半导体—金属接触特性测试技术

合集下载

半导体测试原理

半导体测试原理

半导体测试公司简介Integrated Device Manufacturer (IDM):半导体公司,集成了设计和制造业务。

IBM:(International Business Machines Corporation)国际商业机器公司,总部在美国纽约州阿蒙克市。

Intel:英特尔,全球最大的半导体芯片制造商,总部位于美国加利弗尼亚州圣克拉拉市。

Texas Instruments:简称TI,德州仪器,全球领先的数字信号处理与模拟技术半导体供应商。

总部位于美国得克萨斯州的达拉斯。

Samsung:三星,韩国最大的企业集团,业务涉及多个领域,主要包括半导体、移动电话、显示器、笔记本、电视机、电冰箱、空调、数码摄像机等。

STMicroelectronics:意法半导体,意大利SGS半导体公司和法国Thomson半导体合并后的新企业,公司总部设在瑞士日内瓦。

是全球第五大半导体厂商。

Strategic Outsourcing Model(战略外包模式):一种新的业务模式,使IDM厂商外包前沿的设计,同时保持工艺技术开发Motorola:摩托罗拉。

总部在美国伊利诺斯州。

是全球芯片制造、电子通讯的领导者。

ADI:(Analog Devices, Inc)亚德诺半导体技术公司,公司总部设在美国,高性能模拟集成电路(IC)制造商,产品广泛用于模拟信号和数字信号处理领域。

Fabless:是半导体集成电路行业中无生产线设计公司的简称。

专注于设计与销售应用半导体晶片,将半导体的生产制造外包给专业晶圆代工制造厂商。

一般的fabless公司至少外包百分之七十五的晶圆生产给别的代工厂。

Qualcomm:高通,公司总部在美国。

以CDMA(码分多址)数字技术为基础,开发并提供富于创意的数字无线通信产品和服务。

如今,美国高通公司正积极倡导全球快速部署3G网络、手机及应用。

Broadcom:博通,总部在美国,全球领先的有线和无线通信半导体公司。

半导体测试与分析-PPT精选文档

半导体测试与分析-PPT精选文档

二探针法
用两根探针借助于电位差计量取 样品表面某两点(实际上是某两 个等位面)间的电位差U,并量出 流经样品的电流值I,即可算出 该两个等位面间的长方体的电阻 值R。精确量出探针间距L及样 品截面积S, 则样品的电阻率为

两个改进措施
1. 补偿法来测量电压,以避免探针与半导体之间 高阻接触对测量结果的影响 2. 两个端电极与被测半导体之间为欧姆接触,因 而避免了少数载流子的注入
半导体电阻率的测量与导体的电阻率测量是有区 别的
1、在金属与半导体接触的界面附近也要产生一个耗尽层。因为金属 的电子密度极高,因而这个耗尽层展宽在半导体一边。耗尽层中只有 不能自由运动的电离杂质,它们不能参与导电,因而这是一个高阻层。 同时,任何两种材料的小面积接触都会在接触处产生扩展电阻。尤其 是对金属—半导体点接触,这个扩展电阻会很大,人们常常把这两个 因接触而产生的高电阻统称为接触电阻。因此,当用欧姆表来测量半 导体时,这个巨大的接触电阻就会使结果面目全非,毫不可信。
2、功函数不同的两种金属制品在接触时也要因接触电势差而在界面
上出现一个电荷偶层,但这个空间电荷层极薄,每边只有约一个原于 层厚,远小于电子的扩散长度,因而对载流子没有阻挡作用。同时, 金属与金属的小面积接触的扩展电阻也很小。因此,上述方法对测量 金属导体的电阻率是精确的。
3、由非平衡载流子的电注入效应可以想到,如果被测半 导体是n型,那么测量电流将通过正电极向半导体注入空 穴;若被测半导体是P型则会从负电极向半导体注入电子。 这些注入的少数载流子在外电场的驱使下向另一电极漂移, 参与导电。在注入电极附近的某一范围内,载流子密度因 此而高于载流子的热平衡密度,因而测量结果不能反映材 料电阻率的真正大小。对于热平衡载流子密度较低的高阻 材料,其接触电阻更大,少子注入的影响也更加严重。

半导体测试与表征技术基础[详细讲解]

半导体测试与表征技术基础[详细讲解]

半导体测试与表征技术基础第一章概述(编写人陆晓东)第一节半导体测试与表征技术概述主要包括:发展历史、现状和在半导体产业中的作用第二节半导体测试与表征技术分类及特点主要包括:按测试与表征技术的物理效应分类、按芯片生产流程分类及测试对象分类(性能、材料、制备、成分)等。

第三节半导体测试与表征技术的发展趋势主要包括:结合自动化和计算机技术的发展,重点论述在线测试、结果输出和数据处理功能的变化;简要介绍最新出现的各类新型测试技术。

第二章半导体工艺质量测试技术第一节杂质浓度分布测试技术(编写人:吕航)主要介绍探针法,具体包括:PN结结深测量;探针法测量半导体扩散层的薄层电阻(探针法测试电阻率的基本原理、四探针法的测试设备、样品制备及测试过程注意事项、四探针测试的应用和实例);要介绍扩展电阻测试系统,具体包括:扩展电阻测试的基本原理、扩展电阻的测试原理、扩展电阻测试系统、扩展电阻测试的样品、扩展电阻法样品的磨角、扩展电阻法样品的制备、扩展电阻测试的影响因素、扩展电阻法测量过程中应注意的问题、扩展电阻法测量浅结器件结深和杂质分布时应注意的问题、扩展电阻测试的应用和实例。

