Matlab+符号运算

合集下载

Matlab中的符号计算方法

Matlab中的符号计算方法

Matlab中的符号计算方法在数学和科学领域,符号计算是一个重要的工具。

它可以帮助我们进行精确的数学计算和推理,而不仅仅是依赖计算机的数值近似。

Matlab作为一个强大的数值计算软件,也提供了丰富的符号计算功能,用于代数运算、微积分和代数方程求解等方面。

本文将介绍Matlab中的一些常用的符号计算方法和技巧。

一、符号变量在Matlab中,我们可以通过声明符号变量来表示符号对象。

符号变量通常用小写字母表示,例如x、y、z等。

使用符号变量,我们可以进行各种代数运算,例如加法、减法、乘法和除法等。

下面是一些示例:syms x y zf = x^2 + y^2 - z^2;g = (x + y + z)^3;h = sin(x) * cos(y);通过声明符号变量,并使用这些变量进行计算,我们可以得到精确的结果,而不是使用数值近似。

二、符号表达式在Matlab中,符号表达式是由符号变量和运算符组成的一种数据类型。

使用符号表达式,我们可以构建复杂的代数表达式和方程。

例如,我们可以定义一个符号表达式f表示一个多项式函数,并对其进行运算:f = x^3 - 2*x^2 + x - 1;我们可以对符号表达式进行加减乘除等运算,并得到一个新的符号表达式。

三、代数方程求解在解决数学问题时,我们经常需要求解代数方程。

Matlab提供了强大的符号求解工具,可以帮助我们求解各种类型的代数方程。

例如,我们可以使用solve函数求解一元方程:syms xeqn = x^2 - 3*x + 2 == 0;sol = solve(eqn, x);通过solve函数,我们可以找到满足方程eqn的所有解,并将其存储到sol变量中。

除了一元方程,Matlab还支持多元方程的求解。

例如,我们可以使用solve函数求解一个二元方程组:syms x yeqn1 = x + 2*y == 5;eqn2 = x - y == 1;sol = solve([eqn1, eqn2], [x, y]);通过solve函数,我们可以找到满足方程组eqn1和eqn2的所有解,并将其存储到sol变量中。

2第五讲MATLAB符号运算

2第五讲MATLAB符号运算

(二)符号表达式运算
1.符号表达式的四则运算
符号表达式的加、减、乘、除运算可直接由算 符’+’,’-’*’,’/’,’\’ 来实现,幂运算可以由’^n’来实现。
算符’.*’,’./’,’.\’,’.^’,分别实现元素对元素的数组的乘、 左除、右除、和幂的运算。
MATLAB中没有ln运算符遇到它用log运算符代替。 另外log2(x),log10(y)表示求x和y的以2为底和以10为 底的对数。
实例演示
• 作符号计算(解方程组,其中a,b为常数,
x,y为变量):
• a,b,x,y均为符号运算量。在符号运算前,
应先将a,b,x,y定义为符号运算量。
实例演示
a=sym('a'); %定义‘a’为符号运算量,输出 变量名为a
b=sym('b');x=sym('x');y=sym('y');
(四)符号替换
• MATLAB软件提供的符号替换命令为subs,通常使 用下面三种形式(对数组也适用): • (1) subs(s,new) 用new替换s中的自由变量; • (2) subs(s,old,new) 用new替换s中的变量old; • (3) subs(s) 用当前内存中的已赋值变量去代 替s中的同名变量; • 例:执行命令 • subs(a+b,a,4) • 执行结果为 • 4+b
学习内容 • 一、符号对象
• 二、符号运算与高等数学 • 三、符号方程的求解
符号运算与高等数学
一、极限的计算
二、导数的运算
三、积分的运算
四、级数求和问题
五、函数的极值和零点
一、极限的计算
• 求极限问题解析解的MATLAB命令格式: • Limit(f)

MATLAB的符号计算

MATLAB的符号计算

diff(s,’v’,n)
【例】求导数: 2 d s in x dx x = sym('x'); diff(sin(x^2),x) ans = 2*cos(x^2)*x
%定义符号变量 %求导运算
3.积分函数 积分函数int(s ,v,a,b)可以对被积函 数或符号表达式s求积分。其引用格式为: int(s ,v,a,b) 说明:
1、建立m-文件rigid.m如下: function dy=rigid(t,y) dy=zeros(3,1); dy(1)=y(2)*y(3); dy(2)=-y(1)*y(3); dy(3)=-0.51*y(1)*y(2);
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 0 2 4 6 8 10 12
例1

d2y dx
2
0 应表达为:D2y=0.

du 1 u 2 的通解. dt
输入命令:dsolve('Du=1+u^2','t')
结 果:u = tg(t-c)
例2
求微分方程的特解.
d 2 y dy 2 4 29 y 0 dx dx y (0) 0, y ' (0) 15

2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
3、结果如图 图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.

