谐振电路实验报告
电路谐振实验报告
电路谐振实验报告1. 了解电路谐振现象。
2. 理解谐振频率和频率响应特性的关系。
3. 研究并探究谐振电路的特性和应用。
实验原理:电路谐振是指电路中存在一个频率使得电路的阻抗最小,此时电路中的电流和电压达到最大值的现象。
在谐振频率下,电路呈现共振现象,能量传递效率最高。
实验器材和仪器:1. 函数信号发生器2. 电阻、电容和电感等元件3. 示波器4. 万用表实验步骤:1. 将电路搭建成串联谐振电路,其中包含一个电感L、一个电容C和一个电阻R。
2. 将函数信号发生器接到电路的输入端,通过改变信号频率找到谐振频率。
3. 使用万用表测量电感L的电感值,电容C的电容值,并记录下来。
4. 使用示波器观察电路中电流和电压的波形,记录下电流和电压的峰值。
5. 改变电感L或电容C的数值,再次测量电流和电压的峰值,观察谐振频率的变化。
实验结果:1. 测得电感L的电感值为X H,电容C的电容值为Y F。
2. 在谐振频率下,测得电路中电流的峰值为I A,电压的峰值为V V。
3. 改变电感L或电容C的数值后,测得新的电路谐振频率为F Hz,观察到电流和电压的峰值发生变化。
数据处理和分析:根据实验结果,可以计算出电路的阻抗最小时的频率,即谐振频率。
根据电路的谐振频率计算得到谐振角频率ω=2πF。
进一步,计算出电感L和电容C的共振频率公式:f = 1 / (2π√(LC))其中,f为共振频率。
实验讨论:1. 在谐振频率下,电路中的电流和电压达到最大值,说明能量在电感和电容元件之间来回传递,而电阻R用来消耗能量。
2. 当电感L和电容C的数值改变时,谐振频率会发生相应的变化。
根据共振频率公式可以推测,电感L越大,电容C越小,共振频率越高。
实验应用:1. 电路谐振在通信中起到了重要作用。
例如,在无线电通信中,调频调幅技术中要用到谐振电路,使得信号能够准确地传输和接收。
2. 谐振电路还广泛应用于放大器、滤波器、天线等电子设备中,用于调节和控制电流、电压和频率等参数。
交流电路的谐振现象实验报告
交流电路的谐振现象实验报告交流电路的谐振现象实验报告引言交流电路的谐振现象是电子学中的重要概念之一。
谐振是指当电路中的电感和电容元件达到特定的数值时,电路会发生共振现象,电流和电压的幅值会达到最大值。
本实验旨在通过搭建交流电路并观察其谐振现象,加深对谐振现象的理解。
实验材料和方法材料:电感线圈、电容器、电阻器、交流电源、示波器等。
方法:首先,我们按照实验要求搭建交流电路,将电感线圈、电容器和电阻器连接在一起,并接入交流电源。
然后,使用示波器测量电路中的电压和电流,并记录下来。
实验结果与分析在实验过程中,我们通过调节电感线圈和电容器的数值,观察到了电路的谐振现象。
当电感和电容的数值达到一定的比例时,电路中的电流和电压会达到最大值。
谐振频率的计算根据实验数据,我们可以计算出电路的谐振频率。
谐振频率的计算公式为:f=1/(2π√(LC)),其中f为谐振频率,L为电感的值,C为电容的值。
实验误差的分析在实验中,由于仪器的精度和实验条件的限制,可能会产生一定的误差。
例如,电感线圈和电容器的实际数值与标称数值可能存在一定的偏差,导致计算出的谐振频率与理论值有所差别。
谐振现象的应用谐振现象在电子学中有着广泛的应用。
例如,在无线通信中,天线的谐振频率与传输信号的频率相匹配,可以实现信号的传输和接收。
此外,谐振现象还应用于音响设备、电子滤波器等领域。
实验总结通过本次实验,我们深入了解了交流电路的谐振现象。
通过观察和测量实验数据,我们验证了谐振频率的计算公式,并分析了实验误差的来源。
谐振现象在电子学中有着重要的应用,对于我们理解和应用电路具有重要意义。
结语交流电路的谐振现象是电子学中的基础概念之一,通过本次实验,我们对谐振现象有了更深入的了解。
通过实验数据的分析和计算,我们验证了谐振频率的计算公式,并探讨了实验误差的来源。
谐振现象在电子学中有着广泛的应用,对于我们理解和应用电路具有重要意义。
通过本次实验,我们不仅提高了实验操作的能力,还加深了对交流电路谐振现象的理解。
谐振电路试验实验报告
一、实验目的1. 理解谐振电路的基本原理和特性。
2. 掌握RLC串联谐振电路的谐振频率、品质因数等参数的测量方法。
3. 通过实验验证谐振电路在不同频率下的电流和电压响应。
4. 学习使用示波器和信号发生器等实验仪器。
二、实验原理谐振电路是由电感(L)、电容(C)和电阻(R)组成的电路,其工作原理基于电磁感应和电容器充放电现象。
当电路中的交流电压频率等于电路的自然谐振频率时,电路中的电流和电压达到最大值,这种现象称为谐振。
RLC串联谐振电路的谐振频率由以下公式确定:\[ f_0 = \frac{1}{2\pi\sqrt{LC}} \]其中,\( f_0 \) 是谐振频率,\( L \) 是电感值,\( C \) 是电容值。
在谐振频率下,电路的品质因数(Q值)可以表示为:\[ Q = \frac{1}{R\sqrt{\frac{L}{C}}} \]其中,\( Q \) 是品质因数,\( R \) 是电阻值。
三、实验仪器与设备1. RLC串联谐振电路实验板2. 双踪示波器3. 信号发生器4. 数字多用表5. 交流电源四、实验步骤1. 搭建电路:根据实验要求,将电感、电容和电阻按照RLC串联方式连接到实验板上。
2. 设置信号发生器:将信号发生器设置为正弦波输出,并调整频率和幅度。
3. 测量谐振频率:逐渐调整信号发生器的频率,观察示波器上电压和电流的变化。
当电压或电流达到最大值时,记录此时的频率即为谐振频率。
4. 测量品质因数:在谐振频率下,使用数字多用表测量电路中的电流和电压,并根据公式计算品质因数。
5. 测量电流和电压响应:在多个不同频率下,测量电路中的电流和电压,绘制幅频特性曲线。
五、实验结果与分析1. 谐振频率测量:通过实验,测量得到的谐振频率与理论计算值基本一致,误差在可接受范围内。
2. 品质因数测量:实验测得的品质因数与理论计算值相符,说明电路具有良好的谐振特性。
3. 电流和电压响应:通过实验绘制了幅频特性曲线,可以看出在谐振频率下电流和电压达到最大值,而在其他频率下电流和电压明显减小。
串联谐振电路 实验报告
串联谐振电路实验报告串联谐振电路实验报告引言:谐振电路是电子学中的重要概念之一,它在无线通信、电力传输等领域有着广泛的应用。
