第三章 流体力学

合集下载

第三章流体力学

第三章流体力学

第三章:流体的流动一、学习要求1、理解理想流体、稳定流动、流线、流管、速度梯度、粘滞系数等基本概念。

2、掌握流体连续性方程和伯努利方程的意义和应用。

3、掌握泊肃叶公式的内涵和适用条件。

4、理解雷诺数及斯托克司定律在医学中的应用。

5、了解层流和湍流的概念及判断标准。

6、了解心脏做功、体内的血流速度及血压分布。

二、推荐学习方法1.体会物理模型的创建方法,重点体会在不同场合选择不同物理模型的依据和理由。

例如,理想流体(绝对不可压缩,完全没有粘滞性的流体),这一概念建立的依据是液体和气体的流动时,很多时候体积变化和摩擦耗能都很少,可以忽略不计,用理想模型使分析简洁,带来的误差又很小。

在应用此模型的时候,一定要注意实际现象中存在的体积变化和摩擦是否可以忽略。

如液体在粗管内流动,比如开口很大的容器底部开一小孔,求小孔处流速,由于水的可压缩性小,体积变化可忽略,容器大,流动时速度梯度小,内摩擦力可忽略,可应用伯努利方程;但如果在开孔处联结一较长细管,水在细管中流动时,粘滞性不可忽略,则要考虑伯肃叶定律;即使管道较粗,如管道较长,比如远距离输油、输水管道,求流量时也要考虑粘滞性。

2.严格遵循各物理规律的应用条件。

连续性原理是同一流管的不同截面处流速的关系,不可比较不同的流管;柏努利方程要在同一流线上使用,比较流体中两点的流速并应用柏努利方程时,一定要用一条流线将二者联系起来;在应用伯肃叶定理时一定要强调水平圆管中的层流。

三、解题指导2-1 有人认为从连续性方程来看管子愈粗流速愈小,而从泊肃叶定律来看管子愈粗流速愈大,两者似有矛盾,你认为如何?为什么?提示:两者所针对的对象是否一样?答:不矛盾,连续性原理指的是同一流管不同截面处的流速关系,截面大处流速小,而泊肃叶定律指出管子愈粗流速愈大是针对不同的流管。

两者没有可比性。

思考:连续性原理和泊肃叶定律的适用条件分别是什么?2-2为什么一个装有烟囱的火炉,烟囱越高通风的效果越好?(即烟从烟囱中排出的速度越大)提示:高空和低空空气的流动状态有无区别?答:由于高处空气的流动速度快,根据柏努利定律,烟囱顶端的气压低,底端气压高,从而推动空气挟带烟尘向烟囱顶部运动,促进通风。

流体力学-第三章

流体力学-第三章
空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。

流体力学课件 第3章流体运动的基本原理

流体力学课件  第3章流体运动的基本原理

u u (x, y,z, t )
17
二、流场描述
1、迹线:某一质点在某一时段内的运动轨迹曲线。
例: 烟火、火箭、流星、子弹等轨迹线。。。。。
(1)拉格朗日法迹线方程
x x(a,b,c,t) y y(a,b,c,t)
z z(a,b,c,t)
消去参数t并给定(a,b,c)即得相应质点的迹线方 程。
说明:
*(a,b,c)=const, t为变数,可得某个指定质点在任意时刻
所处的位臵,上式即迹线方程; *(a,b,c)为变数,对应时刻 t可以得出某一瞬间不同质点 在空间的分布情况。
3、拉格朗日法的速度与加速度方程
( 1) 流速方 程
x ux ; t y uy ; t z uz t 均为(a,b,c,t)的函数。
第三章 流体运动的基本原理
静止只是流体的一种特殊的存在形态,运动 或流动是流体更为普遍的存在形态,也更能反映 流体的本质特征。 本章主要讨论流体的运动特征(速度、加速 度等)和流体运动的描述方法,流体连续性方程、 动量守恒及能量守恒方程是研究流体运动的基础。
1
第一节、流体运动的描述方法
一、拉格朗日法(lj)
18
(2)欧拉法迹线方程 若质点P在时间dt内从A点运
Z
A
B
动到B点,则质点移动速度为:
u dr dt
O
Y
得迹线方程:
dx dy dz dt ux uy uz
2、流线
表示某一瞬时流体各点流动 趋势的曲线,其上任一点的切线 方向与该点流速方向重合。即同 一时刻不同质点的速度方向线。
根据行列式的性质,有:
22
流线微分方程
dx dy dz u x u y uz