第2章 matlab的符号运算

第2章 matlab的符号运算

>>p0 = sym(‘(1+sqrt(5))/2’)
p0 = (1+sqrt(5))/2 >>pr = sym((1+sqrt(5))/2,'r') pr =7286977268806824*2^(-52) >>e32r = vpa(abs(p0-pr),16) e32r = 0
%广义有理表示
Matlab程序设计
Matlab程序设计
2.2 符号数字 sc = sym(‘Num’) %符号常数sc的值精确等于Num 例:a = pi + sqrt(5) %a为数值类常量 sa = sym(‘pi + sqrt(5)’) %sa为符号数字常量
% sa = pi + sqrt(5), sym型; eval(sa) 为5.3777, double型
k = sym('k','positive');
Matlab程序设计
2.4 符号变量
符号变量与符号参数的创建方法相同,但表达式或 方程中作用不同. 确定自由符号变量: findsym(EXPR , N) %确认EXPR中距离x最近的N个自由符号变
量, 略去N表示全部
例2.1-1 用符号计算研究方程uz2+vz+w=0的解 syms u v w z Eq=u*z^2+v*z+w; %符号方程 r_1=solve(Eq) %一个方程只能解一个未知数w(离x最近) findsym(Eq,1) %只找一个自由符号变量,则找到w r_2=solve(Eq,z)
3.3 符号表达式的操作 例:化简 S=(x2+y2)2+(x2-y2)2 syms x y; S=(x^2+y^2)^2+(x^2-y^2)^2 simple(S) %系统自动试探各种函数化简 simple(ans) %使用多次找到最少字母的简化式 例2.2-3:对符号矩阵进行特征向量分解. syms a b c d W [V,D]=eig([a b;c d]) [RVD,W]=subexpr([V;D],W)

Matlab教学第四章 MATLAB符号运算(Symbolic)

Matlab教学第四章 MATLAB符号运算(Symbolic)

>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') >> syms x; diff(y)+2*x*y - x*exp(-x^2)
f2=2*(u+2)
ans=14 ans=2*((a+2)+2) f3=2*x+2*y ans=6
符号矩阵
使用 sym 函数直接生成 >> A=sym('[1+x, sin(x); 5, exp(x)]') 将数值矩阵转化成符号矩阵 >> B=[2/3, sqrt(2); 5.2, log(3)]; >> C=sym(B) 符号矩阵中元素的引用和修改 >> A=sym('[1+x, sin(x); 5, exp(x)]'); >> A(1,2) % 引用 >> A(2,2)=sym('cos(x)') % 重新赋值
符号对象的基本运算
基本函数
三角函数与反三角函数、指数函数、对数函数等
sin、cos、tan、cot、sec、csc、… asin、acos、atan、acot、asec、 acsc、…
exp、log、log2、log10、sqrt abs、conj、real、imag
rank、det、inv、eig、lu、qr、svd
How 中记录的为简化过程中使用的方法。
f
2*cos(x)^2sin(x)^2
(x+1)*x*(x-1)
R
HOW
3*cos(x)^2-1 simplify
x^3-x combine(tri g)

如何使用MATLAB进行符号计算

如何使用MATLAB进行符号计算

如何使用MATLAB进行符号计算1. 引言在科学计算和工程应用中,符号计算是一项重要的任务。

符号计算可以帮助我们推导数学公式、解方程、进行代数化简等等。

MATLAB作为一种强大的科学计算工具,也提供了符号计算的功能。

本文将介绍如何使用MATLAB进行符号计算。

2. 符号计算基础在MATLAB中,符号计算通过符号工具箱提供。

首先需要将变量声明为符号变量,使用`syms`关键字来完成。

例如,下面的代码将变量x和y声明为符号变量:```syms x y```其次,我们可以使用`sym`函数将数值转换为符号类型。

例如,下面的代码将整数2转换为符号类型:```a = sym(2)```最后,我们可以使用各种符号运算进行符号计算。

例如,下面的代码演示了符号变量之间的加法运算:```x + y```3. 推导数学公式符号计算的一个常见用途是推导数学公式。

MATLAB提供了一系列函数来进行推导,如`diff`、`int`等。

例如,下面的代码计算了函数sin(x)的导数: ```syms xf = sin(x);df = diff(f, x);```在这个例子中,`diff`函数用于计算导数,第一个参数是要计算导数的函数,第二个参数是相对于哪个变量求导数。

4. 解方程另一个常见的符号计算任务是解方程。

MATLAB提供了`solve`函数来解方程。

例如,下面的代码解了方程x^2 - 2 = 0:```syms xsol = solve(x^2 - 2);```解方程的结果是一个结构体数组,每个元素代表一个解。