本次实验旨在通过搭建串联谐振电路,研究其特性和参数对电路性能的影响,进一步加深对谐振电路的理解和应用。
一、实验目的本次实验的主要目的有以下几点:1. 了解谐振电路的基本原理和特性;2. 学习搭建串联谐振电路的方法和步骤;3. 研究不同参数对谐振电路性能的影响;4. 掌握使用示波器测量电路波形和频率的方法。
二、实验原理1. 谐振电路的基本原理谐振电路是指当电路中的电感和电容元件的阻抗相等时,电路会发生谐振现象。
谐振电路可以分为串联谐振电路和并联谐振电路两种类型。
本次实验中我们将重点研究串联谐振电路。
2. 串联谐振电路的特性串联谐振电路由电感、电容和电阻组成,其特性由谐振频率、品质因数和带宽等参数决定。
谐振频率是指电路中电感和电容元件的阻抗相等时的频率,品质因数是指电路的能量损耗程度,带宽则是指在谐振频率附近电路的工作频率范围。
三、实验步骤1. 搭建串联谐振电路根据实验要求,选择合适的电感、电容和电阻元件,按照电路图搭建串联谐振电路。
确保电路连接正确,元件无损坏。
2. 测量电路参数使用示波器测量电路的输入和输出波形,记录谐振频率、品质因数和带宽等参数。
根据波形的振幅和相位差,可以进一步分析电路的频率特性和相位特性。
3. 改变电路参数逐步改变电路中的电感、电容或电阻元件的数值,观察电路参数的变化情况。
比较不同参数对谐振频率、品质因数和带宽的影响,分析电路性能的变化规律。
四、实验结果与分析通过实验测量和数据记录,我们得到了一系列关于串联谐振电路的参数和波形数据。
根据测量结果,我们可以得出以下结论:1. 谐振频率随电感和电容数值的变化而变化,可以通过调节这两个元件的数值来实现对谐振频率的调节。
2. 品质因数与电路中的电阻有关,电阻越小,品质因数越大,电路的能量损耗越小。
3. 带宽与品质因数呈反比关系,品质因数越大,带宽越小,电路的频率选择性越强。
rlc谐振实验报告
rlc谐振实验报告RLC谐振实验报告引言:RLC谐振电路是电工学中的重要实验之一,通过该实验可以深入了解电路的谐振现象及其应用。
本实验旨在通过搭建RLC谐振电路,观察和分析电路中电流和电压的变化规律,进一步探讨谐振电路的特性和应用。
一、实验目的本实验的主要目的是掌握RLC谐振电路的基本原理和特性,了解电流和电压在谐振频率下的变化规律,并通过实验数据分析验证理论计算结果的准确性。
二、实验原理1. RLC谐振电路的组成RLC谐振电路由电阻(R)、电感(L)和电容(C)三个元件组成。
电阻用于限制电流大小,电感储存电能,电容存储电荷。
当电路中的电流和电压达到谐振频率时,电路呈现出最大的振幅。
2. 谐振频率的计算RLC谐振电路的谐振频率可以通过以下公式计算:f = 1 / (2π√(LC))其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。
三、实验步骤1. 搭建RLC谐振电路根据实验要求,选取合适的电阻、电感和电容元件,按照电路图搭建RLC谐振电路。
2. 连接电源将电源连接到电路中,确保电路正常工作。
3. 调节频率通过信号发生器调节频率,逐渐接近理论计算得到的谐振频率。
4. 测量电压和电流使用万用表测量电路中的电压和电流数值,并记录下来。
5. 绘制电流和电压的变化曲线根据测量数据,绘制电流和电压随频率变化的曲线图。
四、实验结果与讨论1. 实验数据分析根据实验测量得到的电流和电压数值,可以计算得到电路的阻抗、电流和电压的相位差等参数。
通过对数据的分析,可以验证实验结果与理论计算结果的一致性。
2. 曲线分析根据绘制的电流和电压的变化曲线,可以观察到在谐振频率附近,电流和电压的振幅达到最大值。
此外,可以进一步分析曲线的形状和变化趋势,探讨电路中能量的传递和损耗情况。
3. 谐振电路的应用RLC谐振电路在实际应用中有广泛的用途,例如在无线电通信中,谐振电路可以用于频率选择和滤波器的设计。
此外,在电力系统中,谐振电路可以用于电力传输和配电系统中的功率因数校正。
谐振电路实验报告
rlc串联谐振电路的实验研究一、摘要:从rlc 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因数和输入阻抗,并且基于multisim仿真软件创建rlc 串联谐振电路,利用其虚拟仪表和仿真分析,分别用测量及仿真分析的方法验证它的理论根据。
其结果表明了仿真与理论分析的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。
二、关键词:rlc;串联;谐振电路;三、引言谐振现象是正弦稳态电路的一种特定的工作状态。
通常,谐振电路由电容、电感和电阻组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。
由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。
比如,串联谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用,例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。
所以研究串联谐振有重要的意义。
在含有电感l 、电容c 和电阻r 的串联谐振电路中,需要研究在不同频率正弦激励下响应随频率变化的情况,即频率特性。
multisim 仿真软件可以实现原理图的捕获、电路分析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。
四、正文(1)实验目的:1.加深对串联谐振电路条件及特性的理解。
2.掌握谐振频率的测量方法。
3.理解电路品质因数的物理意义和其测定方法。
4.测定rlc串联谐振电路的频率特性曲线。
(2)实验原理:rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。
该电路的阻抗是电源角频率ω的函数:z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。
实验报告 R、L、C串联谐振电路的研究
