线).12.过点P(-2,4)作圆O:(_-2)2+(y-1)2=25的切线l,直线m:a_-3y=0与直线l平行,则直线l与m的距离为()A.4 B.2C.85D.125解析:选A.∵点P在圆上,切线l的斜率k=-1kOP=-11-42+2=43.直线l的方程为y-4=43(_+2),即4_-3y+20=0.又直线m与l平行,直线m的方程为4_-3y=0.故两平行直线的距离为d=|0-20|42+-32=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A(1,-1),B(-1,1)且圆心在直线_+y-2=0上的圆的方程是________.解析:易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=_,根据圆的几何性质,这条直线应该过圆心,将它与直线_+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.答案:(_-1)2+(y-1)2=414.过点P(-2,0)作直线l交圆_2+y2=1于A、B两点,则|PA||PB|=________. 解析:过P作圆的切线PC,切点为C,在Rt△POC中,易求|PC|=3,由切割线定理,|PA||PB|=|PC|2=3.答案:315.若垂直于直线2_+y=0,且与圆_2+y2=5相切的切线方程为a_+2y+c=0,则ac的值为________.解析:已知直线斜率k1=-2,直线a_+2y+c=0的斜率为-a2.∵两直线垂直,(-2)(-a2)=-1,得a=-1.圆心到切线的距离为5,即|c|5=5,c=5,故ac =5.答案:516.若直线3_+4y+m=0与圆_2+y2-2_+4y+4=0没有公共点,则实数m的取值范围是__________.解析:将圆_2+y2-2_+4y+4=0化为标准方程,得(_-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d=|31+4-2+m|32+42=|m-5|5>1,m<0或m>10.答案:(-,0)(10,+)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.三角形ABC的边AC,AB的高所在直线方程分别为2_-3y+1=0,_+y=0,顶点A(1,2),求BC边所在的直线方程.解:AC边上的高线2_-3y+1=0,所以kAC=-32.所以AC的方程为y-2=-32(_-1),即3_+2y-7=0,同理可求直线AB的方程为_-y+1=0.下面求直线BC的方程,由3_+2y-7=0,_+y=0,得顶点C(7,-7),由_-y+1=0,2_-3y+1=0,得顶点B(-2,-1).所以kBC=-23,直线BC:y+1=-23(_+2),即2_+3y+7=0.18.一束光线l自A(-3,3)发出,射到_轴上,被_轴反射后与圆C:_2+y2-4_-4y+7=0有公共点.(1)求反射光线通过圆心C时,光线l所在直线的方程;(2)求在_轴上,反射点M的横坐标的取值范围.解:圆C的方程可化为(_-2)2+(y-2)2=1.(1)圆心C关于_轴的对称点为C(2,-2),过点A,C的直线的方程_+y=0即为光线l所在直线的方程.(2)A关于_轴的对称点为A(-3,-3),设过点A的直线为y+3=k(_+3).当该直线与圆C相切时,有|2k-2+3k-3|1+k2=1,解得k=43或k=34,所以过点A的圆C的两条切线分别为y+3=43(_+3),y+3=34(_+3).令y=0,得_1=-34,_2=1,所以在_轴上反射点M的横坐标的取值范围是[-34,1].19.已知圆_2+y2-2_-4y+m=0.(1)此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线_+2y-4=0相交于M、N两点,且OMON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)方程_2+y2-2_-4y+m=0,可化为(_-1)2+(y-2)2=5-m,∵此方程表示圆,5-m>0,即m<5.(2)_2+y2-2_-4y+m=0,_+2y-4=0,消去_得(4-2y)2+y2-2(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(_1,y1),N(_2,y2),则y1+y2=165,①y1y2=m+85. ②由OMON得y1y2+_1_2=0即y1y2+(4-2y1)(4-2y2)=0,16-8(y1+y2)+5y1y2=0.将①②两式代入上式得16-8165+5m+85=0,解之得m=85.(3)由m=85,代入5y2-16y+m+8=0,化简整理得25y2-80y+48=0,解得y1=125,y2=45._1=4-2y1=-45,_2=4-2y2=125.M-45,125,N125,45,MN的中点C的坐标为45,85.又|MN|= 125+452+45-1252=855,所求圆的半径为455.所求圆的方程为_-452+y-852=165.20. 已知圆O:_2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.(1)求a、b间关系;(2)求|PQ|的最小值;(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.解:(1)连接OQ、OP,则△OQP为直角三角形,又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2_+y-3=0上,所以|PQ|min=|PA|min,为A到直线l的距离,所以|PQ|min=|22+1-3|22+12=255.(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=255.)(3)以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l与l的交点P0,所以r=322+12-1=355-1,又l:_-2y=0,联立l:2_+y-3=0得P0(65,35).所以所求圆的方程为(_-65)2+(y-35)2=(355-1)2.21.有一圆与直线l:4_-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.解:法一:由题意可设所求的方程为(_-3)2+(y-6)2+(4_-3y+6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得=-1,所以所求圆的方程为_2+y2-10_-9y+39=0.法二:设圆的方程为(_-a)2+(y-b)2=r2,则圆心为C(a,b),由|CA|=|CB|,CAl,得3-a2+6-b2=r2,5-a2+2-b2=r2,b-6a-343=-1,解得a=5,b=92,r2=254.所以所求圆的方程为(_-5)2+(y-92)2=254.法三:设圆的方程为_2+y2+D_+Ey+F=0,由CAl,A(3,6),B(5,2)在圆上,得32+62+3D+6E+F=0,52+22+5D+2E+F=0,-E2-6-D2-343=-1,解得D=-10,E=-9,F=39.所以所求圆的方程为_2+y2-10_-9y+39=0.法四:设圆心为C,则CAl,又设AC与圆的另一交点为P,则CA的方程为y-6=-34(_-3),即3_+4y-33=0.又因为kAB=6-23-5=-2,所以kBP=12,所以直线BP的方程为_-2y-1=0.解方程组3_+4y-33=0,_-2y-1=0,得_=7,y=3.所以P(7,3).所以圆心为AP的中点(5,92),半径为|AC|=52.所以所求圆的方程为(_-5)2+(y-92)2=254.22.如图在平面直角坐标系_Oy中,已知圆C1:(_+3)2+(y-1)2=4和圆C2:(_-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被C2截得的弦长相等.试求所有满足条件的点P的坐标.解:(1)由于直线_=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(_-4),圆C1的圆心到直线l的距离为d,因为圆C1被直线l截得的弦长为23,所以d=22-32=1.由点到直线的距离公式得d=|1-k-3-4|1+k2,从而k(24k+7)=0,即k=0或k=-724,所以直线l的方程为y=0或7_+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(_-a),k0,则直线l2的方程为y-b=-1k(_-a).因为圆C1和C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即|1-k-3-a-b|1+k2=|5+1k4-a-b|1+1k2,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk 或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因为k的取值有无穷多个,所以a+b-2=0,b-a+3=0,或a-b+8=0,a+b-5=0,解得a=52,b=-12,或a=-32,b=132.这样点P只可能是点P152,-12或点P2-32,132.经检验点P1和P2满足题目条件.。
解析几何试题及答案
《解析几何初步》检测试题命题人 周宗让一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12-C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21-C .2 D .2-4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4 D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是() A 相切B 直线过圆心C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是()A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( ) A.2 B .32C .12D.2 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为() A .50x y --= B .50x y -+= C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值围是( )A.304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,, C.33⎡-⎢⎣⎦, D.203⎡⎤-⎢⎥⎣⎦,二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是。
解析几何刷题
高考数学解析几何题型专题训练一,选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的左,右顶点分别为M ,N ,若在椭圆C 上存在点H ,使1,02MH NH k k ⎛⎫∈- ⎪⎝⎭,则离心率e 的取值范围为()A.2⎫⎪⎪⎝⎭B.0,2⎛ ⎝⎭C.,12⎫⎪⎪⎝⎭D.2⎛ ⎝⎭2.已知过椭圆22221(0)x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为其右焦点,若1260F PF ∠=︒,则椭圆的离心率为()C.223.若椭圆22221(0)x y a b a b+=>>的离心率为35,两焦点分别为1F ,2F ,M 为椭圆上一点,且12F F M 的周长为16,则椭圆C 的方程为()A.2211625x y += B.221259x y += C.221925x y += D.2212516x y +=4.椭圆22214x y a +=与双曲线2212x y a -=有相同的焦点,则a 的值为()A.1 B.1或-2 C.1或12 D.125.设椭圆222:1(07)49x y C b b +=<<的左、右焦点分别为1F ,2F ,经过点1F 的直线与椭圆C 相交于M ,N 两点,若212||||MF F F =,且174||MF MN =,则椭圆C 的短轴长为()A.5B. C.10D.6.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,如果C 上存在一点Q ,使12120F QF ∠=︒,则椭圆的离心率e 的取值范围为()A.10,2⎛⎤⎥⎝⎦B.1,12⎡⎫⎪⎢⎣⎭C.2⎛ ⎝⎦D.2⎫⎪⎢⎪⎣⎭7.已知椭圆2222:1(0)x y M a b a b+=>>,过M 的右焦点(3,0)F 作直线交椭圆于A ,B 两点,若AB 的中点坐标为(2,1),则椭圆M 的方程为()A.22196x y += B.2214x y += C.221123x y += D.221189x y +=8.已知椭圆222:1(0)4x y C a a +=>的一个焦点为(2,0),则a 的值为()A. C.6D.89.已知1F ,2F 是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,A 是C 的左顶点,点P 在过A且斜率为12PF F 为等腰三角形,12120F F P ∠=︒,则C 的离心率为()A.23B.12C.13D.1410.已知椭圆22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A.3B.3C.3D.13二,填空题11.已知双曲线2213x y m m -=的一个焦点是(0,2),椭圆221y x n m-=的焦距等于4,则n =_________.12.已知双曲线的两个焦点分别是1(F ,2F ,P 是双曲线上一点,且120PF PF ⋅=,122PF PF ⋅=,则双曲线的标准方程为____________.13.设1F ,2F 是双曲线22154x y -=的两个焦点,P 是该双曲线上一点,且12:2:1PF PF =,则12PF F 的面积等于______________.14.经过点(P -和(7)Q --的双曲线的标准方程是_____________.15.已知1F ,2F 分别为双曲线22:1C x y -=的左,右焦点,点P 在C 上,1260F PF ∠=︒,则12PF PF ⋅等于___________.16.在平面直角坐标系xOy 中,双曲线22221(0,0)x y a b a b -=>>的右支与焦点为F 的抛物线22(0)x py p =>交于,A B 两点.若||||4||AF BF OF +=,则该双曲线的渐近线方程为______________________.17.已知12,F F 是双曲线2222:1(0)x y C a b a b-=>>的左、右焦点,过1F 的直线与C 的左支交于P ,Q 两点,220,2||PQ PF QF PQ ⋅==,则12QF F 与OPQ 的面积之比为__________________.18.已知双曲线2222:1(0,0)x y C a b a b-=>>,离心率2e =,则双曲线C 的渐近线方程为___________.19.已知双曲线22221(,0)x y a b a b-=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为____________.20.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,左顶点为A ,过点F 作C 的一条渐近线的垂线,垂足为M .若1tan 2MAF ∠=,则双曲线的离心率为_______________.三,解答题21.已知与双曲线221169x y -=共焦点的双曲线过点,2P ⎛ ⎝,求该双曲线的标准方程.22.已知等差数列{}n a 满足1235n n a a n ++=+.(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S .若*2N ,4(s n S λλλ∀∈<-+为偶数),求λ的值.23.求满足下列条件的椭圆或双曲线的标准方程:(1)椭圆的焦点在y 轴上,焦距为4,且经过点()3,2A ;(2)双曲线的焦点在x 轴上,右焦点为F ,过F 作重直于x 轴的直线交双曲线于A ,B 两点,且3AB =.24.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,若双曲线上存在一点P ,使1221sin sin PF F aPF F c∠=∠,求双曲线离心率的取值范围.25.若一个动点(,)P x y 到两个定点1(1,0)F -,2(1,0)F 的距离之差的绝对值为定值(02)m m,求动点P 的轨迹方程.26.已知双曲线C 与椭圆2212736x y +=有相同的焦点,且经过点.(1)求双曲线C 的方程;(2)若12,F F 是双曲线C 的两个焦点,点P 在双曲线C 上,且12120F PF ∠=o ,求12F PF V 的面积.27.设双曲线22221(0)x y a ba b-=<<的半焦距为c,直线l过(,0)A a,(0,)B b两点,且原点到直线l的距离为34,求双曲线的离心率.答案以及解析1.答案:A 解析:设()00,H x y ,则()222202b y a x a=-,而(,0)M a -,(,0)N a ,220002220001,02MH NHy y y b k k x a x a x a a ⎛⎫∴⋅=⋅==-∈- ⎪+--⎝⎭,22e ⎛⎫∴= ⎪ ⎪⎝⎭.故选A.2.答案:D解析:由题意知点P 的坐标为2,b c a ⎛⎫- ⎪⎝⎭或2,b c a ⎛⎫--⎪⎝⎭.1260F PF =︒∠,22cb a∴=)2222ac a c ==-,220e +=,e ∴=或e =(舍去).故选D.3.答案:D 解析:35c e a == ,35c a ∴=,设(0)35c at t ==>,则5a t =,3c t =.又12F F M 的周长为221616a c t +==,1t ∴=,5a ∴=,3c =,22216b a c ∴=-=.∴椭圆C 的方程为2212516x y +=,故选D.4.答案:A解析:由题意知220,04,42,a a a a >⎧⎪<<⎨⎪-=+⎩解得1a =.5.答案:D解析: 椭圆2221(07)49x y b b +=<<,7a ∴=,设1(,0)F c -,2(,0)F c ,则2122MF F F c ==,174||MF MN = ,1134MF NF ∴=,不妨设14MF t =,13(0)NF t t =>,由椭圆的定义可得2114143NF NF t =-=-,2114MF MF +=,即有2414c t +=,即27c t +=,①取1MF 的中点K ,连接2KF ,则2KF MN ⊥,由勾股定理可得222222||||MF MK NF NK -=-,即2222(2)(2)(143)(5)c t t t -=--.②由①②,解得1,5t c =⎧⎨=⎩或7,0c t =⎧⎨=⎩(舍去),又222c a b =-,2227524b ∴=-=,b ∴=2b ∴=,故选D.6.答案:D解析:设椭圆的上顶点为2(0,)B b .如图所示,12122F QF F B F ∠∠≤.依题意得,122120F B F ≥∠︒,2260OB F ≥∴∠︒,因此22tan cOB F b=∠≥2222333c b a c =-≥,2234c a ∴≥,从而32e ≥,又01e <<,312e ≤<,故选D.7.答案:D解析:设()11,A x y ,()22,B x y ,则()()()()22112222121212122222221,01x y a b b x x x x a y y y y x y a b ⎧+=⎪⎪⇒-++-+=⎨⎪+=⎪⎩.又124x x +=,122y y +=,121210123y y x x --==---,22420b a ∴-=,即222a b =.又29c =,2292b b ∴+=,解得29b =,从而218a =.∴椭圆M 的方程为221189x y +=,故选D.8.答案:A解析:由椭圆的焦点为(2,0)知,2a >,因此,22428a =+=,从而a =,故选A.9.答案:D解析:由题意可得直线AP的方程为)y x a =+,①直线2PF的方程为)y x c =-.②联立①②,得3()5y a c =+,如图,过P 向x 轴引垂线,垂足为H,则()5PH a c =+.因为260PF H ∠=︒,2122PF F F c ==,3)5PH a c =+,所以2)5sin 6022a c PH PF c +︒===,即5a c c +=,即4a c =,所以14c e a ==.故选D.10.答案:A解析:以线段12A A 为直径的圆的方程为222x y a +=,该圆与直线20bx ay ab -+=相切,a ,即2b =,223a b ∴=,222a b c =+ ,2223c a ∴=,63c e a ∴==.11.答案:5解析:因为双曲线的一个焦点是(0,2),所以设双曲线的标准方程为22221y x a b -=,0a >,0b >,又由题意得,双曲线的标准方程是2213y x m m -=--,所以23a m =-,2b m =-,所以244c m =-=,即1m =-,所以椭圆方程是221y x n+=,因为椭圆的焦距24c =,所以2c =,所以14n -=,解得5n =.12.答案:2214x y -=解析:由题意得,双曲线的焦点在x 轴上,且122F F c ==由双曲线的定义,知122PF PF a -=,得222112224PF PF PF PF a -⋅+=.