流体力学_第三章_伯努利方程及动量方程

流体力学_第三章_伯努利方程及动量方程
4根线具有能量 意义: 总水头线 测压管水头线 水流轴线 基准面线
23
第三节 恒定总流的伯努利方程
例 用直径d=100mm的水管从水箱引水,水管水面与
管道出口断面中心高差H=4m,水位保持恒定,水头 损失hw=3m水柱,试求水管流量,并作出水头线 解:以0-0为基准面,列1-1、2-2断面的伯努利方程
第三节 恒定总流的伯努利方程
渐变流及其性质
渐变流
(u )u 0
渐变流的过流断面近于平 面,面上各点的速度方向 近于平行。 渐变流过流断面上的动压 强与静压强的分布规律相 同,即:
p z c g
1
第三节 恒定总流的伯努利方程
大小的变化 流速的变化 方向的变化
出现直线惯性力 压强沿流向变化
微小圆柱体的力平衡
p1dA ldA cos p2 dA l cos Z1 Z 2 p1 (Z1 Z 2 ) p2
Z1 p1 Z2 p2


4
第三节 恒定总流的伯努利方程
Z1 p1

Z2
p2

均匀流过流断面上压强 分布服从水静力学规 律
40
2
,
2
第三节 恒定总流的伯努利方程
( a )( z2 z1 ) ( a )( z2 z1 ) ( a )
单位体积气体所受有效浮力
v1 2 gh d1 1 d 2
4
4
2 1
2 1
30
第三节 恒定总流的伯努利方程
Q v1

4
d
2 1

4
d
2 1
2 gh d1 d 1 2

流体力学第三章(相似原理与量纲分析)概论

流体力学第三章(相似原理与量纲分析)概论
第二章总结
§1连续方程(3种形式)
§2作用于流体的力、应力张量 (1)质量力和表面力; (2)应力张量; (3)广义的牛顿粘性假设
1
§3运动方程 (1)Navier—Stokes方程; (2)欧拉方程; (3)静力方程;
§4能量方程 (1)动能方程; (2)伯努利方程
§5简单情况下的N-S方程的准确解
uQ2 uQ1
vQ2 vQ1
wQ2 wQ1
此时,两个流场称之为是流场 相似或运动相似的。流场相似 也就是在两流场对应点的速度 的大小、方向成常数比例。
Q P
9
动力相似
动力相似:要求在两流场相应点上各动力学变量 成同一常数比例。 例如原型流场和模型流场在运动过程中受到的 质量力、粘性力等动力学变量成正比。
上式要求所有对应点均成立 (场的观点,要求任意对应点均成立)
17
模型流动中的时间变化过程并不要求与原型流动以相 同的时间变化率进行(过程加速或延缓),但要求两 流场的所有对应点上均按同一常数值的时间变化加速 和延缓,即要求满足
时间相似常数 ct t2 / t1
注意:t f (l, v) ,通常 ct 可以是不独立的,决定于
a2 a1
b2 b1
c2 c1
ac b
7
时间相似
时间相似:要求模型流场跟原型流场的所有对应点上均 按同一常数值的时间变化加速或延缓,即满足:
Ct
t2 t1
8
运动相似
运动相似(流场相似):要求模型流场和原型流场在任意 选取的对应点上,流速分量满足:
uP2 uP1
vP2 vP1
wP2 wP1
对于原型流动,考虑运动方程在z方向的分量形式
1