5. 代数化简符号计算还可以用于代数化简。

MATLAB提供了`simplify`函数来进行代数化简。

例如,下面的代码对表达式(x+1)^2进行化简:```syms xexpr = (x+1)^2;simplified_expr = simplify(expr);````simplify`函数将表达式化简为最简形式。

第八讲MATLAB符号计算

第八讲MATLAB符号计算

% 定义符号变量 % 定义数值变量
% 计算符号表达式值 % 计算数值表达式值
% 计算符号表达式值 % 计算数值表达式值
% 计算符号表达式值 % 计算数值表达式值
ans = 1/2*3^(1/2) ans = 0.8660 ans = 2*2^(1/2)
ans = 2.8284 ans =(3+2^(1/2))^(1/2) ans = 2.1010
(2)syms函数
syms函数的一般调用格式为:
syms var1 var2 … varn 函数定义符号变量var1,var2,…,varn等。用这 种格式定义符号变量时不要在变量名上加字符 分界符(‘),变量间用空格而不要用逗号分隔。
>> syms a b c d
❖ 符号计算的结果是符号或符号表达式,如果其 中的符号要用具体数值代替,可以用subs函数, 例如将A中的符号a以数值5代替,可以用
8.1 符号计算基础
MATLAB中符号计算函数是数值计算函数的重载, 符号计算工具箱采用的函数和数值计算的函数有一 部分同名,为得到准确的在线帮助,应该用 help sym/函数名 例如: help sym/inv
8.1.1 符号对象
1. 建立符号变量和符号常数 (1)sym函数
sym函数用来建立单个符号变量和符号表达式,例如, a=sym(‘a’) 建立符号变量a,此后,用户可以在表达式 中使用变量a进行各种运算。 >> rho = sym('(1+sqrt(5))/2')
8.3 符号积分
8.3.1不定积分
在MATLAB中,求不定积分的函数是int,其调 用格式为:int(f,x)
int 函数求函数 f 对变量 x 的不定积分。参数x可 以缺省,缺省原则与diff函数相同。

第三讲MATLAB的符号运算

第三讲MATLAB的符号运算
③符号计算指令的调用简单,和经典教科书公式相近。
④计算所需的时间较长。
• Symbolic Math Toolbox——符号运算工具包通过调用
Maple软件实现符号计算的。
• Maple软件——主要功能是符号运算,它占据符号软件
的主导地位。
2. 字符串与符号变量、符号常量
字符串对象 f = 'sin(x)+5x'
由符号变量构成的符号函数和 符号方程
• 符号表达式是由符号常量、符号变量、符号函
数运算符以及专用函数连接起来的符号对象。
• 包括:符号函数和符号方程。判断看带不带等
号。 例:syms x y z; f1=x*y/z;
f2=x^2+y^2+z^2; f3=f1/f2;
e1=sym('a*x^2+b*x+c')
factor(x^3-y^3)
• simplify( ) 该函数是一个强有力的具有
普遍意义的工具,它利用Maple化简规则 对表达式进行简化。
例:S=sym('[(x^2+5*x+6)/(x+2);sqrt(16)]')
simplify(S)
• simple( ) 用几种不同的算术简化规则对
符号表达式进行简化,使其用最少的字 符来表示。
行是自变量 x 的取值范围和常数 a 的值。
• 第四行只对 f 起作用,如求导、积分、简
化、提取分子和分母、倒数、反函数。
• 第五行是处理 f 和 a 的加减乘除等运算。
• 第六行前四个进行 f 和 g 之间的运算,后
三个分别是:求复合函数;把 f 传递给 ; swap是实现 f 和 g 功能的交换。

MATLAB第三讲符号运算及绘

MATLAB第三讲符号运算及绘

化简根号表达式
使用`sqrt`函数化简根号表达式,例如 `sqrt(x^2)`化简为`abs(x)`。
符号函数的计算
1 2
符号函数的求值
使用`subs`函数将符号表达式中的变量替换为具 体数值进行计算,例如`subs(expr, x, 2)`。
符号函数的复合
使用函数句柄和参数列表定义符号函数,例如`f = @(x) x^2 + 2*x + 1`。
符号方程求解
使用solve函数求解代数方程,例如 solve(x^2 - 4*x + 4)。
绘图实例
线性图
使用plot函数绘制线性图,例如plot(x, y)。
柱状图
使用bar函数绘制柱状图,例如bar(x, y)。
散点图
使用scatter函数绘制散点图,例如scatter(x, y)。
曲面图
使用surf函数绘制曲面图,例如surf(x, y, z)。
三维等高线图
使用contour函数绘制三维等高线 图,可以展示三维空间中数据点的 等高线分布。
图形标注与修饰
标题和轴标签
使用title和xlabel、ylabel、 zlabel函数添加标题和轴标签,
以解释图形含义和坐标轴意义 。
网格线和参考线
使用grid on和hold on命令添 加网格线和参考线,以增强图 形可读性和比较不同数据系列 。
趋势。
条形图
使用bar函数绘制条形图, 可以展示分类数据的大
小比较。
饼图
使用pie函数绘制饼图, 可以展示各类数据占总
体的比例。
绘制三维图形
三维散点图
使用scatter3函数绘制三维散点 图,可以展示数据点在三维空间