①由120PF PF ⋅=知12PF PF ⊥,122PF PF ⋅= ,222121220PF PF F F ∴+==.代入①式,解得24a =.又c =,2221b c a ∴=-=,∴双曲线的标准方程为2214x y -=.13.答案:12解析:1F ,2F 是双曲线22154x y -=的两个焦点,∴可设1(3,0)F -,2(3,0)F ,126F F ∴=,12:2:1PF PF = ,∴设2(0)PF x x =>,则12PF x =.由双曲线的性质知2x x -=,解得x =.1PF ∴=2PF =,124cos 5F PF ∴∠=,123sin 5F PF ∴∠=.12PF F ∴的面积为131225⨯=.14.答案:2212575y x -=解析:设双曲线的方程为221(0)mx ny mn +=<,则9281,72491,m n m n +=⎧⎨+=⎩解得1,751,25m n ⎧=-⎪⎪⎨⎪=⎪⎩故双曲线的标准方程为2212575y x -=.15.答案:4解析:在12PF F 中,()222212121212122cos60F F PF PF PF PF PF PF PFPF =+-⋅⋅=-+⋅︒,即22122PF PF =+⋅,解得124PF PF ⋅=.16.答案:22y x =±解析:设()()1122,,,A x y B x y .由22x py =得0,2p F ⎛⎫⎪⎝⎭,抛物线的准线方程为2p y =-.由抛物线定义得12||||AF BF y y p +=++.||2pOF =Q ,结合||||4||2AF BF OF p +==,得12y y p +=.将22x py=代入22221x y a b -=得22221py y a b -=,即222210y pyb a-+=,则221222221pb p a y y p a b +===.2221b a ∴=,222,a b ∴=∴双曲线22221x y a b -=的渐近线方程为22y x =.17.答案:3解析:由2.PQ PF ⊥又22QF PQ =,则260PQF ︒∠=,设||PQ x =,则22QF x =,2.PF =由21212PF PF QF QF a -=-=,得112,22PF a QF x a =-=-,则(24x a x +-=,解得1)x a =,则1||QF PQ==,于是212233212F PQQF F OPQF PQ S S S S ∆==V VV 3-.18.答案:y =解析:本题考查双曲线的几何性质.双曲线C的离心率2c e a ===,所以ba =,所以双曲线C的渐近线方程为by x a=±=.19.答案:2231x y -=解析:由题意可得2,ce a==则2c a =,设其一焦点为(),0F c ,渐近线方程为0bx ay ±=,那么1bcd b c====,而22224c a a b ==+,解得213a =,那么所求的双曲线方程为2231x y -=.20.答案:53解析:本题考查双曲线的几何性质.如图所示,双曲线2222:1(0,0)x y C a b a b-=>>的右焦点(,0)F c ,左顶点(,0)A a -.由双曲线的对称性不妨取渐近线方程为b y x a=-,则过点(,0)F c 且与直线b y x a =-垂直的直线FM 的方程为()a y x c b =-.联立(),,a y x c b b y x a ⎧=-⎪⎪⎨⎪=-⎪⎩解得2,a ab x y c c ==-,即2,a ab M cc ⎛⎫- ⎪⎝⎭.作MN AF ⊥于点N ,在AMN 中,由1tan 2MAF ∠=,可得2||1||2()ab MN c AN a a c -==--,整理得2a c b +=,所以()2222()44a c b c a +==-,整理得223250c ac a --=,即23250e e --=,解得53e =或1e =-(舍去),故双曲线C 的离心率为53.21.答案:已知双曲线221169x y -=,则216925c =+=,5c ∴=.设所求双曲线的标准方程为22221(0,0)x y a b a b>=>-. 所求双曲线与双曲线221169x y -=共焦点,2225b a ∴=-,故所求双曲线方程可写为2222125x y a a -=-.点,2P ⎛- ⎝在所求双曲线上,222252(125a a ⎛- ⎝⎭∴-=-,化简得4241291250a a -+=,解得21a =或21254a =.当21254a =时,22125252525044b a =-=-=-<,不合题意,舍去,21a ∴=,224b =,∴所求双曲线的标准方程为22124y x -=.22.答案:(1)设等差数列{}n a 的公差为d ,因为1235n n a a n ++=+,所以122328211a a a a +=⎧⎨+=⎩,即113283511a d a d +=⎧⎨+=⎩,解得12a =,1d =,所以2(1)1n a n n =+-=+,经检验,1n a n =+符合题设.所以数列{}n a 的通项公式为1n a n =+.(2)由(1)得11111(1)(2)12n n a a n n n n +==-++++,所以1111111123341222n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭ ,因为*n ∀∈N ,24n S λλ<-+,所以2142λλ-+≥,即27(2)2λ-≤,因为λ为偶数,所以2λ=.23.答案:(1)设椭圆的标准方程为()222210y x a b a b+=>>,上焦点为()10,2F ,下焦点为()20,2F -,根据椭圆的定义知,12238a AF AF =+=+=,即4a =,所以22216412b a c =-=-=,因此,椭圆的标准方程为2211612y x +=(2)设双曲线的标准方程为()222210,0x y a b a b-=>>,把x c =带入双曲线方程,得2b y a =±,所以223b a=.由222514b e a =+=,得2a b =.所以6a =,3b =,所以双曲线的标准方程为221369x y -=.24.答案:分析知P 不是双曲线的顶点,在12PF F 中,出正弦定理,得211221sin sin PF PF PF F PF F =∠∠,又1221sin sin PF F a PF F c∠=∠,所以21a c PF PF =,即12c PF PF a =,且点P 在双曲线的右支上。
实验班周日专题训练——解析几何
实验班周末限时训练——解析几何姓名: 得分:一、选择题1.已知两直线03:1=++my x l ,()0221:2=++-m my x m l ,若21//l l ,则m 的值为( ) A . 0 B . 1-或21C .3D .0或3 2.直线012=++y x 被圆25)1()2(22=-+-y x 所截得的弦长等于( ) A.52 B.53 C.54 D.553.设P 是椭圆1162522=+y x 上的一点,21,F F 是焦点,若︒=∠3021PF F ,则21PF F ∆的面积为( ) A.3316 B.)32(16- C. )32(16+ D.16 4.与曲线1492422=+y x 共焦点,且与曲线1643622=-y x 共渐近线的双曲线方程为( ) A .191622=-x y B .191622=-y x C .116922=-x y D .116922=-y x 5.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点M ,若M F F 21∆为等腰直角三角形,则椭圆的离心率为( ) A.22 B.12- C.22- D.212-二、填空题6.直线210kx y k +++=必经过的点是 .7.P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .8.已知抛物线)0(22>=p px y 的准线与直线03=-+y x 以及x 轴围成三角形面积为8,则p =__________________.9.若动圆M 与圆2)4(:221=++y x C 外切,且与圆2)4(:222=+-y x C 内切,则动圆圆心M 的轨迹方程_____________________.10.已知双曲线)0,0(12222>>=-b a by a x 和椭圆191622=+y x 有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 ______________________ .三、解答题11.已知椭圆)0,0(1:2222>>=+b a by a x E 的离心率 e =1)2P(1)求椭圆 E 的方程;(2)问是否存在直线m x y +-=,使直线与椭圆交于B A , 两点,满足OA OB ⊥,若存在求 m 值,若不存在说明理由.12.椭圆2222:1(0)x y C a b a b+=>>过点3(1,)2A ,离心率为12,左、右焦点分别为12,F F ,过1F 的直线交椭圆于,A B两点.(1)求椭圆C 的方程;(2)当2F AB ∆时,求直线的方程.13.无论m 为任何实数,直线m x y l +=:与双曲线)0(12:222>=-b b y x C 恒有公共点. (1)求双曲线C 的离心率e 的取值范围;(2)若直线l 过双曲线C 的右焦点F ,与双曲线交于Q P ,两点,并且满足→→=FQ FP 51,求双曲线C 的方程.14.已知椭圆2222:1(0)x y C a b a b+=>>的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线01=++y x 与以椭圆C 的右焦点为圆心,以b 2为半径的圆相切. (1)求椭圆的方程.(2)若过椭圆C 的右焦点F 作直线l 交椭圆C 于B A ,两点,交y 轴于M 点,且21,λλ==求证:21λλ+为定值15.已知抛物线y x C 4:2=的焦点为F ,过点F 作直线l 交抛物线C 于A 、B 两点;椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率23=e . (1)求椭圆E 的方程;(2)经过A 、B 两点分别作抛物线C 的切线1l 、2l ,切线1l 与2l 相交于点M .证明:MF AB ⊥;(3) 椭圆E 上是否存在一点M ',经过点M '作抛物线C 的两条切线MA ''、MB ''(A '、B '为切点),使得直线A B ''过点F ?若存在,求出抛物线C 与切线MA''、MB ''所围成图形的面积;若不存在,试说明理由.2015届高三理科数学小综合专题练习——解析几何参考答案1.A【解析】由题,若0:1111=++C y B x A l ,0:2222=++C y B x A l ,当21//l l 时,有212121C C B B A A ≠=,故本题有mm m m 23211≠=-,即3≠m ,又因为当m=0,时,0:,3:21=-=x l x l ,因此,l 1∥l 2。
平面解析几何综合检测卷
平面解析几何综合检测卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在x 轴和y 轴上截距分别是-2,3的直线方程为 ( )A .2x -3y -6=0B .3x -2y -6=0C .3x -2y +6=0D .2x -3y +6=0 2.k =1是直线x -y +k =0与圆x 2+y 2=1相交的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.设斜率为2的直线l 过抛物线y 2=ax(a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF(O 为 坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x4. 直线x +a 2y -a =0(a>0,a 是常数),当此直线在x 、y 轴上的截距和最小时,a 的值是( ) A .1 B .2 C .12D .±15. 已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2| 等于( )A .2B .4C .6D .8 6.过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( ) A. 3 B .2 C. 6 D .2 37.已知抛物线y 2=4x 上两个动点B ,C 和点A(1,2),且∠BAC =90°,则动直线BC 必过 定点( )A .(2,5)B .(-2,5)C .(5,-2)D .(5,2)8.如果方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F>0)所表示的曲线关于x +y =2对称,则 D 、E 满足( )A .D +E +2=0B .D +E +4=0C .D +E -2=0 D .D +E -4=09.已知直线l 与圆x 2+y 2=1相切于第二象限,并且直线l 在两个坐标轴上的截距之和等于3,则直线l 与两坐标轴围成的三角形的面积是( )A.32B.12 C .1或3 D.12或3210.已知抛物线y 2=2px(p>0)与双曲线x 2a 2-y 2b2=1(a>0,b>0)有相同的焦点F ,点A 是两曲线的一个交点,且AF ⊥x 轴,若l 为双曲线的一条渐近线,则l 的倾斜角所在的区间可能 是( )A .(0,π4)B .(π6,π4)C .(π4,π3)D .(π3,π2)二、填空题(本大题共7小题,每小题4分,共28分)11.若点P(2,0)到双曲线x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线的距离为2,则该双曲线的离心率为______.12.已知点F 2为椭圆x 225+y 29=1的右焦点,点P 为椭圆上的任意一点,点P 关于原点(0,0)的对称点为P ′,则|PF 2|+|P ′F 2|=______.13.直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的充要条件为________. 14.在△ABC 中,B(-2,0),C(2,0),A(x ,y),给出△ABC 满足的条件,就能得到动点A的轨迹方程,下表给出了一些条件及方程:则满足条件①②③的轨迹方程分别为________(用代号C 1、C 2、C 3填入).15.过双曲线M :x 2-y 2b2=1(b>0)的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线相交于B ,C 两点,且|AB|=|BC|,则双曲线M 的离心率为______.16.已知双曲线x 2a 2-y 2b2=1(a>0,b>0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________.17.经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程为______.三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤) 18.(14分)如图所示,直角三角形ABC 的顶点A(-2,0),直角顶点B(0,-22),顶点C 在x 轴上,点P 为线段OA 的中点.(1)求BC 边所在直线的方程;(2)M 为直角三角形ABC 外接圆的圆心,求圆M 的方程; (3)若动圆N 过点P 且与圆M 内切,求动圆N 的圆心的轨迹方程.19.(14分)求过直线2x +y +4=0和圆x 2+y 2+2x -4y +1=0的交点,且满足下列条件之一的圆的方程. (1)过原点; (2)有最小面积.20.(14分)如图,在椭圆x 2a 2+y 28=1(a>0)中,F 1,F 2分别为椭圆的左、右焦点,B ,D 分别为椭圆的左、右顶点,点A 为椭圆在第一象限内的任意一点,直线AF 1交椭圆于另一点C , 交y 轴于点E ,且点F1,F 2三等分线段BD. (1)求a 的值;(2)若四边形EBCF 2为平行四边形,求点C 的坐标.21.(15分)已知点A ,B 分别是椭圆x 2a 2+y 2b2=1(a>b>0)长轴的左、右端点,点C 是椭圆短轴的一个端点,且离心率e =63,S △ABC = 3. (1)求椭圆方程;(2)设直线l 经过椭圆的右焦点,且与椭圆相交于P ,Q 两点,求线段PQ 的中点到原点 的距离等于12|PQ|时的直线方程.22.(15分)已知m 是非零实数,抛物线C :y 2=2px(p>0)的焦点F 在直线l :x -my -m 22=0上(1)若m =2,求抛物线C 的方程;(2)设直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的准线的垂线,垂 足为A 1,B 1,△AA 1F ,△BB 1F 的重心分别为G ,H.求证:对任意非零实数m ,抛物 线C 的准线与x 轴的交点在以线段GH 为直径的圆外.参考答案1、解析:由题意知所求直线方程为x -2+y3=1,即3x -2y +6=0,故选C 项.答案:C2、解析:当k =1时,直线为x -y +1=0,代入圆的方程x 2+y 2=1得2x 2+2x =0,该方程有两解,故充分性成立;而当x -y +k =0与圆x 2+y 2=1相交时,有2x 2+2kx +k 2-1=0,由Δ≥0得-2≤k ≤2,故必要性不成立.答案:A3、解析:由题意可知抛物线焦点坐标为(a4,0),于是过焦点且斜率为2的直线的方程为y =2(x -a 4),令x =0,可得A 点坐标为(0,-a 2),所以S △OAF =12·|a|4·|a|2=4,∴a =±8,故选B 项.答案:B4、解析:方程可化为x a +y 1a =1,因为a>0,所以截距之和t =a +1a ≥2,当且仅当a =1a即a =1时取等号.故选A 项.答案:A5、解析:在△PF 1F 2中|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|,即(22)2=22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. 答案:B6、解析:直线为y =3x ,点(0,2)到y =3x 的距离为d =1,设弦长为2x ,则d 2=4-x 2,∴x 2=3,∴x =3,则2x =2 3.答案:D7、解析:设B(y 214,y 1),C(y 224,y 2),BC 的中点为D(x 0,y 0),则y 1+y 2=2y 0,直线BC :x -y 214y 224-y 214=y -y 1y 2-y 1,即:4x -2y 0y +y 1y 2=0.① 又AB →·AC →=0,∴y 1y 2=-4y 0-20,代入①式得:2(x -5)-y 0(y +2)=0,则动直线BC 恒过x -5=0与y +2=0的交点(5,-2),选C 项.答案:C8、解析:由题设知,方程x 2+y 2+Dx +Ey +F =0表示以(-D 2,-E2)为圆心的圆.由圆的几何性质可知,圆心(-D 2,-E 2)在直线x +y =2上,所以-D 2-E2=2,得D +E +4=0,故选B 项.答案:B9、解析:由题意设直线l :x a +yb =1,即bx +ay -ab =0.则圆心到直线l 的距离d =|ab|a 2+b 2=1, ∴a 2+b 2=a 2b 2=(a +b)2-2ab , ∵ab<0,a +b =3,∴a 2b 2+2ab -3=0,∴(ab +3)(ab -1)=0,∴ab =-3.∴S =12|ab|=32.选A 项.答案:A10、解析:由抛物线与双曲线有相同的焦点可得p2=c =a 2+b 2,再由AF ⊥x 轴可得,在双曲线中|AF|=b 2a ,在抛物线中|AF|=p ,故又有b 2a =p =2c =2a 2+b 2,即b 4=4a 2(a 2+b 2)b 4-4a 2b 2-4a 4=0,解得b 2a 2=2+22>3=tan 2π3(或b 2a2=2-22<0舍去),故l 的倾斜角所在的区间可能是(π3,π2).答案:D11、解析:由于双曲线渐近线方程为bx±ay =0,故点P 到直线的距离d =2ba 2+b 2=2 a =b ,即双曲线为等轴双曲线,故其离心率e =1+(ba)2= 2.答案: 212、解析:据椭圆的几何性质知 |PF 2|+|P ′F 2|=|PF 2|+|PF 1|=2a =10. 答案:1013、解析:当a =0或a =1时,都不满足条件, 当a ≠0且a ≠1时,两直线平行, 则-a 2=-3a -1,即a 2-a -6=0,解得a =3或a =-2,经验证a =3时两直线平行且不重合,a =-2时两直线重合.反之,也成立. 答案:a =314、解析:若条件是①,则|AB|+|AC|=6>4,故A 点的轨迹是以B 、C 为焦点的椭圆(除去长轴两端点),故方程为C 3.若条件是②,则12×|BC|×|y|=10,∴|y|=5,即y 2=25,故方程为C 1,若条件是③,则A 点轨迹是以BC 为直径的圆(去掉B 、C 两点),故方程为C 2. 答案:C 3、C 1、C 215、解析:由题知左顶点A 的坐标为(-1,0),又直线l 的斜率为1,可得直线l 的方程为y =x +1.根据双曲线方程为x 2-y 2b2=1(b>0)得其渐近线方程为y =±bx.因此交点为B(-1b +1,b b +1),C(1b -1,b b -1).根据|AB|=|BC|知AC 的中点为B.因此b b -1=2b b +1,解得b =3(b =0舍去),故离心率e =c a =a 2+b 2a =32+11=10.答案:1016、解析:由双曲线渐近线方程有ba =3,又抛物线焦点为(4,0),得c =4,a 2+b 2=16.求得a 2=4,b 2=12.