第二节少数载流子寿命测试技术(编写人:钟敏)主要介绍直流光电导衰退法、高频光电导衰退法,具体包括:非平衡载流子的产生、非平衡载流子寿命、少数载流子寿命测试的基本原理和技术、少数载流子寿命的测试。

以及其它少子寿命测试方法,如表面光电压法、少子脉冲漂移法。

第三节表面电场和空间电荷区测量(编写人:吕航)主要包括:表面电场和空间电荷区的测量,金属探针法测量PN结表面电场的分布、激光探针法测试空间电荷区的宽度;容压法测量体内空间电荷区展宽。

第四节杂质补偿度的测量(编写人:钟敏)包括:霍尔效应的基本理论、范德堡测试技术、霍尔效应的测试系统、霍尔效应测试仪的结构、霍尔效应仪的灵敏度、霍尔效应的样品和测试、霍尔效应测试的样品结构、霍尔效应测试的测准条件、霍尔效应测试步骤、霍尔效应测试的应用和实例、硅的杂质补偿度测量、znO的载流子浓度、迁移率和补偿度测量、硅超浅结中载流子浓度的深度分布测量第五节氧化物、界面陷阱电荷及氧化物完整性测量(编写人:钟敏)包括:固定氧化物陷阱和可动电荷、界面陷阱电荷、氧化物完整性测试技术等。

半导体金属沾污问题研究

半导体金属沾污问题研究

半导体硅片金属微观污染机理研究进展文章来源:互联网点击数:589 录入时间:2006-4-2减小字体增大字体郑宣,程璇摘要:综述了近10年来国内外在半导体硅片金属微观污染研究领域的进展。

研究了单金属特别是铜的沉积、形成机理和动力学以及采用的研究方法和分析测试手段,包括对电化学参数和物理参数等研究。

指出了随着科学技术的不断发展,金属污染金属检测手段也得到了丰富,为金属微观污染的研究提供了有力的工具。

1引言随着ULSI技术的不断向前发展,对半导体硅的表面性质要求也越来越严格。

而且电路的集成度日益提高,单元图形的尺寸日益微化,污染物对器件的影响也愈加突出,以至于洁净表面的制备已成为制作64M和2 56Mbyte DRAM的关键技术[1,2]。

此外有超过50%成品损失率是由硅表面的污染所造成的。

硅片上的杂质一般可分为三种:分子型、离子型和原子型。

这里主要探讨原子型杂质。

原子型杂质主要是指过渡金属或贵金属原子(如Au、Ag、Cu等),它们主要来自于硅的酸性刻蚀剂中。

原子型杂质主要影响器件中少子寿命、表面的导电性、门氧化物的完整性和其它器件稳定性参数等,特别在高温或电场下,它们能够向半导体结构的本体扩散或在表面扩大分布,导致器件性能下降,产率降低。

在工业上,硅表面清洗分为干法和湿法清洗两种,前者是物理方法,后者是化学方法。

目前湿法清洗一直占主导地位,因为它对杂质和基体选择性好,可将杂质清洗至非常低的水平。

本文综述了几种典型金属在湿法清洗过程中对硅片表面产生的金属微观污染和所涉及的机理研究进展,并讨论了今后该领域的研究方向。

2 污染物的形成机理与研究半导体微电子制造过程中,金属污染浓度可达到1012 ~1013 atom/cm2。

但实际上制造16Mbyte DRAM 要求必须将硅表面金属浓度降低到1×1012 atom/cm2以下。

所以研究化学试剂HF中金属离子(主要是铜离子)在硅表面的沉积行为和污染机理具有重要的科学价值和实际意义。

半导体物理学第七章

半导体物理学第七章

J = J m → s + J s →m
qφns qV = A T exp(− )[exp( ) − 1] k0T k0T
∗ 2
qV = J sT [exp( ) − 1] k0T
与扩散理论得到的J-V形式上是一样的,所不同的是JsT与外加电压无 关,却是一个更强烈依赖于温度的函数。
3、镜像力和隧道效应的影响
接触电阻定义为零偏压下的微分电阻,即
∂I Rs = ∂V V =0
−1
下面估算一下以隧道电流为主时的接触电阻。讨论金属和n型半导体接触的 势垒贯穿问题。将导带底选为电势能的零点。
qN D V ( x) = − ( x − d0 )2 2ε r ε 0
电子的势垒为:
q2 ND −qV ( x) = ( x − d0 )2 2ε r ε 0
2
半导体内电场为零,因而
E ( xd ) = − dV dx
x = xd
=0
金属费米能级除以-q作为电势零点,则有 势垒区中
V (0) = −φns
dV ( x) qN D E ( xd ) = − = ( x − xd ) dx ε rε 0 1 2 V ( x) = ( xxd − x ) − φns ε rε 0 2 qN D
2、接触电势差
设想有一块金属和n型半导体, 它们有共同的真空静止能级。 假定
Wm > Ws
接触前,未平衡的能级
平衡状态的能级
q(Vs' − Vm ) = Wm − Ws Ws − Wm Vms = Vm − V = q
' s
接触电势差
紧密接触
忽略间隙 当 Vms 很小时,接触电势差绝大部分 落在空间电荷区。 金属一边的势垒高度是

