人教版初三数学上册旋转的概念和性质

合集下载

初中数学九年级旋转知识点

初中数学九年级旋转知识点

初中数学九年级旋转知识点在初中数学九年级,旋转是一个重要的几何变换方法。

通过旋转,我们可以改变图形的位置和方向,从而帮助我们解决一些几何问题。

本文将介绍九年级数学中与旋转相关的知识点,包括旋转的定义、旋转的性质以及旋转的应用。

一、旋转的定义旋转是指将一个图形绕着固定点旋转一定角度,保持图形内部的点与固定点的距离保持不变。

旋转的固定点称为旋转中心,旋转的角度称为旋转角度。

九年级数学中常用的旋转角度有90度、180度和270度。

二、旋转的性质1. 旋转保持图形面积不变:无论如何旋转一个图形,它的面积都保持不变。

2. 旋转保持图形周长不变:无论如何旋转一个图形,它的周长也保持不变。

3. 旋转保持图形对称性不变:如果一个图形是对称的,那么它的旋转图形也将保持对称性。

三、旋转的应用1. 确定旋转后的图形:通过给出旋转中心和旋转角度,我们可以确定旋转后的图形。

例如,给出一个三角形ABC,旋转中心为点O,旋转90度,我们可以通过连接OA、OB和OC来确定旋转后的图形。

2. 解决几何问题:旋转常常被用于解决一些几何问题。

例如,在证明两个图形相似时,可以通过旋转一个图形使其与另一个图形重合,从而得到相似的证明。

3. 观察图形性质:通过观察旋转后的图形,我们可以揭示一些图形的性质。

例如,通过旋转正方形,可以发现旋转后的图形仍然是正方形,这说明正方形具有旋转对称性。

四、注意事项在进行旋转时,需要注意以下几点:1. 旋转角度是逆时针方向旋转:九年级数学中的旋转一般都是逆时针方向旋转,所以在进行旋转时需要根据旋转角度确定旋转方向。

2. 旋转中心的选择:选择旋转中心时,需要注意选择一个能够旋转整个图形的点,使得旋转后的图形可以被完全覆盖。

3. 使用适当的工具:在实际操作中,可以使用直尺、量角器等几何工具来进行旋转操作,以确保旋转的准确性。

总结:初中数学九年级的旋转知识点是我们在几何学习中重要的一部分。

通过学习旋转的定义、性质和应用,我们可以更好地理解和解决与旋转相关的问题。

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

最新人教版数学九年级上册第二十三章—旋转知识点总结及其练习

第二十三章—旋转一、旋转变换1、旋转的定义把一个图形绕着某一点O转动一个角度的图形变换叫做旋转。

点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P',那么这两个点叫做这个旋转的对应点。

2、旋转的性质(1)对应点到旋转中心的距离相等。

(旋转中心就是各对应点所连线段的垂直平分线的交点。

)(2)对应点与旋转中心所连线段的夹角等于旋转角。

(3)旋转前、后的图形全等。

3、作旋转后的图形的一般步骤(1)明确三个条件:旋转中心,旋转方向,旋转角度;(2)确定关键点,作出关键点旋转后的对应点;(3)顺次连结。

4、欣赏较复杂旋转图形图形是由什么基本图形,以哪个点为中心,按哪个方向(顺时针或逆时针)旋转多少度,连续旋转几次,便得到美丽的图案。

5、有关图形旋转的一些计算题和证明题例题练习1.将叶片图案旋转180°后,得到的图形是( )2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于()A.60°B.105°C.120°D.135°3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A点落在位置,若,则的度数是()A.50°B.60°C.70°D.80°4.数学来源于生活,下列生活中的运动属于旋转的是 ( )A.国旗上升的过程B.球场上滚动的足球C.工作中的风力发电机叶片D.传输带运输东西5.如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是 ( )6.如图,在△ABC中,AB=AC,∠ABC=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC.其中正确的为( )A.②③B.②③④C.①②③D.①②③④7.如图,将△ABC绕点A顺时针旋转得到△ADE,且点D恰好在AC上,∠BAE=∠CDE=136°,则∠C的度数是()8.如图,以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连接BE、CF.(1)求证:△FAC≌△BAE;(2)图中可以通过旋转△BAE而得到△FAC,请你说出旋转中心、旋转方向和旋转角的度数.9.如图,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE 绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,连接EN,作FG⊥BC交BC的延长线于点G.(1)求证:BE=CG;(2)若BE=2,DN=3,求EN的长.二、中心对称图形1、中心对称的定义把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。

九年级上册旋转数学知识点

九年级上册旋转数学知识点

九年级上册旋转数学知识点九年级上册旋转数学知识点1.旋转的定义:把一个图形绕着某一O转动一个角度的图形变换叫做旋转。

点O叫做旋转中心,转动的角叫做旋转角。

假如图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点。

重点突出旋转的三个要素:旋转中心、旋转方向和旋转角度。

2.旋转的性质:(1)对应点到旋转中心的间隔相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等3.作图:在画旋转图形时,要把握旋转中心与旋转角这两个元素。

确定旋转中心的关键是看图形在旋转过程中某一点是“动”还是“不动”,不动的点那么是旋转中心;确定旋转角度的方法是根据条件确定一组对应边,看其始边与终边的夹角即为旋转角。

作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求绕旋转中心旋转一定的角度(旋转角(3)在角的一边上截取关键点到旋转中心的间隔,得到各点的对应点;(4)连接所得到的各对应点.知识点二、中心对称与中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,假如它可以与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.2.中心对称的两条根本性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.(2)关于中心对称的两个图形是全等图形.3.中心对称图形把一个图形绕着某一个点旋转180°,假如旋转后的图形可以与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.初中数学重要考点数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵敏运用。