第三章_MATLAB的符号运算

第三章_MATLAB的符号运算

%创建符号表达式
符号运算与数值运算的区别主要有以下几点: A 传统的数值型运算因为要受到计算机所保留的有效位数的限制,它的内部表示法总是采 用计算机硬件提供的 8 位浮点表示法, 因此每一次运算都会有一定的截断误差, 重复的多次 数值运算就可能会造成很大的累积误差。 符号运算不需要进行数值运算, 不会出现截断误差, 因此符号运算是非常准确的。 B 符号运算可以得出完全的封闭解或任意精度的数值解。 C 符号运算的时间较长,而数值型运算速度快。 3.2.1 提取分子分母 如果符号表达是有理分式形式或可展开为有理分式形式,则可通过函数 numden 来提取符号 表达式中的分子分母。numden 函数的调用形式如下: [n,d]=numden(a) 提取符号表达式 a 的分子与分母,并分别将其存放在 n 与 d 中 n=numden(a) 提取符号表达式 a 的分子与分母,但只把分子存放在 n 中 例 提取符号表达式的分子与分母 >> f=sym('a*x^2/(b-x)'); [n,d]=numden(f) n= -a*x^2 d= -b+x 3.2.2 符号表达式的基本代数运算 符号表达式的加、减、乘、除四则运算及幂运算等基本的代数运算,与矩阵的数值运算几乎 完全一样。 其中, 符号表达式的加、 减、 乘、 除运算可分别有函数 symadd、 symsub、 symmul、 symdiv 来实现,也可与矩阵的数值运算一样,用“+” 、 “-” 、 “×” 、 “÷”符号进行运算, 而符号表达式的幂运算也可以由函数 sympow 来实现,也可以由幂运算符“^”来实现。 例 >> f='4*x+5'; g='2*x^2+5*x+6'; symadd(f,g) ans = 9*x+11+2*x^2 symsub(f,g) ans = -x-1-2*x^2 symmul(f,g) ans =

matlab符号运算 多项式

matlab符号运算 多项式

一、介绍matlab符号运算matlab符号运算是指利用matlab软件进行代数表达式的计算和求解。

在matlab中,符号运算可以实现对多项式的加减乘除、导数和积分等操作,非常适用于代数表达式的计算和求解。

在工程、数学和物理等领域,matlab符号运算被广泛应用,能够高效地解决各种代数运算问题。

二、matlab符号运算的基本操作1. 创建符号变量在matlab中,可以使用syms函数来创建符号变量,例如:```matlabsyms x y```这样就创建了两个符号变量x和y,可以用于代数表达式的计算和求解。

2. 代数表达式的运算利用符号变量创建代数表达式,并进行加减乘除等运算,例如:```matlabf = x^2 + 2*x + 1;g = x + 1;h = f * g;```这样就实现了对代数表达式的乘法运算,h为结果表达式。

3. 多项式求导利用diff函数可以对代数表达式进行求导,例如:```matlabf = x^2 + 2*x + 1;df = diff(f,x);```这样就求出了代数表达式f对x的一阶导数df。

4. 多项式积分利用int函数可以对代数表达式进行积分,例如:```matlabf = x^2 + 2*x + 1;F = int(f,x);```这样就求出了代数表达式f对x的不定积分F。

5. 多项式因式分解利用factor函数可以对代数表达式进行因式分解,例如:```matlabf = x^2 + 2*x + 1;factored_f = factor(f);```这样就对代数表达式f进行了因式分解,得到了其因式分解形式。

三、matlab符号运算在工程应用中的实例在工程领域,matlab符号运算被广泛应用于各种代数表达式的计算和求解。

以下以电路分析为例,介绍了matlab符号运算在工程应用中的实例。

1. 电路分析中的符号运算在电路分析中,通常需要对电路中的电压、电流、电阻等元件进行建模和分析。

第三章 MATLAB符号运算

第三章 MATLAB符号运算

第3章 MATLAB符号计算符号计算则是可以对未赋值的符号对象(可以是常数、变量、表达式)进行运算和处理。

MATLAB具有符号数学工具箱(Symbolic Math Toolbox),将符号运算结合到MATLAB的数值运算环境。

符号数学工具箱是建立在Maple软件基础上的。

3.1 符号表达式的建立3.1.1 创建符号变量和表达式Symbolic Math Toolbox规定在进行符号计算时,首先要定义基本的符号对象然后才能进行符号运算。