为p型si半导体设计欧姆接触

为p型si半导体设计欧姆接触

为p型si半导体设计欧姆接触欧姆接触是一种电子学现象,是指当两个电极之间的接触电阻随着加入的电压增大而变小。

在半导体器件制造中,欧姆接触被广泛应用于p型和n型半导体器件的电极制作中。

本文将针对p型Si半导体的欧姆接触设计进行详细探讨。

1. 欧姆接触原理欧姆接触的原理可以通过欧姆定律来解释。

欧姆定律是指电流$I$与电压$V$之间的关系,即$I=V/R$,其中$R$为电阻。

在欧姆接触中,当两个接触金属与半导体接触时,接触电阻$R$会随着电压的升高而减小,这是因为当电压升高时,电子在金属外壳中的热运动增强,进一步促进更多电子从半导体向金属流动,从而导致接触电阻降低。

2. p型Si半导体欧姆接触设计在p型Si半导体的欧姆接触设计中,我们需要考虑以下因素:2.1 金属材料的选择选择合适的金属材料是欧姆接触设计中最关键的一步。

常用的金属材料包括Ti、Cr、Al和Au等。

Ti和Cr的粘附性强,可以很好地粘附到p型Si表面,并且它们的电学性能也比较适合制作欧姆接触。

而Al和Au的电学性能更优秀,但由于它们的粘附性不够强,需要在它们之上涂覆一层Ti或Cr来增强粘附力。

对于p型Si半导体的欧姆接触设计,建议选择Ti或Cr材料。

2.2 洁净度的保证在欧姆接触制作过程中,确保器件表面的洁净度是非常重要的。

因为器件表面的杂质和污染物会对接触电极的制造和性能产生很大影响。

需要在制作欧姆接触前,充分保证p型Si表面的洁净度。

2.3 接触面积的控制接触面积的大小会直接影响欧姆接触的电学特性。

一般来讲,接触面积越大,电流密度就越小,接触电阻就越小。

在设计欧姆接触时,需要合理控制接触面积,以达到最佳电学性能。

2.4 热处理的优化在欧姆接触制作过程中,热处理是一个非常重要的步骤。

热处理可以改善接触金属与p型Si之间的界面特性,促进更好的电子传输。

在制作欧姆接触时,需要对热处理的参数进行优化,以获得最佳的电学性能。

在设计p型Si半导体的欧姆接触时,需要考虑金属材料的选择、洁净度的保证、接触面积的控制以及热处理的优化等因素。

半导体激光器的光学特性测试

半导体激光器的光学特性测试

实验八半导体激光器的光学特性测试[实验目的]1、通过实验熟悉半导体激光器的光学特性。

2、掌握半导体激光器耦合、准直等光路的调节。

3、根据半导体激光器的光学特性考察其在光电子技术方面的应用。

[实验仪器]1、半导体激光器及可调电源2、光谱仪3、可旋转偏振片4、旋转台5、光功率计图1. 半导体激光器的结构[实验原理]1、半导体激光器的基本结构至今,大多数半导体激光器用的是GaAs或Ga1-x Al x As材料,p-n结激光器的基本结构如图1所示。

P—n结通常在n型衬底上生长p型层而形成。

在p区和n区都要制作欧姆接触,使激励电流能够通过,这电流使结区附近的有源区内产生粒子数反转,还需要制成两个平行的端面起镜面作用,为形成激光模提供必须的光反馈。

图1中的器件是分立的激光器结构,它可以与光纤传输线连接,如果设计成更完整的多层结构,可以提供更复杂的光反馈,更适合单片集成光路。

2、半导体激光器的阈值条件:当半导体激光器加正向偏置并导通时,器件不会立即出现激光振荡。

小电流时发射光大都来自自发辐射,光谱线宽在数百唉数量级。

随着激励电流的增大,结区大量粒子数反转,发射更多的光子。

当电流超过阈值时,会出现从非受激发射到受激发射的突变。

实际上能够 观察到超过阈值电流时激光的突然发生,只要观察在光功率对激励电流曲线上斜率的急速突变,如图2所示;这是由于激光作用过程的本身具有较高量子效率的缘故。

从定量分析,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒)正好等于由散射、吸收激光器的发射所损耗的光子数(每秒)。

据此,可将阈值电流作为各种材料和结构参数的函数导出一个表达式:)]1(121[8202Rn a Den J Q th +∆=ληγπ (1) 这里,Q η是内量子效率,O λ是发射光的真空波长,n 是折射率,γ∆是自发辐射线宽,e 是电子电荷,D 是光发射层的厚度,α是行波的损耗系数,L 是腔长,R 为功率反射系数。

半导体测试与表征技术基础

半导体测试与表征技术基础

半导体测试与表征技术基础第一章概述(编写人陆晓东)第一节半导体测试与表征技术概述主要包括:发展历史、现状和在半导体产业中的作用第二节半导体测试与表征技术分类及特点主要包括:按测试与表征技术的物理效应分类、按芯片生产流程分类及测试对象分类(性能、材料、制备、成分)等。

第三节半导体测试与表征技术的发展趋势主要包括:结合自动化和计算机技术的发展,重点论述在线测试、结果输出和数据处理功能的变化;简要介绍最新出现的各类新型测试技术。

第二章半导体工艺质量测试技术第一节杂质浓度分布测试技术(编写人:吕航)主要介绍探针法,具体包括:PN结结深测量;探针法测量半导体扩散层的薄层电阻(探针法测试电阻率的基本原理、四探针法的测试设备、样品制备及测试过程注意事项、四探针测试的应用和实例);要介绍扩展电阻测试系统,具体包括:扩展电阻测试的基本原理、扩展电阻的测试原理、扩展电阻测试系统、扩展电阻测试的样品、扩展电阻法样品的磨角、扩展电阻法样品的制备、扩展电阻测试的影响因素、扩展电阻法测量过程中应注意的问题、扩展电阻法测量浅结器件结深和杂质分布时应注意的问题、扩展电阻测试的应用和实例。