①画一条程度直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴(“三要素”)②任何一个有理数都可以用数轴上的一个点来表示。

九年级上册数学旋转知识点总结

九年级上册数学旋转知识点总结

九年级上册数学旋转知识点总结
九年级上册数学中的旋转知识点主要包括以下内容:
1. 平面图形的旋转:旋转是指围绕一个中心点将图形旋转一定角度的变换。

主要涉及正方形、矩形、正三角形、等边三角形等图形的旋转。

2. 旋转中心和旋转角度:在平面图形旋转中,旋转中心是一个确定的点,旋转角度是指图形相对于旋转中心旋转的角度。

3. 旋转的性质和特点:旋转是一种保持形状不变的变换,旋转前后的图形是全等的。

旋转也满足交换律和结合律。

4. 旋转图形的坐标变化:根据图形的旋转中心和旋转角度,可以得到旋转后图形的新坐标。

5. 旋转的几何应用:旋转广泛应用于解决几何问题,例如确定图形的对称轴、找出图形的对称点等。

6. 旋转变换的表示方法:旋转变换可以用矩阵表示,通过矩阵运算可以得到旋转后的新坐标。

以上是九年级上册数学中关于旋转的主要知识点总结。

在学习中,需要了解旋转的基本性质和特点,掌握旋转图形的坐标变化方法,并能应用旋转解决几何问题。

人教版初中数学九年级上册第二十三章23.1.1旋转的概念与性质

人教版初中数学九年级上册第二十三章23.1.1旋转的概念与性质

3.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt △ADE,点B的对 应点D恰好落在BC边上.若AC= 3 , ∠B=60 °,则CD的长为( D ) A. 0.5 B. 1.5 C. 2 D. 1
E
A
C
D
B
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,旋转角等 于 44 ° .
A1 C,
A1B
BC,
A1BD CBF,
△BCF≌△BA1D;
1.下列现象中属于旋转的有( C )个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的
转动;⑤钟摆的运动;⑥荡秋千运动.
A.2 B.3 C.4 D.5
2. 下列说法正确的是( B )
A.旋转改变图形的形状和大小 B.平移改变图形的位置 C. 图形可以向某方向旋转一定距离 D.由平移得到的图形也一定可由旋转得到
3.旋转不改变图形的形状和大小.
A E
F
B
D O C
探究新知
素养考点 1 旋转作图
例1 如图,E是正方形ABCD中CD边上任意一点,以点A 为中心,把△ADE顺时针旋转90°,画出旋转后的图形.
想一想:本题中作 图的关键是什么?
A
D
E
作图关键-确定点E的对应点E′
B
C
例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点 B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=
x
A.45°,90° B.90°,45° C.60°,30° D.30°,60°

上册旋转的概念及性质人教版九年级数学全一册课件

上册旋转的概念及性质人教版九年级数学全一册课件

“不会”);
(2)两个正方形重叠部分的面积若改变,说
明理由;若不改变,直接写出重叠部分的面
积.请将答案写在横线上
.
小明的位置也从 A 点运动到了 A′点,则∠OAA′的
度数为( B )
A. 28°
B. 52°
C. 74°
D. 76°
2. (例 2)如图,△ABC 是等边三角形,D 是 BC 的
中点,△ABD 经过旋转后到达△ACE 的位置.
那么:
(1)旋转中心是点 A

(2)点 B,D 的对应点分别是 点C,E ;
A. 10° B. 30° C. 40° D. 70°
6. (例 4)如图,在△ABC 中,∠BAC=90°,将△ABC 绕着点 A 旋转至△ADE,点 B 的对应点 D 恰好落 在 BC 边上,若 AC=2 3,∠B=60°,则 CD 的长为
( A)
A. 2
B. 3
C. 2 D. 4
7. (例 5)如图,在△ABC 中,∠ACB=90°,AC=4,BC=3,
第二十三章 旋转
第1课 旋转的概念及性质
新课学习
知识点1.旋转的概念 把一个平面图形绕着平面内某一点 O 转动一个角度,叫
做 图形的旋转 ,点 O 叫做 旋转中心 ,转动的角叫
做 旋转角 . 如果图形上的点 P 经过旋转变为点 P′,那 么这两个点叫做这个旋转的 对应点 .
1. (例 1)如图,小明坐在秋千上,秋千旋转了 76°,
三级拓展延伸练
14. 如图,已知正方形 ABCD,对角线 AC 的中点为 O,点 O 同时是
正方形 A1B1C1O 的一个顶点,A1O 交 AB 于点 E,C1O 交 BC 于点 F.若这两个正方形的边长都是 3,将正方形 A1B1C1O 绕点 O 转