答案:x 24-y 212=117、解析:先解方程组⎩⎪⎨⎪⎧3x +2y -1=05x +2y +1=0,得l 1、l 2的交点(-1,2),再由l 3的斜率35求出l 的斜率为-53,于是由直线的点斜式方程求出l : y -2=-53(x +1),即5x +3y -1=0.答案:5x +3y -1=018、解:(1)∵k AB =-2,AB ⊥BC ,∴k BC =22, ∴BC 边所在直线的方程为y =22x -2 2. (2)由y =22x -22,令y =0得C(4,0), ∴圆心M(1,0),又∵AM =3,∴圆M 的方程为(x -1)2+y 2=9. (3)∵P(-1,0),M(1,0), 又∵圆N 过点P(-1,0), ∴PN 是该圆的半径. 又∵动圆N 与圆M 内切, ∴MN =3-PN ,即MN +PN =3>2.∴点N 的轨迹是以M ,P 为焦点,长轴长为3的椭圆. ∴a =32,c =1,b =a 2-c 2=54.∴动圆N 的圆心的轨迹方程为x 294+y 254=1.19、解:设所求圆的方程为x 2+y 2+2x -4y +1+λ(2x +y +4)=0, 即x 2+y 2+2(1+λ)x +(λ-4)y +(1+4λ)=0. (1)因为此圆过原点,∴1+4λ=0,λ=-14.故所求圆的方程为x 2+y 2+32x -174y =0.(2)方法一:当半径最小时,圆面积也最小,对圆的方程左边配方得 [x +(1+λ)]2+(y +λ-42)2=54(λ-85)2+45. ∴当λ=85时,此圆面积最小.故满足条件的圆的方程为(x +135)2+(y -65)2=45.方法二:当圆心在直线2x +y +4=0上时,圆面积最小. 易求得圆心坐标为(-(1+λ),-λ-42),代入直线方程得-2(1+λ)-λ-42+4=0, 解得λ=85.∴当λ=85时,此圆面积最小.故满足条件的圆的方程为 x 2+y 2+265x -125y +375=0. 20、解:(1)∵F 1,F 2三等分BD ,∴F 1F 2=13BD ,即2c =13·2a ,∴a =3c.∵a 2=b 2+c 2,b 2=8,∴a 2=9, ∵a>0,∴a =3.(2)由(1)知a =3,B(-3,0),F 1(-1,0), ∴F 1为BF 2的中点,∵若四边形EBCF 2为平行四边形, ∴C ,E 关于F 1(-1,0)对称, 设C(x 0,y 0),则E(-2-x 0,-y 0), ∵E 在y 轴上,∴-2-x 0=0,x 0=-2,∵点C(x 0,y 0)在椭圆上,∴x 209+y 28=1,∴49+y 208=1,解得y 0=±2103, 依题意y 0=-2103, 因此点C 的坐标为(-2,-2103). 21、解:(1)依题意得⎩⎨⎧e =c a =63S △ABC=12×2a ×b =3,解得:a =3,b =1,c =2, 故所求的椭圆方程为x 23+y 2=1.(2)当直线l 的斜率不存在时,直线l 的方程为x =2,代入椭圆方程,解得:y =±33,易知|PQ|=233,而线段PQ 的中点到原点的距离为2,不合题意,故直线l 的斜率存在,设直线l 的方程为y =k(x -2),由题意易知OP ⊥OQ ,设P(x 1,y 1),Q(x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -2)x 23+y 2=1,消去y 得:x 2+3k 2(x-2)2-3=0.化简得:(1+3k)2x 2-62k 2+6k 2-3=0, 所以x 1+x 2=62k 21+3k 2,x 1x 2=6k 2-31+3k 2,y 1y 2=k(x 1-2)·k(x 2-2)=k 2x 1x 2-2x 2(x 1+x 2)+2k 2, 由OP ⊥OQ 得:x 1x 2+y 1y 2=(1+k 2)x 1x 2-2k 2(x 1+x 2)+2k 2=0, 即:(1+k 2)(6k 2-3)1+3k 2-12k 41+3k 2+2k 2=0, 化简得5k 2-31+3k 2=0,解得:k =±155, ∴直线l 的方程为y =155x -305或y =-155+305. 解:(1)因为焦点F(p2,0)在直线l 上,得p =m 2,又m =2,故p =4.所以抛物线C 的方程为y 2=8x.(2)证明:因为抛物线C 的焦点F 在直线l 上, 所以p =m 2,所以抛物线C 的方程为y 2=2m 2x.(m ≠0) 设A(x 1,y 1),B(x 2,y 2), 由⎩⎪⎨⎪⎧x =my +m 22y 2=2m 2x,消去x 得y 2-2m 3y -m 4=0,由于m ≠0,故Δ=4m 6+4m 4>0, 且有y 1+y 2=2m 3,y 1y 2=-m 4.设M 1,M 2分别为线段AA 1,BB 1的中点, 由于2M 1G →=GF →,2M 2H →=HF →, 可知G(x 13,2y 13),H(x 23,2y 23),所以x 1+x 26=m (y 1+y 2)+m 26=m 43+m 26,2y 1+2y 26=2m 33, 所以GH 的中点M(m 43+m 26,2m 33).设R 是以线段GH 为直径的圆的半径. 则R 2=14|GH|2=19(m 2+4)(m 2+1)m 4.设抛物线的准线与x 轴交点N(-m 22,0),则|MN|2=(m 22+m 43+m 26)2+(2m 33)2=19m 4(m 4+8m 2+4) =19m 4[(m 2+1)(m 2+4)+3m 2] >19m 4(m 2+1)(m 2+4)=R 2, 故N 在以线段GH 为直径的圆外.。
解析几何测试卷(3)参考答案
解析几何测试卷(3)一、选择题(本大题共10小题;每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.直线07tan =+y x π的倾斜角是 ( )A .7π-B .7π C .75π D .76π2.直线01:1=+-y x l 关于直线2:=x l 对称的直线2l 方程为 ( ) A .012=--y x B .072=-+y x C .042=--y x D .05=-+y x3.已知直线l 交椭圆4x 2+5y 2=80于M 、N 两点,椭圆与y 轴的正半轴交于B 点,若△BMN 的重心恰好落在椭圆的右焦点上,则直线l 的方程是( )A .6x -5y -28=0B .6x +5y -28=0C .5x +6y -28=0D .5x -6y -28=0[答案] A[解析] 由椭圆方程x 220+y 216=1知,点B (0,4),右焦点F (2,0),∵F 为△BMN 的重心,∴直线BF 与MN 交点D 为MN 的中点, ∴BD →=32BF →=(3,-6),又B (0,4),∴D (3,-2),将D 点坐标代入选项检验排除B 、C 、D ,选A.4.直线0=+++b a by ax 与圆222=+y x 的位置关系为 ( ) A .相交 B .相切 C .相离 D .相交或相切 5.已知点P 在圆074422=+--+y x y x 上,点Q 在直线上kx y =上,若PQ 的最小值为122-,则k = ( ) A .1B .1-C .0D .26.若椭圆122=+my x 的离心率⎪⎪⎭⎫⎝⎛∈22,33e ,则m 的取值范围是 ( )A .⎪⎭⎫⎝⎛32,21B .()2,1C .()2,132,21 ⎪⎭⎫⎝⎛ D .⎪⎭⎫⎝⎛2,21 7.已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为03=-y x ,则该双曲线的离心率为 ( ) A .332 B .3 C .2或332 D .332或3 8.M 是抛物线x y 42=上一点,且在x 轴上方,F 是抛物线的焦点,以x 轴的正半轴为始边,FM 为终边构成的最小的角为60°,则=FM ( ) A .2B .3C .4D .69.设抛物线x y 82=的准线经过中心在原点,焦点在坐标轴上且离心率为21的椭圆的一个顶点,则此椭圆的方程为 ( )A .1161222=+y x 或1121622=+y xB .1644822=+y x 或1486422=+y xC .1121622=+y x 或1431622=+x yD .13422=+y x 或1431622=+x y10.已知曲线C :y =2x 2,点A (0,-2)及点B (3,a ),从点A 观察点B ,要使视线不被曲线C 挡住,则实数a 的取值范围是( )A .(4,+∞)B .(-∞,4]C .(10,+∞)D .(-∞,10][答案] D[解析] 过点A (0,-2)作曲线C :y =2x 2的切线, 设方程为y =kx -2,代入y =2x 2得, 2x 2-kx +2=0,令Δ=k 2-16=0得k =±4, 当k =4时,切线为l ,∵B 点在直线x =3上运动,直线y =4x -2与x =3的交点为M (3,10),当点B (3,a )满足a ≤10时,视线不被曲线C 挡住,故选D.二、填空题(本大题共7小题;每小题4分,共28分.将答案填在题中的横线上)11.以点()2,1-为圆心且与直线1-=x y 相切的圆的标准方程是 . 12.圆064422=++-+y x y x 上到直线05=--y x 的距离等于22的点有 个. 13.若点P 在直线03:1=++my x l 上,过点P 的直线2l 与曲线()165:22=+-y x C 只有一个公共点M ,且PM 的最小值为4,则=m . 14.在平面直角坐标系xOy 中,椭圆12222=+b y a x (a >b >0)的离心率为22,以O 为圆心,a 为半径作圆M ,再过⎪⎪⎭⎫⎝⎛0,2c a P 作圆M 的两条切线P A 、PB ,则APB ∠= . 15.设双曲线x 2-y 23=1的左右焦点分别为F 1、F 2,P 是直线x =4上的动点,若∠F 1PF 2=θ,则θ的最大值为________.[答案] 30°[解析] F 1(-2,0)、F 2(2,0),不妨设P (4,y ),y >0,过P 作PM ⊥x 轴,垂足为M ,设∠F 1PM =β,∠F 2PM =α,则θ=β-α,∴tan θ=tan(β-α)=tan β-tan α1+tan βtan α=6y -2y 1+6y ·2y =4y +12y≤4212=33,∴θ≤30°.已知P 为椭圆C :x 225+y 216=1上的任意一点,F 为椭圆C 的右焦点,M 的坐标为(1,3),则|PM |+|PF |的最小值为________.[答案] 5[解析] 如图,连结F 1M ,设直线F 1M 与C 交于P,P ′是C 上任一点,则有|PF 1|+|PF |=|P ′F 1|+|P ′F |,即|PM |+|MF 1|+|PF |=|P ′F 1|+|P ′F |, ∵|P ′F 1|≤|P ′M |+|MF 1|, ∴|PM |+|PF |≤|P ′M |+|P ′F |, 故P 点是使|PM |+|PF |取最小值的点, 又M (1,3),F 1(-3,0),∴|MF 1|=5,∴|PM |+|PF |=|PF 1|+|PF |-|MF 1|=2×5-5=5.三、解答题(本大题共6小题;共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本题满分12分)已知圆O 的方程为1622=+y x . (1)求过点()8,4-M 的圆O 的切线方程;(2)过点()0,3N 作直线与圆O 交于A 、B 两点,求OAB △的最大面积以及此时直线AB 的斜率.17.(本题满分12分)将抛物线y x 222-=向上平移2个单位长度后,抛物线过椭圆12222=+b y a x (a >b >0)的上顶点和左右焦点.(1)求椭圆方程;(2)若点()0,m P 满足如下条件:过点P 且倾斜角为π65的直线l 与椭圆相交于C 、D 两点,使右焦点F 在以CD 线段为直径的圆外,试求m 的取值范围.18.(本题满分12分)已知双曲线,12222=-by ax (a >0,b >0)左右两焦点为1F 、2F ,P 是右支上一点,212F F PF ⊥,1PF OH ⊥于H ,1OF OH λ=,⎥⎦⎤⎢⎣⎡∈21,91λ.(1)当31=λ时,求双曲线的渐近线方程;(2)求双曲线的离心率e 的取值范围;(3)当e 取最大值时,过1F ,2F ,P 的y 轴的线段长为8,求该圆的方程.19.(本题满分13分)在平面直角坐标系xOy 中,过定点()0,p C 作直线m 与抛物线px y 22=(p >0)相交于A 、B 两点.(1)设()0,p N -,求NB NA ⋅的最小值;(2)是否存在垂直于x 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,请说明理由.20.(本题满分13分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率等于21,它的一个顶点恰好是抛物线y x 382=的焦点.(1)求椭圆C 的方程;(2)()3,2P 、()3,2-Q 是椭圆上两点,A 、B 是椭圆位于直线PQ 两侧的两动点,①若直线AB 的斜率为21,求四边形APBQ 面积的最大值;②当A 、B 运动时,满足BPQ APQ ∠=∠,试问直线AB 的斜率是否为定值,请说明理由.21.(本题满分13分)在平面直角坐标系中,已知向量()2,-=y x a ,()()R k y kx b ∈+=2,,若b a b a -=+. (1)求动点()y x M ,的轨迹T 的方程,并说明该方程表示的曲线的形状;(2)当34=k 时,已知()1,01-F 、()1,02F ,点P 是轨迹T 在第一象限的一点,且满足121=-PF PF ,若点Q 是轨迹T 上不同于点P 的另一点,问是否存在以PQ 为直径的圆G 过点2F ,若存在,求出圆G 的方程,若不存在,请说明理由.答案与解析1.【命题立意】本题考查直线的一般方程形式、斜率和倾斜角的关系以及正切函数的诱导公式.[来源:] 【思路点拨】抓住直线方程y=kx+b 中斜率为k ,α为倾斜角,其中[)πα,0∈,当2πα≠时αtan =k .【答案】D 【解析】7tanπx y -=,斜率76tan7tan 7tanππππ=⎪⎭⎫ ⎝⎛-=-=k . 2.【命题立意】本题考查直线的对称和直线方程的求解以及直线上点的确定.【思路点拨】求出直线1l 与x 轴、与l 的交点坐标,再确定对称点的坐标,最后由两点式得到2l 的直线方程. 【答案】D 【解析】画出图形,容易求得直线1l 与x 轴的交点()0,1-A ,它关于直线l 的对称点为()0,5B ,又1l 与l 的交点()3,2P ,从而对称直线2l 经过B 、P 两点,于是由两点式求得2l 的方程为05=-+y x . 3.[答案] A[解析] 由椭圆方程x 220+y 216=1知,点B (0,4),右焦点F (2,0),∵F 为△BMN 的重心,∴直线BF 与MN 交点D 为MN 的中点, ∴BD →=32BF →=(3,-6),又B (0,4),∴D (3,-2),将D 点坐标代入选项检验排除B 、C 、D ,选A.4.【命题立意】本题考查直线与圆的位置关系和点到直线的距离公式以及基本不等式.【思路点拨】直线与圆的位置关系有三种,由圆心到直线的距离d 与半径r 的大小关系决定,当d >r 时,相离;当d =r 时相切;当d <r 时相交. 【答案】D 【解析】圆心()0,0到直线0=+++b a by ax 的距离22b a b a d ++=,半径2=r .由于()221222222≤++=++=b a ab ba b a d,所以r d ≤,从而直线与圆相交或相切.[来源:学,科,网]5.【命题立意】本题考查直线与圆的位置关系和点到直线的距离.【思路点拨】圆上的点到直线上的点,这两个动点之间的距离的最小值,可以转化为直线上的点到圆心的距离的最小值来解决,圆上的点到直线的距离的最大值等于圆心到直线的距离加上半径,最小值等于圆心到直线的距离减去半径;当直线与圆相交时,圆上的点到直线的距离的最大值等于圆心到直线的距离加上半径,最小值等于0.【答案】B 【解析】由题意可知,直线与圆相离,074422=+--+y x y x 即()()12222=-+-y x ,圆心()2,2到直线kx y =的距离1222+-=k k d ,∴12211222-=-+-=-k k r d ,解得1-=k .6.【命题立意】考查椭圆的标准方程和椭圆中的基本量及其关系以及分类讨论的思想. 【思路点拨】可建立m 关于e 的函数,从而可根据e 的范围求得m 的范围. 【答案】C 【解析】化椭圆的方程为标准方程1122=+my x ,当m1<1,即m >1时,椭圆焦点在x 轴上,此时12=a ,m b 12=,m c 112-=,m e 112-=∴,211e m -=∴,又⎪⎪⎭⎫ ⎝⎛∈22,33e ,∴23<m <2,又m >1,∴1<m <2.当m 1>1,即m <1时,椭圆焦点在y 轴上,此时m a 12=,12=b ,112-=m c ,∴m ac e -==1222,即21e m -=,又⎪⎪⎭⎫ ⎝⎛∈22,33e ,∴21<m <32.综上,m 的范围范围是()2,132,21 ⎪⎭⎫⎝⎛.选择C . 7.【命题立意】考查双曲线的标准方程,离心率的概念.【思路点拨】根据渐近线方程可以得到双曲线系方程,再分两种情况讨论焦点位置,从而求得离心率.【答案】C 【解析】由于一条渐近线方程为03=-y x ,所以可设双曲线方程为λ=-223y x .当焦点在x 轴上时,方程为1322=-λλy x (λ>0),此时32λ=a ,λ=2b ,于是34222λ=+=b a c ,所以离心率2==ace ;当焦点在y 轴上时,方程为1322=---λλx y (λ<0),此时λ-=2a ,32λ-=b ,于是34222λ-=+=b a c ,所以离心率332==a c e .故选择C . 8.【命题立意】考查抛物线的定义和标准方程以及直角三角形的性质.【思路点拨】画出图形,利用抛物线的定义找出点M 的横坐标与|FM |的关系即可求得.【答案】C 【解析】画出图形,知()0,1F ,设FM =a 2,由点M 向x 轴作垂线,垂足为N ,则FN =a ,于是点M 的横坐标a x +=10.利用抛物线的定义,则M 向准线作垂线,有FM =10+x ,即112++=a a ,所以2=a ,从而FM =4. 9.【命题立意】考查椭圆与抛物线的标准方程,基本量的关系以及分类讨论问题.【思路点拨】由抛物线的标准方程求得准线方程,从而求得椭圆一个顶点的坐标,这个值是a 还是b ,就必须分两种情况讨论. 【答案】D 【解析】由抛物线x y 82=,得到准线方程为2-=x ,又21=a c ,即c a 2=.当椭圆的焦点在x 轴上时,2=a ,1=c ,3222=-=c a b ,此时椭圆的标准方程为13422=+y x ;当椭圆的焦点在y 轴上时,2=b ,332=c ,334=a ,此时椭圆的标准方程为1431622=+x y .故选择D .10.[答案] D[解析] 过点A (0,-2)作曲线C :y =2x 2的切线, 设方程为y =kx -2,代入y =2x 2得, 2x 2-kx +2=0,令Δ=k 2-16=0得k =±4, 当k =4时,切线为l ,∵B 点在直线x =3上运动,直线y =4x -2与x =3的交点为M (3,10),当点B (3,a )满足a ≤10时,视线不被曲线C 挡住,故选D.11.【命题立意】考查圆的方程,直线与圆相切问题.【思路点拨】圆心已知,故只需求得其半径即可,而半径为圆心(-1,2)到直线的距离,根据点到直线的距离可求其半径,从而可求得圆的标准方程.【答案】()()82122=-++y x 【解析】圆的半径()221112122=-+---=r ,所以圆的方程为()()()2222221=-++y x ,即()()82122=-++y x .12.【命题立意】考查圆的标准方程,点到直线的距离.【思路点拨】先化圆的方程为标准方程,求出圆心到直线的距离,再来与半径比较.【答案】3【解析】圆的方程为()()22222=++-y x ,圆心()2,2-到直线05=--y x 的距离222522=-+=d ,圆的半径2=r ,所以圆上到直线的距离等于22的点有3个. 13.【命题立意】考查圆心到直线的距离、圆的切线长定理和直线与圆相切问题.【思路点拨】画出图形,PM 是切线,切线长最小,即|PC |最小,也就是C 到1l 的距离. 【答案】1±【解析】画出图形,由题意l 2与圆C 只一个交点,说明l 2是圆C 的切线,由于162222-=-=PC CMPC PM,所以要|PM|最小,只需|PC |最小,即点C 到l 1的距离22181305m m +=+++,所以|PM|的最小值为4161822=-⎪⎪⎭⎫⎝⎛+m,解得1±=m . 14.【命题立意】考查椭圆的标准方程,椭圆离心率的概念和圆的切线问题. 【思路点拨】画出图形,由椭圆的离心率为22得到ac=22,再利用圆的切线的性质得到直角三角形,在直角三角形中求解角度. 【答案】2π【解析】如图,连结OA ,则OA ⊥P A ,22sin 2===∠a c caa APO ,所以4π=∠APO ,从而2π=∠APB .15.【命题立意】16.[答案] 30°[解析] F 1(-2,0)、F 2(2,0),不妨设P (4,y ),y >0,过P 作PM ⊥x 轴,垂足为M ,设∠F 1PM =β,∠F 2PM =α,则θ=β-α,∴tan θ=tan(β-α)=tan β-tan α1+tan βtan α=6y -2y 1+6y ·2y =4y +12y≤4212=33,∴θ≤30°17.[答案] 5[解析] 如图,连结F 1M ,设直线F 1M 与C 交于P ,P ′是C 上任一点,则有|PF 1|+|PF |=|P ′F 1|+|P ′F |,即|PM |+|MF 1|+|PF |=|P ′F 1|+|P ′F |, ∵|P ′F 1|≤|P ′M |+|MF 1|, ∴|PM |+|PF |≤|P ′M |+|P ′F |, 故P 点是使|PM |+|PF |取最小值的点, 又M (1,3),F 1(-3,0),∴|MF 1|=5,∴|PM |+|PF |=|PF 1|+|PF |-|MF 1|=2×5-5=5.18.