第二节少数载流子寿命测试技术(编写人:钟敏)主要介绍直流光电导衰退法、高频光电导衰退法,具体包括:非平衡载流子的产生、非平衡载流子寿命、少数载流子寿命测试的基本原理和技术、少数载流子寿命的测试。

以及其它少子寿命测试方法,如表面光电压法、少子脉冲漂移法。

第三节表面电场和空间电荷区测量(编写人:吕航)主要包括:表面电场和空间电荷区的测量,金属探针法测量PN结表面电场的分布、激光探针法测试空间电荷区的宽度;容压法测量体内空间电荷区展宽。

第四节杂质补偿度的测量(编写人:钟敏)包括:霍尔效应的基本理论、范德堡测试技术、霍尔效应的测试系统、霍尔效应测试仪的结构、霍尔效应仪的灵敏度、霍尔效应的样品和测试、霍尔效应测试的样品结构、霍尔效应测试的测准条件、霍尔效应测试步骤、霍尔效应测试的应用和实例、硅的杂质补偿度测量、znO的载流子浓度、迁移率和补偿度测量、硅超浅结中载流子浓度的深度分布测量第五节氧化物、界面陷阱电荷及氧化物完整性测量(编写人:钟敏)包括:固定氧化物陷阱和可动电荷、界面陷阱电荷、氧化物完整性测试技术等。

金属-半导体接触

金属-半导体接触

(a)
(b)
图 3.5I-V 测试时,电极链接方式示意图
(a)
(b)
图 3.6 I-V 测试曲线
下面介绍传输线模型法测定比接触电阻[51]-[53]的基本原理和线性拟合公式的 推导。
矩形传输线模型及其等效电路如图 3.7。在一宽为 W 的样品上制作 4~6 个 间距不相等的金属接触电极,电极尽力做到与样品等宽。
道,由于存在费米能级之差,电子将从费米能级高的一边转移到费米能级低的一 边,直到两者费米能级持平而进入热平衡态为止。 2. 金属与半导体接触的四种情况
(1)金属与 N 型半导体接触,WM>WS 时 WM>WS 意味着金属的费米能级低于半导体的费米能级。当金属与 N 型半导 体理想接触时,半导体中的电子将向金属转移,使金属带负电,但是金属作为电 子的的“海洋”,其电势变化非常小;而在半导体内部靠近半导体表面的区域则形 成了由电离施主构成的正电荷空间层,这样便产生由半导体指向金属的内建电 场,该内建电场具有阻止电子进一步从半导体流向金属的作用。因此,金属与半 导体接触的内建电场所引起的电势变化主要发生在半导体的空间电荷区[2],使半 导体中近表面处的能带向上弯曲形成电子势垒;而空间电荷区外的能带则随同 EFS 一起下降,直到与 EFM 处在同一水平是达到平衡状态,不再有电子的流动, 如图 1.1.3。
体,在半导体表面区域形成负电荷空间区。由此在半导体近表面产生由半导体表 面指向体内的内建电场,导致半导体的能带自体内到表面向下弯曲,使半导体表 面的电子密度比体内高很多,增加了对电子的传导特性,因而是一个高导区域, 称之为反阻挡层。接触以后的能带结构为图 1.1.4。反阻挡层是很薄的高导层, 它对半导体和金属之间接触电阻的影响极小,因此在实验中不易觉察到其存在。

半导体材料测试技术

半导体材料测试技术

半导体材料测试技术半导体材料测试技术是指对半导体材料进行表征和性能测试的一系列技术方法和工具。

半导体材料是电子器件制造与应用的基础,而半导体材料的质量和性能对电子器件的性能和可靠性有着直接的影响。

因此,了解和掌握半导体材料的性能及其测试方法是十分重要的。

1.结构表征技术:通过采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)等仪器,对半导体材料的晶体结构、晶格缺陷等进行分析和表征。

同时可以通过X射线衍射(XRD)技术对材料的晶格常数、晶体结构和材料的纯度进行分析。

2.光学特性测试技术:光学特性测试主要包括折射率、透明度、吸收谱、发射谱等光学性质的测试。

通过光学显微镜、紫外可见分光光度计、激光扫描显微镜等设备来进行测试。

3.电学特性测试技术:电学特性测试是对半导体材料的电导率、电介质常数、击穿电压等电学性质进行测试。

常见的测试设备包括电阻测试仪、电容测试仪、电压源/电流源等。

4.磁学特性测试技术:磁学特性测试主要是对半导体材料的磁化强度、磁畴结构等进行测试。

通过霍尔效应测试仪、磁学测试仪等设备来进行测试。

5.热学特性测试技术:热学特性测试主要是对半导体材料的热导率、热膨胀系数等进行测试。

热电测试仪、热膨胀仪等设备可以用来进行这方面的测试。

此外,还有一些特殊的测试技术,如电子能谱、质谱等,可以用来对半导体材料的表面组分和杂质掺杂进行分析。

综上所述,半导体材料测试技术是对半导体材料进行各种性能指标测试的一系列方法和工具的集合。

掌握这些测试技术,可以对半导体材料的质量和性能进行准确分析,为电子器件的研发和生产提供有力的支撑。

半导体物理试验

半导体物理试验

《半导体物理实验》教学大纲课程编号:MI4221016课程名称:半导体物理实验英文名称:Experiments ofSemiconductor Physics学时:8 学分:0.5课程类别:限选课程性质:专业课适用专业:集成电路与系统集成先修课程:半导体物理和半导体器件电子学开课学期:4 开课院系:微电子学院一、课程的教学目标与任务目标:培养学生独立完成半导体材料特性测试、分析的实践动手能力,巩固和强化半导体物理知识,提升学生在微电子技术领域的竞争力,培养学生灵活运用理论知识解决实际问题的能力,锻炼学生分析、探讨和总结实验结果的能力。