创建符号变量和符号表达式可以使用sym和syms命令。

1. 使用sym命令创建符号变量和表达式语法:sym(‘变量’,参数) %把变量定义为符号对象2.使用syms命令创建符号变量和符号表达式语法:syms(‘arg1’, ‘arg2’, …,参数) %把字符变量定义为符号变量syms arg1 arg2 …,参数%把字符变量定义为符号变量的简洁形式说明:syms用来创建多个符号变量,这两种方式创建的符号对象是相同的。

参数设置和前面的sym命令相同,省略时符号表达式直接由各符号变量组成。

说明:参数用来设置限定符号变量的数学特性,可以选择为’positive’、’real’和’unreal’,’positive’表示为“正、实”符号变量,’real’表示为“实”符号变量,’unreal’表示为“非实”符号变量。

如果不限定则参数可省略。

【例3.1】创建符号变量,用参数设置其特性。

>> syms x y real %创建实数符号变量>> z=x+i*y; %创建z为复数符号变量>>real(z) %复数z的实部是实数xans =x【例3.2】创建符号表达式。

>> f1=sym('a*x^2+b*x+c')f1 =a*x^2+b*x+c【例3.3】使用syms命令创建符号变量和符号表达式。

>> syms a b c x %创建多个符号变量>>f2=a*x^2+b*x+c %创建符号表达式f2 =a*x^2+b*x+c3.1.2符号表达式的代数运算符号运算与数值运算的区别主要有以下几点:▪传统的数值型运算因为要受到计算机所保留的有效位数的限制,它的内部表示法总是采用计算机硬件提供的8位浮点表示法,因此每一次运算都会有一定的截断误差,重复的多次数值运算就可能会造成很大的累积误差。

第5章_Matlab符号运算

第5章_Matlab符号运算

再通过命令 sym 可直接将数值矩阵转换为符号矩阵 S=sym(M) 如果数值矩阵的元素为小数,则函数 sym()采用有理分式表示。如果元素是无理数,用 符号浮点数表示。 A=[sin(1) cos(2)] sym(A) [例 3] 用类似创建普通数值矩阵的方法创建符号矩阵 syms a b c d e f g h A=[a b;c d],B=[e f;g h] 对符号矩阵的操作同第 2 章讲的相同。 5.2 符号算术运算 Matlab 的符号算术运算主要是针对符号对象的加减、乘除运算,其运算法则和运算符 号同第 2 章介绍的数值运算相同, 其不同点在于参与运算的对象和运算所得结果是符号的而 非数值的。 5.2.1 符号对象的加减 若符号矩阵 A、B 为同型矩阵时,对应元素相加减;若 A、B 中至少有一个为标量,则 把标量扩大为数组,其大小与相加的另一数组同型,再按相对应的元素进行加减。 [例 1] 求两个符号表达式的和与差 f=2x2+3x-5 g=x2-x+7 syms x fx=2*x^2+3*x-5 sym('') gx=x^2-x+7 fx+gx fx-gx [例 2] 求两个符号矩阵的加减运算 syms a b c d e f g h A=[a b;c d],B=[e f;g h] A+B,A-B,a+A 5.2.2 符号对象的乘除 符号矩阵乘除:A*B、A/B,符号数组乘除:A.*B、A./B [例 1] 符号矩阵与数组的乘除示例 syms a b c d e f g h A=[a b;c d] B=[e f;g h] A.*B,A./B,A.\B A*B,A/B,A\B syms a11 a12 a21 a22 b1 b2 A=[a11 a12;a21 a22] B=[b1 b2]

第四章 MATLAB符号计算

第四章  MATLAB符号计算

Ezpolar函数实现极坐标中二维曲 线图象的绘制,它的调用格式:
ezpolar(f,[a,b])
说明: 绘图表达式为rho=f(theta)极坐标曲线,
theta的取值范围为,缺省时为[0,2*pi]
例:p83
4.5.2三维绘图函数
ezplot3是实现三维绘图的函数,它的 调用格式:
ezplot3(x,y,z,[tmin,tmax]) ezplot3(x,y,z,[tmin,tmax ],'animate')
3.符号表达式的提取分子和分母运算
在matlab中可利用numden函数来提取符号表达式 中的分子或分母。其一般调用格式为:
[n,d]=numden(s)
说明:
参数s是符号表达式是一个 有理分式或可以展开为有理
例: s=sym('2/5+3/7')
n= 29
分式,numden函数把有理分 式的分子返回给n,分母返回
dsolve在求常微分方程组时 的调用格式为:
dsolve('eq1,eq2,...','cond1,cond2...','v')
说明: 该函数求解常微分方程组eq1,…,eqn在初值条件或边界 条件为cond1,…,condn下的符号特解,若不给出初值 条件,则求方程组的通解,v为指定的返回值中的变量 表示。
例4-9解超越方程组
sin(x+y)-y*exp(x)=0 x^2-y=2
syms x y
[x,y]=solve('sin(x+y)-y*exp(x)=0','x^2-y=2')
x =-.66870120500236202933135901833637

