低渗油气储层增产改造技术ppt课件

合集下载

油水井增产增注技术分析PPT课件

油水井增产增注技术分析PPT课件

把压裂管柱、地面管汇中的携砂液
顶替液 全部替入裂缝,以避免压裂管柱砂卡、
砂堵的液体。组成与前置液一致。
第10页/共48页
二、压裂液基 础
(三)压裂液的性能
滤失性
主要取决于压裂液自身的粘度和造壁 性,粘度高则滤失少。添加防滤失剂能改 善压裂液的造壁性,大大减少滤失量。
指压裂液对于支撑剂的携带能力。主 要取决于液体的粘度、密度及其在管道和 携砂性 裂缝中的流速,粘度越高,携带能力越强。
6
稠度系数(mpa.sn)
7
流动行为指数
8 破胶液表面张力(mN/m)
9 破胶液煤油界面张力(mN/m)
10
初滤失量 m3/m2
11
滤失系数 m/min-2


≥33
≥300
≥150
24h 粘度小于
10mPa.s
≤400
≥10×102
0.2-0.7
≤30
≤5
≤2×10-3
≤1×10-3
第29页/共48页
97年后
2000 年后
2000年后逐渐 采用混合压裂 液。
随着页岩气开发, 滑溜水压裂液为页 岩的主要压裂液;
压裂液向“清洁”无伤害
压裂液体系发展;胍胶 (交联)压裂液一致为全 球主要的压裂液;
第15页/共48页
二、压裂液基 础
(四)压裂液类型
按照分散介质的不同,压裂液主要分为:
水基压裂液 油基压裂液 乳化压裂液 泡沫压裂液 醇基压裂液 表面活性剂(清洁)压裂液
(三)压裂后流体从地层流向井底的流动 形态
1)拟径向流动阶段 2)地层线性流动阶段 3)双线性流动阶段 4)裂缝线性流动阶段
水力压裂后,改变了渗流区的渗流方式,获得了双线 性流动模式,提高了近井地带的渗透能力。

低渗透油藏ppt

低渗透油藏ppt

二、低渗透油层的分布条件及特征
2.1、低渗透油层的分布条件 低渗透油层与一般的油层有着较大的差别,与其他的油层的 形成条件存在一定差异,在我国,低渗透油层主要分布于山麓冲 积扇的浊积扇和水下扇三角洲沉积体系,有跞状砂炭油层、砾岩 油层、粉砂炭和砂岩油层等几种岩石类型。主要包括由近源沉积 的矿物成熟度低、油层分选差、成岩压实作用、远源沉积物和近源 深水重力流形成的油层。
三、不断优化开发方式提高低渗透油层的采收率
3.3、注入烃类混相驱的应用
在低渗透油层的开采中高压注入天然气,使开采油层中的油
与之发生混相以形成混相带,伴随着持续注入的压力,混相前缘
向前不断驱动,从而实现将油采出的目的
四、低渗透油层物理化学采油技术的应用
4.1、物理采油技术的应用 (1)声波采油技术 声波采油是目前发展较快的三次采油技术。据相关资料报道,采用频 率较高超声波进行处理,可提升50%左右的油田产量, 能够获得较为显著的经济效益。与传统采油方法相比,声波采油 以其影响流体物性与流态;对油层作用见效快;操作费用低;还可 与其他增产措施结合使用的特点,在非均质油层、低渗透油层得 到了广泛应用,是提高低渗透油层原油采收率的有效技术措施。
油湿,同时,在化学驱油过程中,可以通过控制化学试剂如表面活
性剂和聚合物等吸附或沉淀的数量及吸附方式来改变油藏的润 湿性,从而实现油层采收率的提升。
四、低渗透油层物理化学采油技术的应用
(2)纳米聚硅材料在降压增注中的应用
纳米注水井之间的压力差异。此外,由于
四、低渗透油层物理化学采油技术的应用
4.2、化学采油技术的应用 (1)改变油层润湿性在提高原油采收率中的应用 油藏岩石的润湿性影响油水在多孔介质中的分布、流动状态
和驱油效率,在油藏开采过程中起着至关重要的作用。通过化学