任务:在理论课程的学习基础上,通过大量实验,熟练掌握现代微电子技术中半导体材料特性相关的实验手段和测试技术。

课程以教师讲解,学生实际动手操作以及师生讨论的形式实施。

二、本课程与其它课程的联系和分工本实验要求学生掌握半导体物理效应的测试技术和分析手段,共设置9个实验,要求学生选择完成其中4个实验。

(一)高频光电导衰退法测量非平衡少子寿命(2学时)具体内容:利用高频光电导衰退法分别测量具有高、中、低电阻率的半导体单晶硅样品的少子寿命,并对测试结果进行分析和探讨。

1.基本要求(1)掌握高频光电导衰退法测量少子寿命的测试原理和方法;(2)掌握半导体材料中少子、少子寿命和电阻率等相关概念。

2.重点、难点重点:高频光电导衰退法测试实验样品的少子寿命;难点:概念理解和测试结果分析和探讨。

3.说明:学习和掌握非平衡少子寿命的测试原理和测试方法。

(二)恒定表面光电压法测量硅中少子的扩散长度(2学时)具体内容:利用恒定表面光电压法测试硅样品中少子的扩散长度。

1.基本要求(1)了解恒定表面光电压法测试硅材料中少子扩散长度的测试原理;(2)掌握半导体中少子扩散长度的测试方法。

2.重点、难点重点:对实验样品进行少子扩散长度的测试;难点:实验仪器的使用和少子扩散长度的准确测量。

3.说明:掌握半导体中少子扩散长度的测试方法。

检测MOS管五种方法

检测MOS管五种方法

检测MOS管五种方法MOS管是金属—氧化物-半导体场效应晶体管,或者称是金属—绝缘体—半导体。

MOS管因导通压降下,导通电阻小,栅极驱动不需要电流,损耗小,价格便宜等优点在电子行业深受人们的喜爱与追捧。

但是一些厂商的技术不成熟导致MOS管市场良莠不齐。

那么如何对MOS管进行检测呢?华碧实验室为大家分享检测MOS管的5种方法。

一、用测电阻法判别MOS管的电极根据MOS管的PN结正、反向电阻值不一样的现象,可以判别出MOS管的三个电极。

具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。

当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。

因为对MOS管而言,漏极和源极可互换,剩下的电极肯定是栅极G。

也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。

当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。

若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。

若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

二、用测电阻法判别MOS管的好坏测电阻法检测MOS管是用万用表测量MOS管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同MOS管手册标明的电阻值是否相符去判别管的好坏。

具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。

然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。

1.半导体材料导电类型的测定

1.半导体材料导电类型的测定

实验1 半导体材料导电类型的测定1.实验目的通过本实验学习判定半导体单晶材料导电类型的几种方法。

2.实验内容用冷热探针法和三探针法测量单晶硅片的导电类型。

3.实验原理3.1半导体的导电类型是半导体材料重要的基本参数之一。

在半导体器件的生产过程中经常要根据需要采用各种方法来测定单晶材料的导电类型。

测定材料导电类型的方法有很多种,这里介绍常用的几种测定导电类型的方法,即冷热探针法、单探针点接触整流法和三探针法。

3.1.1 冷热探针法冷热探针法是利用半导体的温差电效应来测定半导体的导电类型的。

在图1a中,P型半导体主要是靠多数载流子——空穴导电。

在P型半导体未加探针之前,空穴均匀分布,半导体中处处都显示出电中性。

当半导体两端加上冷热探针后,热端激发的载流子浓度高于冷端的载流子浓度,从而形成了一定的浓度梯度。

于是,在浓度梯度的驱使下,热端的空穴就向冷端做扩散运动。

随着空穴不断地扩散,在冷端就有空穴的积累,因而带上了正电荷,同时在热端因为空穴的欠缺(即电离受主的出现)而带上了负电荷。

上述正负电荷的出现便在半导体内部形成了由冷端指向热端的电场。

于是,冷端的电势便高于热端的电势,冷热两端就形成了一定的电势差,这一效应又称为温差电效应,这个电势差又称为温差电势。

如果此时在冷热探针之间接入检流计,那么,在外电路上就会形成由冷端指向热端的电流,检流计的指针就会向一个方向偏转。

从能带的角度来看,在没有接入探针前,半导体处于热平衡状态,体内温度处处相等,主能带是水平的,费米能级也是水平的。

在接入探针以后,由于冷端电势高于热端电势,所以冷端主能带相对于热端主能带向下倾斜,同时由于冷端温度低于热端,故热端的费米能级相对于冷端的费米能级来说,距离价带更远,如图1b所示。