九年级上册数学第23章《旋转》知识点梳理完整版

九年级上册数学第23章《旋转》知识点梳理完整版

【学习目标】九年级数学上册第 23 章《旋转》知识点梳理1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转..点 O 叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点 A 经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A'B'C').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图: 在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转类型一、旋转1.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心 O 旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°. 以上四位同学的回答中,错误的是().A.甲 B. 乙 C. 丙 D. 丁【答案】B.【解析】因为圆被平分为 8 部分,所以旋转45°,90°,135°均能与原图形重合.【总结升华】同一图形的旋转角可以是多个.举一反三:【变式】以图 1 的边缘所在直线为轴将该图案向右翻折180°后,再按顺时针方向旋转180°,所得到图形是().【答案】A.类型二、中心对称2.如图,△A′B′C′是△ABC旋转后得到的图形,请确定旋转中心、旋转角.【答案与解析】∵对应点到旋转中心的距离相等,即OA=OA′∴O点在AA′的垂直平分线上同理 O 点也在BB′的垂直平分线上∴两条垂直平分线的交点 O 就是旋转中心,∠AOA′的度数就是旋转角.【总结升华】中心对称的对应点到对称中心的距离相等,所以对称中心在对应点的垂直平分线上.举一反三:【变式】下列图形中,既是中心对称图形又是轴对称图形的是().A.B.C.D.【答案】A.类型三、平移、轴对称、旋转3.(2015•裕华区模拟)如图,点 O 是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C 按顺时针方向旋转60°得△ADC,连接 OD.(1)求证:△COD是等边三角形;(2)当a=150°时,试判断△AOD 的形状,并说明理由;(3)探究:当 a 为多少度时,△AOD是等腰三角形?【思路点拨】(1)根据旋转的性质可得出 OC=OD,结合题意即可证得结论;(2)结合(1)的结论可作出判断;(3)找到变化中的不变量,然后利用旋转及全等的性质即可做出解答.【答案与解析】(1)证明:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.理由是:∵将△BOC绕点 C 按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC﹣∠ODC=90°,∵∠α=150°∠AOB=110°,∠COD=60°,∴∠AOD=360°﹣∠α﹣∠AOB﹣∠COD=360°﹣150°﹣110°﹣60°=40°,∴△AOD 不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°﹣110°﹣60°﹣α=190°﹣α,∠ADO=α﹣60°,∴190°﹣α=α﹣60°,∴α=125°;②要使 OA=OD,需∠OAD=∠ADO.∵∠OAD=180°﹣(∠AOD+∠ADO)=180°﹣(190°﹣α+α﹣60°)=50°,∴α﹣60°=50°,∴α=110°;③要使 OD=AD,需∠OAD=∠AOD.∵∠OAD=360°﹣110°﹣60°﹣α=190°﹣α,∠AOD==120°﹣,∴190°﹣α=120°﹣,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.【总结升华】本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.举一反三:【变式】已知 D 是等边△ABC外一点,∠BDC=120º.求证:AD=BD+DC.【答案】∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.将△ABD绕点A 逆时针旋转60°,得到△EAC,∴△DAB≌△EAC,即∠ABD=∠ACE,∵四边形 ABCD 中,∠BDC=120º,∠BAC=60°,∴∠DBA+∠DCA=180°,即∠ACE+∠DCA=180°,点 D,C,E 三点共线.∴BD+DC=CE+DC=DE.又∵∠DAE=60°.∴△ADE是等边三角形,即DE=AD.∴BD+DC=AD.4.如图,在四边形 ABCD 中,∠ABC=30°,∠ADC=60°,AD=CD. 求证:BD2=AB2+BC2.【思路点拨】利用 AD=CD 可以将△BCD绕点D 逆时针旋转60°,从而把条件集中到一个三角形中.【答案与解析】证明: ∵AD=CD,∠ADC=60°,∴△BCD 绕点 D 逆时针旋转 60°,得到△EAD, ∴∠BDE=∠CDA=60°,△BCD≌△EAD. ∴BC=AE, BD=DE ,∠DAE=∠DCB, ∴△BDE 为等边三角形. ∴BE=BD.∵在四边形 ABCD 中,∠ABC=30°,∠ADC=60°, ∴∠DCB+∠DAB=270°,即∠DAE+∠DAB=270°. ∴∠BAE=90°. ∵在 Rt△BAE 中, ,∴.【总结升华】由求证可知应该建立一个直角三角形,再由已知知道有 30°,60°的角,有等线段,可以构想通过旋转构建直角三角形.5 、正方形 ABCD 和正方形 AEFG 有一个公共点 A ,点 G 、E 分别在线段 AD 、AB 上(1) 如图连结 DF 、BF ,试问:当正方形 AEFG 绕点 A 旋转时,DF 、BF 的长度是否始终相等?若相等请证明;若不相等请举出反例.(2) 若将正方形 AEFG 绕点 A 顺时针方向旋转,连结 DG ,在旋转过程中,能否找到一条线段的长度与线段 DG的长度相等,并画图加以说明. 【答案与解析】(1) 如图, DF 、BF 的长度不是始终相等,当点 F 旋转到 AB 边上时,DF>AD>BF.(2)线段BE=DG如图: ∵正方形 ABCD 和正方形 AEFG∴AD=AB,AG=AE, ∠1+∠2=∠2+∠3 ∴∠DAG=∠BAE ∴△ADG≌△ABE ∴ DG=BE【总结升华】利用旋转图形的不变性确定全等三角形. 举一反三:【变式】(2015•沈阳)如图,正方形 ABCD 绕点 B 逆时针旋转 30°后得到正方形 BEFG ,EF 与 AD 相交于点 H ,延长DA 交 GF 于点 K .若正方形 ABCD 边长为,求 AK 的长?【答案与解析】 解:连接 BH ,如图所示:∵四边形 ABCD 和四边形 BEFG 是正方形, ∴∠BAH=∠ABC=∠BEH=∠F=90°, 由旋转的性质得:AB=EB ,∠CBE=30°, ∴∠ABE=60°,在 Rt△ABH 和 Rt△EBH 中,,∴Rt△ABH≌△Rt△EBH(HL ), ∴∠ABH=∠EBH=∠ABE=30°,AH=EH , ∴AH= ×=1,∴EH=1, ∴FH=﹣1,在 Rt△FKH 中,∠FKH=30°, ∴KH=2FH=2(﹣1),∴AK=KH﹣AH=2( ﹣1)﹣1=2 ﹣3; 故答案为: 2 3 .6. 如图,已知△ABC 为等腰直角三角形,∠BAC=900,E 、F 是 BC 边上点且∠EAF=45°.求证: .3【思路点拨】通过求证可以猜测要证得直角三角形,所以可以考虑旋转.【答案与解析】∵ △ABC为等腰直角三角形且∠BAC=90°∴ AB=AC,将△CAF 绕点 A 顺时针旋转90°,如图,得到∴∴ ,,,,∴ ,连结,则在,中,∴ ①,又∵ ,∵ .又∵∴ 在与,中,.∴ ②,∴ 由①②得:. 【总结升华】旋转性质:旋转前,后的图形全等.。