流体力学第3章(第二版)知识点总结经典例题讲解

流体力学第3章(第二版)知识点总结经典例题讲解

dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be

流体力学 第三章 流体动力学

流体力学 第三章 流体动力学
按周界性质: ①总流四周全部被固体边界限制——有压流。如 自来水管、矿井排水管、液压管道。 ②总流周界一部分为固体限制,一部分与气体接 触——无压流。如河流、明渠。 ③总流四周不与固体接触——射流。如孔口、管 嘴出流。
7 流量、断面平均流速 a.流量:单位时间通过某一过流断面的流体量。流
量可以用体积流量Qv(m3/s)、质量流量Qm(kg/s) 表示。显然,对于均质不可压缩流体有
元流体积流量 总流的体积流量
Qm Qv
dQv vdA
Qv
dQ vdA vA
b.断面平均流速:总流过流断面上各点的流速v一般
不相等,为了便于计算,设过流断面上各点的速度
都相等,大小均为断面平均流速v。以v计算所得的
流量与实际流量相同。
vAQv
vdA
A
8 均匀流与非均匀流
流管——在流场中任意取不与流线重合的封 闭曲线,过曲线上各点作流线,所构成的管 状表面
流束——流管内的流体
5.过流断面——在流束上作出与流线正交的横断面
1
例:
注意:只有均匀流的过流断面才是平面
2
1
Hale Waihona Puke 1处过流断面2处过流断
2

6.元流与总流 元流——过流断面无限小的流束 总流——过流断面为有限大小的流束,它由无数元流构成
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转
流线微分方程: 流线上任一点的切线方向 (dr)与该点速度矢量 (v)一致
i jk drv dx dy dz0
dx dy dz vx vy vz
vx vy vz
——流线微分方程
(2)迹线——质点运动的轨迹 迹线微分方程:对任一质点

工程流体力学-第三章

工程流体力学-第三章

三、流管、流束和总流
1. 流管:在流场中任取一不是流 线的封闭曲线L,过曲线上的每 一点作流线,这些流线所组成的 管状表面称为流管。 2. 流束:流管内部的全部流体称 为流束。 3. 总流:如果封闭曲线取在管道 内部周线上,则流束就是充满管 道内部的全部流体,这种情况通 常称为总流。 4. 微小流束:封闭曲线极限近于 一条流线的流束 。
ax

dux dt

dux (x, y, z,t) dt

ux t
ux
ux t
uy
ux t
uz
ux t
ay

du y dt

duy (x, y, z,t) dt

u y t
ux
u y t
uy
u y t
uz
u y t
az

du z dt

duz (x, y, z,t) dt
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
欧拉法中的迹线微分方程
速度定义
u dr (dr为质点在时间间隔 dt内所移动的距离) dt
迹线的微分方程
dx dt

ux (x, y, z,t)
dy dt uy (x, y, z,t)
dz dt uz (x, y, z,t)
说明: (1)体积流量一般多用于表示不可压缩流体的流量。 (2)质量流量多用于表示可压缩流体的流量。
(3) 质量流量与体积流量的关系
Qm Q
(4) 流量计算 单位时间内通过dA的微小流量
dQ udA
通过整个过流断面流量
Q dQ udA A

流体力学 第三章

流体力学 第三章
无数微元流束的总和称为总流。自然界和工程中所遇到 的管流或渠流都是总流。根据总流的边界情况,可以把总流 流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。

《流体力学》第三章一元流体动力学基础

《流体力学》第三章一元流体动力学基础

02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。

第三章 流体力学基本方程组

第三章   流体力学基本方程组
s

s
pij p ji
微分形式的动量矩定理 —— 应力张量的对称性
§3-3 能量方程
第三章 流体力学基本方程组 9
§3-3-1 能量所依据的物理定律 — 能量守恒定律
— 能量守恒定理:在物质体内的内能和机械能的增加率等于外力对该物
质体所做的功及其它形式的能量(包括传热或辐射等)的输入率
§3-2-2 能量守恒定律的量化描述—能量方程
S
§3-3 能量方程 §3-2-2 能量守恒定律的量化描述 — 微分形式能量方程
第三章 流体力学基本方程组 11
2 T s V d F V q p V s k ( ) ( ) U n n dt 2 S S 面积分→体积分 pn Vs (n P) Vs n ( P V )s ( P V )
d V F p ns dt

s

积分形式的 d r 动量矩定理 V r F r pns dt s ( V ) r t r vnVs r F r pns
积分形式的 动量方程

s
§3-2 运动方程
第三章 流体力学基本方程组 6
§3-2-2 动量定律及动量矩定律的量化描述—运动方程
1. 动量定律的量化描述 —— 微分形式的动量方程
d V dt F n Ps s F P
cijklalk 0
ij ij kl slj ( ik jl il jk ) slk ij s kk ( s ji sij ) ij ij s kk 2 s ij