实验报告(一)祝金华 PB15050984实验题目:R 、L 、C 串联谐振电路的研究实验目的: 1. 学习用实验方法绘制R 、L 、C 串联电路的幅频特性曲线。
2. 加深理解电路发生谐振的条件、特点,掌握电路品质因数(电路Q 值)的物理意义及其测定方法。
实验原理 1. 在图1所示的R 、L 、C 串联电路中,当正弦交流信号源U i 的频率 f 改变时,电路中的感抗、容抗随之而变,电路中的电流也随f 而变。
取电阻R 上的电压U O 作为响应,当输入电压U i 的幅值维持不变时, 在不同频率的信号激励下,测出U O 之值,然后以f 为横坐标,以U O 为纵坐标,绘出光滑的曲线,此即为幅频特性曲线,亦称谐振曲线,如图2所示。
图22. 在f =fo =LC π21此时X L=Xc 为最小。
在输入电压U i 的电流达到最大值,且与输入电压U i 同相位。
从理论上讲,此时 U i =U R =U O ,U L =U c =QU i ,式中的Q 称为电路的品质因数。
3. 电路品质因数Q 值的两种测量方法一是根据公式Q = o CU U 测定,U c 为谐振时电容器C 上的电压(电感上的电压无法测量,故不考虑Q=o LU U 测定) 。
另一方法是通过测量谐振曲线的通频带宽度△f =f2-f1,再根据Q=12f f f O-求出Q 值。
式中f o 为谐振频率,f 2和f 1是失谐时, 亦即输出电压的幅度下降到最大值的2/1 (=0.707)倍时的上、下频率点。
Q 值越大,曲线越尖锐,通频带越窄,电路的选择性越好。
在恒压源供电时,电路的品质因数、选择性与通频带只决定于电路本身的参数,而与信号源无关。
预习思考题1. 根据实验线路板给出的元件参数值,估算电路的谐振频率。
102Li图 1L=30mHfo =LC π21=1/(2×π631001.01030--⨯⨯⨯)=9188.81Hz2. 改变电路的哪些参数可以使电路发生谐振,电路中R 的数值是否影响谐振频率值? 改变频率f,电感L ,电容C 可以使电路发生谐振,电路中R 的数值不会影响谐振频率值。
谐振电路实验报告误差
谐振电路实验报告误差引言谐振电路是电路理论中的重要内容,它具有在特定频率下电压或电流幅值最大的特性。
谐振电路在实际应用中广泛存在,如无线电接收机中的谐振回路、音乐发声系统中的共振腔等。
本实验旨在通过搭建谐振电路并测量其频率和幅值,以验证课堂所学的理论知识。
然而在实验过程中,我们也会面临着误差的存在,本报告将对这些误差进行分析和总结。
实验原理谐振电路主要有串联谐振电路和并联谐振电路两种,本次实验我们选择了并联谐振电路。
并联谐振电路由电感L、电容C和电阻R组成,其特点是当电路处于谐振状态时,电容和电感的阻抗相等,电阻的阻抗最小。
电路的谐振频率f_0可以通过以下公式计算:f_0 = \frac{1}{2\pi\sqrt{LC}}实验中我们将使用函数发生器产生一个特定频率的正弦信号,经过放大器放大后输入并联谐振电路,使用示波器测量电压,通过改变电容的值,观察电压幅值的变化,进而计算得到谐振频率。
实验步骤1. 按照实验所需元件的要求搭建电路。
将函数发生器与放大器依次连接,再将并联谐振电路与示波器相连。
2. 将函数发生器的频率设定为实验所需的频率,并设置合适的输出幅值。
3. 通过示波器观察电容电压波形,并改变电容的值,记录不同电容下的谐振频率和幅值。
误差分析1. 电阻测量误差:电路中的电阻实际上是由电感和电容产生的等效电阻,测量到的电阻值可能会存在一定的误差。
这是因为实际的电感和电容元件往往具有一定的内阻,给测量带来一定的误差。
此外,由于电流的存在,可能会使得电感的阻抗变化,进一步影响电阻值的测量。
2. 电容测量误差:实际的电容元件可能会存在一定的内阻和电感,造成测量电容值时的误差。
此外,电容的容量也可能存在一定的偏差,导致测量到的电容值与实际值不完全相等。
3. 示波器测量误差:示波器在测量电压时也会存在一定的误差。
示波器的量程和精度可能会限制测量的准确性。
此外,示波器的采样频率也可能会影响波形的准确性。
4. 元件参数漂移误差:由于元件参数会随着环境和使用条件的变化而发生漂移,可能会导致测量到的谐振频率和幅值存在一定的误差。
仿真交流谐振实验报告(3篇)
第1篇一、实验目的1. 理解交流电路谐振现象的基本原理。
2. 掌握RLC串联谐振电路的特性及其应用。
3. 通过仿真实验,验证理论分析,加深对谐振现象的理解。
4. 学习使用仿真软件进行电路分析,提高电路仿真能力。
二、实验原理交流电路谐振现象是指在一个由电阻(R)、电感(L)和电容(C)组成的电路中,当交流电源的频率达到某一特定值时,电路中的感抗(XL)等于容抗(XC),电路呈现纯阻性,此时电路的阻抗最小,电流达到最大值,电路发生谐振。
谐振频率(f0)由电路元件的参数决定,计算公式为:\[ f_0 = \frac{1}{2\pi\sqrt{LC}} \]三、实验仪器与软件1. 实验仪器:无2. 实验软件:Multisim 14四、实验步骤1. 打开Multisim软件,创建一个新的仿真项目。
2. 在仿真项目窗口中,从元器件库中选取电阻、电感、电容和交流电源等元器件。
3. 搭建RLC串联谐振电路,设置电阻R为10Ω,电感L为0.0318H,电容C为3.1831e-04F。
4. 在电路中添加交流电源,设置电源电压为220V,频率为50Hz。
5. 在电路中添加示波器,用于观察电路中电流和电压的变化。
6. 设置仿真参数,选择合适的仿真时间,启动仿真。
7. 观察示波器中电流和电压的波形,记录相关数据。
8. 重复步骤3-7,改变电路参数或电源频率,观察电路谐振现象的变化。
五、实验结果与分析1. 当电源频率为50Hz时,电路发生谐振,电流达到最大值,电压与电流同相位。
2. 当电源频率小于50Hz时,电路不发生谐振,电流随频率降低而减小。
3. 当电源频率大于50Hz时,电路不发生谐振,电流随频率升高而减小。
4. 改变电路参数R、L、C,观察电路谐振频率的变化,验证理论分析。
六、实验结论1. 仿真实验验证了RLC串联谐振电路的基本原理,加深了对谐振现象的理解。
2. 仿真实验结果表明,电路谐振频率与电路元件参数有关,与电源频率有关。
串联谐振电工实验报告
一、实验目的1. 理解串联谐振电路的工作原理及谐振现象。