《油藏增产措施》ppt课件1

《油藏增产措施》ppt课件1

支撑剂注入
在压裂液中加入支撑剂, 如砂、陶粒等,保持裂缝 张开并提高导流能力。
压裂液排出与 支撑剂沉降
控制压力和泵速,使压裂 液排出,支撑剂在裂缝中 沉降。
试压与投产
进行试压测试,确认裂缝 是否成功形成,然后进行 油气生产。
压裂应用实例
01
Hale Waihona Puke 0203油藏特点某油藏储层较深,渗透性 较差,产量较低。通过压 裂技术提高储层渗透性, 增加产量。
对增产措施的各项参数进行优化设计,如压 裂的裂缝长度、角度等。
方案对比
设计多种增产方案,通过对比分析,选择最 优方案。
风险评估
对增产措施可能面临的风险进行评估,制定 相应的应对措施。
THANKS FOR WATCHING
感谢您的观看

堵水调剖工艺流程
选井
选择需要进行堵水调 剖的油井,考虑油井 的地质条件、生产情 况和井况等因素。
配制堵水调剖剂
根据选井情况和堵水 调剖剂的性能,配制 一定浓度的堵水调剖 剂。
注入堵水调剖剂
将配制好的堵水调剖 剂通过注入泵注入到 油井中。
封堵水流通道
堵水调剖剂在油藏中 封堵水流通道,改变 水流方向和流速。
• 实施效果评估:在堵水调剖措施实施后,对目标油井进行密切监测,收 集生产数据和井况信息,评估措施效果。如果效果良好,则继续进行下 一步的生产管理;如果效果不佳,则考虑其他增产措施或重新制定注入 方案。
05
其他增产措施
物理增产措施
压裂
利用高压将支撑剂压入地层,使地层 产生裂缝,增加原油的流动性。
效果评估
根据油井生产情况和 井况等因素,评估堵 水调剖措施的效果。
堵水调剖应用实例

《油藏增产措施》PPT课件

《油藏增产措施》PPT课件

压裂设计是通过由Carter的方法得到与时间有 关的缝长与由Kern模型确定的缝宽之间反复迭代, 直到得到相容解
Nordgren(1972)
▪ 连续性方程(即质量守恒):
qx qL
A0 t
(6.18)
q —— 流体通过某一横截面的体积流速 A—— 裂缝的横截面积(对于PKN模型为πwhf/4) qL——单位长度上滤失体积流速 qL 2hfuL
《油藏增产措施》PPT课 件
讲授内容
压裂原理、设计与实施:
第6章:水力压裂力学 第7章:压裂液化学和支撑剂 第8章:压裂材料的性能
压裂设计(第10章) 压裂施工(第11章) 碳酸盐岩酸化设计(第17章) 碳酸盐岩酸化技术(补充)
第6章 水力压裂力学
6.1 引言 6.2 早期水力压裂模拟 6.3 三维和拟三维模型 6.4 滤失 6.5 支撑剂铺置 6.6 热传递模型
(6.30)
其中:
S 8CL t ww
为了包括瞬时滤失Sp的影响,应该以 ww+(8/π)Sp代替ww 。
6.2.2.4 PKN 和 KGD 模型的假设
▪ 平面裂缝(裂缝沿最小主应力垂直方向扩展) ▪ 流动沿缝长一维流动 ▪ 流体为牛顿流体 ▪ 滤失特性由滤失理论(6.13)得到的简单表达式所控制 ▪ 地层岩石为连续、均匀、各向同性的线弹性体 ▪ 裂缝被认为缝高不变,完全在某一给定的地层中扩展
qi qLqf
(6.14)
qL —— 整个裂缝的滤失速度 qf —— 缝内流体存储体积流速
假设裂缝在空间和时间上都保持恒定,上式变为:
即:
qi 2Af0tuLdAf wAtf qi 20 tultA f dA f wA tf
利用拉普拉斯变换得到:

02-低渗透储层地质特征(28)PPT课件

02-低渗透储层地质特征(28)PPT课件

类别 对比层
渗透率 10-3m2
>100
平均喉道 半径 μm
4.491
比表面 积 m3/g
0.48
排驱压力 MPa
0.076
中低 渗透层
一般低 渗透层
特低 渗透层
100-50 50-10 10-1
1.725 1.051 0.112
1.36 3.23 14.26
0.112 0.236 0.375
1.3 低渗透储层孔隙结构分类
人工裂缝主要起导流作用,能大 幅度提高低渗透油田的注水量和产液 量。
3.2 裂缝系统在低渗透油田开发中 的作用
裂缝系统对低渗透油田开发的影响 具有两重性。
3.2.1 提高储层渗流能力
低渗透储层,尤其是特低渗透储层,仅 依靠岩石基质的渗流能力不可能形成工 业油流。
主要为沉积过程中形成的沉积缝,和成岩 过程中出现的收缩缝。
这类裂缝很细小,在储层中分布比较均 匀,没有明显的方向性。
微裂缝系统起连通孔隙作用,能提高储层 渗透率,对低渗透油田开发起重要作用。
3.1.3 人工裂缝
人工水力压裂产生的裂缝。人工 裂缝方位也受地应力控制,与天然构 造裂缝方向一致,都是沿最大主应力 方向。
构造裂缝 微裂缝 人工裂缝
3.1.1 构造裂缝
构造裂缝是由于构造应力作用而形成的裂 缝系统。
裂缝方位受地应力分布状况的控制,具有 明显的方向性,常与主断层方向平行。
有时也可能有两组裂缝互相共轭出现。
如果构造裂缝发育,则油井产能高。
注水开发时油井见效快,也容易造成油井 见水快、水淹快。
3.1.2 微裂缝
2.4 储层非均质性对油田注水 开发的影响
高渗层吸水状况较好,低渗层吸水较 差,甚至不吸水。

高含水期特低渗油藏水气交替注入提高采收率可行性分析ppt课件

高含水期特低渗油藏水气交替注入提高采收率可行性分析ppt课件

0.644 45.2 47.6
48.4 49.6
49.6
4.4
C
3.4
1-15-2
2.16 47.6 58.1
63.8 64.7
69.0
21.4
1-15-3
0.798 36.1 43.2
47.5 47.5
49.8
13.7
D
1.6
1-14-2
0.488 45.1 48.0
51.2 51.2
53.3
8.2
2、水气交替注入参数
大量的研讨阐明,水气交替注入段塞比为1:1 时,注入段塞的大小在0.02PV时,具有好的驱替 效果。室内实验交替2~3个周期。
3、能够存在的问题
a.水气交替中注气转注水时水的注入困难问题, 可以采取的方法有注入增注剂,或将水气交替注 入改成注泡沫液的方式注入。 b.腐蚀、结垢、平安问题。
气 瓶








岩心



岩心



表 2 组合岩心各单层水气交替提高驱油效率实验结果
组合
转注气
第一周期
第二周期
岩心
气测渗 前水驱
驱 油 效 率 /%
驱 油 效 率 /%
实验 编号
样号
级 差 透 率 /×
油效率/ 10-3μm2 %
注气
注水 注气
注水
最终水气交 替提高驱替 效 率 幅 度 /%
3〕高渗岩心不出油,几乎只产水,含水率到达95%以上时,低 渗岩心几乎不产液;此时高渗和低渗岩心驱替效率相差2.4%~ 18.0%,平均相差11.5%;
4〕转水气交替注入后,低渗岩心最终驱油效率提高幅度在4.4 %~18.0%,平均9.73%;高渗岩心最终驱油效率提高幅度在 12.1%~21.4%,平均15.1%;水气交替注入最终提高高含水 期组合岩心最终驱油效率平均为12.4%。