如果我们将上述的P型半导体换成N型半导体,则电子做扩散运动,在冷端形成积累。

由于电子带有负电荷,所以,冷端电势低于热端电势,在外电路形成的电流从热端指向冷端,检流计向另一方向偏转。

半导体器件可靠性与测试和主要研究内容

半导体器件可靠性与测试和主要研究内容
失效分析工作不仅在提高可靠性方面有很好的效果,而且有很高的经济 效益。
失效分析和反馈纠正措施可以显著提高器件的成品率和可靠性,减 少系统试验和现场使用期间的失效器件。
系统试验和现场使用期间发生故障的经济损失很大,排除故障的维 修费用颇高,并且这种费用随着可靠性等级的提高而指数地上升。
绪论
半导体可靠性物理学
绪论
主要的失效机理
指器件失效的实质原因。即引起器件失效的物理或化学过程。
设计问题引 起的缺陷
体内退化 机理
氧化层 缺陷
金属化系 统退化
封装退化 机理
•版图 •工艺方案 •电路和结构
•二次击穿 •CMOS闩锁效应 •中子辐射损伤 •重金属沾污 •材料缺陷
•针孔 •厚度不均匀 •接触孔钻蚀 •介质击穿等
半导体器件可靠性与测试和主要 研究内容
课程目的
课程的目的
1. 了解半导体器件可靠性研究的发展过程 2. 熟悉引起半导体电路失效的主要模式 3. 熟悉引起器件退化的主要退化机制 4. 基本掌握器件退化的主要表征技术和检测方法

课程要求
课程的要求
1. 知道引起MOS电路失效的主要几种失效模式 主要的失效规律
设计问题引起的缺陷体内退化机理氧化层缺陷金属化系统退化封装退化机理?版图?工艺方案?电路和结构?二次击穿?cmos闩锁效应?中子辐射损伤?重金属沾污?材料缺陷?针孔?厚度不均匀?接触孔钻蚀?介质击穿等?金铝合金?电迁移?铝腐蚀?铝划伤?铝缺口?台阶断铝?过电应力烧毁?管腿腐蚀?管腿损伤?漏气?外来物引起漏短路?绝缘珠裂缝?标志不清工艺和设计的纠正措施工艺质量控制可靠性试验使用和设计的纠正措施原材料生产工序工艺筛选机器装调和运行工艺规范失效分析产品筛选绪论器件失效分析的作用半导体器件的可靠性两个概念绪论研究领域和任务不同之处

半导体测试技术第五章资料

半导体测试技术第五章资料

第五章IV-CV表征(IV(current-voltage)and CV(capacitance-voltage)Characterization)§1. 简介z IV(current-voltage)和CV(capacitance-voltage)测量是测量材料电学性能的重要手段,从广义上说就是通过测量材料或器件的电压-电流或电压-电容之间的内在关系来获得材料的电学性质,例如电阻率、导电类型、载流子浓度等。

IV、CV测试的应用范围很广,在电子元器件、通讯、传感器等领域都发挥着重要的作用。

特别是近年来随着微电子行业的快速发展,半导体元器件的尺寸越来越小,对硅晶片的均匀性、杂质浓度分布、晶体管的参数以及整个集成电路器件的失效性分析的测试显得更加重要。

世界著名的测试设备生产厂商如吉时利(Keithley)和安捷伦(Agilent)都推出了IV和CV测试功能整合在一起的测试设备,用于半导体行业的元器件参数测试和失效性分析,这种仪器统称为半导体参数测试仪,具有功能模块化设计,电脑自动控制,测试快速和结果图形化显示等优点,本章所讨论的IV、CV测试主要就是指使用半导体参数测试仪检测半导体器件的IV和CV特性的方法,这在半导体性能测试中具有非常重要的实用意义¾半导体器件种类很多,应用广泛,例如各种晶体管:二极管、三极管、场效应管、晶闸管等,而由各种晶体管和连线组成的集成电路更加多种多样,功能各异。

¾对于半导体器件,根据不同的功能和需要,所要测试的电学参数也各不相同,一般包含电阻率、导电类型、极性、载流子浓度、迁移率、少子寿命、载流子浓度分布等。

¾半导体材料和器件的电学性能测量有很多种方法,例如扩展电阻、四探针、三探针、IV、CV及Hall测量等。

¾I-V测试的是器件两端在施加不同电压时的电流特性。

得到的是关于器件的输运性质的参数如电阻率、载流子浓度、二极管的整流特性等。

n型半导体收到光照对金半接触势垒的影响

n型半导体收到光照对金半接触势垒的影响

n型半导体收到光照对金半接触势垒的影响近年来,随着半导体技术的不断发展和应用领域的不断拓展,对半导体材料和器件性能的研究也日益引起人们的关注。

其中,光照对半导体与金属接触势垒的影响是一个备受关注的研究课题。

n型半导体作为半导体材料中的一种重要类型,其与金属接触势垒的特性受到光照的影响已成为研究的热点之一。

在深入探讨n型半导体受到光照影响的过程中,我们不得不先了解n型半导体的基本特性及其与金属接触势垒的形成机制。

n型半导体是指在正常情况下,掺杂了大量施主杂质(如砷、磷等)的半导体材料。

在这种半导体中,电子是主要载流子,且呈现出负电性。

与金属接触的n型半导体能够形成势垒结构,这种势垒结构对于半导体器件的性能具有重要的影响。

而当n型半导体受到光照时,其表面会发生光生载流子的产生和扩散现象。

这些光生载流子的产生会影响半导体与金属接触势垒的形成和特性。

具体来说,光照会导致n型半导体表面的载流子浓度发生变化,从而影响势垒高度以及接触电阻等参数。

研究n型半导体收到光照后与金属接触势垒的变化规律,对于提高半导体器件的性能和稳定性具有重要意义。

在实际的研究和应用中,科研人员通过一系列实验和理论分析手段对n型半导体受到光照的影响进行了深入研究。

他们发现,光照对n型半导体与金属接触势垒的影响表现出一定的规律性,具体可以总结为以下几点:1. 光照强度对接触势垒高度的影响:实验结果表明,光照强度的增加会导致n型半导体与金属接触势垒的高度减小。