初中数学人教九年级上册第二十三章旋转-旋转的概念与性质

初中数学人教九年级上册第二十三章旋转-旋转的概念与性质

A C
O
F
D
E
2 旋转的性质
A
活动:如图,在硬纸板上,挖出一 个△ABC,再挖一个小洞O作为旋转 中心,硬纸板下面放一张白纸.先在 纸上描出这个挖掉的三角形图案( △ABC),然后围绕旋转中心转动 硬纸板,再描出这个挖掉的三角形 (△DEF),移开硬纸板.
C O
F
E
新课讲解
B D
问题1 在图形的旋转过程中,线段OA
这个定点O称为旋转中心.
O
旋转中心
旋转角 120
P′
转动的角称为旋转角.
如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转 的对应点.
转动的方向分为顺时针与逆时针 .
新课讲解
确定一次图形的旋转时
,
旋转中心
必须明确
旋转角
旋转方向
温馨提示:(1)旋转的范围是“平面内”,其中“旋转中心, 旋转方向,旋转角度”称之为旋转的三要素;(2)旋转变换 同样属于全等变换.
解答:由旋转的性质,得AD=AE,∠DAE=∠BAC=60°,
∴△ADE为等边三角形.
∵AD=5,
∴△ADE的周长为15.
定义 旋转 性质
三要素:旋转中心,旋
转方向和旋转角度
课堂总结
(1)旋转前后的图形全等; (2)对应点到旋转中心的距离相等; (3)对应点与旋转中心所连线段的夹 角等于旋转角
应用
随堂即练
例2.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度
得Rt △ADE,点B的对应点D恰好落在BC边上.若AC=3 ,
∠B=60 °,则CD的长为( D )
A. 0.5
B. 1.5
C. 2

九年级数学旋转的知识点

九年级数学旋转的知识点

九年级数学旋转的知识点九年级数学中,旋转是一个重要的几何变换,它在解决各种几何问题中起着重要的作用。

本文将介绍九年级数学中旋转的基本概念、性质以及相关例题,以帮助同学们更好地理解和掌握这一知识点。

1. 旋转的基本概念旋转是指在平面内,绕着一个点旋转图形,使得图形在平面上转动。

旋转可以分为顺时针旋转和逆时针旋转两种。

常用的表示方法是以旋转中心为原点,旋转角度为正,顺时针旋转为负。

2. 旋转的性质(1)旋转是一个保角变换,即旋转前后的两条线段之间的夹角相等。

(2)旋转是一个保距变换,即旋转前后的两条线段的长度相等。

(3)旋转不改变图形的对称性,即旋转前后的图形具有相同的对称性。

3. 点、线和图形的旋转(1)点的旋转:点的旋转只是将一个点绕旋转中心旋转一定角度,并保持距离不变。

(2)线的旋转:线的旋转是通过将线段的两个端点绕旋转中心旋转一定角度,并保持线段长度不变。

(3)图形的旋转:图形的旋转是将整个图形绕旋转中心旋转一定角度,并保持图形的形状和大小不变。

4. 旋转的变换规律(1)旋转180度:一个图形绕旋转中心旋转180度后,得到的图形与原图关于旋转中心对称。

(2)旋转90度或270度:一个图形绕旋转中心旋转90度或270度后,得到的图形与原图关于旋转中心垂直对称。

(3)旋转360度:一个图形绕旋转中心旋转360度后,得到的图形与原图完全相同。

5. 旋转的应用举例(1)构造一个正方形:通过旋转一个合适的线段,可以构造一个正方形。

(2)判断图形是否重合:通过判断图形旋转一周后是否与原图形重合,可以判断两个图形是否重合。

(3)辅助解题:在解决一些几何问题时,通过对图形进行旋转可以得到一些有用的信息。

通过以上的介绍,希望同学们对九年级数学中旋转的知识点有了更深入的了解。

在学习和应用中,同学们可以灵活运用旋转的性质和规律,解决各种几何问题。

同时,建议同学们多做练习,加深对旋转的理解和运用能力。

祝大家在数学学习中取得更好的成绩!。

九年级数学知识点旋转

九年级数学知识点旋转

九年级数学知识点旋转旋转是几何学中的一个重要概念,也是九年级数学中的一项重要知识点。

通过旋转,我们可以改变几何图形的位置和形状,进而解决一些与几何相关的问题。

本文将介绍九年级数学中的旋转知识点,包括旋转的定义、旋转的性质、旋转的公式以及旋转在几何问题中的应用。

一、旋转的定义旋转是指围绕一个中心点,将一个图形按照一定的角度转动的操作。

在旋转中,中心点是固定不动的,只有图形发生位置和形状的改变。

旋转可以使得图形在平面上发生移动,使得我们可以观察到图形在不同位置和不同角度下的特征。

二、旋转的性质1. 旋转可以改变图形的位置和形状,但不改变图形的面积和周长。

这是因为旋转只是对图形进行了转动操作,而没有改变图形内部的构造和尺寸。

2. 旋转不改变图形的对称性。

如果一个图形具有对称性,那么它的旋转图形也将具有相同的对称性。

3. 旋转操作可以通过多次重复进行。

如果我们将一个图形按照一定的角度旋转一次之后,再按照同样的角度再次进行旋转,那么我们将得到一个新的图形,这个新的图形是原图形旋转后的结果。

三、旋转的公式在几何中,我们可以使用一些公式来描述旋转的操作。

关于旋转的公式有以下几种:1. 计算旋转中心:给定一个图形和它在旋转后的位置,我们可以通过求解方程组来计算旋转中心。

假设原图形中某点坐标为(x, y),它在旋转后的位置为(x', y'),则有如下方程组:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ其中,(x', y')为旋转后点的坐标,θ为旋转的角度。

