离散数学第一章命题逻辑知识点总结
离散数学第一章命题逻辑知识点总结

离散数学第⼀章命题逻辑知识点总结数理逻辑部分第1章命题逻辑1.1 命题符号化及联结词命题: 判断结果惟⼀的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟⼀确定的也不是命题。
简单命题(原⼦命题):简单陈述句构成的命题复合命题:由简单命题与联结词按⼀定规则复合⽽成的命题简单命题符号化⽤⼩写英⽂字母p, q, r, … ,p i,q i,r i (i≥1)表⽰简单命题⽤“1”表⽰真,⽤“0”表⽰假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“?”定义设p为命题,复合命题“⾮p”(或“p的否定”)称为p的否定式,记作?p. 符号?称作否定联结词,并规定?p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为⼆命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既⽤功⼜聪明.(2) 王晓不仅聪明,⽽且⽤功.(3) 王晓虽然聪明,但不⽤功.(4) 张辉与王丽都是三好⽣.(5) 张辉与王丽是同学.解令p:王晓⽤功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧?q.令r : 张辉是三好学⽣,s :王丽是三好学⽣(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句⼦是⼀个简单命题.3.析取式与析取联结词“∨”定义设p,q为⼆命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) ⼩元元只能拿⼀个苹果或⼀个梨.(5) 王晓红⽣于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.⽽ (4), (5) 为排斥或.令t :⼩元元拿⼀个苹果,u:⼩元元拿⼀个梨,则 (4) 符号化为 (t∧?u) ∨(?t∧u).令v :王晓红⽣于1975年,w:王晓红⽣于1976年,则 (5) 既可符号化为 (v∧?w)∨(?v∧w), ⼜可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“?”定义设p,q为⼆命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p?q,并称p是蕴涵式的前件,q为蕴涵式的后件. ?称作蕴涵联结词,并规定,p?q为假当且仅当p 为真q 为假.p?q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除⾮q, 才p 或除⾮q, 否则⾮p.当p 为假时,p?q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“?”定义设p,q为⼆命题,复合命题“p当且仅当q”称作p与q的等价式,记作p?q. ?称作等价联结词.并规定p?q为真当且仅当p与q同时为真或同时为假.说明:(1) p?q 的逻辑关系:p与q互为充分必要条件(2) p?q为真当且仅当p与q同真或同假联结词优先级:( ),?, ù, ú, ?, ?同级按从左到右的顺序进⾏以上给出了5个联结词:?, ù, ú, ?, ?,组成⼀个联结词集合{?, ù, ú, ?, ?},联结词的优先顺序为:?, ù, ú, ?, ?; 如果出现的联结词同级,⼜⽆括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进⾏括号中的运算.注意: 本书中使⽤的括号全为园括号.命题常项命题变项1.2 命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (?A)也是合式公式(3) 若A, B是合式公式,则(AùB), (AúB), (A?B), (A?B)也是合式公式?(4) 只有有限次地应⽤(1)~(3)形成的符号串才是合式公式说明: 元语⾔与对象语⾔, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下⾯情况之⼀:(a) A=?B, B是n层公式;(b) A=BùC, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=BúC, 其中B,C的层次及n同(b);(d) A=B?C, 其中B,C的层次及n同(b);(e) A=B?C, 其中B,C的层次及n同(b).例如公式p 0层?p 1层pq 2层(pq)r 3层((?pùq) ?r)?