【命题立意】考查圆的标准方程,直线与圆的位置关系,以及弦长问题. 【思路点拨】(1)过圆外一点的圆的切线方程,一般设斜率,利用圆心到直线的距离等于半径来求出斜率,但一定要注意斜率存在与否;(2)将弦长AB 看成底边,则三角形的高就是圆心到直线的距离.【解析】(1)圆心为()0,0O ,半径4=r ,当切线的斜率存在时,设过点()8,4-M 的切线方程为()48+=-x k y ,即084=++-k y kx (1分).则41|84|2=++k k ,解得43-=k ,(3分),于是切线方程为02043=-+y x (5分).当斜率不存在时,4-=x 也符合题意.故过点()11,5-M 的圆O 的切线方程为02043=-+y x 或4-=x .(6分)(2)当直线AB 的斜率不存在时,73=∆ABC S ,(7分),当直线AB 的斜率存在时,设直线AB 的方程为()3-=x k y ,即03=--k y kx ,圆心()0,0O 到直线AB 的距离132+=k k d ,(9分)线段AB 的长度2162d AB -=,所以()()821616162122222=-+≤-=-==∆d d d d d d d AB S ABC ,(11分)当且仅当82=d 时取等号,此时81922=+k k ,解得22±=k ,所以OAB △的最大面积为8,此时直线AB 的斜率为22±.(12分) 19.【命题立意】本题考查椭圆方程的求法,直线和圆锥曲线的位置关系以及存在性问题. 【思路点拨】(1)可根据抛物线平移后与坐标轴的交点求得b 、c 的值,从而可得a 的值,故可求椭圆方程;(2)可利用向量法解决. 【解析】(1)抛物线y x 222-=的图象向上平移2个单位长度后其解析式为()2222--=y x ,其与x 、y 轴的交点坐标分别为()0,2±、()2,0,∴2=b ,2=c ,(2分)∴62=a ,故椭圆的方程为12622=+y x .(4分) (2)由题意可得直线l 的方程为()m x y --=33,代入椭圆方程消去y 得,062222=-+-m mx x ,(6分)又()68422--=m m △>0,∴32-<m <32.(7分)设C 、D 分别为()11,y x ,()22,y x ,则m x x =+21,26221-=m x x ,∴()()()33313333221212121m x x m x x m x m x y y ++-=⎥⎥⎦⎤⎢⎢⎣⎡--⋅⎥⎥⎦⎤⎢⎢⎣⎡--=,∵()11,2y x FC -=,()22,2y x FD -=,∴()()()()33243363422221212121-=++++-=+--=⋅m m m x x m x x y y x x FD FC ,(10分)∵点F 在圆的外部,∴FD FC ⋅>0,即()332-m m >0,解得m <0或m >3,又∵32-<m <32,∴32-<m <0或3<m <32.(12分)20.【命题立意】考查双曲线的定义和标准方程,渐近线和离心率计算公式.【思路点拨】(1)求渐近线方程的目标就是求ab ,可根据条件建立a 、b 的数量关系来求得;(2)可建立e 关于λ的函数,从而可根据λ的范围求得e 的范围;(3)可根据离心率确定a 、b 的数量关系,再结合图形确定圆的圆心与半径. 【解析】由于()0,2c F ,所以⎪⎪⎭⎫ ⎝⎛±a bc P 2,,于是a b PF 22=,a ab a PF PF 22221+=+=,(1分)由相似三角形知,112PF OF PF OH=,即121PF PF OF OH =,即ab a a b 222+=λ,(2分)∴2222b b a =+λλ,()λλ-=1222b a ,λλ-=1222ab . (1)当31=λ时,122=ab ,∴b a=.(3分)所以双曲线的渐近线方程为x y ±=.(4分) (2)()[]12111211121121122222---=--=---+=-+=+==λλλλλλab ac e ,在⎥⎦⎤⎢⎣⎡21,91上为单调递增函数.(5分) ∴当21=λ时,2e 取得最大值3(6分);当91=λ时,2e 取得最小值45.(7分)∴3452≤≤e ,∴325≤≤e .(8分) (3)当3=e 时,3=ac,∴a c 3=,∴222a b =.(9分)∵212F F PF ⊥,∴1PF 是圆的直径,圆心是1PF 的中点,∴在y 轴上截得的弦长就是直径,∴81=PF .(10分)又a a a a a b a PF 4222221=+=+=,∴84=a ,2=a ,32=c ,22=b .(11分)∴4222===a ab PF ,圆心()2,0C ,半径为4,故圆的方程为()16222=-+y x .(12分) 21.【命题立意】考查抛物线的标准方程,直线与抛物线的位置关系.【思路点拨】设直线方程,与抛物线方程联立,利用韦达定理来解决;存在性问题一般是假设存在,利用垂径定理推导求解来解决. 【解析】(1)依题意,可设()11,y x A 、()22,y x B ,直线AB 的方程为p my x +=,由0222222=--⇒⎪⎩⎪⎨⎧=+=p pmy y px y p my x ,(2分)得⎪⎩⎪⎨⎧-=⋅=+2212122p y y pm y y ,(3分)∴NB NA ⋅=()()2211,,y p x y p x ++()()2121y y p x p x +++=()()212122y y p my p my +++=()()221212421p y y pm y y m ++++=22222p m p +=(6分)当0=m 时,NB NA ⋅取得最小值22p .(7分) (2)假设满足条件的直线l 存在,其方程为a x =,AC 的中点为O ',l 与以AC 为直径的圆相交于P 、Q ,PQ 的中点为H ,则PQ H O ⊥',O '的坐标为⎪⎭⎫⎝⎛+2,211y p x .()2212121212121p x y p x AC P O +=+-==' (9分),()()()a p a x p a p x a p x H O P O PH -+⎪⎭⎫ ⎝⎛-=---+='-'=∴1212212222124141,2PQ =()22PH =()⎥⎦⎤⎢⎣⎡-+⎪⎭⎫⎝⎛-a p a x p a 1214(11分),令021=-p a 得p a 21=.此时p PQ =为定值.故满足条件的直线l 存在,其方程为p x 21=.(13分) 22.【命题立意】考查椭圆与抛物线的标准方程,直线与椭圆的位置关系. 【思路点拨】(1)利用抛物线的标准方程,求出焦点坐标,从而得到椭圆中的b ,再由离心率建立方程,可求得椭圆的标准方程;(2)抓住直线PQ ⊥x 轴,BPQ APQ ∠=∠即直线P A 、PB 的斜率互为相反数,联系方程利用韦达定理来解决. 【解析】(1)设C 方程为12222=+by ax (a >b >0),则32=b .由21=a c ,222b c a +=,得a =4∴椭圆C 的方程为1121622=+y x .(4分)(2)①设()11,y x A ,()22,y x B ,直线AB 的方程为t x y +=21,代入1121622=+y x ,得01222=-++t tx x ,由∆>0,解得4-<t <4.(6分)由韦达定理得t x x -=+21,12221-=t x x .四边形APBQ 的面积2213483621t x x S -=-⨯⨯=,∴当0=t 时312max =S .(8分) ②当BPQ APQ ∠=∠,则P A 、PB 的斜率之和为0,设直线P A 的斜率为k ,则PB 的斜率为k -,P A 的直线方程为()23-=-x k y ,由()⎪⎩⎪⎨⎧=+-=-)2(11216)1(2322y x x k y .将(1)代入(2)整理得()()()04823423843222=--+-++k kx k x k ,有()21433282k k k x +-=+.(10分)同理PB 的直线方程为)2(3--=-x k y ,可得()()22243328433282k k k k k k x ++=+---=+,∴2221431216k k x x +-=+,2214348k k x x +-=-.(12分)从而AB k =2121x x y y --=()()21213232x x x k x k ---++-=()21214x x k x x k --+=21,所以AB 的斜率为定值21.(13分) 23.【命题立意】考查圆锥曲线的标准方程,椭圆与双曲线的定义,向量垂直问题.【思路点拨】(1)利用向量的数量积的坐标运算来求出轨迹方程,但一定要注意对参数的讨论;(2)利用椭圆或双曲线的定义确定点P 的位置,以PQ 为直径的圆G 过点2F ,即022=⋅QF PF ,利用向量垂直的坐标运算来解决. 【解析】(1)∵b a ⊥,∴()()02,2,=+⋅-=⋅y kx y x b a ,得0422=-+y kx ,即422=+y kx .(1分) 当0=k 时,方程表示两条与x 轴平行的直线;(2分)当1=k 时,方程表示以原点为圆心,以2为半径的圆;(3分)当0<k <1时,方程表示焦点在x 轴上的椭圆;(4分)当k >1时,方程表示焦点在y 轴上的椭圆;(5分) 当k <0时,方程表示焦点在y 轴上的双曲线.(6分)(2)由(1)知,轨迹T 是椭圆13422=+x y ,则1F 、2F 为椭圆的两焦点.解法一:由椭圆定义得421=+PF PF ,联立121=-PF PF 解得251=PF ,232=PF ,又221=F F ,有2212221F F PF PF +=,∴212F F PF ⊥,∴P 的纵坐标为1,把1=y 代入13422=+x y 得23=x 或23-=x (舍去),∴⎪⎭⎫⎝⎛1,23P .(9分)设存在满足条件的圆,则22QF PF ⊥,设()t s Q ,,则⎪⎭⎫⎝⎛-=0,232PF ,()t s QF --=1,2,∴022=⋅QF PF ,即()01023=-⨯+t s ,∴0=s .又13422=+s t ,∴2±=t ,∴()2,0Q 或()2,0-Q .(12分)所以圆G 的方程:1613234322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x 或1645214322=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x .(13分)。
解析几何(直线、圆、椭圆)检测题
解析几何(直线、圆、椭圆)检测题一、选择题:(本大题共12小题,每小题5分,共60分) 1、圆x 2+y 2+4x=0的圆心坐标和半径分别是( ) A.(-2,0),2 B.(-2,0),4 C.(2,0),2 D.(2,0),4 2、直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A.213, B.--213, C.--123, D.-2,-33.圆0222=-+x y x 和圆0422=++y y x 的位置关系是( ) A.相离 B.外切 C.相交 D.内切4.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x 5.直线,31k y kx =+-当k 变动时,所有直线都通过定点( )A.(0,0) B .(0,1) C .(3,1) D .(2,1) 6.点)2,1(-P 关于直线1-=x y 的对称点的坐标是( )A .(3,2)B .(-3,-2)C .-3,2)D .(3,-2)7.椭圆192522=+y x 的焦点1F 、2F ,点P 为椭圆上一点,若21PF PF ⊥,则△21PF F 的面积为( )A .9B .12C .10D .88.圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离 的差是( )A .36 B. 18 C. 26 D. 25 9.方程1-|x |=1-y 表示的曲线是( )A .两条线段B .两条直线C .两条射线D .一条射线和一条线段10.设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是( )A .1±B .21±C .33±D .3±11. 已知圆222410x y x y ++-+=关于直线220(,)ax by a b R -+=∈对称,则ab 的取值范围是( )A .1(,]4-∞B .1(0,)4C .1(,0)4-D .1[,)4-+∞ 12.方程211)1(x x k -=+-有两个不等实根,则k 的取值范围是( ).A ),0(+∞ .B ),2[+∞ .C ),21(+∞ .D ]21,0(二、填空题:(本大题共4小题,每小题4分,共16分) 13.直线x - y + 3 = 0的倾斜角是14. 若直线013)2(=+++my x m 与直线03)2()2(=-++-y m x m 相互垂直,则m =15. 已知椭圆方程为1222=+y x 与直线方程21:+=x y l 相交于A 、B 两点,则AB 的长为16.若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则直线m 的倾斜角可以是 ①15 ②30 ③45 ④60 ⑤75 ,其中正确答案的序号是高2014级10月月考数学试题(理科)13 14 15 16三、解答题:(本大题共6小题,共74分,解答应写出文字说明.证明过程或演算步骤.)17.已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC 边上的中点。
解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,3),B (3,-1),则直线AB 的斜率是()A.3B.-3C.33D.-33解析:斜率k =-1-33--3=-33,故选D.答案:D2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是()A.1B.-1C.-2或-1D.-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =a +2a,则a +2a=a +2,得a =1或a =-2.故选D.答案:D3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为()A.4B.21313C.51326D.71020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d =|1--6|62+22=71020.故选D.4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是()A.x +2y -1=0B.2x +y -1=0C.2x +y -5=0D.x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值围是()A.π6,D.π3,π2解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-3),由题知直线l 与线段AB 相交(交点不含端点),从图中可以看出,直线l B.答案:B6.(2014一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为()A.x -2y +4=0B.2x +y -7=0C.x -2y +3=0D.x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=12,∴方程为y -3=12(x -2),即x -2y +4=0.答案:A7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为x a +yb =1,b =6,+1b=1,=3=3=4=2.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m 的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB =4-m m +2=-2,解得m =-8.答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即2a -1+a 3-1-a <0,化简得a -1a +2<0,∴-2<a <1.答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.+3=0,+3=0,=-3,=-3,所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sin α-1=0和l 2:2x sin α+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-1sin α,k 2=-2sin α.要使l 1∥l 2,需-1sin α=-2sin α,即sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.法二由l 1∥l 22α-1=0,α≠0,∴sin α=±22,∴α=k π±π4,k ∈Z .故当α=k π±π4,k ∈Z 时,l 1∥l 2.(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k 21+2=0,这与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一=k 1x +1,=k 2x -1解得交点P而2x 2+y 2=8+k 22+k 21+2k 1k 2k 22+k 21-2k 1k 2=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二交点P 的坐标(x ,y-1=k 1x ,+1=k 2x ,故知x ≠0.1=y -1x,2=y +1x.代入k 1k 2+2=0,得y -1x ·y +1x+2=0,整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为()A.x 2+(y -2)2=1B.x 2+(y +2)2=1C.(x -1)2+(y -3)2=1D.x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则12+t -22=1,得t =2,所以圆的方程为x 2+(y -2)2=1,故选A.答案:A2.(2014模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为()A.x 2+y 2=32B.x 2+y 2=16C.(x -1)2+y 2=16D.x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2x -22+y 2=x -82+y 2,化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则()A.l 与C 相交B.l 与C 相切C.l 与C 相离D.以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d =3-22+0-02=1<2,点P (3,0)恒在圆,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考卷)将圆x 2+y 2-2x -4y +1=0平分的直线是()A.x +y -1=0B.x +y +3=0C.x -y +1=0D.x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C5.(2013年高考卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是()A.x +y -2=0B.x +y +1=0C.x +y -1=0D.x +y +2=0解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得|b |12+12=1,故b =± 2.因为直线与圆相切于第一象限,故结合图形分析知b =-2,则直线方程为x +y -2=0.故选A.答案:A6.(2012年高考卷)直线x +3y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长度等于()A.25B.23C.3D.1解析:因为圆心到直线x +3y -2=0的距离d =|0+3×0-2|12+32=1,半径r =2,所以弦长|AB |=222-12=2 3.故选B.答案:B 二、填空题7.(2013年高考卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d =|2×3-4+3|4+1=5,∴弦长为2×25-5=220=4 5.答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d =|1-1+4|12+-12=22,又圆半径r = 2.所以圆C 上各点到直线l 的距离的最小值为d -r = 2.答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C 的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴|4m -9m |5=1,∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=2mm 2+1,∴x =mm 2+1.