2. 掌握串联谐振电路的频率特性、品质因数等参数的测量方法。
3. 分析电路参数对谐振特性的影响。
4. 熟悉实验仪器的使用。
二、实验原理串联谐振电路由电感(L)、电容(C)和电阻(R)串联组成。
当电路中的角频率ω满足以下条件时,电路发生谐振:ω = 1 / √(LC)此时,电路的阻抗最小,电流达到最大值,且与输入电压同相位。
谐振频率f与电路参数L、C的关系为:f = 1 / (2π√(LC))谐振电路的品质因数Q定义为:Q = ωL / R它反映了电路的选择性,Q值越大,选择性越好。
三、实验仪器与设备1. 信号发生器2. 数字万用表3. 电阻箱4. 电感箱5. 电容箱6. 交流毫伏表7. 谐振电路实验板四、实验步骤1. 按照电路图连接实验板,将电感L、电容C和电阻R接入电路。
2. 使用信号发生器产生正弦波信号,调节信号频率,使电路接近谐振状态。
3. 使用交流毫伏表测量电路中的电压,记录不同频率下的电压值。
4. 使用数字万用表测量电路中的电阻R,记录不同频率下的电阻值。
5. 根据实验数据,绘制电压-频率曲线,分析电路的谐振特性。
6. 计算谐振频率f、品质因数Q和通频带宽度。
五、实验数据与分析1. 谐振频率f的测量通过实验,测得谐振频率f为f0,理论值为f0 = 1 / (2π√(LC))。
2. 品质因数Q的测量通过实验,测得品质因数Q为Q0,理论值为Q0 = ωL / R。
3. 通频带宽度B的测量通过实验,测得通频带宽度B为B0,理论值为B0 = f2 - f1,其中f1和f2分别为谐振曲线下降到峰值一半的频率。
4. 电路参数对谐振特性的影响(1)电阻R对谐振特性的影响当电阻R增大时,品质因数Q减小,通频带宽度B增大,谐振曲线变平缓。
(2)电感L对谐振特性的影响当电感L增大时,谐振频率f减小,品质因数Q增大,通频带宽度B减小,谐振曲线变陡峭。
(3)电容C对谐振特性的影响当电容C增大时,谐振频率f增大,品质因数Q减小,通频带宽度B增大,谐振曲线变平缓。
rlc串联谐振电路的实验报告
rlc串联谐振电路的实验报告实验报告:RLC串联谐振电路引言:RLC串联谐振电路是电工学中常见的一种电路,它由电感器(L)、电容器(C)和电阻器(R)组成。
在特定的频率下,串联谐振电路能够表现出一系列特殊的性质和行为。
本实验旨在通过搭建RLC串联谐振电路并进行实验,进一步研究和探索其特性和应用。
一、实验装置与原理1. 实验装置:本实验所需的装置包括:信号发生器、电感器、电容器、电阻器、示波器、万用表等。
2. 实验原理:RLC串联谐振电路是由电感器、电容器和电阻器依次连接而成。
当电路中的电感、电容和电阻分别为L、C和R时,串联谐振电路的共振频率f0可由以下公式计算得出:f0 = 1 / (2π√(LC))二、实验步骤1. 搭建电路:根据实验要求,按照串联谐振电路的连接方式,将电感器、电容器和电阻器依次连接起来。
2. 调节信号发生器:将信号发生器连接到电路中,调节信号发生器的频率,使之逐渐接近共振频率f0。
3. 观察示波器波形:将示波器连接到电路中,调节示波器的设置,观察电路中的电压波形。
当信号发生器的频率接近共振频率f0时,示波器上的波形将出现明显的共振现象。
4. 测量电压和电流:使用万用表等测量工具,分别测量电感器、电容器和电阻器上的电压和电流数值。
三、实验结果与分析通过实验,我们得到了一系列数据,并进行了进一步的分析和研究。
1. 共振频率:根据实验测量的数据,我们计算得到了串联谐振电路的共振频率f0。
与理论计算值进行对比,可以评估实验的准确性和可靠性。
2. 波形分析:观察示波器上的波形,我们可以看到在共振频率f0附近,电压波形呈现出明显的共振现象。
这是因为在共振频率下,电感器和电容器的阻抗相互抵消,电路中的电流达到最大值。
3. 电压和电流的关系:通过测量电路中电压和电流的数值,我们可以进一步分析电压和电流之间的关系。
根据欧姆定律和基尔霍夫电压定律,我们可以推导出电流与电压的相位差等相关参数。
四、实验应用与展望RLC串联谐振电路在实际应用中具有广泛的用途,例如:1. 滤波器:串联谐振电路可以用作滤波器,通过调节频率可以选择性地滤除或通过特定频率的信号。
谐振的条件实验报告
一、实验目的1. 理解谐振现象的产生条件。
2. 掌握测量谐振频率的方法。
3. 研究不同参数对谐振频率的影响。
二、实验原理谐振现象是指电路中电感L、电容C和电阻R组成的RLC电路,在特定频率下,电路的阻抗达到最小值,电路中的电流达到最大值,这种现象称为谐振。
谐振频率f 由以下公式给出:\[ f = \frac{1}{2\pi\sqrt{LC}} \]其中,L为电感,C为电容。
当电路中的电阻R等于电感L与电容C产生的阻抗之和时,电路达到谐振状态。
三、实验仪器与器材1. 信号发生器:用于提供不同频率的正弦波信号。
2. 交流电压表:用于测量电路中的电压。
3. 电感器:用于构成RLC串联电路。
4. 电容器:用于构成RLC串联电路。
5. 电阻器:用于构成RLC串联电路。
6. 谐振频率计:用于测量电路的谐振频率。
四、实验步骤1. 按照电路图连接RLC串联电路,确保电路连接正确。
2. 将信号发生器输出的正弦波信号输入到电路中,调节信号发生器的频率,使电路逐渐接近谐振状态。
3. 使用交流电压表测量电路中的电压,记录不同频率下的电压值。
4. 绘制电压与频率的关系曲线,找出谐振频率。
5. 改变电感L或电容C的值,重复步骤2-4,观察谐振频率的变化。
五、实验数据与分析1. 实验数据| 频率(Hz) | 电压(V) | | ---------- | -------- | | 100 | 0.5 | | 150 | 1.0 | | 200 | 1.5 | | 250 | 2.0 | | 300 | 2.5 | | 350 | 3.0 | | 400 | 3.5 | | 450 | 4.0 | | 500 | 4.5 | | 550 | 5.0 | | 600 | 5.5 | | 650 | 6.0 | | 700 | 6.5 | | 750 | 7.0 | | 800 | 7.5 | | 850 | 8.0 | | 900 | 8.5 | | 950 | 9.0 | | 1000 | 9.5 |2. 分析根据实验数据,我们可以发现,当频率为300Hz时,电压达到最大值,说明此时电路达到谐振状态。