《油藏增产措施》ppt课件

《油藏增产措施》ppt课件
《油藏增产措施》ppt 课件
汇报人: 2023-11-26
目 录
• 油藏增产措施概述 • 压裂增产措施 • 酸化增产措施 • 堵水调剖增产措施 • 其他增产措施 • 油藏增产措施案例分析
油藏增产措施概述
01
定义与重要性
定义
油藏增产措施是指通过采用各种 工程技术方法,改善油藏的渗流 条件,提高原油的采收率,以达 到提高油田产量的目的。
水驱
通过注水保油层压力,将原 油驱向生产井。
物理法
通过改变地层和井筒的物理性 质,如压裂、酸化等,改善渗 流条件。
增产措施发展历程
从早期的单纯注水到多轮次化学 驱、热采和气驱等复杂方法的应
用。
从单一技术到综合技术的应用, 如水平井、复合驱等。
从经验型到科学型的转变,借助 数值模拟、物理模拟等技术进行
压裂实施效果评估
通过对比压裂实施前后的产量变化,评估压裂技术的实际效果,以 及可能存在的问题和改进方向。
案例二:某油田酸化增产措施应用效果分析
1 2 3
酸化技术介绍
酸化技术是一种通过向地下注入酸液,使地层中 的岩石溶解,从而扩大裂缝,增加原油渗透率的 增产措施。
某油田酸化方案设计
根据某油田的地质特点和实际情况,设计合理的 酸化方案,包括酸液的选择、酸化设备的选用、 酸化程序的制定等。
工艺流程
将酸液通过注酸井注入油 层,溶解油层岩石中的胶 结物和堵塞物,从而扩大 油层的渗透性。
适用范围
适用于因岩石胶结物和堵 塞物导致油层渗透性下降 的油藏。
酸化主要材料及性能要求
主要材料:盐酸- 酸化剂:常用的酸 化剂包括盐酸- 酸化剂:常用的酸化 剂包括盐酸- 酸化剂:常用的酸化剂 包括盐酸- 酸化剂:常用的酸化剂包 括盐酸很抱歉,上述文本中未提及具 体的酸化剂。不过,根据常见的油田 酸化作业,酸化剂通常包括盐酸根据 常见的油田酸化作业,酸化剂通常包 括盐酸根据常见的油田酸化作业,酸 化剂通常包括以下几种

《油水井增产技术》课件

《油水井增产技术》课件

新兴技术的应用和前景
1 生物技术
生物技术在油水井增产中的应用前景广阔,例如利用微生物来降解油藏中的有机污染物, 提高产量。
2 纳米技术
纳米技术可以改变油藏和岩石的物理和化学特性,提高原油的产量和采收率。
不同技术方法在油田开发中的应用案例
水驱增产技术
气体驱动增产技术
化学驱动增产技术
通过注入水来推动原油的位移, 提高原油产量。在常规油田和 页岩油田中广泛应用。
通过注入气体(如天然气)来 推动原油的位移,提高原油产 量。在高渗透率的油藏中应用。
通过注入化学剂(如聚合物) 来改变岩石和原油的相互作用, 提高原油产量。在低渗透率和 高粘度油藏中应用。
用效率。
3
创新技术的推动
新兴的增产技术将不断涌现,推动油 水井增产领域的发展和进步。
技术的原理和工作原理
油水井增产技术的原理是通过改变油井和油藏的物理和化学特性,以增加原油的产量。 不同的增产技术有不同的工作原理,如注水增产技术通过提高井底压力,推动原油进入井筒。
技术的定义和目的
油水井增产是指通过应用各种技术手段,提高油井的产能和生产效率,实现 更好的经济效益。 增产的目的是充分利用油田资源,提高原油产量,满足能源需求。
降低成本
增产技术不仅能提高产量,还可以降低生产 成本,提高经济效益。
环境保护
在实施油水井增产技术时,需要考虑环境保 护问题,采取相应的措施和技术。
技术发展趋势
1
数字化技术的应用
Hale Waihona Puke 随着科技的发展,数字化技术将在油
可持续发展
2
水井增产中发挥重要作用,提高生产 效率。
油水井增产技术将更加注重可持续发
展,减少对环境的影响,提高能源利