(?rús) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定⼀组真值称为对A的⼀个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值a=a1a2…a n之间不加标点符号,a i=0或1. A中仅出现p1, p2, …, p n,给A赋值a1a2…a n是指p1=a1, p2=a2, …, p n=a nA中仅出现p,q, r, …, 给A赋值a1a2a3…是指p=a1,q=a2 , r=a3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q?p) ùq?p的真值表例 B = ? (?púq) ùq的真值表例C= (púq) ??r的真值表命题的分类重⾔式⽭盾式可满⾜式定义设A为⼀个命题公式(1) 若A⽆成假赋值,则称A为重⾔式(也称永真式)(2) 若A⽆成真赋值,则称A为⽭盾式(也称永假式)(3) 若A不是⽭盾式,则称A为可满⾜式注意:重⾔式是可满⾜式,但反之不真.上例中A为重⾔式,B为⽭盾式,C为可满⾜式A= (q?p)ùq?p,B =?(?púq)ùq,C= (púq)??r1.3 等值演算等值式定义若等价式A?B是重⾔式,则称A与B等值,记作A?B,并称A?B是等值式说明:定义中,A,B,?均为元语⾔符号, A或B中可能有哑元出现.例如,在 (p?q) ? ((?púq)ú (?rùr))中,r为左边公式的哑元.⽤真值表可验证两个公式是否等值请验证:p?(q?r) ? (pùq) ?rp?(q?r) (p?q) ?r基本等值式双重否定律 : ??A?A等幂律:AúA?A, AùA?A交换律: AúB?BúA, AùB?BùA结合律: (AúB)úC?Aú(BúC)(AùB)ùC?Aù(BùC)分配律: Aú(BùC)?(AúB)ù(AúC)Aù(BúC)? (AùB)ú(AùC)德·摩根律: ?(AúB)??Aù?B (AùB)AúB吸收律: Aú(AùB)?A, Aù(AúB)?A零律: Aú1?1, Aù0?0同⼀律: Aú0?A, Aù1?A排中律: Aú?A?1⽭盾律: Aù?A?0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A?B, 则F(B)?F(A)等值演算的基础:(1) 等值关系的性质:⾃反、对称、传递(2) 基本的等值式(3) 置换规则应⽤举例——证明两个公式等值例1 证明p?(q?r) ? (pùq)?r证p?(q?r)pú(?qúr) (蕴涵等值式,置换规则)(púq)úr(结合律,置换规则)(pùq)úr(德×摩根律,置换规则)(pùq) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做⼀遍)因为每⼀步都⽤置换规则,故可不写出熟练后,基本等值式也可以不写出应⽤举例——证明两个公式不等值例2 证明: p?(q?r) (p?q) ?r⽤等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到⼀个赋值使⼀个成真,另⼀个成假.⽅法⼀真值表法(⾃⼰证)⽅法⼆观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.⽅法三⽤等值演算先化简两个公式,再观察.应⽤举例——判断公式类型例3 ⽤等值演算法判断下列公式的类型(1) qù?(p?q)解qù?(p?q)qù(púq) (蕴涵等值式)qù(pùq) (德×摩根律)pù(qùq) (交换律,结合律)pù0 (⽭盾律)0 (零律)由最后⼀步可知,该式为⽭盾式.(2) (p?q)?(?q??p)解 (p?q)?(?q??p)(púq)(qúp) (蕴涵等值式)(púq)(púq) (交换律)1由最后⼀步可知,该式为重⾔式.问:最后⼀步为什么等值于1?(3) ((pùq)ú(pù?q))ùr)解 ((pùq)ú(pù?q))ùr)(pù(qúq))ùr(分配律)pù1ùr(排中律)pùr(同⼀律)这不是⽭盾式,也不是重⾔式,⽽是⾮重⾔式的可满⾜式.如101是它的成真赋值,000是它的成假赋值.总结:A为⽭盾式当且仅当A?0A为重⾔式当且仅当A?1说明:演算步骤不惟⼀,应尽量使演算短些1.5 对偶与范式对偶式与对偶原理定义在仅含有联结词?, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) ?A(p1,p2,…,p n) ?A* (?p1, ?p2,…, ?p n)(2) A(?p1, ?p2,…, ?p n) ??A* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A ? B,则A*? B*.析取范式与合取范式⽂字:命题变项及其否定的总称简单析取式:有限个⽂字构成的析取式如p, ?q, pú?q, púqúr, …简单合取式:有限个⽂字构成的合取式如p, ?q, pù?q, pùqùr, …析取范式:由有限个简单合取式组成的析取式AúA2ú?úA r, 其中A1,A2,?,A r是简单合取式1合取范式:由有限个简单析取式组成的合取式AùA2ù?ùA r , 其中A1,A2,?,A r是简单析取式1。
离散数学章节总结