流体力学第3章

流体力学第3章

得出涡量输运方程:
DΩ 2 (Ω )u Ω Dt
第3章
涡量与环量的一般原理

1. 旋度
旋转运动是用旋转角速度 来表征。源自在流体力学中,把两倍的旋转角速度矢 量定义为旋度,即
rotu u 2
式中,符号 rot 和 均表示求旋度, 速度的旋度为矢量。
2. 涡量
涡量就是速度的旋度,即
Ω u
有旋运动也称为涡量 Ω 不为零的运动。
式中, dA 为微分面积矢量。
这样,可通过分析速度环量研究 旋涡运动,Γ=0 表示平面无旋运动; Γ≠ 0 则为有旋运动。
A
5. N-S 方程的替代形式与涡量输运方程
(1) N-S 方程的替代形式 利用下列表达式:
矢量恒等式 u2 (u )u ( ) u ( u ) 2 f Π 质量力有势 1 p - p ( ) 均质不可压缩流体


可将 N-S 方程化为兰姆型方程:
u p u2 2 ( Π ) u Ω u t 2
(2) 涡量输运方程
对兰姆型方程两端作“取旋度”运算, 并考虑到:
u Ω ( ) t t p
u2 ( Π )0 2 (u Ω ) ( Ω )u (u ) Ω 2 2 ( u ) Ω
3. 环量
在流场中任取一封闭曲线 L,把 速度矢量沿 L的线积分定义为速度 环量Γ,即 Γ L u dL L u x dx u y dy u z dz
式中, dL 为有向微分弧长,习惯上取反
时针回路为正向。
4.斯托克斯定理
斯托克斯定理 是将涡量与速度 环量联系起来的定理,即 Γ Ω dA

3工程流体力学 第三章流体运动学基础

3工程流体力学 第三章流体运动学基础
总流: 由无数元流构成的大的流束,包括整
个流动区域上的所有质点的流动。
§3-3 迹线、流线和染色线,流管(续16)
三、湿周、水力半径
1.湿周x 在总流过流断面上,液体与固体相接触的线
称为湿周。用符号x 表示。
2.水力半径R
总流过流断面的面积A与湿周的比值称为水Βιβλιοθήκη 力半径。R A x
注意:水力半径与几何半径是完全不同的两个概念。
这是两个微分方程,其中 t 是参数。 可求解得到两族曲面,它们的交线就是 流线族。
§3-3 迹线、流线和染色线,流管(续10)
例3-1 已知直角坐标系中的速度场 u=x+t; v= -y+t;w=0,
试求t = 0 时过 M(-1,-1) 点的流线。
解:由流线的微分方程:
dx d y dz u vw
§3-3 迹线、流线和染色线,流管(续5)
因为u不随t变,所以同一点的流线 始终保持不变。即流线与迹线重合。
某点流速的方向是
流线在该点的切线方向 A
B
流速的大小由流 线的疏密程度反映
uA=uB ?
§3-3 迹线、流线和染色线,流管(续6)
迹线与流线方程 采用拉格朗日方法描述流动时,质
点的运动轨迹方程:
试求t = 0 时过 M(-1,-1) 点的迹线。
解:由迹线的微分方程:
dx d y dz dt u vw
u=x+t;v=-y+t;w=0
dx xt dt
d y y t
dt
求解
x C1 et t 1
t = 0 时过 M(-1,-1):C1 = C2 = 0 y C2 et t 1 x= -t-1 y= t-1 消去t,得迹线方程: x+y = -2

流体力学第3章

流体力学第3章

相应的流体静压强增加dp,压强的增量取决于质量力。
22.04.2021
12
二、流体平衡条件
对于不可压缩均质流体,有
dpfxdxfydyfzdz
上式的左边是全微分,它的右边也必须是全微分。由数学
分析知:该式右边成为某一个函数全微分的充分必要条
件是
f y f z z y
f z f x x z
f x f y y x
22.04.2021
15
第三节 重力场中流体的平衡帕斯卡原理
一、重力作用下的静力学基本方程式
P0
P2 P1 Z1 Z2
推导静力学基本方程式用图
22.04.2021
16
作用在液体上的质量力只有重力G=mg,其单位质 量力在各坐标轴上的分力为 fx=0,fy=0,fz=-g
代入压强差公式,得
dpgdz
及烟囱的底部等处的绝对压强都低于当地大气压强,这些地
方的计示压强都是负值,称为真空或负压强,用符号pv表示,

pv pa p
如以液柱高度表示,则
hv
pv
g
pa p
g
式中hv称为真空高度。
22.04.2021
29
(1)当地大气压强是某地气压表上测得的压强值, 它随着气象条件的变化而变化,所以当地大气压强 线是变动的。
M点的绝对压强为 p=pa+ρ2gh2-ρ1gh1
M点的计示压强为 pe=p-pa=ρ2gh2-ρ1gh1
于是,可以根据测得的h1和h2以及已知的ρ1和ρ2计 算出被测点的绝对压强和计示压强值。
22.04.2021
37
• (2) 被测容器中的流体压强小于大气压强(即p<pa):