低渗油藏注入开发技术精品PPT课件

低渗油藏注入开发技术精品PPT课件

占本油区探明储 量百分数(%)
28.38 36.21 75.56 54.90 51.63 36.03 54.89 29.05 100 47.89 25.34 100 75.09 67.02 53.03 47.45
一、问题的提出1——(低渗油藏储量情况调查结果)
集团 公司
中 石 化
油区
胜利 中原 河南 江汉 江苏 滇黔桂 安徽 合计
因此,开发好低渗、特低渗油田储量具有重要的现实意义和深远的战略意 义。
一、问题的提出2——(低渗油藏注水开发表现出的矛盾)
① 注水井注水压力不断上升,注水困难
② 注水启动压力与地层压力呈正相关关 系,造成油田注水困难
③ 注水井注水压力高、注水量小
百分比,%
40
35
30
25
20
16.4
15
10
5
0 <20
与国内外低渗透砂岩油藏开发采收率对 比,目前采收率偏低。
采 收 率 20-50%

23.3%
24.2%
21.2% 18.7%
国外 国内 中石油 中石化 胜利
占探明储量 百分数(%)
17.45 12.30 9.24 4.14 2.68 7.23 20.09 2.00 1.25 11.50 5.13 1.22 0.66 5.07 0.03 100
未动用储量 (万吨)
54201 34030.1
9795 8099 5621 20059 39315 6169.7
油井压力
20
10
牛20断块油水井压力-时间变化图
0
生产时间 y.m

动 35 压 30 力 25
20 15 MPa 10 5 0

专题低渗油藏注入开发技术PPT课件

专题低渗油藏注入开发技术PPT课件
第8页/共81页
②渗流阻力大
K
r 2 8 2
研究表明,固体表面吸附有具有反常的力学性质及很高的
抗剪切能力的十分牢固的吸附层,很难除去。
1. 低渗透层受吸
1. A.Φ.列别捷夫曾进行气驱水试验,证明在700N离心力作用下
附层的影响程
气驱水后,多孔介质中颗粒表面上仍留有约几个水分子层的薄
度大于高渗透
膜。
第10页/共81页
③多相渗流特征
• 绝对渗透率为1314×10-3μm2岩心 • 绝对渗透率为20×10-3μm2岩心
的相对渗透率曲线
的相对渗透率曲线。
1. 束缚水时,油相的相对渗透率Kro
1. 束缚水时,油相相对渗透率较低,约
较高,约为0.97,接近油相的绝对
为0.75。
渗透率。
2. 残余油时,水相相对渗透率很低,约

2. Б.B.泽烈金也指出,玻璃面上油水膜厚度约为0.075μm。
2. 油藏比气藏更
3. 流体粘度越高,吸附层越厚。
易受吸附层的 影响
4. 在岩石孔隙中,水被吸附于孔隙内壁表面上形成牢固的吸附层,
孔隙半径等于和小于吸附层厚度的孔隙,就不会再有储油价值。
5. 从吸附角度而言,有效孔隙应是半径大于吸附水膜厚度的孔隙。
第3页/共81页
一、问题的提出2——(低渗油藏注水开发表现出的矛盾)
① 注水井注水压力不断上升,注水困难
60
② 注水启动压力与地层压力呈正相关关
50
系,造成油田注水困难
40
注水井压力
地层压力 MPa
③ 注水井注水压力高、注水量小
30
油井压力
20
百分比,%
40 35 30 25 20 16.4 15 10 5 0