2. 计算旋转后的坐标:将一个点绕旋转中心旋转一定的角度,可以使用如下公式计算旋转后的坐标:x' = (x - h) * cosθ - (y - k) * sinθ + hy' = (x - h) * sinθ + (y - k) * cosθ + k其中,(x, y)为原始点的坐标,(x', y')为旋转后点的坐标,(h, k)为旋转中心的坐标,θ为旋转的角度。

人教版数学九年级上册 旋转的概念与性质

人教版数学九年级上册   旋转的概念与性质

E
又∵DF = DF,DE = DM,
∴△DEF≌△DMF. ∴EF = MF. B F C M
(2) 当 AE = 1 时,求 EF 的长. 解:设 EF = MF = x,
A
D
∵ AE = CM = 1,AB = BC = 3, E
∴ EB = AB - AE = 3-1 = 2,
BM = BC + CM = 3 + 1 = 4. ∴ BF = BM-MF = 4-x.
B A
C. (-2,4)
3
D. (-3,3)
2
P
1
x
–4 –3 –2 –1 O 1 2 3 4 5 6 7 8
归纳总结
方法点拨:利用旋转的性质解决问题时应抓住 以下几点: (1)明确旋转中的“变”与“不变”; (2)找准旋转前后的“对应关系”; (3)充分挖掘旋转过程中的相等关系.
想一想
如图,将△ABC 逆时针旋转得到△DEF,如何
温馨提示:旋转的范围是“平面内”,其中“旋转中
心,旋转角,旋转方向”称为旋转的三要素.
知识点2: 旋转的性质
我们已经知道了旋转的概念,下面我们要研 究什么?我们又该如何研究呢?
问题:说一说,平移和轴对称的性质. 它们是如何得出的呢?
先整体 → 变化前后的形状,大小之间的关系 再局部 → 对应点间的数量关系和位置关系
以后的图形是否改变,且与原图形的位置关系.
A(A′ )
C
O
B′ C′
M
M D′
N′
B (1) M 旋转;
M′ N (3) 点 O 旋转.
旋转以后图形没有改变,都与原图形垂直.
探究3:三角形的旋转
在硬纸板上先挖一个三角形洞,再 在三角形洞外挖一个小洞 O (作为旋转 中心),把挖好洞的硬纸板放在白纸上, 在白纸上描出挖掉的三角形图案 (△ABC ),围绕旋转中心转动硬纸板, O 再描出挖掉的三角形图案(△A′B′C′ ), 移开硬纸板.

人教版九级上册 旋转的概念及性质 课件

人教版九级上册 旋转的概念及性质 课件

2、探究 如图,在硬纸板上,挖一个三角形洞
,再另挖一个小洞O作为旋转中心,硬纸 板下面放一张白纸,先在纸上描出这个挖 掉的三角形图案(△ABC),然后围绕旋转 中心转动硬纸板,再描出这个挖掉的三角 形(△A’B’C’ ),移开硬纸板。
△A’B’C’是由△ABC绕点O旋转得到的。线段OA 与OA’有什么关系?∠AOA’与∠BOB’有什么关系? △ABC与△A’B’C’ 的形状和大小有什么关系?
三、教学设计 活动1 新课导入 请欣赏下面几幅图案,并思考下列问题: 在以前的学习中,我们已经学习了图形的平移和图形 的轴对称,对于上述各图案,你能说出它们分别是由 怎样的基本图形经过怎样的变换得到的吗?请同学们 进入本章内容的学习.
活动2 探究新知 1、思考 如图1,钟表的指针在不停的转动,从3时到5时,时针 转动了多少度? 如图2,风车风轮的每个叶片在风的吹动下转动到新的 位置。 以上这些现象有什么 共同特点?
第二十三章 旋转 23.1 图形的旋转 第1课时 旋转的概念及性质
一、教学目标
1.掌握旋转的有关概念,理解旋转变换是图形的一种 基本变换. 2.理解旋转的性质. 3.能综合运用旋转的性质解决有关代数、几何类问题 .
二、教学重难点 重点
理解旋转的基本性质.
难点 1.探索旋转的基本性质. 2.综合运用旋转的性质解与练习
例1 在下列现象中,不属于旋转现象的是( C )
A.方向盘的转动
B.水龙头开关的转动
C.电梯的上下移动
D.钟摆的运动
例2 如图,图形甲变成图形乙,既能用平移,又能用
旋转的是( C )
例3 如图,四边形ABCD是边长为4的正方形,DE=1 ,△ABF是△ADE旋转后的图形. (1) 旋转中心是哪一点? (2) 旋转了多少度? (3) AF的长度是多少? (4) 如果连接EF,那么△AEF是怎样的三角形?