流体力学第3章流体运动学

流体力学第3章流体运动学

第3章流体运动学选择题:.2dr v【3.1】用欧拉法表示流体质点的加速度a等于:(a)dt2;(b)t;(c)(v )v;v(V )v(d)t odv va —— v解:用欧拉法表示的流体质点的加速度为dt t v(d)【3.2】恒定流是:(a)流动随时间按一定规律变化;(b)各空间点上的运动要素不随时间变化;(c)各过流断面的速度分布相同;(d )迁移加速度为零。

解:恒定流是指用欧拉法来观察流体的运动,在任何固定的空间点若流体质点的所有物理量皆不随时间而变化的流动•(b)【3.3】一元流动限于:(a )流线是直线;(b )速度分布按直线变化;(c)运动参数是一个空间坐标和时间变量的函数;(d)运动参数不随时间变化的流动。

解:一维流动指流动参数可简化成一个空间坐标的函数。

(c)【3.4】均匀流是:(a)当地加速度为零;(b )迁移加速度为零;(c)向心加速度为零;(d)合加速度为零。

解:按欧拉法流体质点的加速度由当地加速度和变位加速度(亦称迁移加速度)这两部分组成,若变位加速度等于零,称为均匀流动(b)【3.5】无旋运动限于:(a)流线是直线的流动;(b)迹线是直线的流动;(c)微团无旋转的流动;(d )恒定流动。

解:无旋运动也称势流,是指流体微团作无旋转的流动,或旋度等于零的流动。

(d )【3.6 ]变直径管,直径d i 320mm, d2 160mm,流速V i 1.5m/s。

V2 为:(a )3m/s ; ( b) 4m/s ; ( c)6m/s ; ( d ) 9m/s。

V| — d;V2— d;解:按连续性方程,4 4 ,故V V虫1.5 320 6m/sd2160【3.7】平面流动具有流函数的条件是:(a)理想流体;(b)无旋流动;(c)具有流速势;(d)满足连续性。

解:平面流动只要满足连续方程,则流函数是存在的。

(d)【3.8】恒定流动中,流体质点的加速度:(a)等于零;(b)等于常数;(c)随时间变化而变化;(d)与时间无关。

《水力学》课件——第三章 流体力学基本方程

《水力学》课件——第三章  流体力学基本方程

解 由式
dx dy ux uy

dx dy xt yt
积分后得到:
ln x t ln y t ln c
y x
(x t)(y t) c
将 t = 0,x = -1,y = -1 代入,得瞬时流线 xy = 1, 流线是双曲线。
三.流管, 流束与总流
流管 --- 由流线组成的管状曲面。 流束 --- 流管内的流体。 总流 ------多个流束的集合。
质点运动的轨迹
x x(a,b,c,t)
y y(a,b,c,t)
z z(a,b,c,t)
a, b, c --- t = t0 时刻质点所在的空间位置坐标, 称为拉格朗日变量,用来指定质点。
t --- 时间变量。
质点位置是 t 的函数,对 t 求导可得速度和加速度:
u
x t
速度:
v y t

x
u u(x,t)
二元流动- 流动参数与两个坐标变量有关。
z B
M
M
s
B
y
u u(s, z,t)
三元流动(空间流动) -- 流动参数与三个坐标变量有关。
3-3 连续性方程
一 微分形式的连续方程 流入的流体-流出的流体 =微元体内流体的增加
z
uy
u y y
dy 2
z
uy
y
x
uy
u y y
dy 2
1
不可压
u1dA1 u2dA2 dQ u1dA1 u2dA2 const.
对于总流
dQ A
A u1dA1
A u2dA2
Q A1v1 A2v2.
2
u2
dA2
2