MATLAB基础教程 第5章 符号运算

MATLAB基础教程 第5章 符号运算

第五章 符号运算
5.1 符号运算基础
2. 符号表达式的转换
(2)expand:该函数用于符号表达式的展开。其操作对象可以是多种类型,如多项 式、三角函数、指数函数等。
例5-6 符号表达式的展开。 >>syms x y; >>f=(x+y)^3; >>expand(f) ans= x^3+3*x^2*y+3*x*y^2+y^3 >>expand(sin(x+y)) ans= sin(x)*cos(y)+cos(x)*sin(y) >>expand(exp(x+y)) ans= exp(x)*exp(y)
第五章 符号运算
5.1 符号运算基础
例5-2 符号运算和数值运算之间的差别 >>sym(2)/sym(5) ans= 2/5 >>2/5+1/3 ans=0.7333 >>sym(2)/sym(5)+sym(1)/sym(3) ans= 11/15 >>double(sym(2)/sym(5)+sym(1)/sym(3)) ans= 0.7333 由上例可以看出,当进行数值运算时,得到的结果为double型数据;采用符号进 行运算时,输出的结果为分数形式。
第五章 符号运算
5.1 符号运算基础
2. 符号表达式的转换
(4)simplify:该函数实现表达式的化简。 例5-8 simplify函数的应用。 >>simplify(sin(x)^2+cos(x)^2) ans= 1 >>syms a b c; >>simplify(exp(c*log(sqrt(a+b)))) ans= (a+b)^(1/2*c) >>S=[(x^2+5*x+6)/(x+2),sqrt(16)]; >>R=simplify(S) R= [3+x, 4]

第二讲 MATLAB符号计算

第二讲 MATLAB符号计算

符号矩阵中元素的引用和修改
>> A=sym(’[1+x, sin(x); 5, exp(x)]’) >> A(1,2) >> A(2,2)=sym(’cos(x)’)
MATLAB 符号运算
符号矩阵的基本运算
符号矩阵的基本运算与数值矩阵的基本运算相类似。
1) 基本运算符:+、-、*、\、/、
2 n 1

1
>> syms n >> S=symsum(1/n^2,n,1,inf) >> S10=symsum(1/n^2,n,1,10)

S=1/6*pi^2 S10=1968329/1270080
例:求函数级数
S
n
n 1
x
2
>> syms n x >> S=symsum(x/n^2,n,1,inf)
x x x
MATLAB 符号运算
分式通分: numden
[N,D]=numden(f): N为通分后的分子,D为通分后的分母
MATLAB 符号运算
六大常见符号运算
因式分解、展开、合并、简化及通分等
计算极限 limit(f,x,a): 计算 lim f ( x )
x a
limit(f,a): 计算默认自变量趋向于a时f的极限 limit(f): 计算 a=0 时的极限 limit(f,x,a,’right’):右极限 limit(f,x,a,’left’):左极限
R
3*cos(x)^2-1 (x+1)^3 4*x^3-3*x
HOW
simplify combine(trig) factor expand

第三章:MATLAB的符号运算

第三章:MATLAB的符号运算

注1:即使利用clear语句删除x,并不能改变MuPAD内存中对x的限制设 定,再引入变量x是,仍然带有这一设定。
注2:sym x clear 只改变x的限定,并没有删除和改变x的值。
例:求 3x2 5x 1 0的解
>> clear >> syms x >> solve(3*x^2+5*x+1) ans =
>> y=solve(f) y= -(b + (b^2 - 4*a*c)^(1/2))/(2*a) -(b - (b^2 - 4*a*c)^(1/2))/(2*a)
>> y=solve(f,a) y= -(c + b*x)/x^2
符号表达式 符号表达式有两种不同的生成方式: 1、直接由sym函数生成 如: f=sym(‘2*sin(x)+5*cos(x)’) 这样的表达式称为串型表达式。 2、利用符号变量经符号运算生成 如: syms x y f=sin(x)+2*cos(y)
- 13^(1/2)/6 - 5/6 13^(1/2)/6 - 5/6
>> assume(x>=-5/6) >> solve(3*x^2+5*x+1)
ans = 13^(1/2)/6 - 5/6
例:求方程
x3
475 5 x 0 的根 100 2
求第一象限的根
>> syms x 'clear' >> assume(real(x)>=0) >> assumeAlso(imag(x)>=0) >> solve(x^3+475*x/100+5/2) ans = (79^(1/2)*i)/4 + 1/4