离散数学章节总结离散数学章节总结第⼀章[命题逻辑]1.逻辑运算1.否定:Negation? NOT2.交:Conjunction AND3.并:Disjunction OR4.蕴含:Implication IMPLIES5. Biconditional ? IFFXOR2.逆/否/逆否1.逆:converse2.否:inverse3.逆否:conytrapositive3.问题的⼀致性[逻辑等价]→q 等价于?p q 等价于? q→?p2. p q 等价于?p→qp q 等价于?( p→?q)3.(p→q)(p→r) 等价于p→(q r)(p→r)(q→r) 等价于(p q)→r(p→r)(q→r)等价于(p q) →r4.证明等价: 真值表逻辑符号证明找反例(假设左为假右必为假假设右为假左必为假)[ 谓词逻辑]1.量词存在任意量词顺序不能随机改变不全为真:(p1p2…p n) (p1p2…p n) x P(x ) x P(x )没有⼀个为真:(p1p2…p n) (p1p2…p n) x P(x ) x P(x ) [ 推理][ 证明]1.证明⽅法:直接证明间接证明反证列举证明(列举所有情况) 构造证明(构造出满⾜结论的元素)2.证明步骤:正向证明反向证明第⼆章[ 集合及运算]1.特殊集合: R Q Z ⽆穷/有限集2.集合表述⽅法: 列举法描述法图表法3.集合运算: 交/并/补/差/取⼦集P(S)/元素数|S|/乘积P ×Q /BA B A B A B A ?=??=? n i iA 1= X A A ∈ ni iA 1= XA A∈容斥原理A i i =1n=Ai1≤i ≤n ∑-A iAj1≤inA ii =1n4.证明集合相等:1.证明互为⼦集 2.从属表 3.逻辑证明[ 函数]1.函数的定义2.术语:定义域,值域,象,原象,范围, (a)/f(A)第五章[序、归纳]1.序:在某种关系下存在最⼩元素则为well-ordered2.第⼀数学归纳法:basic step P(C)成⽴and inductive step P(k)→P(k+1)3.第⼆数学归纳法:basic step:P(c)成⽴ and inductive step: 任意k⼩于等于nP(k) 成⽴→P(n+1) [递归]1.递归:以相同形式⽤⼩的项来定义的⼤的项不能⼀直递归下去(存在初始项)必须存在可以直接解决问题的⼀项①basic step:原有元素② recursive step:原有元素如何产⽣新元素2.字符串的定义:空字符,回⽂3.结构归纳:⽤于证明递归结构对所有元素都成⽴:①basic step:原有元素成⽴②recursive step:⽤递归式导出的新元素成⽴[递归算法]1.定义:把问题转化为相同形式但值更⼩的算法2.递归算法有初始步骤(是可终⽌的)并且递归时⾄少改变⼀个参数值使之向初始步骤靠拢3.递归时间复杂度⾼,可以⽤⾮递归(loop或 stack)来代替[程序的正确性]1.测试与证明:证明更有说服⼒2.证明:①程序会终⽌②(部分正确)程序只要可以终⽌得出的结论都是正确的正确的程序:对任意可能的输⼊都有正确的输出部分正确,完全正确triple:P{S}QP: precondition S: assertion Q:postconditionP{S}Q:当PQ正确时为部分正确当证明了S的可终⽌性为完全正确4.程序的基本语句:赋值,命题,条件,循环5.弱化结论:P{S}R R→Q:P{S}Q强化条件Q→R R{S}P:Q{S}P复合:P{S1}R R{S2}Q: P{S1;S2}Q第六章[加法乘法原理]1.加法乘法原理:⽅法不重复,互不影响,做1or2 m+n 做1and2 mn2.容斥原理:⽅法有重叠:|A B |=|A ||B ||A B |3.包含条件的问题。
离散数学笔记总结

离散数学笔记总结一、命题逻辑。
1. 基本概念。
- 命题:能够判断真假的陈述句。
例如“2 + 3 = 5”是真命题,“1 > 2”是假命题。
- 命题变元:用字母表示命题,如p,q,r等。
2. 逻辑联结词。
- 否定¬:¬ p表示对命题p的否定,若p为真,则¬ p为假,反之亦然。
- 合取wedge:pwedge q表示p并且q,只有当p和q都为真时,pwedge q才为真。
- 析取vee:pvee q表示p或者q,当p和q至少有一个为真时,pvee q为真。
- 蕴含to:pto q表示若p则q,只有当p为真且q为假时,pto q为假。
- 等价↔:p↔ q表示p当且仅当q,当p和q同真同假时,p↔ q为真。
3. 命题公式。
- 定义:由命题变元、逻辑联结词和括号按照一定规则组成的符号串。
- 赋值:给命题变元赋予真假值,从而确定命题公式的真值。
- 分类:重言式(永真式)、矛盾式(永假式)、可满足式。
4. 逻辑等价与范式。
- 逻辑等价:若A↔ B是重言式,则称A与B逻辑等价,记作A≡ B。
例如¬(pwedge q)≡¬ pvee¬ q(德摩根律)。
- 范式:- 析取范式:由有限个简单合取式的析取组成的命题公式。
- 合取范式:由有限个简单析取式的合取组成的命题公式。