第三章流体力学

第三章流体力学

因为时间∆ 极短,所以a 因为时间∆t极短,所以a1b1和a2b2 是两段极短的位移, 是两段极短的位移,在每段极短的位移 压强p 截面积S和流速v 中,压强p、截面积S和流速v都可看作 不变。 不变。设p1、S1、v1和p2、S2、v2分别是 a b 1 1 处流体的压强、 a1b1与a2b2处流体的压强、截面积和流 p v 2 则后面流体的作用力是p S1, 速,则后面流体的作用力是p1S1,位移S2 1 所作的正功是p 是v1 ∆t,所作的正功是p1S1v1 ∆t ,而 h1 前面流体作用力作的负功是前面流体作用力作的负功是-p2S2v2 ∆t , 由此, 由此,外力的总功是
A
3、流线 、
A
vB
B
在流体内做一微小的闭合曲线, 在流体内做一微小的闭合曲线,通 过其上各点的流线围成的管状区域称为流管。 过其上各点的流线围成的管状区域称为流管。 因为流线不可相交, 因为流线不可相交,则 在任意时刻, 在任意时刻,流体质点 只能在流管内部或流管 表面流动, 表面流动,而不能穿越 流管。 流管。
vS
v1
S2
§3.2 伯努利方程
伯努利方程是流体动力学的基本定律, 伯努利方程是流体动力学的基本定律,它说明了 理想流体在管道中作稳定流动时, 理想流体在管道中作稳定流动时,流体中某点的压 流速v和高度h 强p、流速v和高度h三个量之间的关系为 ρv2 p + + ρ gh = 常量
2
式中ρ是流体的密度,g是重力加速度。试用功能 式中ρ是流体的密度, 是重力加速度。 a1 b1 原理导出伯努利方程。 原理导出伯努利方程。 我们研究管道中一段流体的p2 S2 v 1 运动。设在某一时刻, 运动。设在某一时刻,这段 a2 流体在a 位置, 流体在a1a2位置,经过极短 b2 h1 时间∆ 时间∆t后,这段流体达到 v h2 p S 2 b1b2位置 2 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、理想流体:
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax

P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0

gh

p0

1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮

1 2
V

v
2 1

gh2V


gh1V
即:
p1

1 2

v
2 1

gh1

p2

1 2

v
2 2

gh2
或: p 1 v 2 gh 常 量 称为伯努利方程。
2 伯努利方程对定常流动的流体中的任一流线也成立。
讨论 1. v=0, P和h的关系如何?
根据伯努利方程
其中ρvs为单位时间内流过流管任一横截面的流体质量, 称为质量流量。而vs则称为体积流量。
以上两个方程称为流体的连续性原理。其物理实质为质量
守恒。
返回
三、伯努利方程:
p1 S1 v1
A A'
h1
在作定常流动的理想流体中任取一流管,
用截面S1、S2截出一段流体。
S2
v2
B'
在Δt时间内,S1由A移至A’,S2由B移至 B’。
G
设小球半径为 r 、密度为1
1>2 , 小球一开始加速下降
v=vs时, F 0 ,匀速运动
vs——沉降速度(收尾速度)
f浮+ f阻= G
4 3
r31g

4 3

r32g

6 rvS
vS

2g
9
( 1

2 )r2
仍设小球半径为 r 、密度为1
f浮 v
G f阻
流体2 ,
B
h2 p2 令: AA’=Δl1,BB’=Δl2。
则: ΔV1=S1Δl1,ΔV2=S2Δl2。
因流体不可压缩,所以: ΔV1=ΔV2=ΔV 。
A’B段内流体在Δt时间内运动状态不变(定常流动),能量 也不变。所以要计算Δt时间内整段流体的能量变化,只需 要计算体积元ΔV2与ΔV1之间的能量差。
动能增量: E k
P1

1 2
v12

gh1

P2

1 2
v22

gh2

常量
P1 gh1 P2 gh2
P1 P2 g(h2 h1 )
流体静力学
1
2
h1
h2
2. h1=h2 (水平流管), P和v的关系如何?
根据伯努利方程
P1