九年级数学上册旋转知识点

九年级数学上册旋转知识点

九年级数学上册旋转知识点在九年级数学上册中,旋转是一个重要的知识点,它涉及到几何图形旋转后的性质和变化。

在本文中,我们将深入探讨旋转的概念、旋转的性质以及如何运用旋转来解决问题。

一、旋转的概念旋转是一种几何运动,它将一个图形围绕一个点或一条线旋转一定角度后得到一个新的图形。

旋转可以分为顺时针旋转和逆时针旋转两种方式。

旋转的中心可以是任意一点,也可以是图形内部的一个点或多边形的中心。

二、旋转的性质1. 相似性:旋转不改变图形的形状和大小,只改变位置和方向。

旋转后的图形仍与原图相似。

2. 旋转角度:旋转角度是旋转的基本概念,它表示图形旋转的角度大小。

顺时针旋转角度为负值,逆时针旋转角度为正值。

3. 旋转中心:旋转中心是旋转的参考点,图形围绕旋转中心旋转。

旋转中心可以是图形内部的一个点,也可以是任意一点。

4. 不变性:旋转不改变图形的面积、周长和内角和。

只要旋转角度相同,图形的这些性质不会发生改变。

三、旋转的应用1. 图形的旋转:可以通过旋转图形来找出图形的对称轴,以及解决一些与对称有关的问题。

例如,我们可以通过旋转一个正方形90度来发现它有4个对称轴,分别是水平轴、垂直轴和两条对角线。

这有助于我们更好地理解图形的对称性质。

2. 图形的判断:通过旋转图形,我们还可以判断一个图形是否与另一个图形相似。

例如,我们可以通过旋转一个三角形180度,使其与另一个三角形重叠。

如果两个三角形完全重合,那么它们就是相似的。

3. 问题的求解:在解决一些几何问题时,旋转可以帮助我们更好地理清思路和寻找解题方法。

例如,当我们需要计算一个图形的面积时,可以将图形旋转一定角度,使其变成一个更简单的图形,然后计算这个简单图形的面积,最后通过旋转角度计算出原图形的面积。

四、旋转的思维拓展1. 与平移和缩放的关系:旋转与平移和缩放是几何变换的三种基本变换,它们之间存在着一定的联系。

例如,通过不同的旋转角度和旋转中心,可以实现平移和缩放的效果。

九年级上册旋转知识点

九年级上册旋转知识点

九年级上册旋转知识点旋转是几何中的一种基本变换,通过围绕某个中心点旋转图形,可以产生新的图形。

在九年级上册数学课程中,我们学习了一些与旋转相关的知识点,包括旋转的定义、旋转图形的性质以及旋转的应用。

下面将为大家详细介绍这些知识点。

一、旋转的定义旋转是将一个图形围绕一个中心点按一定角度转动的操作。

在平面几何中,按照旋转的角度可以将旋转分为顺时针旋转和逆时针旋转。

我们可以用R(α)表示一个顺时针旋转α度的变换,用R(-α)表示一个逆时针旋转α度的变换。

二、旋转图形的性质1. 旋转图形的位置性质:旋转前后的图形位置保持不变,只是方向和大小可能发生改变。

2. 旋转图形的角度性质:旋转图形的内角和外角不变。

例如,一个正方形旋转90度后,仍然是一个正方形,其内角和外角的度数都保持不变。

3. 旋转图形的边长和面积性质:旋转图形的边长与面积可能发生变化。

边长的改变可以通过等比例尺进行计算,而面积的改变与旋转的角度有关。

三、旋转的应用1. 旋转的几何应用:旋转可以用于解决一些与图形对称性相关的问题,如判断图形是否关于某个中心对称、判断两个图形是否全等等。

2. 旋转的艺术应用:旋转在艺术设计中有着广泛的应用。

通过旋转图形可以产生出各种各样的视觉效果,给人以美的享受。

3. 旋转的物理应用:旋转在物理学中也有很多应用。

例如,地球的自转和公转使得昼夜的交替和季节的变化;风力发电机通过旋转产生动能转化为电能。

四、例题分析下面通过几个例题来进一步理解旋转的应用。

例题一:一个正方形绕中心点旋转90度后得到一个新图形,判断这两个图形是否全等,并说明理由。

解析:一般情况下,一个正方形绕中心点旋转90度后得到的图形并不是一个全等的正方形。

旋转正方形后,虽然边长不变,但是旋转后的正方形方向改变了,因此不能说它们全等。

但是它们是相似的图形,内角和外角的度数保持不变。

例题二:一个长方形绕中心点旋转180度后得到一个新图形,判断这两个图形是否全等,并说明理由。

人教版九年级旋转知识点

人教版九年级旋转知识点

人教版九年级旋转知识点旋转是数学中一种基本的几何变换,它在我们的日常生活中无处不在。

在学习九年级的旋转知识点时,我们将会了解旋转的概念、性质以及它在几何图形中的应用。

下面将对几个重要的旋转知识点进行详细介绍。

一、旋转的基本概念旋转是指将一个物体绕着某个固定的点旋转一定角度的变换。

在二维平面中,我们通常将旋转的中心点称为旋转中心,将旋转的角度称为旋转角度。

旋转可以分为顺时针旋转和逆时针旋转两种方式。

二、旋转的性质1. 顺时针旋转和逆时针旋转的性质:- 两者方向相反,顺时针旋转的角度取负数,逆时针旋转的角度取正数;- 两者角度的绝对值相等。

2. 旋转角度与旋转次数的关系:- 当旋转角度为正数时,顺时针旋转是旋转次数的约定;- 当旋转角度为负数时,逆时针旋转是旋转次数的约定。

三、旋转的几何应用1. 旋转的等角变换特性:旋转变换保持两个图形之间的角度大小不变。

这对于解决一些几何问题非常有用,例如判断两个图形是否全等等。

2. 旋转的对称性:旋转变换可以使一个图形围绕旋转中心对称。

这可以帮助我们研究图形的对称性质,解决一些与对称相关的问题。

3. 图形在旋转变换中的性质:- 线段和角度在旋转变换中保持不变。

这意味着旋转变换不会改变线段的长度和角度的大小;- 旋转变换会改变图形的位置和方向。

通过旋转变换,我们可以将一个图形转到任意位置和朝向。

四、旋转的实例分析下面我们通过几个实例来详细说明旋转的应用。

实例1:旋转中心在图形内部的情况当旋转中心位于图形内部时,旋转后的图形仍然与原图形全等。

这是因为旋转维持了图形内部的所有角度和线段长度。

实例2:旋转中心在图形外部的情况当旋转中心位于图形外部时,旋转后的图形一般不与原图形全等。

这是因为旋转改变了图形的位置和方向。

实例3:旋转中心位于图形上的情况当旋转中心位于图形上时,图形旋转后可能会变形,但是某些特殊情况下仍然与原图形全等,比如正多边形。

综上所述,旋转作为一种重要的几何变换,在九年级数学中扮演着重要的角色。