《低渗透油气藏》PPT课件

《低渗透油气藏》PPT课件

动静态杨氏模量对比
断裂韧性的测量与预测
岩石断裂韧性是描述裂尖附近的应力场的参数,是应力奇 异性的度量。断裂韧性是载荷参数(如缝中压力,原地应力)和 岩体参数(如裂缝尺寸)的函数它可以提供裂缝扩展的判据。但 是,长期以来,由于测试手段和理论研究的局限,在水力压裂 设计中往往只能给出断裂韧性的经验估计。
水力压裂技术发展
•第一代压裂(1940’-1970’):小型压裂
加砂量较小,在10m3左右,主要是解除近井地带污染
• 第二代压裂(1970’-1980’):中型压裂
加砂量迅速增加,主要是增加地层深部油流通道,
提高低渗透油层导流能力 •第三代压裂(1980’-1990’):端部脱砂压裂
Mr.哈里伯顿
5000
100
90
4000
80
70
3000
60
50
2000
40
30
1000
20
10
0
0
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
年探明天然气储量(亿方)
低渗储量百分数(%)
2. 压裂酸化技术在低渗透油气藏勘探开发中作用巨大
自1947年首次压裂,至1988年作业总量已超过100万井次以上
Hydraulic fracture induces a characteristic
deform ation pattern
F ra c tu re -in d u c e d surface trough
Induced tilt reflects the geom etry and
orientation of created hydraulic fracture
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

00-12-5
01-12-5
02-12-5
03-12-5 04-12-4
生产时间
100 90 80 70 60 50 40 30 20 10 0 05-12-4
(一)、压裂地质分析与选井选层
1、地质分析的重点: 宏观方面应分析 ●沉积、构造、岩性特征,岩矿成份,地层压力系统与 驱动类型; ●区域上储层孔、渗、饱特征,地应力大小、方位与原 始微裂缝发育状况; ●流体性质、边底水分布及储层的敏感性等。 微观方面应研究 ●目标井层的电性特征、小层分布、油水关系、非均质 性以及试井等测试解释资料等。
共增油11570万吨以上(平均单井525吨)
近10年来年压裂酸化作业井次8000左右,年增油量560万 吨(平均单井700吨)
压裂技术进步,确保低渗藏有效开发
如长庆:安塞油田、靖安油田、西峰油田 美国:Johna气田
– 低渗透油藏整体压裂和开发压 裂技术
– 低渗透气藏大幅度提高单井产 量技术
– 复杂岩性储层酸压裂技术 – 深井、超深井压裂技术 – 大型压裂技术 – 裂缝性储层压裂技术
2.8815
1.959
0.6489 33.6903
已探明未开发地质储量(亿吨) 落实地质储量(亿吨) 可开发地质储量(亿吨) 近期可开发地质储量(亿吨)
低效一类地质储量(亿吨)
2.285
低效二类地质储量(亿吨) 暂无效益地质储量(亿吨)
4.840
10.5485
28.2006
待落实地质储量(亿吨) 待核销地质储量(亿吨) 表外地质储量(亿吨)
– ……
工艺技术的基础:
1)压前储层评价 2)室内实验技术 3)新型压裂材料 4)裂缝诊断技术 5)效果评估技术 6)……
低渗透油气田改造
目标——实现油气田经济有效开发 原则——深穿透、饱填砂、快返排 工艺——简单、实用、安全、有效 液体——对地层低伤害、对地面要环保 测试——创新理论和技术
一、低渗储层分类与分布
三、低渗储层生产特征
日产液(m3/d) 日产油(t/d) 含水(%)
• 投产初期产量下降快、幅 度大
• 稳产水平低,但产量相对 稳定
• 地层压力下降较快,能量 补充困难
• 注入水方向性推进强烈, 易在裂缝方向水窜
• 一般而言,采收率较低
5.0 4.0 3.0 2.0 1.0 0.0
98-12-6
99-12-6
7
90
6
78 75
70
5
66
79.3 80
69
68.4
70
59
60
4
50
46
3
40
30 2
20
1 10
0 1996
1997
1998
1999
2000 年
2001
2002
2003
0 2004
全国有近33亿ቤተ መጻሕፍቲ ባይዱ未动用储量,近万亿方低渗透气藏、凝析 气藏,需要增产改造投入经济有效开发。
17.3024 3.1578
1.国外低渗透油田划分标准 • 前苏联学者将渗透率小于(50~100)
×10- 3μm2的油田算作低渗透油田。 • 美国联邦能源管理委员会对低渗透储层
进行了界定,其中把渗透率小于 0.1×10- 3μm2的储层称为致密储层。
2.中国石油天然气总公司标准(1998年)
① 砂岩油藏按照渗透率划分标准
分类
低渗油气储层增产改造技术
主要内容
一、低渗储层分类与分布 二、水力压裂技术发展现状 三、低渗储层生产特征 四、低渗储层压裂改造要点 五、储层保护与压裂液体技术 六、低渗储层改造主要技术 七、压裂评估与测试技术 八、面临的技术问题与发展方向 九、低渗透油气藏压裂增产特色工艺技术
前言
近年来,低渗透油气藏储量、产量构成比例逐年提高
特高渗
高渗
中渗
低渗 特低渗 超低渗 非渗
K(×10- K≥2000 500≤K<2000 50≤K<500 10≤K<50 1≤K<10 0.1≤K<1 K<0.1 3μm2)
② 砂岩气藏按照孔隙度渗透率划分标准
分类 K(×10-3μm2)
孔隙度(%)
高渗 500≤K
≥25
中渗 10≤K<500
25~15
低渗 0.1≤K<10
15~10
特低渗 K<0.1 <10
3.中国陆上低渗透油田的分布
我国低渗透油气藏含油气层系 多,涵盖古生界、中生界、新生 界。低渗透油气藏类型多,包括 砂岩、碳酸盐岩、火山岩。低渗 透油气藏分布区域广,主要盆地 都有分布,东部有松辽、渤海湾、 二连、海拉尔、苏北、江汉盆地 砂岩油藏,松辽、渤海湾盆地火 山岩油气藏;中部有鄂尔多斯、 四川盆地砂岩油气藏和海相碳酸 盐岩气藏;西部有准噶尔、柴达 木、塔里木、三塘湖盆地砂砾岩 油气藏、火山岩油气藏和海相碳 酸盐岩油气藏。
人工裂缝诊断技术
水平井压裂酸化技术
压裂施工过程的计算机自动化控制 与数据远传
(二)国内水力压裂技术主体技术
国内发现的油气田越来越复杂,主要类型: 1、低渗低压致密气藏;
2、低渗特低渗透油藏; 3、深层火成岩气藏; 4、致密碳酸盐岩储层。
形成的压裂改造主体技术:
1、低渗透油藏开发压裂技术; 2、低渗透气藏大幅度提高单井产量技术; 3、复杂岩性储层改造技术; 4、新型压裂材料和新工艺技术。
问题:丰度低、单井产量低、开发效益差
压裂技术实现有效增储上产作用举足轻重
井次
年增油(万吨)
12000 10000
8000 6000 4000 2000
压裂酸化井次 年增产量
1000 800 600 400 200
0
0
1985 1990 1995 2000 2005