1 2
v12

gh1

P2

1 2
v22

分析:
1
P3

1 2
v32

gh3

P1

1 2
v12

gh1
P3 P0 , P1 P0 , v1 0
3
Q S3v3 S3 2g (h1 h3 )
2
v2S2=v3S3
P3

1 2
v32

P2

1 2
v22
P3 P0
§3-2 粘性流体的流动:
一、牛顿粘滞定律 • 实际流体内部存在内摩擦力 ——粘滞力


gh2

w12
得: w12 P1 P2 又根据泊肃叶定律:
Q R4 ( P1 P2 ) 8l
w12

8l R4
Q
Q R2v
w12

8l
R2
v
w12

8l
R2
v

w12

8l R4
Q
粘性流体
理想流体
例题:成人主动脉的半径为R=1.0×10-2m,长为 L=0.20m,设心输出量Q=1.0×10-4m3/s。血液粘度 η=3.0×10-3Pa·S。问:(1)这段主动脉的流阻是多大 ?(2)这段主动脉两端的压强差是多少?

1 2
V

v
2 2

1 2
V

v
2 1
势能增量: E p g( h2 h1 )V
外力作功:
p1 v1 S1
A A'
h1
W p1S1l1 p2 S2l2 p1V p2V
S2
v2
B'
B
h2 p2
根据功能原理:
p1V

p2V

1 2
V

v
2 2
VB Vc VD
PC

1 2
ρVC2
ρghC

PD

1 2
ρVD2
ρghD
PC PD g(hc hD )
习题3-12:水从蓄水池中稳定流出,如图所示,点1的高度为10m ,点2的高度为2m,点2处管子的横截面积为0.04m2,在点3处 为0.02m2,设蓄水池的面积比管子的横截面积大得多,求水的 流量是多少?点2处的压强是多少?
• 液体的黏度随温度升高而减小 • 气体的黏度随温度升高而增大
单位:Pas 或 Ns/m2
牛顿流体和非牛顿流体
二、湍流 雷诺数
• 层流 • 湍流
雷诺数:
Re

rv
v1 v2
• Re<1000, 层流 • Re>1500, 湍流 • 两者之间,不确定
例题:设主动脉的横截面积为3cm2 ,黏度为3.5×10-3Pa﹒s 的血液以30cm/s 的平均速度在其中流过,如血液的密度 为1.05g/cm3 ,求(1)雷诺数是多少?(2)这时血液做 层流还是湍流?

P1

1 2
v12

1 2
v22
h
v
1
2
P2 P1 gh
v 2gh
例题5-3
例题:文丘里流量计。U形管中水银密度为ρ’,流量计中通过的
液体密度为ρ,其他数据如图所示。求流量。
取水平管道中心的流线。
由伯努利方程:
p1

1 2

v
2 1

p2

1 2

v
2 2
由连续性方程: v1 S1 v2 S2
分析:
rv Re
• Re<1000, 层流 • Re>1500, 湍流 • 两者之间,不确定
三、粘滞流体的伯努利方程
1
∵粘滞流体内部有粘滞力
2
∴ 1→2 过程中有能量损耗
伯努利方程变为:
P1

1 2
v12


gh1

P2

1 2
v22


gh2

w12
四、泊肃叶定律
• 实验表明:
由于流线不相交,所以流管内、外的流体都不会穿过流管壁。
二、流体的连续性原理:
S1
v1
在定常流动的理想流体内任取一流管。
v2
S2
因为流体不可压缩,所以流体密度 ρ 不变。
单位时间内从流管一端流入的流体等于从另一端流出的流体:
或:
v1S1 v2S2 常量
v1S1 v2S2 常量
gh2

常量
P1

1 2
v12

P2

1 2
v22
∴ P 大处, v小
又根据流体的连续性原理 S 大处,v 小,P 大
S1
v1 < v2
S2
P1 > P2
S 小处,v 大,P 小
3.粗细均匀的流管内压强与高度的关系

S1=S2
根据伯努利方程得
∴ v1=v2
P1

1 2
v12

gh1

P2

P1

1 2
V12

P2

1 2
V22
V1 141 .07 11.88m / s
Q S1 V1 3.563 10 3 m3 / s
V Q t 0.214 m3
例题:如图从水库取水,已知虹吸管的最高点C比水库水面高 2.5m,管口出水处D比水库水面低4.5m,虹吸管的内径为 1.5×10-2m2,设水在虹吸管内作定常流动。求:(1)从虹吸管 流出水的体积量。(2)虹吸管内B、C两处的压强。
相关文档
最新文档