九年级数学上人教版《旋转》课堂笔记

九年级数学上人教版《旋转》课堂笔记

《旋转》课堂笔记一、旋转的定义1.旋转:把一个平面图形绕着平面内某一点转动一个角度,叫做图形的旋转。

2.旋转中心:图形旋转时,绕着的那个点叫做旋转中心。

3.旋转角:图形每一点都绕旋转中心旋转了同样大小的角度,这个角度叫做旋转角。

二、旋转的性质1.旋转后的图形与原图形全等,即对应线段相等,对应角相等。

2.旋转中心是唯一不动的点。

3.图形旋转后,任意两点与旋转中心的距离保持不变。

4.图形旋转后,对应点与旋转中心连线的夹角等于旋转角。

三、旋转的应用1.利用旋转可以构造复杂的几何图形。

2.利用旋转可以证明两个图形是否全等。

3.利用旋转可以解决一些实际问题,如机器零件的转动等。

四、注意事项1.在描述旋转时,要说清楚旋转中心、旋转方向和旋转角。

2.要注意区分旋转和平移、翻折等图形的变换。

3.在进行旋转变换时,要注意保持图形的完整性,不要改变图形的大小和形状。

4.在实际应用中,要注意选择合适的旋转中心和旋转角,以达到预期的效果。

五、例题解析【例1】将线段AB绕点O顺时针旋转90°,得到线段A'B'。

求∠AOB'的度数。

解析:由旋转的性质可知,∠AOB=∠A'OB',所以∠AOB'=90°-∠AOB。

又因为OA=OA',所以△OAA'是等腰直角三角形,∠A'OA=45°,所以∠AOB'=90°-45°=45°。

【例2】将△ABC绕点A逆时针旋转60°,得到△AB'C',连接BB',CC'。

求证:△ABB'和△ACC'都是等边三角形。

解析:由旋转的性质可知,AB=AB',AC=AC',且∠BAB'=∠CAC'=60°,所以△ABB'和△ACC'都是等边三角形。

六、课堂小结本节课主要学习了旋转的定义、性质和应用,掌握了如何描述旋转变换、如何利用旋转变换解决问题,并通过例题加深了对旋转变换的理解和掌握。

人教版初中数学九年级上册旋转重点知识归纳

人教版初中数学九年级上册旋转重点知识归纳

人教版初中数学九年级上册旋转重点知识归纳知识点1旋转的相关概念1.概念:在同一平面内,将一个图形绕某一个定点O沿某个方向转动一个角度,这样的图形运动叫旋转。

定点O叫旋转中心,转动的角称为旋转角。

2.旋转对称图形:绕某一点旋转一定角度后能与自身完全重合的图形。

3.图形旋转三要素:旋转中心、旋转方向、旋转角知识点2 旋转的性质1.旋转的性质:只改变位置,不改变图形的形状和大小。

(1)对应点到旋转中心的距离相等;(2)对应点与对应中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。

2.旋转中心的确定:旋转中心是两对对应点所连线段的垂直平分线的交点。

3.旋转作图具体步骤(1)定:确定图形中的每一个关键点和旋转中心;(2)连:连接图形中每一个关键点和旋转中心;(3)转:把连线按要求绕旋转中心转动一定角度(作旋转角);(4)截:在角的另一边上截取与对应的关键点到旋转中心距离相等的线段,得到各点的对应点;(5)连:顺次连接所得到的各对应点;(6)写:写出结论,说明作出的图形。

【核心提示】找、连、作。

找出关键点,连线并转动一定的角度,连接对称点并作出图形。

4.旋转与平移、轴对称的相同点和不同点知识点3 中心对称如果把一个图形(如△ABO)绕定点O旋转180º,它能够与另一个图形(如△CDO)重合,那么就说这两个图形△ABO与图形△CDO关于这个点对称或中心对称,点O就是对称中心。

知识点4 中心对称性质1.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.(即对称点与对称中心三点共线);2.中心对称的两个图形是全等形。

4.中心对称与中心对称图形的区别与联系知识点5 中心对称图形1.定义:一个图形绕某个点旋转180度,如果旋转后的图形能与原来的图形完全重合,则这个图形叫做中心对称图形。

其中,这个点叫做该图形的对称中心。

2.中心对称图形判定依据(三要素):①绕某点;②旋转180º;③与本身重合。

人教版九年级数学上册23.1.1旋转的概念和性质课件

人教版九年级数学上册23.1.1旋转的概念和性质课件
• 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月上午9时43分22.4.1209:43April 12, 2022 • 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二9时43分50秒09:43:5012 April 2022 • 书籍是屹立在时间的汪洋大海中的灯塔。
第二十三章 旋转
23.1 图形的旋转
第1课时 旋转的概念和性质
Hale Waihona Puke 教学重点:旋转的概念. 教学难点:能够正确地辨别出一种变换是否为旋转.
教学过程
一、创设情境,导入新课
2
大水轮在不停地转动.
时钟的分针在不停地旋转.
风车在风中转动
(1)从3时到5时,时针转动了多少度? (2)风车风轮的每个叶片在风的吹动下转动到新的 位置.每个叶子转了多少度? 学生观察分析、体会感知旋转.
二、合作探究,感受新知
1.概念的认识 (1)把一个图形绕着某一个点O转动一个角度的图形变换叫 做旋转,点O叫做旋转中心,转动的角叫做旋转角. (2)旋转对应点.
2.例题分析例如图,△OAB绕O点按顺时针方向旋转得到 △OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么? (2)经过旋转,点A、B分别移动到什么位置?
谢谢观赏
You made my day!
我们,还在路上……
教师边讲解边演示. 教师引导学生回答这些问题,教师书写. 学生理解认识有关概念. 学生积极思考,勇于发言.
三、课堂小结,梳理新知
1.旋转的概念. 2.旋转中心、旋转角、对应点.
• 不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面 上的话,另一眼睛看到纸的背面。2022年4月12日星期二上午9时43分49秒09:43:4922.4.12