当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =y -1x,代入x =m m 2+1,得+1=y -1x,化简得x 2=14.经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2=14.12.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=22时,求直线l 的方程.解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2.解得a =-34.(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,|=|4+2a |a 2+1,|2+|DA |2=22,|=12|AB |=2,解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇第3节一、选择题1.设P 是椭圆x225+y216=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于()A.4B.5C.8D.10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D2.(2014二模)P 为椭圆x24+y23=1上一点,F 1,F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→等于()A.3B.3C.23D.2解析:由椭圆方程知a =2,b =3,c =1,1|+|PF 2|=4,1|2+|PF 2|2-4=2|PF 1||PF2|cos 60°∴|PF 1||PF 2|=4.∴PF 1→·PF 2→=|PF 1→||PF 2→|cos 60°=4×12=2.答案:D3.(2012年高考卷)椭圆x 2a 2+y2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为()A.14B.55C.12D.5-2解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e =c a =55.故应选B.答案:B4.(2013年高考卷)已知椭圆C :x 2a 2+y2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos∠ABF =45,则C 的离心率为()A.35B.57C.45D.67解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos∠ABF =100+64-2×10×8×45=36,则|AF |=6,∠AFB =90°,半焦距c =|FO |=12|AB |=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e =c a =57.故选B.答案:B5.已知椭圆E :x2m +y24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx+1被椭圆E 截得的弦长不可能相等的是()A.kx +y +k =0B.kx -y -1=0C.kx +y -k =0D.kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A、B、C,故选D.答案:D6.(2014省实验中学第二次诊断)已知椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使asin∠PF 1F 2=csin∠PF 2F 1,则该椭圆的离心率的取值围为()A.(0,2-1)D.(2-1,1)解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得|PF 2|sin∠PF 1F 2=|PF 1|sin∠PF 2F 1,所以由a sin∠PF 1F 2=csin∠PF 2F 1可得a|PF 2|=c |PF 1|,即|PF 1||PF 2|=c a =e ,所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=2a e +1.由于a -c <|PF 2|<a +c ,所以有a -c <2ae +1<a +c ,即1-e <2e +1<1+e ,1-e 1+e<2,1+e2,解得2-1<e .又0<e <1,∴2-1<e <1.故选D.答案:D 二、填空题7.设F 1、F 2分别是椭圆x225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆x 2a 2+y2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1.∴e =ca=2- 3.答案:2-39.(2014模拟)过点(3,-5),且与椭圆y225+x29=1有相同焦点的椭圆的标准方程为________________.解析:由题意可设椭圆方程为y225-m+x29-m=1(m <9),代入点(3,-5),得525-m +39-m=1,解得m =5或m =21(舍去),∴椭圆的标准方程为y220+x24=1.答案:y220+x24=110.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.解析:1|+|PF 2|=2a ,1|2+|PF 2|2=4c 2,∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=12|PF 1||PF 2|=b 2=9,∴b =3.答案:3三、解答题11.(2012年高考卷)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 12-b 2=1,=1,2=2,2=1.故椭圆C 1的方程为x22+y 2=1.(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2=kx +b ,2=4x ,消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1kx +b ,y 2=1,消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②=1,k 2=b 2-1,解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =2时,k =22,b =-2时,k=-22.即直线l 的方程为y =22x +2或y =-22x - 2.12.(2014海淀三模)已知椭圆C :x2a 2+y2b 2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :x 2a 2+y2b2=1(a >b >0)的四个顶点恰好是一边长为2,一角为60°的菱形的四个顶点.所以a =3,b =1,椭圆C 的方程为x23+y 2=1.(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=23,|PO |=3,所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,y 2=1,kx ,化简得(3k 2+1)x 2=3,所以|x 1|=33k 2+1,则|AO |=1+k233k 2+1=3k 2+33k 2+1.设AB 的垂直平分线为y =-1kx ,它与直线l :x +y -3=0的交点记为P (x 0,y 0),=-x +3,=-1k x ,0=3k k -1,0=-3k -1.则|PO |=9k 2+9k -12,因为△PAB 为等边三角形,所以应有|PO |=3|AO |,代入得9k 2+9k -12=33k 2+33k 2+1,解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇第4节一、选择题1.设P 是双曲线x216-y220=1上一点,F 1,F 2分别是双曲线左右两个焦点,若|PF 1|=9,则|PF 2|等于()A.1B.17C.1或17D.以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考卷)已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x2sin 2θ=1的()A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析:双曲线C 1的半焦距c 1=sin 2θ+cos 2θ=1,双曲线C 2的半焦距c 2=cos 2θ+sin 2θ=1,故选D.答案:D3.(2012年高考卷)已知双曲线C :x 2a 2-y2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为()A.x220-y25=1B.x25-y220=1C.x280-y220=1D.x220-y280=1解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =bax 得a =2b .a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为x220-y25=1.故选A.答案:A4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于()A.14B.35C.34D.45解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =22,|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,由余弦定理可知cos∠F 1PF 2=422+222-422×42×22=34.故选C.答案:C5.设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为()A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1解析:在椭圆C 1中,因为e =513,2a =26,即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为x242-y232=1.故选A.答案:A6.(2014八中模拟)若双曲线x29-y216=1渐近线上的一个动点P 总在平面区域(x -m )2+y 2≥16,则实数m 的取值围是()A.[-3,3]B.(-∞,-3]∪[3,+∞)C.[-5,5]D.(-∞,-5]∪[5,+∞)解析:因为双曲线x 29-y 216=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )2+y 2≥16,即直线与圆相离或相切,所以d =|4m |5≥4,解得m ≥5或m ≤-5,故实数m 的取值围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考卷)已知F 为双曲线C :x29-y216=1的左焦点,P ,Q 为C 上的点.若PQ的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e =ca=2,两式联立得a =1,c =2,∴b 2=c 2-a 2=4-1=3,∴方程为x 2-y23=1.答案:x 2-y23=19.(2014市第三次质检)已知点P 是双曲线x2a 2-y2b2=1(a >0,b >0)和圆x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=3m ,该双曲线的离心率等于|F 1F 2|||PF 1|-|PF 2||=2m3m -m =3+1.答案:3+110.(2013年高考卷)设F 1,F 2是双曲线C :x2a 2-y2b 2=1(a >0,b >0)的两个焦点.若在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt△F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=3c ,根据双曲线的定义:|PF 1|-|PF 2|=2a ,(3-1)c =2a ,e =ca =23-1=3+1.答案:3+1三、解答题11.已知双曲线x 2-y22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,且点P 是线段AB 的中点?解:法一设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .=kx+1-k,2-y22=1,得(2-k2)x2-2k(1-k)x-(1-k)2-2=0(2-k2≠0).①∴x=x1+x22=k1-k2-k2.由题意,得k1-k2-k2=1,解得k=2.当k=2时,方程①成为2x2-4x+3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l与双曲线交于A,B两点,且点P(1,1)是线段AB的中点.法二设A(x1,y1),B(x2,y2),若直线l的斜率不存在,即x1=x2不符合题意,所以由题得x21-y212=1,x22-y222=1,两式相减得(x1+x2)(x1-x2)-y1+y2y1-y22=0,即2-y1-y2x1-x2=0,即直线l斜率k=2,得直线l方程y-1=2(x-1),即y=2x-1,=2x-1,2-y22=1得2x2-4x+3=0,Δ=16-24=-8<0,即直线y=2x-1与双曲线无交点,即所求直线不合题意,所以过点P(1,1)的直线l不存在.12.(2014质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解:(1)由已知c =13,设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,-m =4,·13a=3·13m,解得a =7,m =3.∴b =6,n =2.∴椭圆方程为x249+y236=1,双曲线方程为x29-y24=1.(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=102+42-21322×10×4=45.第八篇第5节一、选择题1.(2014模拟)抛物线y =2x 2的焦点坐标为()B.(1,0)解析:抛物线y =2x 2,即其标准方程为x 2=12y C.答案:C2.抛物线的焦点为椭圆x24+y29=1的下焦点,顶点在椭圆中心,则抛物线方程为()A.x 2=-45y B.y 2=-45x C.x 2=-413yD.y 2=-413x解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c =a 2-b 2=5,∴抛物线焦点坐标为(0,-5),∴抛物线方程为x 2=-45y .故选A.答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |,故圆与抛物线准线相切.故选C.答案:C4.(2014高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为()A.53B.83C.103D.10解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,1+1=3x 2+1,1x 2=y 214·y 224=y 1y 2216=1,解得x 1=3,x 2=13,故线段AB 的中点到该抛物线的准线x =-1的距离等于x 1+x 22+1=83.故选B.答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为()A.34B.1C.54D.74解析:∵|AF |+|BF |=x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值围是()A.(0,2)B.[0,2]C.(2,+∞)D.[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =3x +b ,=3x +b ,2=2py消去y ,得x 2=2p (3x +b ),即x 2-23px -2pb =0,∴x 1+x 2=23p =3,∴p =32,则抛物线的方程为x 2=3y .答案:x 2=3y8.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为3,∴直线方程为y =3(x -1).联立方程y =3x -1,y 2=4x ,解得x 1=13,y 1=-233,或x 2=3,y 2=23,由已知得A 的坐标为(3,23),∴S △OAF =12|OF |·|y A |=12×1×23= 3.答案:310.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 72,4,则|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-12,焦点F 坐标为12,0.求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+12,所以|PA |+|PM |≥5-12=92.答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-12,数m 的值.解:法一如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,=-x +n ,=2x 2,得2x 2+x -n =0,∴x 1+x 2=-12,x 1x 2=-n2由x 1x 2=-12,得n =1.又x 0=x 1+x 22=-14,y 0=-x 0+n =14+1=54,即点M -14,由点M 在直线l 上,得54=-14+m ,∴m =32.法二∵A 、B 两点在抛物线y =2x 2上.1=2x 21,2=2x 22,∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB =y 1-y 2x 1-x 2=4x 0.又AB ⊥l ,∴k AB =-1,从而x 0=-14.又点M 在l 上,∴y 0=x 0+m =m -14,即-14,m∴AB 的方程是y 即y =-x +m -12,代入y =2x 2,得2x 2+x x 1x 2=-m -122=-12,∴m =3212.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)直线AB 的方程是y y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p4.由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),即C (4λ+1,42λ-22),所以[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
第八章 解析几何 章末质量检测