谐振电路实验报告
谐振电路实验报告谐振电路实验报告引言:谐振电路是电路中常见的一种特殊电路,其特点是在特定频率下,电路中的电压或电流达到最大值。
本实验旨在通过搭建谐振电路并进行实验,深入了解谐振电路的工作原理和特性。
一、实验目的通过实验,掌握谐振电路的搭建方法和调节技巧;了解谐振电路的工作原理和特性;探究谐振电路在不同频率下的响应情况。
二、实验器材与仪器1. 信号发生器2. 电阻、电容、电感器件3. 示波器4. 电压表、电流表5. 电源6. 连接线等三、实验步骤与结果1. 搭建串联谐振电路将信号发生器、电感、电容和电阻依次连接成串联电路,并接入电源。
通过调节信号发生器的频率,观察电压表和电流表的读数变化。
实验结果:当信号发生器的频率为谐振频率时,电压表和电流表的读数达到最大值。
2. 搭建并联谐振电路将信号发生器、电感、电容和电阻依次连接成并联电路,并接入电源。
通过调节信号发生器的频率,观察电压表和电流表的读数变化。
实验结果:当信号发生器的频率为谐振频率时,电压表和电流表的读数达到最大值。
3. 测量谐振频率在串联谐振电路中,固定电阻和电容的值,通过改变电感的值,测量不同电感下的谐振频率。
实验结果:当电感值增大时,谐振频率减小;当电感值减小时,谐振频率增大。
4. 调节谐振电路的品质因数在串联谐振电路中,固定电感和电容的值,通过改变电阻的值,观察谐振电路的品质因数变化。
实验结果:当电阻值增大时,谐振电路的品质因数减小;当电阻值减小时,谐振电路的品质因数增大。
五、实验总结通过本次实验,我们成功搭建了串联和并联谐振电路,并观察到了谐振电路在谐振频率下电压和电流达到最大值的现象。
同时,我们还发现了谐振频率与电感、电容、电阻值之间的关系,以及电阻值与谐振电路品质因数之间的关系。
谐振电路在实际应用中具有广泛的用途,例如在无线通信中的频率选择电路、滤波器等。
通过深入学习和实践,我们能够更好地理解和应用谐振电路的原理和特性。
六、参考文献[1] 《电子技术基础实验教程》[2] 《电路原理与应用》通过本次实验,我们对谐振电路的工作原理和特性有了更深入的了解。
谐振电路分析实验报告
谐振电路分析实验报告1. 学习谐振电路的基本原理和特性。
2. 掌握谐振电路的分析方法和实验操作技能。
3. 通过实验观察和测量,验证谐振电路的理论知识。
实验原理:谐振电路是指当电路中的电感和电容元件在一定的电频下产生能量的传输和转换,并使电流或电压呈现共振现象的电路。
谐振电路由一个电感元件L和一个电容元件C组成。
在理论分析上,谐振电路可以分为串联谐振电路和并联谐振电路两种形式。
串联谐振电路是指电感元件和电容元件按顺序连接,而并联谐振电路是指电感元件和电容元件按并联连接。
对于串联谐振电路,其共振电容可以由以下公式计算:C = 1 / (w^2 * L)其中,C为电容值,w为角频率,L为电感元件的电感。
对于并联谐振电路,其共振电感可以由以下公式计算:L = 1 / (w^2 * C)其中,L为电感值,w为角频率,C为电容元件的电容。
实验装置:1. 正弦波信号发生器2. 电阻箱3. 电感4. 电容5. 示波器6. 多用表7. 连线电缆实验步骤:1. 将正弦波信号发生器与电阻箱按顺序连接,并设置合适的频率和幅度。
2. 将正弦波信号发生器与示波器相连,观察输出的电压波形。
3. 分别连接串联谐振电路和并联谐振电路,调节正弦波信号发生器的频率,观察并记录电流或电压的变化情况。
4. 根据所记录的电流或电压值,计算电容或电感的理论值。
5. 比较实验测量值和理论值的差异,分析其原因。
实验结果和分析:通过实验观察和测量,我们得到了串联谐振电路和并联谐振电路的电流和电压曲线,并计算出了相应的电容和电感理论值。
实验结果和理论值的比较表明,实验结果与理论值有较小的误差,证实了谐振电路的基本原理和特性。
同时,我们还观察到在谐振电路的共振频率附近,电流或电压明显增大,且存在频率选择性,即只有在特定频率下才能实现共振,并且在共振频率附近,电容和电感元件的阻抗值相等,电路呈现纯电阻性质。
而在共振频率附近,电流或电压的幅值最大,相位差为0,说明此时电能在电感和电容之间的传输和转换效率最高。
rlc谐振电路实验报告
rlc谐振电路实验报告RLC谐振电路实验报告引言在电路实验中,RLC谐振电路是一种重要的电路结构,它在通信、电子设备和电源等领域中具有广泛的应用。
本实验旨在通过搭建RLC谐振电路,研究其特性和性能,并对实验结果进行分析和讨论。
一、实验目的本实验的主要目的是研究RLC谐振电路的频率响应和幅频特性,通过实验数据的采集和分析,掌握RLC谐振电路的基本原理和工作特性。
二、实验原理RLC谐振电路是由电感、电容和电阻组成的串联电路。
当电路中的电感、电容和电阻参数满足一定条件时,电路的输出电压将达到最大值,此时电路处于谐振状态。
谐振频率可以通过以下公式计算得出:f = 1 / (2π√(LC))其中,f为谐振频率,L为电感的值,C为电容的值,π为圆周率。
三、实验步骤1. 按照实验要求,搭建RLC谐振电路。
2. 连接信号发生器和示波器,将信号发生器的输出接入到电路的输入端,示波器的输入接入到电路的输出端。
3. 调节信号发生器的频率,从低频到高频逐渐扫描,观察示波器上的波形变化。
4. 记录示波器上波形的特点和频率值,并绘制频率与幅度的关系曲线。
四、实验结果与分析通过实验数据的采集和分析,我们得到了RLC谐振电路的频率响应曲线。
根据实验结果,我们发现在谐振频率附近,电路的输出电压达到了最大值,表明电路处于谐振状态。
而在谐振频率之外,输出电压逐渐减小,表明电路的谐振特性开始衰减。
根据实验原理可知,RLC谐振电路的谐振频率与电感和电容的数值有关。
当电感和电容的数值增大时,谐振频率会变小;反之,当电感和电容的数值减小时,谐振频率会变大。
因此,通过调节电感和电容的数值,我们可以改变电路的谐振频率,以适应不同的应用需求。
此外,实验中我们还观察到了谐振峰的现象。
谐振峰是指在谐振频率附近,电路的输出电压达到最大值的状态。
谐振峰的宽度取决于电路中的电阻值,电阻值越小,谐振峰越尖锐;反之,电阻值越大,谐振峰越平缓。
这是因为电阻对电路的阻尼特性起到了调节作用,影响了电路的谐振特性。
串联谐振电路实验报告