Matlab教学第四章MATLAB符号运算(Symbolic)

Matlab教学第四章MATLAB符号运算(Symbolic)

符号计算可以给出完全正确的封闭解,或任意精度的数
值解(封闭解不存在时)。
符号计算指令的调用比较简单,与数学教科书上的公式相近。
符号计算所需的运行时间相对较长。
Matlab 符号运算举例
求一元二次方程 ax2 + bx + c = 0 的根 >> solve('a*x^2+b*x+c=0') 求的根 f (x) = (cos x)2 的一次导数 >> x=sym('x'); >> diff(cos(x)^2) 计算 f (x) = x2 在区间 [a, b] 上的定积分
>> syms a b x; >> int(x^2,a,b)
符号对象与符号表达式
在进行符号运算时,必须先定义基本的符号对象,可以是符号常量、符号变 量、符号表达式等。符号对象是一种数据结构。
含有符号对象的表达式称为符号表达式,Matlab 在内部把符号表达式表示 成字符串,以与数字变量或运算相区别。
syms a b c
符号表达式的建立
符号表达式的建立:
建立符号表达式通常有以下2种方法: (1) 用 sym 函数直接建立符号表达式。 (2) 使用已经定义的符号变量组成符号表达式。
例: >>
y=sym('sin(x)+cos(x)')
>> x=sym('x'); >> y=sin(x)+cos(x) >> syms x; >> y=sin(x)+cos(x)
六类常见符号运算
因式分解、展开、合并、简化及通分等 计算极限 计算导数 计算积分 符号求和 代数方程和微分方程求解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

>> k1=polyder([2,-1,0,3]); >> k2=polyder([2,-1,0,3],[2,1]); >> [k2,d]=polyder([2,-1,0,3],[2,1]);
多项式的值
计算多项式在给定点的值
代数多项式求值
y = polyval(p,x): 计算多项式 p 在 x 点的值
p( x) ( x x1 )(x x2 )( x xn )
多项式运算小结
poly2sym(p,’x’) k = conv(p,q) [k,r] = deconv(p,q) k = polyder(p) [k,d] = polyder(p,q) [k,d] = polyder(p,q) y = polyval(p,x) Y = polyvalm(p,X) x = roots(p)
例如:A = sym('[a , 2*b ; 3*a , 0]') A= [ a, 2*b] [3*a, 0] 这就完成了一个符号矩阵的创建。 注意:符号矩阵的每一行的两端都有方 括号,这是与 matlab数值矩阵的 一个重要区别。
符号对象的建立
符号对象的建立:sym 和 syms
syms 命令用来建立多个符号变量,一般调用格式