第八章 解析几何(自我评估、考场亮剑,收获成功后进入下一章学习!)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2009·天津河西期末)点P (-2,1)到直线2x +y =5的距离为 ( ) A.255 B.855 C.25 D.85解析:点P 到直线的距离d =|-2×2+1-5|22+1=855.答案:B2.(2010·苏州模拟)若ab <0,则过点P ⎝⎛⎭⎫0,-1b 与Q ⎝⎛⎭⎫1a ,0的直线PQ 的倾斜角的取值范围是 ( ) A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π2,π C.⎝⎛⎭⎫-π,-π2 D.⎝⎛⎭⎫-π2,0 解析:k PQ =1b 1a =a b ,∵ab <0,∴ab <0,即k <0,∴直线PQ 的倾斜角的取值范围是⎝⎛⎭⎫π2,π. 答案:B3.若双曲线x 2a 2-y 2=1的一个焦点为(2,0),则它的离心率为 ( )A.255B.32C.233 D .2解析:由题意知a 2+1=4,∴a =3,∴e =c a =23=233.答案:C4.(2010·厦门质检)直角坐标平面内过点P (2,1)且与圆x 2+y 2=4相切的直线 ( ) A .有两条 B .有且仅有一条 C .不存在 D .不能确定解析:∵22+12>4,∴点P 在圆外,故过点P 与圆相切的直线有两条.答案:A5.直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是 ( )A .-x +2y -4=0B .x +2y -4=0C .-x +2y +4=0D .x +2y +4=0解析:由题意知,两直线垂直,且已知直线过点(0,-2),所求直线斜率为-12,∴所求直线方程为y +2=-12x ,即x +2y +4=0.答案:D6.(2010·广州调研)已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA=AP,则点P 的轨迹方程为 ( )A .y =-2xB .y =2xC .y =2x -8D .y =2x +4解析:设点P (x ,y ),R (x 1,y 1),∵AP =RA,∴(1-x 1,-y 1)=(x -1,y ),∴⎩⎪⎨⎪⎧ 1-x 1=x -1,-y 1=y ,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y .又点R 在直线l 上,∴-y =2(2-x )-4, 即2x -y =0为所求. 答案:B7.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB |的最小值为 ( ) A .2 B .23 C .3 D .2 5 解析:当过点(0,1)的直线与直径垂直且(0,1)为垂足时,|AB |最小值为2 3. 答案:B8.如右图,F 1和F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆 与该双曲线左支的两个交点,且△F 2AB 是等边三角形, 则双曲线的离心率为( )A. 3B. 5C.52D .1+ 3 解析:连结AF1,则∠F 1AF 2=90°,∠AF 2B =60°, ∴|AF 1|=12|F 1F 2|=c ,|AF 2|=32|F 1F 2|=3c ,∴3c -c =2a ,∴e =c a =23-1=1+ 3.答案:D9.(2009·海淀模拟)若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( )A .(0,4)B .(0,2)C .(-2,4)D .(4,-2) 解析:直线l 1恒过定点(4,0),点(4,0)关于点(2,1)对称的点为(0,2),由题意知l 2恒过点(0,2). 答案:B10.抛物线y 2=2px (p >0)的准线经过等轴双曲线x 2-y 2=1的左焦点,则p =( ) A.22B.2 C .2 2 D .4 2 解析:双曲线x 2-y 2=1的左焦点为(-2,0),故抛物线的准线为x =-2,∴p2=2,p =2 2. 答案:C11.若直线ax +by +1=0(a 、b >0)过圆x 2+y 2+8x +2y +1=0的圆心,则1a +4b 的最小值为 ( ) A .8 B .12 C .16 D .20解析:由题意知,圆心坐标为(-4,-1),由于直线过圆心,所以4a +b =1,从而1a +4b =(1a +4b )(4a +b )=8+b a +16ab ≥8+2×4=16(当且仅当b =4a 时取“=”). 答案:C12.(2010·诸城模拟)过抛物线y 2=2px (p >0)的焦点F 的 直线l 交抛物线于点A 、B (如图所示),交其准线于点C , 若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为 ( ) A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x解析:点F 到抛物线准线的距离为p ,又由|BC |=2|BF |得点 B 到准线的距离为|BF |,则|BF ||BC |=12,∴l 与准线夹角为30°,则直线l 的倾斜角为60°.由|AF |=3,如图连结AH ⊥HC , EF ⊥AH ,则AE =3-p , 则cos60°=3-p 3,故p =32.∴抛物线方程为y 2=3x . 答案:C二、填空题(本大题共4小题,每小题4分,共16分.将答案填写在题中的横线上) 13.(2009·杭州模拟)直线x +2y -2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率等于________.解析:直线过点(2,0)和(0,1),即为椭圆的一个焦点和一个顶点,又a >b >0,∴焦点在x 轴上,∴c =2,b =1,a =22+12=5,∴e =255.答案:25514.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线x ·sin A +ay +c =0与bx -y ·sin B +sin C =0的位置关系是________. 解析:在△ABC 中,由正弦定理得a sin A =b sin B ,∴a sin B -b sin A =0, ∴两直线垂直. 答案:垂直15.(2009·全国卷Ⅱ)已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积等于________.解析:依题意过A (1,2)作圆x 2+y 2=5的切线方程为x +2y =5,在x 轴上的截距为5,在y 轴上的截距为52,切线与坐标轴围成的面积S =12·52·5=254.答案:25416.(2009·湖南高考)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.解析:∵∠AOB =120°,∴∠AOF =60°. 在Rt △OAF 中,|OA |=a ,|OF |=c , ∴e =c a =|OF ||OA |=1cos60°=2.答案:2三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知A (x 1,y 1),B (x 2,y 2)分别在直线x +y -7=0及x +y -5=0上,求AB 中点M 到原点距离的最小值. 解:设AB 中点为(x 0,y 0), ∴⎩⎨⎧x 0=x 1+x 22,y 0=y 1+y22.又∵⎩⎪⎨⎪⎧x 1+y 1-7=0,x 2+y 2-5=0,∴(x 1+x 2)+(y 1+y 2)=12, ∴2x 0+2y 0=12, ∴x 0+y 0=6.∴原点到x 0+y 0=6距离为所求,即d =62=3 2. 18.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线x -3y =4相切. (1)求圆O 的方程;(2)圆O 与x 轴相交点A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA ·PB的取值范围.解:(1)依题设,圆O 的半径r 等于原点O 到直线x -3y =4的距离,即r =41+3=2.得圆O 的方程为x 2+y 2=4. (2)不妨设A (x 1,0),B (x 2,0),x 1<x 2. 由x 2=4即得A (-2,0),B (2,0).设P (x ,y ),由|P A |、|PO |、|PB |成等比数列,得 (x +2)2+y 2·(x -2)2+y 2=x 2+y 2, 即x 2-y 2=2.PA ·PB =(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=2(y 2-1).由于点P 在圆O 内,故⎩⎪⎨⎪⎧x 2+y 2<4,x 2-y 2=2.由此得y 2<1.所以PA ·PB的取值范围为[-2,0). 19.(本小题满分12分)已知点(x ,y )在曲线C 上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程x 2+y 2=8;定点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A ,B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.解:(1)在曲线C 上任取一个动点P (x ,y ), 则点(x,2y )在圆x 2+y 2=8上. 所以有x 2+(2y )2=8.整理得曲线C 的方程为x 28+y 22=1.(2)∵直线l 平行于OM ,且在y 轴上的截距为m , 又k OM =12,∴直线l 的方程为y =12x +m .由⎩⎨⎧y =12x +m ,x 28+y22=1.得x 2+2mx +2m 2-4=0∵直线l 与椭圆交于A 、B 两个不同点, ∴Δ=(2m )2-4(2m 2-4)>0, 解得-2<m <2且m ≠0.∴m 的取值范围是-2<m <0或0<m <2.20.(本小题满分12分)(2010·诸城模拟)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆过圆C :x 2+y 2-4x +22y =0的圆心C . (1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程. 解:(1)圆C 的方程化为:(x -2)2+(y +2)2=6. 圆心C (2,-2),半径r = 6. 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0).则⎩⎨⎧4a 2+2b 2=11-(b a )2=(22)2⇒⎩⎪⎨⎪⎧a 2=8b 2=4, 所以所求椭圆的方程是x 28+y 24=1.(2)由(1)得椭圆的左右焦点分别是F 1(-2,0),F 2(2,0), |F 2C |=(2-2)2+(0+2)2=2<r =6, F 2在圆C 内,故过F 2没有圆C 的切线, 设l 的方程为y =k (x +2),即kx -y +2k =0.点C (2,-2)到直线l 的距离为d =|2k +2+2k |1+k 2,由d =6,即|2k +2+2k |1+k 2=6,化简得5k 2+42k -2=0, 解得k =25或k =-2, 故l 的方程为2x -5y +22=0或2x +y +22=0.21.(本小题满分12分)椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,2),离心率e =63.(1)求椭圆的方程;(2)直线l :y =kx -2(k ≠0)与椭圆相交于不同的两点M 、N ,且满足MP =PN,AP ·MN =0,求直线l 的方程.解:(1)设c =a 2-b 2,依题意 得⎩⎪⎨⎪⎧b =2,e =c a =a 2-b 2a =63,即⎩⎪⎨⎪⎧b =2,6a 2=9a 2-9b 2, ∴a 2=3b 2=12,即椭圆方程为x 212+y 24=1.(2)∵MP =PN ,AP ·AP=0,∴AP ⊥MN , 且点P 是线段MN 的中点,由⎩⎪⎨⎪⎧y =kx -2,x 212+y 24=1,消去y 得x 2+3(kx -2)2=12, 即(1+3k 2)x 2-12kx =0,(*)由k ≠0,得方程(*)中Δ=(-12k )2=144k 2>0,显然方程(*)有两个不相等的实数根. 设M (x 1,y 1)、N (x 2,y 2),线段MN 的中点P (x 0,y 0), 则x 1+x 2=12k 1+3k 2,∴x 0=x 1+x 22=6k1+3k 2. ∴y 0=kx 0-2=6k 2-2(1+3k 2)1+3k 2=-21+3k 2, 即P ⎝⎛⎭⎪⎫6k 1+3k 2,-21+3k 2. ∵k ≠0,∴直线AP 的斜率为k 1=-21+3k 2-26k 1+3k 2=-2-2(1+3k 2)6k .由MN ⊥AP ,得-2-2(1+3k 2)6k ·k =-1,∴2+2+6k 2=6,解得k =±33,故直线方程为y =±33x -2.22.(本小题满分14分)抛物线的顶点在原点,焦点在x 轴的正半轴上,直线x +y -1=0与抛物线相交于A 、B 两点,且|AB |=8611. (1)求抛物线的方程;(2)在x 轴上是否存在一点C ,使△ABC 为正三角形?若存在,求出C 点的坐标;若不存在,请说明理由.解:(1)设所求抛物线的方程为y 2=2px (p >0),由⎩⎪⎨⎪⎧y 2=2px ,x +y -1=0,消去y ,得x 2-2(1+p )x +1=0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2(1+p ),x 1·x 2=1. ∵|AB |=8611, ∴(1+k 2)[(x 1+x 2)2-4x 1x 2]=8611,∴121p 2+242p -48=0. ∴p =211或-2411(舍).∴抛物线的方程为y 2=411x .(2)设AB 的中点为D ,则D (1311,-211).假设x 轴上存在满足条件的点C (x 0,0), ∵△ABC 为正三角形,∴CD ⊥AB ,∴k CD =1, ∴x 0=1511.∴C (1511,0),∴|CD |=2211.又∵|CD|=32|AB|=12211,故矛盾,∴x轴上不存在点C,使△ABC为正三角形.。
解析几何测试题及答案解析
解析几何测试题及答案解析(1)(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2013届高三数学章末综合测试题(15)平面解析几何(1)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知圆x 2+y 2+Dx +Ey =0的圆心在直线x +y =1上,则D 与E 的关系是( )A .D +E =2B .D +E =1C .D +E =-1D .D +E =-2X k b 1 . c o m解析 D 依题意得,圆心⎝⎛⎭⎫-D2,-E 2在直线x +y =1上,因此有-D 2-E 2=1,即D+E =-2.2.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( )A .(x +1)2+(y +1)2=2B .(x -1)2+(y -1)2=2C .(x +1)2+(y +1)2=8D .(x -1)2+(y -1)2=8解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x -1)2+(y -1)2=2.3.已知F 1、F 2是椭圆x 24+y 2=1的两个焦点,P 为椭圆上一动点,则使|PF 1|·|PF 2|取最大值的点P 为( )A .(-2,0)B .(0,1)C .(2,0)D .(0,1)和(0,-1)解析 D 由椭圆定义,|PF 1|+|PF 2|=2a =4,∴|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1|+|PF 2|22=4, 当且仅当|PF 1|=|PF 2|,即P (0,-1)或(0,1)时,取“=”.4.已知椭圆x 216+y 225=1的焦点分别是F 1、F 2,P 是椭圆上一点,若连接F 1、F 2、P 三点恰好能构成直角三角形,则点P 到y 轴的距离是( ) B .3解析 A 椭圆x 216+y 225=1的焦点分别为F 1(0,-3)、F 2(0,3),易得∠F 1PF 2<π2,∴∠PF 1F 2=π2或∠PF 2F 1=π2,点P 到y 轴的距离d =|x p |,又|y p |=3,x 2p 16+y 2p25=1,解得|x P |=165,故选A.5.若曲线y =x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( )A .4x +y +4=0B .x -4y -4=0C .4x -y -12=0D .4x -y -4=0解析 D 设切点为(x 0,y 0),则y ′|x =x 0=2x 0, ∴2x 0=4,即x 0=2, ∴切点为(2,4),方程为y -4=4(x -2),即4x -y -4=0.6.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析 C 方程可化为x 21m +y 21n=1,若焦点在y 轴上,则1n >1m >0,即m >n >0.7.设双曲线x 2a 2-y 2b 2=1的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为( )B .5解析 D 双曲线的渐近线为y =±bax ,由对称性,只要与一条渐近线有一个公共点即可由⎩⎪⎨⎪⎧y =x 2+1,y =b ax ,得x 2-ba x +1=0.∴Δ=b 2a 2-4=0,即b 2=4a 2,∴e = 5.8.P 为椭圆x 24+y 23=1上一点,F 1、F 2为该椭圆的两个焦点,若∠F 1PF 2=60°,则PF 1→·PF 2→=( )A .3 C .2 3D .2解析 D ∵S △PF 1F 2=b 2tan 60°2=3×tan 30°=3=12|PF 1→|·|PF 2→|·sin 60°,∴|PF 1→||PF 2→|=4,∴PF 1→·PF 2→=4×12=2.9.设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )+y 216=1 +y 212=1 +y 264=1 +y 248=1 解析 B 抛物线的焦点为(2,0),∴由题意得⎩⎪⎨⎪⎧c =2,c m =12,∴m =4,n 2=12,∴方程为x 216+y 212=1.10.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( )C .2D .3解析 B 设双曲线C 的方程为x 2a 2-y 2b 2=1,焦点F (-c ,0),将x =-c 代入x 2a 2-y 2b 2=1可得y 2=b 4a 2,∴|AB |=2×b 2a =2×2a ,∴b 2=2a 2,c 2=a 2+b 2=3a 2,∴e =c a= 3.11.已知抛物线y 2=4x的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,且此双曲线的一条渐近线方程为y =2x ,则双曲线的焦距为( )B .2 5D .2 3解析 B ∵抛物线y 2=4x的准线x =-1过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,∴a =1,∴双曲线的渐近线方程为y =±ba x =±bx .∵双曲线的一条渐近线方程为y =2x ,∴b =2,∴c =a 2+b 2=5,∴双曲线的焦距为2 5.12.已知抛物线y 2=2px (p >0)上一点M (1,m )(m >0)到其焦点的距离为5,双曲线x 2a-y2=1的左顶点为A ,若双曲线的一条渐近线与直线AM 平行,则实数a 的值为( )解析 A 由于M (1,m )在抛物线上,∴m 2=2p ,而M 到抛物线的焦点的距离为5,根据抛物线的定义知点M 到抛物线的准线x =-p 2的距离也为5,∴1+p2=5,∴p =8,由此可以求得m =4,双曲线的左顶点为A (-a ,0),∴k AM =41+a,而双曲线的渐近线方程为y =±x a ,根据题意得,41+a=1a ,∴a =19.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.已知直线l 1:ax -y +2a +1=0和l 2:2x -(a -1)y +2=0(a ∈R ),则l 1⊥l 2的充要条件是a =________.解析 l 1⊥l 2⇔a ·2a -1=-1,解得a =13.【答案】 1314.直线l :y =k (x +3)与圆O :x 2+y 2=4交于A ,B 两点,|AB |=22,则实数k =________.解析 ∵|AB |=22,圆O 半径为2,∴O 到l 的距离d =22-2= 2.即|3k |k 2+1=2,解得k =±147. 【答案】 ±14715.过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P 、Q ,则线段PQ 的长为________.解析 如图,圆的方程可化为 (x -3)2+(y -4)2=5, ∴|OM |=5,|OQ |=25-5=2 5.在△OQM 中,12|QA |·|OM |=12|OQ |·|QM |, ∴|AQ |=25×55=2,∴|PQ |=4. 【答案】 416.在△ABC 中,|BC →|=4,△ABC 的内切圆切BC 于D 点,且|BD →|-|CD →|=22,则顶点A 的轨迹方程为________.解析 以BC 的中点为原点,中垂线为y 轴建立如图所示的坐标系,E 、F 分别为两个切点.则|BE |=|BD |,|CD |=|CF |, |AE |=|AF |.∴|AB |-|AC |=22,∴点A 的轨迹为以B ,C 为焦点的双曲线的右支(y ≠0),且a =2,c =2,∴b =2,∴方程为x 22-y 22=1(x >2).【答案】 x 22-y 22=1(x >2)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)在平面直角坐标系中,已知圆心在直线y =x +4上,半径为22的圆C 经过原点O .(1)求圆C 的方程;(2)求经过点(0,2)且被圆C 所截得弦长为4的直线方程. 解析 (1)设圆心为(a ,b ),则⎩⎪⎨⎪⎧b =a +4,a 2+b 2=22,解得⎩⎪⎨⎪⎧a =-2,b =2,故圆的方程为(x +2)2+(y -2)2=8.(2)当斜率不存在时,x =0,与圆的两个交点为(0,4),(0,0),则弦长为4,符合题意; 当斜率存在时,设直线为y -2=kx ,则由题意得,8=4+⎪⎪⎪⎪⎪⎪⎪⎪-2k 1+k 22,无解. 综上,直线方程为x =0.18.(12分)(2011·合肥一模)椭圆的两个焦点坐标分别为F 1(-3,0)和F 2(3,0),且椭圆过点⎝⎛⎭⎫1,-32. (1)求椭圆方程;(2)过点⎝⎛⎭⎫-65,0作不与y 轴垂直的直线l 交该椭圆于M ,N 两点,A 为椭圆的左顶点.试判断∠MAN 的大小是否为定值,并说明理由.解析 (1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由c =3,椭圆过点⎝⎛⎭⎫1,-32可得⎩⎪⎨⎪⎧a 2-b 2=3,1a 2+34b 2=1, 解得⎩⎪⎨⎪⎧a 2=4,b 2=1,所以可得椭圆方程为x 24+y 2=1.(2)由题意可设直线MN 的方程为:x =ky -65,联立直线MN 和椭圆的方程:⎩⎨⎧x =ky -65,x24+y 2=1,化简得(k 2+4)y 2-125ky -6425=0.设M (x 1,y 1),N (x 2,y 2),则y 1y 2=-6425(k 2+4),y 1+y 2=12k5(k 2+4), 又A (-2,0),则AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2)=(k 2+1)y 1y 2+45k (y 1+y 2)+1625=0,所以∠MAN =π2.19.