串联谐振电路实验报告一、实验目的1、深入理解串联谐振电路的工作原理和特性。
2、掌握测量串联谐振电路参数的方法。
3、观察串联谐振电路中电压、电流和频率之间的关系。
二、实验原理串联谐振电路由电感 L、电容 C 和电阻 R 串联组成。
当外加交流电源的频率等于电路的谐振频率时,电路发生谐振现象。
此时,电路中的阻抗最小,电流达到最大值,电感和电容两端的电压可能远大于电源电压。
谐振频率可以通过公式$f_0 =\frac{1}{2\pi\sqrt{LC}}$计算得出。
在谐振状态下,电路的品质因数$Q =\frac{\omega_0 L}{R}$,它反映了电路的选择性和通频带宽度。
三、实验仪器和设备1、函数信号发生器2、示波器3、电阻箱4、电感箱5、电容箱四、实验步骤1、按照电路图连接好实验电路,注意各元件的极性和连接的准确性。
2、调节函数信号发生器,使其输出一个频率可变的正弦交流信号,并将其连接到串联谐振电路的输入端。
3、逐渐改变信号发生器的输出频率,同时用示波器观察电路中电流和电压的变化。
4、当示波器上显示的电流达到最大值时,记录此时的频率,即为谐振频率$f_0$ 。
5、测量在谐振频率下电感、电容和电阻两端的电压值。
6、改变电阻的值,重复上述实验步骤,观察品质因数的变化。
五、实验数据记录与处理1、记录不同频率下的电流值和电压值,如下表所示:|频率(Hz)|电流(mA)|电阻电压(V)|电感电压(V)|电容电压(V)||||||||500|_____|_____|_____|_____||1000|_____|_____|_____|_____||1500|_____|_____|_____|_____|||||||2、根据实验数据,绘制电流频率曲线,找出谐振频率点。
3、计算不同电阻值下的品质因数,并分析其变化规律。
六、实验结果分析1、通过实验数据可以看出,在谐振频率处,电流达到最大值,这与理论分析相符。
2、随着电阻的增大,品质因数减小,电路的选择性变差,通频带变宽。
串联谐振电路实验报告
一、实验目的1. 深入理解串联谐振电路的工作原理和特性。
2. 掌握串联谐振电路的谐振频率、品质因数和带宽的测量方法。
3. 分析不同参数对串联谐振电路特性的影响。
二、实验原理串联谐振电路由电阻(R)、电感(L)和电容(C)三个元件串联而成。
当电路中的交流电压频率改变时,电路的阻抗会随之变化。
当电路的感抗(X_L)等于容抗(X_C)时,电路发生谐振,此时电路的阻抗最小,电流达到最大值。
1. 谐振频率(f_r)谐振频率是串联谐振电路的重要参数,它决定了电路的选择性。
谐振频率的计算公式如下:\[ f_r = \frac{1}{2\pi\sqrt{LC}} \]2. 品质因数(Q)品质因数是衡量电路选择性、损耗和效率的重要指标。
品质因数的计算公式如下:\[ Q = \frac{\omega_0L}{R} \]其中,ω_0是谐振角频率,R是电路中的电阻。
3. 带宽(B)带宽是指谐振曲线两侧电流有效值下降到最大电流的1/√2时对应的频率范围。
带宽的计算公式如下:\[ B = \frac{f_2 - f_1}{2} \]其中,f_1和f_2分别是谐振曲线两侧下降到最大电流的1/√2时对应的频率。
三、实验仪器和器材1. 交流信号发生器2. 示波器3. 电阻箱4. 电感线圈5. 电容箱6. 谐振电路实验板7. 电压表8. 频率计四、实验步骤1. 按照实验板上的电路图连接电路,确保电路连接正确。
2. 将电阻箱的阻值设置为50Ω,调节电感线圈和电容箱的参数,使电路达到谐振状态。
3. 使用交流信号发生器产生正弦波信号,频率从低到高逐渐变化。
4. 使用示波器观察电路中电阻R上的电压波形,并记录不同频率下的电压峰值。
5. 使用频率计测量谐振频率,并与理论计算值进行比较。
6. 改变电阻箱的阻值,重复步骤4和5,分析电阻对谐振电路特性的影响。
7. 改变电感线圈和电容箱的参数,重复步骤4和5,分析电感、电容对谐振电路特性的影响。
五、实验结果与分析1. 通过实验,验证了串联谐振电路的谐振频率、品质因数和带宽的计算公式。
谐振电路实验报告
谐振电路实验报告一、实验目的:1.了解谐振电路的基本原理;2.熟悉使用示波器测量振荡电路的电压和相位差;3.研究并验证谐振电路的特性。
二、实验仪器和材料:1.示波器;2.交流电源;3.电阻箱、电容箱、电感箱(可调范围较大);4.导线。
三、实验原理:1.谐振电路是指在一定的频率下,电路中的电容、电感和电阻组成的串联电路,电流和电压之间的相位差为0或180度。
2.谐振电路可以分为两种:带通谐振电路和带阻谐振电路。
3.带通谐振电路是指在一定频率范围内,电路中的电容、电感和电阻组成的串联电路,对该频率范围内的信号具有放大作用。
4.带阻谐振电路是指在一定频率范围内,电路中的电容、电感和电阻组成的并联电路,对该频率范围内的信号具有衰减作用。
四、实验步骤:1.按照电路图连接电路,其中电阻箱、电容箱和电感箱的值可调节。
2.调节交流电源的频率使之处于谐振频率附近。
3.分别使用示波器测量并记录电容器两端的电压和电感器两端的电压。
4.改变电源频率,重复测量并记录电压和相位差。
五、实验数据记录与处理:1.根据电压数据计算振幅和相位差,并制成相应的图表。
2.根据实验数据拟合出谐振曲线,并计算谐振频率和品质因数。
3.对比理论计算值与实验测量值,分析并讨论实验结果。
六、实验结果分析:七、实验结论:通过对谐振电路的实验研究,了解了谐振电路的基本原理和特性,熟悉了使用示波器测量振荡电路的电压和相位差的方法。
实验结果与理论计算值基本吻合,验证了实验的正确性。
同时,发现实验过程中存在一些误差,可能是由于电源频率的精度不够高和电路元件的实际值与标称值存在一定差异等原因导致的。
在今后的实验中,需要更加仔细地调节电路和测量设备,以提高实验结果的准确性。
八、实验心得与建议:通过本次谐振电路实验,我对谐振电路的原理和性质有了更深入的理解,并学会了使用示波器进行电压和相位差的测量。
在实验过程中,我遇到了一些困难和问题,但通过与同学和老师的交流和讨论,最终顺利完成了实验。
电路谐振实验报告
一、实验目的1. 理解电路谐振的概念和特性。
2. 学习并掌握RLC串联电路的谐振频率、品质因数等参数的测量方法。
3. 分析谐振电路在不同频率下的响应特性。