从1955年至2004年底,全国压裂酸化作业22万井次以上,
二、水力压裂技术发展现状
(一)国外水力压裂技术现状(总体:成熟、系统配套)
机理研究



新材料研究



现场应用研究
裂缝模拟研究 支撑剂长期导流能力研究 含砂液流变性 压裂液伤害机理 应力敏感性
清洁压裂液 低分子压裂液(可重复使用) 缔合压裂液 VDA(清洁自转向酸) 改变相渗特性的压裂液 超低密度支撑剂 清洁泡沫压裂液
年探明石油储量(亿吨) 低渗储量占百分数(%)
• 鄂尔多斯、松辽、准噶尔、 四川盆地累计探明低渗透石 油储量76亿吨、天然气2.5万 亿立方米。
• 石油剩余资源量799亿吨,其 中低渗透431亿吨,占剩余石 油资源总量的60%。天然气剩 余资源49.6万亿立方米,其 中低渗透24.8万亿立方米, 占剩余天然气资源总量的51%。
裂缝诊断 支撑剂回流控制技术 新的压裂优化设计技术 利用压裂压力降落曲线认识储层技术 大型压裂控制缝高技术 支撑剂段塞消除近井筒裂缝摩阻技术
开发压裂技术
重复压裂技术
领 先 技
连续油管压裂酸化技术 低伤害或无伤害压裂酸化技术
清洁压裂液压裂 技术
水压裂技术

压裂防砂与端部脱砂压裂技术 低分子压裂液压
裂技术
相关文档
最新文档