(12分)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别为7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=e (e 为椭圆离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.解析 (1)设椭圆长半轴长及半焦距分别为a ,c ,由已知,得⎩⎪⎨⎪⎧ a -c =1,a +c =7,解得⎩⎪⎨⎪⎧a =4,c =3.∴椭圆方程为x 216+y 27=1.(2)设M (x ,y ),P (x ,y 1),其中x ∈[-4,4],由已知得x 2+y 21x 2+y2=e 2,而e =34,故16(x 2+y 21)=9(x 2+y 2),①由点P 在椭圆C 上,得y 21=112-7x 216, 代入①式并化简,得9y 2=112.∴点M 的轨迹方程为y =±473(-4≤x ≤4),∴轨迹是两条平行于x 轴的线段.20.(12分)给定抛物线y 2=2x ,设A (a,0),a >0,P 是抛物线上的一点,且|P A |=d ,试求d 的最小值.解析 设P (x 0,y 0)(x 0≥0),则y 20=2x 0, ∴d =|P A |=(x 0-a )2+y 20=(x 0-a )2+2x 0=[x 0+(1-a )]2+2a -1.∵a >0,x 0≥0,∴(1)当0<a <1时,1-a >0, 此时有x 0=0时,d min =(1-a )2+2a -1=a ;(2)当a ≥1时,1-a ≤0, 此时有x 0=a -1时,d min =2a -1.21.(12分)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10),点M (3,m )在双曲线上.(1)求双曲线方程;(2)求证:点M 在以F 1F 2为直径的圆上; (3)求△F 1MF 2的面积.解析 (1)∵双曲线离心率e =2, ∴设所求双曲线方程为x 2-y 2=λ(λ≠0), 则由点(4,-10)在双曲线上, 知λ=42-(-10)2=6,∴双曲线方程为x 2-y 2=6.(2)若点M (3,m )在双曲线上,则32-m 2=6,∴m 2=3,由双曲线x 2-y 2=6知F 1(23,0),F 2(-23,0),∴MF 1→·MF 2→=(23-3,-m )·(-23-3,-m )=m 2-3=0, ∴MF 1→⊥MF 2→,故点M 在以F 1F 2为直径的圆上. (3)S △F 1MF 2=12|F 1F 2|·|m |=23×3=6.22.(12分)已知实数m >1,定点A (-m,0),B (m,0),S 为一动点,点S 与A ,B 两点连线斜率之积为-1m2.(1)求动点S 的轨迹C 的方程,并指出它是哪一种曲线;(2)当m =2时,问t 取何值时,直线l :2x -y +t =0(t >0)与曲线C 有且只有一个交点?(3)在(2)的条件下,证明:直线l 上横坐标小于2的点P 到点(1,0)的距离与到直线x =2的距离之比的最小值等于曲线C 的离心率.解析 (1)设S (x ,y ),则k SA =y -0x +m ,k SB =y -0x -m . 由题意,得y 2x 2-m 2=-1m 2,即x 2m 2+y 2=1(x ≠±m ). ∵m >1,∴轨迹C 是中心在坐标原点,焦点在x 轴上的椭圆(除去x 轴上的两顶点),其中长轴长为2m ,短轴长为2.(2)当m =2时,曲线C 的方程为x 22+y 2=1(x ≠±2).由⎩⎪⎨⎪⎧2x -y +t =0,x 22+y 2=1,消去y ,得9x 2+8tx +2t 2-2=0.令Δ=64t 2-36×2(t 2-1)=0,得t =±3.∵t >0,∴t =3.此时直线l 与曲线C 有且只有一个公共点. (3)由(2)知直线l 的方程为2x -y +3=0,设点P (a,2a +3)(a <2),d 1表示P 到点(1,0)的距离,d 2表示P 到直线x =2的距离,则 d 1=(a -1)2+(2a +3)2=5a 2+10a +10,d 2=2-a , ∴d 1d 2=5a 2+10a +102-a=5×a 2+2a +2(a -2)2.令f (a )=a 2+2a +2(a -2)2,则f ′(a )=(2a +2)(a -2)2-2(a 2+2a +2)(a -2)(a -2)4=-(6a +8)(a -2)3.令f ′(a )=0,得a =-43.∵当a <-43时,f ′(a )<0;当-43<a <2时,f ′(a )>0.∴f (a )在a =-43时取得最小值,即d 1d 2取得最小值,∴⎝⎛⎭⎫d 1d 2min =5·f ⎝⎛⎭⎫-43=22, 又椭圆的离心率为22, ∴d 1d 2的最小值等于椭圆的离心率.。
《解析几何》测试试题及答案
《解析几何》测试试题及答案(时间:120分钟 满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若双曲线C :x 2m-y 2=1(m >0)的一条渐近线的方程为3x +2y =0,则m =( )A.49B.94C.23D.32解析 由题意知,双曲线的渐近线方程为y =±1mx (m >0).3x +2y =0可化为 y =-32x ,所以1m =32,解得m =49.故选A.答案 A2.若圆x 2+y 2-4x +2y +a =0与x 轴、y 轴均有公共点,则实数a 的取值范围是( ) A.(-∞,1] B.(-∞,0] C.[0,+∞)D.[5,+∞)解析 将圆的一般方程化作标准方程为(x -2)2+(y +1)2=5-a ,则该圆的圆心坐标为(2,-1),半径r =5-a .因为该圆与x 轴、y 轴均有公共点,所以⎩⎨⎧2≤5-a ,1≤5-a ,5-a >0,解得a ≤1,则实数a 的取值范围是(-∞,1].故选A. 答案 A3.已知P 为圆C :(x -5)2+y 2=36上任意一点,A (-5,0).若线段PA 的垂直平分线交直线PC 于点Q ,则点Q 的轨迹方程为( )A.x 29+y 216=1B.x 29-y 216=1C.x 29-y 216=1(x <0) D.x 29-y 216=1(x >0) 解析 如图,由题意知|QA |=|QP |,||QA |-|QC ||=||QP |-|QC ||=|PC |=6<|AC |=10,所以动点Q 的轨迹是以A ,C 为焦点的双曲线,其方程为x 29-y 216=1.故选B.答案 B4.仿照“Dandelin 双球”模型,人们借助圆柱内的两个内切球完美地证明了平面截圆柱的截面为椭圆面.如图,底面半径为1的圆柱内两个内切球球心距离为4,现用与两球都相切的平面截圆柱所得到的截面边缘线是一椭圆,则该椭圆的离心率为( )A.12B.33C.22D.32解析 由题意可知椭圆的长轴与两球心连线的夹角为30°,所以椭圆的长轴2a =2sin 30°=4,a =2,椭圆的短轴长等于球的直径,所以b =1,c =3,e =c a =32,故选D. 答案 D5.已知点P 在圆C :x 2+(y -2)2=1上,点Q 在直线l :x -2y +1=0上,且点Q 的横坐标x ∈[-1,a ).若|PQ |既有最大值又有最小值,则实数a 的取值范围是( )A.⎝ ⎛⎦⎥⎤35,115B.⎝ ⎛⎭⎪⎫35,+∞C.⎣⎢⎡⎦⎥⎤35,115D.⎣⎢⎡⎭⎪⎫35,+∞ 解析 如图,直线l :x -2y +1=0与x 轴交于点Q 1(-1,0).连接Q 1C 并延长,交圆C 于点P 1.过点C 作CQ 2⊥直线l 于点Q 2,交圆C 于点P 2,则|P 2Q 2|为|PQ |的最小值.易知直线CQ 2:y=-2x +2.设Q 2(x 2,y 2),联立得方程组⎩⎪⎨⎪⎧y =-2x +2,x -2y +1=0,解得x 2=35,∴a >35.设点Q 3(x 3,y 3).为点Q 1关于点Q 2的对称点,则x 3=115.当a >115时,|PQ |无法取到最大值,当35<a ≤115时,|PQ |的最大值为|P 1Q 1|,∴35<a ≤115.故选A.答案 A6.已知直线y =k (x -1)与抛物线C :y 2=4x 交于A ,B 两点,直线y =2k (x -2)与抛物线D :y 2=8x 交于M ,N 两点,设λ=|AB |-2|MN |,则( )A.λ<-16B.λ=-16C.-12<λ<0D.λ=-12解析 设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,则x 1+x 2=2k 2+4k 2=2+4k 2.因为直线y =k (x -1)经过抛物线C 的焦点,所以|AB |=x 1+x 2+p =4+4k2.同理可得|MN |=8+2k 2.所以λ=4+4k2-2×⎝ ⎛⎭⎪⎫8+2k 2=4-16=-12.故选D.答案 D7.圆C :x 2+y 2-10y +16=0上有且仅有两点到双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线离心率的取值范围是( ) A.(2,5)B.⎝ ⎛⎭⎪⎫53,52 C.⎝ ⎛⎭⎪⎫54,52D.(5,2+1)解析 双曲线x 2a 2-y 2b2=1的一条渐近线方程为bx -ay =0,圆C :x 2+y 2-10y +16=0的圆心坐标为(0,5),半径为3.因为圆C 上有且仅有两点到直线bx -ay =0的距离为1,所以圆心(0,5)到直线bx -ay =0的距离d 的范围为2<d <4,即2<5aa 2+b2<4.又a 2+b 2=c 2,所以2<5a c<4,即54<e <52.故选C.答案 C8.如图,已知抛物线C :y 2=2px (p >0)的焦点为F ,点P (x 0,23)⎝ ⎛⎭⎪⎫x 0>p 2是抛物线C 上一点.以P 为圆心的圆与线段PF 交于点Q ,与过焦点F 且垂直于x 轴的直线交于点A ,B ,|AB |=|PQ |,直线PF 与抛物线C 的另一交点为M .若|PF |=3|PQ |,则|PQ ||FM |=( )A.1B. 3C.2D. 5解析 如图,连接PA ,PB .因为|AB |=|PQ |,所以△PAB 是正三角形.又x 0>p 2,所以x 0-p 2=32|PQ |.又因为|PF |=x 0+p 2=3|PQ |,所以x 0=3p 2.所以点P ⎝ ⎛⎭⎪⎫3p 2,23,所以(23)2=2p ·3p 2.因为p >0,所以p =2.所以F (1,0),P (3,23),所以|PQ |=33|PF |=33·(23-0)2+(3-1)2=433,抛物线C 的方程为y 2=4x ,直线PF 的方程为y =3(x -1).由⎩⎨⎧y =3(x -1),y 2=4x ,得M ⎝ ⎛⎭⎪⎫13,-233,所以|FM |=13+1=43,所以|PQ ||FM |= 3.故选B. 答案 B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.9.过点P (2,2)作圆C :(x +2)2+(y +2)2=r 2(r >0)的两条切线,切点分别为A ,B ,下列说法正确的是( ) A.0<r <2 2B.若△PAB 为直角三角形,则r =4C.△PAB 外接圆的方程为x 2+y 2=4D.直线AB 的方程为4x +4y +16-r 2=0解析 因为过点P (2,2)作圆C :(x +2)2+(y +2)2=r 2(r >0)的切线有两条,则点P 在圆C 外,则r <|PC |=42,故A 错误;若△PAB 为直角三角形,则四边形PACB 为正方形,则2r =|PC |=42,解得r =4,故B 正确;由PA ⊥CA ,PB ⊥CB ,可得点P ,A ,C ,B 共圆,所以△PAB 的外接圆就是以PC 为直径的圆,即x 2+y 2=8,故C 错误;将(x +2)2+(y +2)2=r 2与x 2+y2=8相减即得直线AB 的方程,所以直线AB 的方程为4x +4y +16-r 2=0,所以D 正确.故选BD. 答案 BD10.已知双曲线x 24-y 22=sin 2θ(θ≠k π,k ∈Z ),则不因θ改变而变化的是( )A.焦距B.离心率C.顶点坐标D.渐近线方程解析 由题意,得双曲线的标准方程为x 24sin 2θ-y 22sin 2θ=1,则a =2|sin θ|, b =2|sin θ|,则c =a 2+b 2=6|sin θ|,则双曲线的焦距为2c =26|sin θ|,顶点坐标为(±2|sin θ|,0),离心率为e =c a =62,渐近线方程为y =±22x .所以不因θ改变而变化的是离心率、渐近线方程.故选BD. 答案 BD11.设P 是椭圆C :x 22+y 2=1上任意一点,F 1,F 2是椭圆C 的左、右焦点,则( )A.|PF 1|+|PF 2|=2 2B.-2<|PF 1|-|PF 2|<2C.1≤|PF 1|·|PF 2|≤2D.0≤PF 1→·PF 2→≤1解析 椭圆C 的长轴长为22,根据椭圆的定义得|PF 1|+|PF 2|=22,故A 正确;||PF 1|-|PF 2||≤|F 1F 2|=22-1=2,所以-2≤|PF 1|-|PF 2|≤2,B 错误;|PF 1|·|PF 2|=14[(|PF 1|+|PF 2|)2-(|PF 1|-|PF 2|)2],而0≤(|PF 1|-|PF 2|)2≤4,所以1≤|PF 1|·|PF 2|≤2,C 正确;PF 1→·PF 2→=(OF 1→-OP →)·(OF 2→-OP →)=OF 1→·OF 2→-OP →·(OF 1→+OF 2→)+|OP →|2=|OP →|2-1,根据椭圆性质有1≤|OP |≤2,所以0≤PF 1→·PF 2→=|OP →|2-1≤1,D 正确.故选ACD.答案ACD12.如图,在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,准线为l.设l与x轴的交点为K,P为C上异于O的任意一点,P在l上的射影为E,∠EPF的外角平分线交x 轴于点Q,过点Q作QN⊥PE交EP的延长线于点N,作QM⊥PF交线段PF于点M,则( )A.|PE|=|PF|B.|PF|=|QF|C.|PN|=|MF|D.|PN|=|KF|解析由抛物线的定义,得|PE|=|PF|,A正确;∵PN∥QF,PQ是∠FPN的平分线,∴∠FQP =∠NPQ=∠FPQ,∴|PF|=|QF|,B正确;若|PN|=|MF|,则由PQ是∠FPN的平分线,QN⊥PE,QM⊥PF,得|QM|=|QN|,从而有|PM|=|PN|,于是有|PM|=|FM|,则有|QP|=|QF|,∴△PFQ为等边三角形,∠FPQ=60°,也即有∠FPE=60°,这只是在特殊位置才有可能,因此C错误;连接EF,如图,由选项A、B知|PE|=|QF|,又PE∥QF,∴EPQF是平行四边形,∴|EF|=|PQ|,∴△EKF≌△QNP,∴|KF|=|PN|,D正确.故选ABD.答案ABD三、填空题:本题共4小题,每小题5分,共20分.13.已知以x±2y=0为渐近线的双曲线经过点(4,1),则该双曲线的标准方程为________. 解析由题知,双曲线的渐近线方程为x±2y=0,设双曲线的方程为x2-4y2=λ(λ≠0).因为点(4,1)在双曲线上,所以λ=42-4=12,所以双曲线的标准方程为x212-y23=1.答案x212-y23=114.已知点A(-5,0),B(-1,-3),若圆x2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为5,则r的取值范围是________.解析由题意可得|AB|=(-1+5)2+(-3-0)2=5,根据△MAB和△NAB的面积均为5可得M ,N 到直线AB 的距离均为2,由于直线AB 的方程为y -0-3-0=x +5-1+5,即3x +4y +15=0,若圆上只有一个点到直线AB 的距离为2,则圆心到直线AB 的距离为|0+0+15|9+16=r +2,解得r =1,若圆上只有3个点到直线AB 的距离为2,则圆心到直线AB 的距离为|0+0+15|9+16=r -2,解得r =5.故r 的取值范围是(1,5).答案 (1,5)15.如图,点A ,B 分别是椭圆x 225+y 2b2=1(0<b <5)的长轴的左、右端点,F 为椭圆的右焦点,直线PF 的方程为15x +y -415=0,且PA →·PF →=0,设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于|MB |,则椭圆上的点到点M 的距离d 的最小值为________.解析 依题意得直线AP 的方程为x -15y +5=0,直线PF 与x 轴的交点为(4,0),即F (4,0),∴b 2=25-16=9,即椭圆方程为x 225+y 29=1.设M (m ,0)(-5≤m ≤5),则M 到直线AP 的距离为|m +5|4,又|MB |=|5-m |,所以|m +5|4=|5-m |,∵-5≤m ≤5,∴m +54=5-m ,解得m =3,∴M (3,0).设椭圆上的点(x ,y )(x ∈[-5,5])到M (3,0)的距离为d ,则d 2=(x -3)2+y 2=(x -3)2+9⎝ ⎛⎭⎪⎫1-x 225=1625x 2-6x +18=1625⎝ ⎛⎭⎪⎫x -75162+6316,∵x ∈[-5,5],∴当x =7516时,d 2最小,此时d min =374.答案37416.已知F 为抛物线x 2=2py (p >0)的焦点,点A (1,p ),M 为抛物线上任意一点,且|MA |+|MF |的最小值为3,则该抛物线的方程为________.若线段AF 的垂直平分线交抛物线于P ,Q 两点,则四边形APFQ 的面积为________.(本小题第一空2分,第二空3分)解析 由题意,得抛物线x 2=2py (p >0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,准线的方程为y =-p2.因为|MF |等于点M 到准线的距离,所以当p >12p 时,|MA |+|MF |的最小值为点A 到准线y =-p2的距离,而|MA |+|MF |的最小值为3,所以3p 2=3,解得p =2,满足p >12p ;当p ≤12p 时,|MA |+|MF |的最小值为|AF |,而|MA |+|MF |的最小值为3,所以(1-0)2+⎝ ⎛⎭⎪⎫p -p 22=3,解得p =42,不满足p ≤12p.综上所述,p =2.因此抛物线的方程为x 2=4y .由p =2得,点A (1,2),焦点F (0,1),则线段AF 的垂直平分线的方程为x +y -2=0,且|AF |=(1-0)2+(2-1)2=2.设线段AF 的垂直平分线与抛物线的交点分别为P (x 1,y 1),Q (x 2,y 2).由⎩⎪⎨⎪⎧x +y -2=0,x 2=4y .解得⎩⎨⎧x 1=-2+23,y 1=4-23或⎩⎨⎧x 2=-2-23,y 2=4+23,则|PQ |=(4+23-4+23)2+(-2-23+2-23)2=4 6.所以四边形APFQ 的面积S =12|AF |·|PQ |=12×2×46=4 3.答案 x 2=4y 4 3四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知椭圆C 的短轴的两个端点分别为A (0,1),B (0,-1),焦距为2 3. (1)求椭圆C 的方程;(2)已知直线y =m 与椭圆C 有两个不同的交点M ,N ,设D 为直线AN 上一点,且直线BD ,BM 的斜率的积为-14.证明:点D 在x 轴上.(1)解 由题意知c =3,b =1,∴a 2=b 2+c 2=4. ∵焦点在x 轴上,∴椭圆C 的方程为x 24+y 2=1.(2)证明 由题意可设M (-x 0,m ),N (x 0,m ),-1<m <1, 则x 20=4(1-m 2).①∵点D 在直线AN 上一点,A (0,1), ∴AD →=λAN →=λ(x 0,m -1),∴OD →=OA →+AD →=(λx 0,λ(m -1)+1), ∴D (λx 0,λ(m -1)+1). ∵B (0,-1),M (-x 0,m ),∴k BD ·k BM =λ(m -1)+2λx 0·m +1-x 0=-14.整理,得4λ(m 2-1)+8(m +1)=λx 20. 将①代入上式得(m +1)[λ(m -1)+1]=0. ∵m +1≠0,∴λ(m -1)+1=0, ∴点D 在x 轴上.18.(本小题满分12分)如图,已知椭圆C 1:x 22+y 2=1,抛物线C 2:y 2=2px (p >0),点A 是椭圆C 1与抛物线C 2的交点,过点A 的直线l 交椭圆C 1于点B ,交抛物线C 2于点M (B ,M 不同于A ).(1)若p =116,求抛物线C 2的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 解 (1)由p =116,得抛物线C 2的焦点坐标是⎝ ⎛⎭⎪⎫132,0. (2)由题意可设直线l :x =my +t (m ≠0,t ≠0),点A (x 0,y 0). 将直线l 的方程代入椭圆C 1:x 22+y 2=1,得(m 2+2)y 2+2mty +t 2-2=0, 所以点M 的纵坐标y M =-mtm 2+2.将直线l 的方程代入抛物线C 2:y 2=2px ,得y 2-2pmy -2pt =0, 所以y 0y M =-2pt ,解得y 0=2p (m 2+2)m,因此x 0=2p (m 2+2)2m2. 由x 202+y 20=1,得1p 2=4⎝ ⎛⎭⎪⎫m +2m 2+2⎝ ⎛⎭⎪⎫m +2m 4≥160, 当且仅当m =2,t =105时,p 取到最大值1040. 19.