4. 通过实验验证理论分析的正确性。
二、实验原理电路谐振是指电路在特定频率下,电感、电容和电阻的相互作用达到平衡状态,此时电路的阻抗最小,电流达到最大值。
RLC串联谐振电路的谐振频率f0可由以下公式计算:f0 = 1 / (2π√(LC))其中,L为电感,C为电容。
谐振电路的品质因数Q反映了电路的能量存储和消耗效率,其计算公式为:Q = 1 / (ωR) = 1 / (√(LC)R)其中,ω为角频率,R为电阻。
三、实验仪器与设备1. RLC串联谐振电路实验板2. 信号发生器3. 数字万用表4. 示波器5. 数据采集器四、实验步骤1. 按照实验板说明书,搭建RLC串联谐振电路。
2. 使用信号发生器输出正弦波信号,频率从低到高逐渐变化。
3. 在谐振频率附近,使用数字万用表测量电路的电流和电压。
4. 使用示波器观察电路的电流和电压波形,记录波形特征。
5. 利用数据采集器记录不同频率下的电流和电压数据。
6. 分析数据,绘制幅频特性曲线。
五、实验结果与分析1. 频率与电流的关系:在谐振频率附近,电流达到最大值,且随着频率远离谐振频率,电流逐渐减小。
2. 频率与电压的关系:在谐振频率附近,电压达到最大值,且随着频率远离谐振频率,电压逐渐减小。
3. 谐振频率:通过实验数据,验证了RLC串联谐振电路的谐振频率与理论公式的一致性。
4. 品质因数:通过实验数据,计算出电路的品质因数Q,与理论公式计算结果相符。
六、实验结论1. 通过实验验证了RLC串联谐振电路的谐振频率、品质因数等参数与理论分析的一致性。
2. 掌握了RLC串联谐振电路的谐振特性,为实际电路设计提供了理论依据。
3. 熟悉了实验仪器的使用方法,提高了实验技能。
七、实验体会1. 在实验过程中,注意观察实验现象,分析实验数据,提高自己的实验能力。
谐振电路实验报告数据
谐振电路实验报告数据实验目的掌握谐振电路的基本原理和特性,并通过实验验证谐振电路的工作特性。
实验器材1. 函数发生器2. 电容器3. 电感器4. 电阻器5. 示波器6. 万用表实验原理谐振电路是一种在一定频率下,电容电压和电感电流之间存在频率和振幅之间共振现象的电路。
谐振电路可以分为串联谐振电路和并联谐振电路两种。
串联谐振电路是指电感、电容和电阻依次连接的电路;并联谐振电路则是指电感、电容和电阻同时连接在一起的电路。
串联谐振电路由于电容和电感在串联时形成一条负反馈回路,所以电路的品质因数较高,对频率变化较不敏感;而并联谐振电路则对频率变化较为敏感。
实验步骤1. 将串联谐振电路按照图中的接线要求连接好,并确保电路接线正确。
![谐振电路接线图](2. 调节函数发生器的频率,使其输出的信号频率在谐振频率附近变化。
3. 分别使用示波器和万用表测量电路中电压和电流的大小。
4. 记录下不同频率下电压和电流的数值。
5. 切换至并联谐振电路,按照同样的步骤进行测量和记录。
实验数据串联谐振电路数据频率(Hz)电压(V)电流(A)50 2 0.1100 2.5 0.15150 3 0.2200 3.5 0.23250 4 0.28并联谐振电路数据频率(Hz)电压(V)电流(A)50 2.5 0.3100 3 0.35150 3.5 0.4200 4 0.45250 4.5 0.5数据处理和分析1. 根据实验数据,绘制并联谐振电路和串联谐振电路的电压-频率曲线图。
![并联谐振电路曲线图](![串联谐振电路曲线图](2. 通过观察曲线图,可以发现在谐振频率附近,电压和电流达到最大值,呈现明显的共振现象。
3. 通过实验数据和曲线图可以计算出谐振频率,电压和电流的相位关系等。
4. 分析实验数据可以得出,串联谐振电路对于频率变化较不敏感,而并联谐振电路对频率变化较为敏感。
实验结论通过本次实验,我们掌握了谐振电路的基本原理和特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
rlc串联谐振电路的实验研究
一、摘要:
从rlc 串联谐振电路的方程分析出发,推导了电路在谐振状态下的谐振频率、品质因
数和输入阻抗,并且基于multisim仿真软件创建rlc 串联谐振电路,利用其虚拟仪表和
仿真分析,分别用测量及仿真分析的方法验证它的理论根据。
其结果表明了仿真与理论分析
的一致性,为仿真分析在电子电路设计中的运用提供了一种可行的研究方法。
二、关键词:rlc;串联;谐振电路;三、引言
谐振现象是正弦稳态电路的一种特定的工作状态。
通常,谐振电路由电容、电感和电阻
组成,按照其原件的连接形式可分为串联谐振电路、并联谐振电路和耦合谐振电路等。
由于谐振电路具有良好的选择性,在通信与电子技术中得到了广泛的应用。
比如,串联
谐振时电感电压或电容电压大于激励电压的现象,在无线电通信技术领域获得了有效的应用,
例如当无线电广播或电视接收机调谐在某个频率或频带上时,就可使该频率或频带内的信号
特别增强,而把其他频率或频带内的信号滤去,这种性能即称为谐振电路的选择性。
所以研
究串联谐振有重要的意义。
在含有电感l 、电容c 和电阻r 的串联谐振电路中,需要研究在不同频率正弦激励下
响应随频率变化的情况,即频率特性。
multisim 仿真软件可以实现原理图的捕获、电路分
析、电路仿真、仿真仪器测试等方面的应用,其数量众多的元件数据库、标准化仿真仪器、
直观界面、简洁明了的操作、强大的分析测试、可信的测试结果都为众多的电子工程设计人
员提供了一种可靠的分析方法,同时也缩短了产品的研发时间。
四、正文
(1)实验目的:
1.加深对串联谐振电路条件及特性的理解。
2.掌握谐振频率的测量方法。
3.理解电路品质因数的物理意义和其测定方法。
4.测定rlc串联谐振电路的频率特性曲线。
(2)实验原理:
rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。
该电路的阻抗是电源角频率ω的函数:z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。
谐振角频率ω
0 =1/lc ,谐振频率f0=1/2π
lc 。
谐振频率仅与原件l、c的数值有关,而与电阻r和激励电源的角频率ω无关,当ω<
ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。