这是由于光照产生的光生载流子在n型半导体表面扩散和重新组合的影响,从而使得势垒高度发生变化。

2. 光照时间对接触势垒形成的影响:研究发现,光照时间的增加会导致n型半导体与金属接触势垒的形成时间缩短。

这是由于长时间的光照会导致表面载流子浓度的积累和扩散,从而影响势垒的形成进程。

3. 光照波长对接触势垒特性的影响:在一定范围内,不同波长的光照对n型半导体与金属接触势垒的性质有不同的影响。

1.半导体材料导电类型的测定

1.半导体材料导电类型的测定

实验1 半导体材料导电类型的测定1.实验目的通过本实验学习判定半导体单晶材料导电类型的几种方法。

2.实验内容用冷热探针法和三探针法测量单晶硅片的导电类型。

3.实验原理3.1半导体的导电类型是半导体材料重要的基本参数之一。

在半导体器件的生产过程中经常要根据需要采用各种方法来测定单晶材料的导电类型。

测定材料导电类型的方法有很多种,这里介绍常用的几种测定导电类型的方法,即冷热探针法、单探针点接触整流法和三探针法。

3.1.1 冷热探针法冷热探针法是利用半导体的温差电效应来测定半导体的导电类型的。

在图1a中,P型半导体主要是靠多数载流子——空穴导电。

在P型半导体未加探针之前,空穴均匀分布,半导体中处处都显示出电中性。

当半导体两端加上冷热探针后,热端激发的载流子浓度高于冷端的载流子浓度,从而形成了一定的浓度梯度。

于是,在浓度梯度的驱使下,热端的空穴就向冷端做扩散运动。

随着空穴不断地扩散,在冷端就有空穴的积累,因而带上了正电荷,同时在热端因为空穴的欠缺(即电离受主的出现)而带上了负电荷。

上述正负电荷的出现便在半导体内部形成了由冷端指向热端的电场。

于是,冷端的电势便高于热端的电势,冷热两端就形成了一定的电势差,这一效应又称为温差电效应,这个电势差又称为温差电势。

如果此时在冷热探针之间接入检流计,那么,在外电路上就会形成由冷端指向热端的电流,检流计的指针就会向一个方向偏转。

从能带的角度来看,在没有接入探针前,半导体处于热平衡状态,体内温度处处相等,主能带是水平的,费米能级也是水平的。

在接入探针以后,由于冷端电势高于热端电势,所以冷端主能带相对于热端主能带向下倾斜,同时由于冷端温度低于热端,故热端的费米能级相对于冷端的费米能级来说,距离价带更远,如图1b所示。

如果我们将上述的P型半导体换成N型半导体,则电子做扩散运动,在冷端形成积累。

由于电子带有负电荷,所以,冷端电势低于热端电势,在外电路形成的电流从热端指向冷端,检流计向另一方向偏转。

金-半非整流接触

金-半非整流接触
如何实现欧姆接触这种费米能级的差别意味着在金属内部和半导体导带相对应的那部分能级上电子的密度大于半导体导带的电子密度于是当两者接触时电子便从金属向半导体扩散结果使金属表面带正电n型半导体表面附近形成电子的积累层从而表现出高导电的特性也即低阻值无整流的特性其积累层的能带如图1所示
金-半非整流接触(欧姆接触)及 二极管的特点和应用
欧姆接触
半导体器件和用来测试半导体参数的样品, 要求用欧姆接触来连接,欧姆接触是一类 重要的金属-半导体接触。欧姆接触是一种 不产生明显的附加阻抗,而且不会使半导 体内部的平衡载流子浓度发生显著变化的 接触。从电学上讲,理想欧姆接触的接触 电阻与半导体样品或器件相比应当很小, 当有电流流过时,欧姆接触上的电压降应 当远小于样品或器件本身的压降,这种接 触不影响器件的电流-电压特性,或者说, 电流-电压特性是由样品的电阻或器件的特 性决定的。
图5 肖特基箝位晶体管:(a)电路图 (b)集成结构
当晶体管饱和时,集电结被正向偏置约达 0.5V。若在肖特基二极管上的正向压降 (一般为0.3V)低于晶体管基极-集电极的 开态电压,则大部分过量基极电流流过二 极管,该二极管没有少数载流子存贮效应。 因此,与单独的晶体管向比较,和成器件 的存贮时间得到显著的降低。肖特基势垒 箝位晶体管是按图5 b所示的结构以集成电 路的形式实现的。
制作欧姆接触最常用的方法是用重掺杂的 半导体与金属接触,常常是在N型或P型半 导体上制作一层重掺杂区后再与金属接触, 形成金属-N+-N或金属-P+-P结构。由于有 N+、P+层,金属的选择就比较自由。形成 金属与半导体接触的方法也有多种,例如 蒸发、溅射、电镀等等。
肖特基二极管
利用金属-半导体整流接触特性制成的二极 管称为肖特基势垒二极管,它和P-N结二极 管具有类似的电流-电压关系,即它们都有 单向导电性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