f (v)
v a
b
symsum(f,a,b): 关于默认变量求和
1 例:计算级数 S 2 及其前100项的部分和 n 1 n >> syms n; f=1/n^2; >> S=symsum(f,n,1,inf) >> S100=symsum(f,n,1,100) x 例:计算函数级数 S 2 n 1 n
例: >> y=sym('sin(x)+cos(x)')
>> x=sym('x'); >> y=sin(x)+cos(x)
符号对象的基本运算
Matlab 符号运算采用的运算符和基本函数,在形状、名称 和使用上,都与数值计算中的运算符和基本函数完全相同
基本运算符
普通运算:+ 、- 、* 、\ 、/ 、^ 数组运算:.* 、.\ 、./ 、.^ 矩阵转置:' 、.'
x M, lim1 n n
n
>> syms x h n; >> L=limit((log(x+h)-log(x))/h,h,0) >> M=limit((1-x/n)^n,n,inf)
计算导数
diff g=diff(f,v):求符号表达式 f 关于 v 的导数 g=diff(f):求符号表达式 f 关于默认变量的导数 g=diff(f,v,n):求 f 关于 v 的 n 阶导数
(2) fplot(格式相对ezplot单一)
fplot(‘fun’,lims)
(3)空间曲面绘图: ezmesh、ezsurf
Matlab 符号运算举例
求一元二次方程 ax2 + bx + c = 0 的根 >> solve('a*x^2+b*x+c') 求的根 f (x) = (cos x)2 的一次导数 >> x=sym('x'); >> diff(cos(x)^2)(为什么引号可以去掉) 计算 f (x) = x2 在区间 [a, b] 上的定积分
3 2 p 2 x x 3 例: 1 p2 2 x 1 p1 p2 2 x 3 x 2 2 x 4
[2, 1, 0, 3] [ 0, 0, 2, 1] [2, 1, 2, 4]
多项式四则运算
多项式乘法运算: k = conv(p,q)
例:计算多项式 2 x 3 x 2 3 和 2 x 1 的乘积
例:>> X=sym('[x11,x12;x21,x22;x31,x32]');
>> Y=sym('[y11,y12,y13;y21,y22,y23]'); >> Z1=X*Y; Z2=X'.*Y;
六类常见符号运算
因式分解、展开、合并、简化及通分等 计算极限 计算导数 计算积分 符号求和 代数方程和微分方程求解
>> p=[2,-1,0,3]; >> q=[: [k,r] = deconv(p,q)
其中 k 返回的是多项式 p 除以 q 的商,r 是余式。 [k,r]=deconv(p,q) <==> p=conv(q,k)+r
多项式的求导
polyder
多项式运算中, 使用的是多项式
系数向量,
不涉及符号计算!
为:
syms 符号变量1 符号变量2 ... 符号变量n
>> a=sym('a'); >> b=sym('b'); >> c=sym('c');
例: >> syms a b c
符号表达式的建立
符号表达式的建立:
建立符号表达式通常有以下2种方法: (1) 用 sym 函数直接建立符号表达式。 (2) 使用已经定义的符号变量组成符号表达式。
因式分解
因式分解
factor(f)
>> syms x; f=x^6+1; >> factor(f)
函数展开
函数展开
expand(f)
多项式展开
>> syms x; f=(x+1)^6; >> expand(f)
三角函数展开
>> syms x y; f=sin(x+y); >> expand(f)
多项式的值
矩阵多项式求值
Y=polyvalm(p,X)
采用的是普通矩阵运算 X 必须是方阵
3 2 例:已知 p( x) 2 x x 3,则
polyvalm(p,A) = 2*A*A*A - A*A + 3*eye(size(A)) polyval(P,A) = 2*A.*A.*A - A.*A + 3*ones(size(A)) >> p=[2,-1,0,3]; >> x=[-1, 2;-2,1];polyval(p,x) >> polyvalm(p,x)
>> syms x; >> f=sin(x)+3*x^2; >> g=diff(f,x)
计算积分
int(f,v,a,b): 计算定积分

b
a
f ( v )dv
int(f,a,b): 计算关于默认变量的定积分
int(f,v): 计算不定积分
f (v )dv
int(f): 计算关于默认变量的不定积分
多项式的零点
x=roots(p):若 p 是 n 次多项式,则输出是 p=0 的 n 个根组成的 n 维向量。
3 2 例:已知 p( x) 2 x x 3,求 p(x) 的零点。
>> p=[2,-1,0,3]; >> x=roots(p) 若已知多项式的全部零点,则可用 poly 函数给出该多项式 p=ploy(x)
注:若 x 是向量或矩阵,则采用数组运算 (点运算)! 例:已知 p( x) 2 x 3 x 2 3,分别取 x=2 和一个 22 矩阵, 求 p(x) 在 x 处的值 >> p=[2,-1,0,3]; >> x=2; y=polyval(p,x) >> x=[-1, 2;-2,1]; y=polyval(p,x)
合并同类项
合并同类项
collect(f,v): 按指定变量 v 进行合并 collect(f): 按默认变量进行合并
>> syms x y; >> f= x^2*y + y*x - x^2 + 2*x ; >> collect(f) >> collect(f,y)
函数简化
函数简化
y=simple(f): 对 f 尝试多种不同的算法进行
Matlab 符号运算
所谓符号计算是指在运算时,无须事先 对变量赋值,而将所得到结果以标准的符号 形式来表示。 如y=a*x^2+b*x a,b,x就是以a, b , x的形式出现,这时a \b\ x都是符号对象。
Matlab 符号运算介绍
Matlab 符号运算是通过符号数学工具箱 (Symbolic Math Toolbox)来实现的。此工具 箱已默认安装。
>> syms a b x; >> int(x^2,a,b)
符号对象与符号表达式
在进行符号运算时,必须先定义基本的符号对象,可以是 符号常量、符号变量、符号表达式等。
含有符号的表达式称为符号表达式,Matlab 在内部把符 号表达式表示成字符串,以与数字变量相区别。 符号矩阵/数组:元素为符号表达式的矩阵/数组。
Matlab 的符号数学工具箱可以完成几乎所有得符号运算 功能。主要包括:符号表达式的运算(加减等),符号表达 式的化简,符号矩阵的运算,符号微积分、符号作图,符 号代数方程求解,符号微分方程求解等。
复习:符号函数(显函数、隐函数和参数方程)画图
(1) ezplot
ezplot(‘f(x)’,[a,b]) ezplot(‘f(x,y)’,[xmin,xmax,ymin,ymax]) ezplot(‘x(t)’,’y(t)’,[tmin,tmax])
相关文档
最新文档