1、电路处于谐振状态时的特性。
(1)、回路阻抗z0=r,| z0|为最小值,整个回路相当于一个纯电阻电路。
(2)、回路
电流i0的数值最大,i0=us/r。
(3)、电阻上的电压ur的数值最大,ur =us。
(4)、电感上的电压ul与电容上的电压uc数值相等,相位相差180°,ul=uc=qus。
2、电路的品质因数q
电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因
数q,即:
q=ul(ω0)/ us= uc(ω0)/ us=ω0l/r=1/r*l/c (3)谐振曲线。
电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲
线,也称谐振曲线。
在us、r、l、c固定的条件下,有
i=us/r2?(?l-1/?c)2 ur=ri=rus/r2?(?l-1/?c)2 uc=i/ωc=us/ωcr2?(?l-1/?c)2 ul=ωli=ωlus/r2?(?l-1/?c)2 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路电流与电阻
电压成正比。
从图中可以看到,ur的最大值在谐振角频率ω0处,此时,ul=uc=qus。
uc的
最大值在ω<ω0处,ul的最大值在ω>ω0处。
图表示经过归一化处理后不同q值时的电流频率特性曲线。
从图中(q1<q2<q3)
可以看出:q值越大,曲线尖锐度越强,其选择性就越好。
只有当q>1/2 时,uc和ul曲线才出现最大值,否则uc将单调下降趋于0,ul将单
调上升趋于us。
仿真rlc电路响应的谐振曲线的测量
仿真rlc电路响应的谐振曲线
(4)multisim电路仿真
10mh电路
4.7mh
(5)品质因数q
rlc串联回路中的l和c保持不变,改变r的大小,可以得出不同q 值时的幅频特性曲
线。
取r =1ω,r =10和r=100三种阻值分别观察品质因数q。
r= 100 时的幅频特性
篇二:串联谐振电路实验报告
实验三:串联谐振电路
一、实验目的:
1.加深对串联谐振电路条件及特性的理解。
2.掌握谐振频率的测量方法。
3.理解电路品质因数及通频带的物理意义和其测定方法。
4.测定rlc串联谐振电路的频
率特性曲线。
二、实验原理:
rlc串联电路如图所示,改变电路参数l、c或电源频率时,都可能使电路发生谐振。
该电路的阻抗是电源角频率ω的函数: z=r+j(ωl-1/ωc) 当ωl-1/ωc=0时,电路中的电流与激励电压同相,电路处于谐振状态。
谐振角频率ω0 =1/lc ,谐振频率f0=1/2π
lc 。
谐振频率仅与原件l、c的数值有关,而与电阻r和激励电源的角频率ω无关,当ω<
ω0时,电路呈容性,阻抗角φ<0;当ω>ω0时,电路呈感性,阻抗角φ>0。
1、电路处于谐振状态时的特性。
(1)、回路阻抗z0=r,| z0|为最小值,整个回路相当
于一个纯电阻电路。
(2)、回路电流i0的数值最大,i0=us/r。
(3)、电阻上的电压ur
的数值最大,ur =us。
(4)、电感上的电压ul与电容上的电压uc数值相等,相位相差180°,
ul=uc=qus。
2、电路的品质因数q和通频带b。
电路发生谐振时,电感上的电压(或电容上的电压)与激励电压之比称为电路的品质因
数q,即:
q=ul(ω0)/ us= uc(ω0)/ us=ω0l/r=1/r*l/c 回路电流下降到峰值的0.707时所对应的频率为截止频率,介于两截止频率间的频率范
围为通频带,即: b=f0 /q
2、谐振曲线。
电路中电压与电流随频率变化的特性称频率特性,它们随频率变化的曲线称频率特性曲
线,也称谐振曲线。
在us、r、l、c固定的条件下,有
i=us/r2?(?l-1/?c)2 ur=ri=rus/r2?(?l-1/?c)2 uc=i/ωc=us/ωcr2?(?l-1/?c)2 ul=ωli=ωlus/r2?(?l-1/?c)2 改变电源角频率ω,可得到响应电压随电源角频率ω变化的谐振曲线,回路电流与电阻
电压成正比。
从图中可以看到,ur的最大值在谐振角频率ω0处,此时,ul=uc=qus。
uc的
最大值在ω<ω0处,ul的最大值在ω>ω0处。
图表示经过归一化处理后不同q值时的电流频率特性曲线。
从图中(q1<q2<q3)
可以看出:q值越大,曲线尖锐度越强,其选择性就越好,但电路通过的信号频带越窄,即
通频带越窄。
注意,只有当q>1/2 时,uc和ul曲线才出现最大值,否则uc将单调下降趋于0,
ul将单调上升趋于us。
三、实验设备与器件
1.函数信号发生器(1台)
2.示波器(1台)
3.交流毫伏表(1只)
4.万用表(1只)
5.可变电阻:0~1kω(1个) 6电阻:100ω
7电容:22nf(1个)
8电感:100mh、4.7mh(1个)
四、实验内容
1.测量元件值,计算电路谐振频率和品质因数q的理论值
l
q=ul(ω0)/us= uc(ω0)/us=ω0l/r=1/rr =6.74(10mh)和4.62(4.7mh) 2. 根
据图连接电路,信号电压均方根为1v(即峰-峰值为3v)
3.随频率变化,测量电阻电压、电感电压、电容电压。
记录如下表:
测量方法:按图组成监视、测量电压、用交流毫伏表测电压,用示波器监视信号源输出,
输出电压为3v,保持不变。
按一定频率值测量ur、ul、uc的值,根据数据绘制曲线。
表1:实测rlc电路响应的谐振曲线的测量
实测rlc电路响应的谐振曲线
4、电路仿真
10mh电路
4.7mh
表2:仿真rlc电路响应的谐振曲线的测量
仿真rlc电路响应的谐振曲线
篇三:lrc电路谐振特性的研究实验报告
lrc电路谐振特性的研究实验报告
实验名称:_____lrc电路谐振特性的研究________ 姓名学号班级_ _ 实验
日期 _ 2013.11.14_ _ 温度___ 15℃___ 同组者 ________ (一)实验目的:
1.研究和测量lrc串、并联电路的幅频特性; 2.掌握幅频特性的测量方法;
3.进一步理解回路q值的物理意义.
(二)实验仪器:
低频信号发生器、交流毫伏表、电阻箱、电感线圈、标准电容箱、频率计、开关和导线
(三)实验原理:。