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0, 则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k (t -1)(x 1+x 2)+(t -1)2=⎪⎪⎪⎪⎪⎪2t 2-21+2k2k 2·2t 2-21+2k 2+k (t -1)·⎝ ⎛⎭⎪⎫-4kt 1+2k 2+(t -1)2=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).20.(本小题满分12分)已知抛物线C :y 2=2px (p >0)的焦点为F ,点A (2,2),点B 在抛物线C 上,且满足OF →=FB →-2FA →(O 为坐标原点).(1)求抛物线C 的方程;(2)过焦点F 任作两条相互垂直的直线l 与l ′,直线l 与抛物线C 交于P ,Q 两点,直线l ′与抛物线C 交于M ,N 两点,△OPQ 的面积记为S 1,△OMN 的面积记为S 2,求证:1S 21+1S 22为定值.(1)解 设B (x 0,y 0),∵F ⎝ ⎛⎭⎪⎫p 2,0, ∴OF →=FB →-2FA →=⎝ ⎛⎭⎪⎫x 0-p 2,y 0-2⎝ ⎛⎭⎪⎫2-p 2,2=⎝ ⎛⎭⎪⎫x 0+p 2-4,y 0-4=⎝ ⎛⎭⎪⎫p 2,0, ∴⎩⎪⎨⎪⎧x 0+p 2-4=p 2,y 0-4=0,∴⎩⎪⎨⎪⎧x 0=4,y 0=4. ∵点B 在抛物线C 上,∴42=2p ×4,∴p =2,∴y 2=4x .(2)证明 设P (x 1,y 1),Q (x 2,y 2),由题意得,直线l 的斜率存在且不为零.设l :x =my +1,代入y 2=4x 得,y 2-4my -4=0.∴y 1+y 2=4m ,y 1y 2=-4.∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2=16m 2+16=4m 2+1.因此S 1=12|y 1-y 2|×1=2m 2+1. 同理可得,S 2=21m 2+1. ∴1S 21+1S 22=14(m 2+1)+14⎝ ⎛⎭⎪⎫1m 2+1=14(m 2+1)+m 24(m 2+1)=14. ∴1S 21+1S 22为定值,定值为14. 21.(本小题满分12分)设圆x 2+y 2+2x -15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(1)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.(1)证明 因为|AD |=|AC |,EB ∥AC ,故∠EBD =∠ACD =∠ADC ,所以|EB |=|ED |,故|EA |+|EB |=|EA |+|ED |=|AD |.由题设得A (-1,0),B (1,0),|AB |=2,又圆A 的标准方程为(x +1)2+y 2=16,从而|AD |=4,所以|EA |+|EB |=4>|AB |.由椭圆定义可得点E 的轨迹方程为:x 24+y 23=1(y ≠0). (2)解 当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0. 则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3, 所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3. 过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝ ⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1. 故四边形MPNQ 的面积S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83).当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,故四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为[12,83).22.(本小题满分12分)已知以动点P 为圆心的⊙P 与直线l :x =-12相切,与定圆F :(x -1)2+y 2=14外切. (1)求动圆圆心P 的轨迹C 的方程;(2)过曲线C 上位于x 轴两侧的点M ,N (MN 不与x 轴垂直)分别作直线l 的垂线,垂足分别为M 1,N 1,直线l 交x 轴于点A ,记△AMM 1,△AMN ,△ANN 1的面积分别为S 1,S 2,S 3,且S 22=4S 1S 3,求证:直线MN 过定点.(1)解 设P (x ,y ),⊙P 的半径为R ,则R =x +12,|PF |=R +12, ∴点P 到直线x =-1的距离与到定点F (1,0)的距离相等,故点P 的轨迹C 的方程为y 2=4x .(2)证明 设M (x 1,y 1),N (x 2,y 2), 则M 1⎝ ⎛⎭⎪⎫-12,y 1,N ⎝ ⎛⎭⎪⎫-12,y 2, 设直线MN :x =ty +n (t ≠0,n >0).将直线MN 的方程代入y 2=4x 消去x 并整理,得y 2-4ty -4n =0,则y 1+y 2=4t ,y 1y 2=-4n <0.∵S 1=12⎝ ⎛⎭⎪⎫x 1+12·|y 1|,S 3=12⎝⎛⎭⎪⎫x 2+12·|y 2|, ∴4S 1S 3=⎝⎛⎭⎪⎫x 1+12⎝ ⎛⎭⎪⎫x 2+12|y 1y 2| =⎝⎛⎭⎪⎫ty 1+n +12⎝ ⎛⎭⎪⎫ty 2+n +12|y 1y 2| =⎣⎢⎡⎦⎥⎤t 2y 1y 2+⎝ ⎛⎭⎪⎫n +12t (y 1+y 2)+⎝ ⎛⎭⎪⎫n +122·|-4n | =⎣⎢⎡⎦⎥⎤-4nt 2+4t 2⎝ ⎛⎭⎪⎫n +12+⎝ ⎛⎭⎪⎫n +122·4n =⎣⎢⎡⎦⎥⎤2t 2+⎝ ⎛⎭⎪⎫n +122·4n . ∵S 2=12⎝⎛⎭⎪⎫n +12·|y 1-y 2| =12⎝⎛⎭⎪⎫n +12·(y 1+y 2)2-4y 1y 2, ∴S 22=14⎝ ⎛⎭⎪⎫n +122·(16t 2+16n )=4⎝ ⎛⎭⎪⎫n +122(t 2+n ). ∵S 22=4S 1S 3,∴n ⎣⎢⎡⎦⎥⎤2t 2+⎝ ⎛⎭⎪⎫n +122=⎝ ⎛⎭⎪⎫n +122(t 2+n ), 即2n =⎝ ⎛⎭⎪⎫n +122,解得n =12. ∴直线MN 恒过定点⎝ ⎛⎭⎪⎫12,0.。
解析几何(直线、圆、椭圆)检测题一
3、已知椭圆的对称轴是坐标轴,离心率为 ,长轴长为12,则椭圆方程为()
A. 或 B.
C. 或 D. 或
4、不论m为何值,直线(m-1)x-y+2m+1=0恒过定点()
A、(1, ) B、(-2,0) C、(2,3) D、(2,3)
5、若直线 与圆 相交,则点 的位置是()
解析几何(直线、圆、椭圆)检测题一
姓名
一、选择题:(本大题共12小题,每小题5分,共60分)
1、F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()
A.椭圆B.直线C.线段D.圆
2、过椭圆 的一个焦点 的直线与椭圆交于 、 两点,则 、 与椭圆的另一焦点 构成 ,那么 的周长是()
(1)求 的最大值;(2)求2x-y的最小值。
20、一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长30 km的圆形区域.已知港口位于台风正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?
21、已知圆 与直线 相交于P、Q两点,O为坐标原点,以线段PQ为直径的圆过原点,求m的值。
22、已知三条直线: ; ; ,且 与 的距离为 。(1)求 的值;(2)能否找到一点P,使P同时满足下列三个条件①点P在第一象限②点P到 的距离是点P到 的距离的 。③点P到 的距离与点P到 的距离的之比是 。若能求出点P的坐标;若不能,请说明理由。
A、1 B、2C、3 D、4
9、如图所示,直线l1:ax-y+b=0与l2:bx-y+a=0(ab≠0,a≠b)、的图象只可能是( )
10、圆 上的点到直线 的距离的最小值是()
解析几何周末练习
5.过点(1,)的直线l将圆(x-2)2+y2=4分成两段弧,当劣弧所对的圆心角最小时,直线l的斜率k=.
6.曲线 与直线 有两个不同的交点,则实数 的取值范围是_________;
周末(11.23)练习(解析几何)
一.填空题:
1.若圆 上至少有三个不同点到直线 : 的距离为 ,则直线 的倾斜角的取值范围是;
2.已知直线 的方程为 ,直线 的方程为 ( 为实数).当直线 与直线 的夹角在(0, )之间变动时, 的取值范围是
3.已知圆 ,点 (-2,0)及点 (2, ),从 点观察 点,要使视线不被圆 挡住,则 的取值范围是;
7.已知圆M:(x+cos)2+(y-sin)2=1,直线l:y=kx,下面四个命题:①对任意实数k与,直线l和圆M相切;②对任意实数k与,直线l和圆M有公共点;③对任意实数,必存在实数k,使得直线l与和圆M相切;④对任意实数k,必存在实数,使得直线l与和圆M相切。
其中真命题的代号是______________(写出所有真命题的代号)
其中真命题的代号是______________(写出所有真命题的代号)
答案:②④
8.已知抛物线 上存在关于直线 对称的相异两点A、B,则|AB|等于;
答案:4
9.若 ,则“ ”是“方程 表示双曲线”的条件;
答案:充分不必要条件
10.直线 与双曲线 仅有一个公共点,这样的直线有条;
答案:3
11.椭圆 上的一点M到左焦点 的距离为2,N是M 的中点,则|ON|等于;
答案:
16.设 分别是椭圆的两个焦点,过 作椭圆长轴的垂线叫椭圆于点P,若 为等腰直角三角形,则椭圆的离心率为.
高考数学复习 解析几何初步1周测训练题
海南省洋浦中学2010届高三数学周测29《解析几何初步1》时量:60分钟 满分:80分 班级: 姓名: 计分:个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’)一、选择题(本大题共6小题,每小题5分,满分30分)1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A .1=+b aB .1=-b aC .0=+b aD .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1-C .090,不存在D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m 二、填空题:(本大题共6小题,每小题5分,满分30分)1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何单元检测题2013/1/12一、选择题1.任意的实数k ,直线1+=kx y 与圆222=+y x 的位置关系一定是( )A . 相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心 2.设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行 的( ) A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件3.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( )A 、B 、C 、4D 、4.已知椭圆2222:1(0)x y C a b a b +=>>双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为( )(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y += 5.设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A .1342222=-y x B.15132222=-y x C.1432222=-y x D.112132222=-y x6.已知圆的方程为08622=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC和BD ,则四边形ABCD 的面积为( )A .106 B.206 C.306 D.4067. 设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ). A.45 B. 5 C. 25 D.5 8.已知双曲线22221x y a b-=(a>0,b>0)的两条渐近线均和圆C :x 2+y 2-6x+5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.22154x y -= B.22145x y -=C.221x y 36-= D .221x y 63-= 9. 过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则AOB ∆的面积为( )()A 2()B ()C2()D 10.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是( )(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞ (C )]222,222[+- (D )),222[]222,(+∞+⋃--∞11.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 812.设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45二、填空题13. 椭圆 )0(12222>>=+b a by a x 的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2。
若1AF ,21F F ,B F 1成等比数列,则此椭圆的离心率为________.14.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 .15.椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是_________.16.过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF = .三、解答题17.(本小题满分12分)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.18. (本小题满分12分)如图,已知椭圆)0(12222>>=+b a by a x 以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;19. (本小题满分12分)如图,椭圆C :2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分. (Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.20. (本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.21. (本小题满分12分)在平面直角坐标系xOy 中, 已知点A (0,-1),B 点在直线3y =-上,M 点满足//MB OA,BA MB AB MA ⋅=⋅,M 点的轨迹为曲线C .(I )求C 的方程;(II )P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.22. (本小题满分12分)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x ya b+=的左右焦点.已知△12F PF 为等腰三角形. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.解析几何单元检测题参考答案一、选择题1------5 CABDA 6-------10 BDACD 11-----12 CC 二、填空题 13.5514. 34 15. 3 16. 65三、解答题17.(1)由对称性知:BFD ∆是等腰直角∆,斜边2BD p =, 点A 到准线l的距离d FA FB p ==;122ABD S BD d p ∆=⇔⨯⨯=⇔= ; 圆F 的方程为22(1)8x y +-=(2)由对称性设2000(,)(0)2x A x x p>,则(0,)2pF ,点,A B 关于点F 对称得:22220000(,)3222x x p B x p p x p p p --⇒-=-⇔=,得:33,)2p A ,直线3:022p p p m y x x -=+⇔+=222233x x x py y y x p p p '=⇔=⇒==⇒=⇒切点(,)36pP直线:06p n y x x p -=⇔= 坐标原点到,m n3=.18.(Ⅰ)由题意知,椭圆离心率为c a=2,得a =,又22a c +=1),所以可解得a =2c =,所以2224b a c =-=,所以椭圆的标准方程为22184x y +=;所以椭圆的焦点坐标为(2±,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为22144x y -=。
19. (Ⅰ)由题:12c e a ==;………… (1) 左焦点(﹣c ,0)到点P (2,1)的距离为:d=…………. (2) 由(1) (2)可解得:222431a b c ===,,. ∴所求椭圆C 的方程为:22+143x y =.(Ⅱ)易得直线OP 的方程:y =12x ,设A (x A ,y A ),B (x B ,y B ),R (x 0,y 0).其中y 0=12x 0.∵A ,B 在椭圆上, ∴220220+12333434422+143A A A B A B AB A B A B B B x y x y y x x k x x y y y x y ⎧=⎪-+⎪⇒==-⨯=-⨯=-⎨-+⎪=⎪⎩.设直线AB 的方程为l :y =﹣32x m +(m ≠0),代入椭圆:2222+143333032x y x mx m y x m ⎧=⎪⎪⇒-+-=⎨⎪+⎪⎩=-.显然222(3)43(3)3(12)0m m m ∆=-⨯-=->.mm ≠0.由上又有:A B x x +=m ,A B y y +=233m -.∴|AB |=A B x x -|=.∵点P (2,1)到直线l的距离表示为:d ==.∴S ∆ABP =12d |AB |=12|m +,当|m +2|,即m =﹣3 或m =0(舍去)时,(S ∆ABP )max =12.此时直线l 的方程y =﹣3122x +.20. 解:(I )因为C1,C2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b a b a a +=+=>>设直线:(||)l x t t a =<,分别与C1,C2的方程联立,求得((A t B t ………………4分当1,,,2A Be b y y ==时分别用表示A ,B 的纵坐标,可知222||3||:||.2||4B A y b BC AD y a === ………………6分(II )t=0时的l 不符合题意.0t ≠时,BO//AN 当且仅当BO 的斜率kBO 与AN 的斜率kAN -相等,即,a b t t a=-解得222221.ab e t a a b e-=-=---因为221||,01,1, 1.e t a e e e-<<<<<<又所以所以当02e <≤时,不存在直线l ,使得BO//AN ;当12e <<时,存在直线l 使得BO//AN. ………………12分21. (Ⅰ)设M(x ,y),由已知得B(x ,-3),A(0,-1). 所以MA =(-x ,-1-y ),MB =(0,-3-y), AB =(x ,-2).再由题意可知(0)(=⋅+AB MB MA , 即(-x ,-4-2y )• (x ,-2)=0.所以曲线C 的方程式为y=14x 2-2.(Ⅱ)设P(x 0,y 0)为曲线C :y=14x 2-2上一点,因为y '=12x ,所以l 的斜率为12x 0 因此直线l 的方程为0001()2y y x x x -=-,即2000220x x y y x -+-=. 则O 点到l的距离2d =又200124y x =-,所以201412,2x d +==≥当20x =0时取等号,所以O 点到l 距离的最小值为2.22. (I )解:设12(,0),(,0)(0)F c F c c ->由题意,可得212||||,PF F F =2.c =整理得22()10,1c c c aa a +-==-得(舍),或1.2c a =所以1.2e = (II )解:由(I)知2,,a c b ==可得椭圆方程为2223412,x y c += 直线PF2方程为).y x c -A ,B两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩消去y 并整理,得2580.x cx -=解得1280,.5x x c ==得方程组的解21128,0,5,.x c x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设8(),(0,)5A cB 设点M的坐标为8(,),(,),(,)5x y AM x c y BM x y =-=则,由),.3y x c c x y =-=-得于是38(,),15555AM y x y x =--().BM x = 由2,AM BM ⋅=-即38)()255y x x y x -⋅+=-,化简得218150.x --=将22105,0.316x y c x y c x +==-=>得所以0.x >因此,点M的轨迹方程是218150(0).x x --=>。