W
I
由紫外光谱等方法可以测出禁带宽度,由UPS可测出导带底相对于费米能 级的位置。
半导体亲和势
欧姆接触与肖特基接触
Φm Φm- χ
Vacuum level
Φm
χ Φ
Φm- χ
Vacuum level
χ Φm
Φ Φm- χ
Vacuum level χ
Φ
Metal
Semiconductor
Metal
半导体—金属接触特性测试技术
(1)功函数 (2)半导体亲和势(能) (3)欧姆接触与肖特基接触 (4)肖特基接触势垒
功函数(work function)又称逸出功,在固体物理中 被定义成:把一个电子从固体内部刚刚移到此物 体表面所需的最少的能量。 半导体功函数:真空中静止电子的能量与半导体 费米能级的能量之差。 单位:eV/电子伏特
(1)功函数
紫外光电子能谱(UPS)
基本原理就是光电效应:
紫外光 外层价电子自由 光电子 ( 激发态分子离子)
能量关系可表示:
hv Eb Ek Er
电子结合能 电子动能
原子的反冲能量
Er
ቤተ መጻሕፍቲ ባይዱ1M
2
ma*2
紫外光电子能谱(UPS)
紫外光电子能谱(UPS)
开尔文探针法(Kelvin probe force microscopy-KPFM)
(4)肖特基接触势垒 I-V 法
(4)肖特基接触势垒
(4)肖特基接触势垒 C-V 法
(4)肖特基接触势垒 C-V 法

则势垒高度可由下式求出
(4)肖特基接触势垒 C-V 法
(4)肖特基接触势垒
在I-V测试中,电流依赖于界面结构,接触的横向 不均匀性使整流特性变差,而且电流中还包含热 电子发射以外的电流,这些都导致计算出来的结 果与实际偏差很大。
在C-V方法中,电容对于空间电荷区内的势垒涨 落不敏感,会屏蔽空间电荷区的边界,并且此方 法是在整个接触面上计算势垒高度的,而通过界 面的电流与势垒高度成指数关系,因此它对界面 处的势垒分布非常敏感。对于能带弯曲不均匀的 界面以及空间电荷,不同方法计算出来的势垒高 度是不同的。
(4)肖特基接触势垒 同步辐射光电子能谱法(SRXPS)
开尔文探针法(Kelvin probe force microscopy-KPFM)
不存在电子发射和收集过程,避免测量本身引起表面态的变化。 测量精度高,对样品表面无破坏。 需要高真空环境,对探针的性能有较高要求。
半导体亲和势
半导体导带底部到真空能级间的能量值,它表征材料在发生光电效应时,电 子逸出材料的难易程度。电子亲和势越小,就越容易逸出。
Au/CZT/Au
Pockels效应测试
Pt/CdT/Pt 600V
In/CdTe/Pt 600V
对于形成肖特基接触的CdTe晶体,其内电场在从阳极(In电极)到阴极(Pt 电极)显著的逐渐降低。这一现象是由于阳极的肖特基接触势垒所产生的 反向电流使得空穴注入半导体,使得正空间电荷在阳极开始聚集。
Pockels效应测试
Pockels效应是一种一次电光效应,指的是:平面偏振光沿着处 在外电场内的压电晶体的光轴传播时发生双折射现象,且两个主 折射率之差与外电场强度成正比。
Pockels效应测试
E(x, y) 1 arcsin I (x, y)
I0 (x, y)
3 n03r41d 2
Pockels效应测试
在CdZnTe(110)上得出EB和EV-C分别为11.377eV和10.639eV。所以 Au与CdZnTe (110)面的理想肖特基接触势垒ΦB, p 为0.74eV。
谢谢!
Semiconductor
Metal Semiconductor
(a)
(b)
(c)
Energy band diagram for n-type semiconductor-metal contacts: (a) Schottky contact;
(b) Ohmic contact ; (c)Injecting Ohmic contact
(4)肖特基接触势垒 同步辐射光电子能谱法(SRXPS)
以CdZnTe晶体为例,利用同步辐射光电子能谱分别测量清洁的 CdZnTe晶片和蒸Au后的晶体表面内层Cd 4d 芯能级和价带结构
费米边
The photoemission spectra of clean CdZnTe(110) surface without Au The photoemission spectra of clean CdZnTe(110) surface with Au
同步辐射光电子能谱法(SRXPS)可以直接测 算势垒高度而不受金属-半导体接触界面的缺陷以 及缺陷引起的空间电荷区变化的影响。在超高真 空条件下对晶片进行原位金属沉积,根据金属沉 积前后芯能级的偏移来计算势垒高度。接触势垒 高度的计算公式为,
B ,P E B EV C
式中,ΦB, p为接触势垒高度,EB为镀金金属后芯能 级,EV-C为芯能级与价带顶的距离。
探针的参考电极( 功函数已知) 与样品组成振动式平板电容C, 由于两电极的功函数不同而 产生的接触电势差等效为:
当探针相对样品振动时,电容C的改变就会产生位移电流:
对样品外加一补偿电压使位移电流为零,此时的补偿电压值就是样品与探针的功
函数之差。
Fig.2 Electronic energy levels of the sample and AFM tip for three cases: (a) tip and sample are separated by distance d with no electrical contact, (b) tip and sample are in electrical contact, and (c) external bias (Vdc ) is applied between tip and sample to nullify the CPD
相关文档
最新文档