人教版九年级数学上册第23章 旋转 旋转及其性质

人教版九年级数学上册第23章 旋转 旋转及其性质
∠OAB=120°, ∠AOB绕点O逆时针旋转, 每次旋转90°,则第2 024 次旋转后,
点 B的对应点的坐标为 ___________
( ,3) .
1.本节课我们学习了哪些知识?
(旋转的概念;旋转的性质)
2.旋转的三要素是什么?
(旋转中心、旋转角、旋转方向)
同学们,我们又学习了一个新的变换,相信大家和之
(1)△A'B'C'可以看成由△ABC经过怎样的运动得到 的?
(2)△A'B'C'和△ABC的形状和大小有什么关系?
(旋转)
(形状相同,大小相等)
(3)请画出点A旋转到点A'所经过的路线.思考点A的运动路线,由此能得
到OA与OA'有什么关系?
(图略;相等)
(4)你还能发现哪些有同样关系的线段?
(OC=OC' OB=OB', AB=A'B', AC=A'C', BC=B'C')
因为四边形ABCD是正方形,
所以 ∠ = ∠ + ∠ = °, = , ∠ = ∠ = °,所
以∠FAB=∠EAD,∠FBA=90°=∠D,所以△ ≅△ ,所以 =
=
+ = 所以 =
+ = .
前的变换放在一起理解会有不同的收获.
教材习题:完成课本59页练习2,3题以及61页练习1,2,3题.
作业本作业:完成 对应练习.
实践性作业:试着用数学语言描述家中钟表时针的运动过程.
A.点A
B.点B
C.点C
D.点D
变式:如图,点E是正方形ABCD的边CD上一点,过点A作 ⊥ 交CB的延长线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.1图形的旋转
第1课时旋转的概念和性质
教学目标
1.通过观察具体实例认识旋转,能够归纳概括出旋转的概念,能够用数学语言建立旋转模型.
2.在探索旋转的过程中,构建旋转模型,概括旋转的性质.
教学重点
旋转的概念.
教学难点
探索旋转的性质.教学设计一师一优课一课一名师(设计者:)
教学过程设计
一、创设情景明确目标
展示图片并提问:
钟表的指针在不停地转动,如图①,从3时到5时,时针转动了多少度?
如图②,风车风轮的每个叶片在风的吹动下转动到新的位置.
以上这些现象有什么共同特点呢?
学生思考回答:
归纳导入:从3时到5时,钟表时针转动60°;钟表指针转动,风车叶片转动都可以看做是一个平面图形绕着平面内一点转动一个角度,什么叫做图形的旋转?旋转有哪些基本性质?
二、自主学习指向目标
1.自学教材第59至60页.
2.学习至此:请完成学生用书“课前预习”部分.
三、合作探究达成目标
探究点一旋转的概念
活动一:将指针、叶片等看作平面图形,相互交流思考下面的问题:
(1)什么样的图形变换叫做旋转?
(2)什么叫做旋转中心?旋转角?
(3)何谓旋转的对应点?
【展示点评】把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
【小组讨论】如何找出旋转前后图形的对应元素?
【反思小结】上面左图中,表盘的中心是旋转中心,旋转角是60°,时针的端点在3时的位置P与在5时的位置P′是对应点.找对应元素的方法是先确定旋转中心和对应点,然后利用“局部带整体”的方法得到其他对应元素.
【针对训练】见学生用书“当堂练习”知识点一
探究点二旋转的性质
活动二:出示教材第60页“探究”内容,相互交流思考下面的问题:
(1)在这次旋转变换中,△ABC与△A′B′C′的对应点有哪些?旋转角有哪些?它们之间有何关系?
(2)△ABC与△A′B′C′的形状和大小有什么关系?
(3)△ABC和△A′B′C′的对应点之间有何数量关系和位置上的特征?所有旋转变换是否都满足你所发现的规律?
【展示点评】A与A′对应,B与B′对应,C与C′对应,∠AOA′、∠BOB′、∠COC′都是旋转角,∠AOA′=∠BOB′=∠COC′;旋转后△ABC与△A′B′C′的形状和大小不变,所有的旋转变换都满足以上规律.
【小组讨论】旋转具有哪些性质?
【反思小结】旋转的性质:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等.
【针对训练】见学生用书“当堂练习”知识点二
四、总结梳理内化目标
1.旋转的定义:把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转;旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.
2.方法:(1)给出旋转图形,对应点到旋转中心所连线段的夹角就是旋转角.注意旋转方向;(2)根据旋转方向、旋转角找到对应点.
五、达标检测反思目标
1.下列物体的运动不是旋转的是( C )
A.坐在摩天轮里的小朋友B.正在走动的时针
C.骑自行车的人D.正在转动的风车叶片
2.在图形的旋转中,下列说法错误的是( A )
A.图形上的每一点到旋转中心的距离都相等B.图形上的每一点转动的角度都相同C.图形上可能存在不动的点D.旋转前和旋转后的图形全等
3.如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经逆时针旋转后能与△ADE重合,那么旋转中心是点__A__;旋转的度数是__45°__.
六、布置作业巩固目标
1.上交作业教材第62页习题23.1第2,3,4,5题.
2.课后作业见学生用书的“课后作业”部分.
教学反思__。

相关文档
最新文档