- 主析取范式:每个简单合取式都是极小项(包含所有命题变元的合取式,每个变元只出现一次)的析取范式。
- 主合取范式:每个简单析取式都是极大项(包含所有命题变元的析取式,每个变元只出现一次)的合取范式。
二、谓词逻辑。
1. 基本概念。
- 个体:可以独立存在的事物,如人、数等。
- 谓词:用来刻画个体性质或个体之间关系的词。
例如P(x)表示x具有性质P,R(x,y)表示x和y具有关系R。
- 量词:- 全称量词∀:∀ xP(x)表示对于所有的x,P(x)成立。
- 存在量词∃:∃ xP(x)表示存在某个x,使得P(x)成立。
离散数学第一章知识点

命题逻辑的基本概念命题与联结词命题:非真即假的陈述句。
真值:命题的陈述句所表达的判断结果,真值只取真或假两种情况。
假命题:真值为假的命题。
真命题:真值为真的命题。
简单命题(原子命题):无法继续拆分的命题。
复合命题:多个原子命题通过联结词联结而成的命题。
悖论:自相矛盾的陈述句。
否定联结词:符号﹁(复合命题非p称作p的否定式,记作﹁p)合取联结词:符号∧(复合命题p且q称作p与q的合取式记作p∧q)析取联结词:符号∨(复合命题p或q称作p与q的析取式记作p∨q)蕴涵联结词:符号→(复合命题如果p,则q称为p与q的蕴涵式记作p→q,p为蕴涵式的前件,q为蕴涵式的后件)蕴涵联结词的使用及判定方法:使用:1:因为p所以q这类直抒胸臆的表达时可以直接看作:p→q2:只有p才q这类具有转折性的表达时可以直接看作:q→p判定:1:同假时为真2:后件为真前件为假时为真3:后件为真前件为真时为真其他情况皆为假等价联结词:符号↔(复合命题p当且仅当q称为p与q的等价式)等价联结词的判定:1:当p与q同时为真时为真2:当p与q同时为假时为假命题公式及其赋值命题常项(命题常元):可以直接理解为原子命题或简单命题命题变项(命题变元):真值可以变化的陈述句,因此命题变项不是命题合式公式:命题变项使用联结词组合成的符号串(可以当作命题用联结词组合成的复合命题)合式公式层数的判定:下面p和q都是公式或者命题常项1:当个命题变项为0层公式。
2:﹁p为1层公式3:p∧q为n+1层公式,n=max(p的层数,q的层数)4:p∨q为n+1层公式,n=max(p的层数,q的层数)5:p→q为n+1层公式,n=max(p的层数,q的层数)6:p↔q为n+1层公式,n=max(p的层数,q的层数)赋值(解释):对公式中的命题变项指定一个真值,真值为1即该命题变项为成真赋值,真值为0即该命题变项为成假赋值。
重言式(永真式):即该合式公式在任意赋值下取值都是真矛盾式(永假式):即该合式公式在任意赋值下取值都是假可满足式:即至少存在一种赋值下取值为真故重言式必是可满足式,可满足式不一定是重言式,可满足式必不是矛盾式,矛盾式必不是可满足式。
离散数学第一章命题逻辑知识点总结

数理逻辑部分第1章命题逻辑1.1 命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“Ø”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作Øp. 符号Ø称作否定联结词,并规定Øp为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧Øq.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧Øu) ∨(Øt∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧Øw)∨(Øv∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“®”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p®q,并称p是蕴涵式的前件,q为蕴涵式的后件. ®称作蕴涵联结词,并规定,p®q为假当且仅当p 为真q 为假.p®q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p®q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“«”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p«q. «称作等价联结词.并规定p«q为真当且仅当p与q同时为真或同时为假.说明:(1) p«q 的逻辑关系:p与q互为充分必要条件(2) p«q为真当且仅当p与q同真或同假联结词优先级:( ),Ø, Ù, Ú, ®, «同级按从左到右的顺序进行以上给出了5个联结词:Ø, Ù, Ú, ®, «,组成一个联结词集合{Ø, Ù, Ú, ®, «},联结词的优先顺序为:Ø, Ù, Ú, ®, «; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.⏹命题常项⏹命题变项1.2 命题公式及分类▪命题变项与合式公式▪命题常项:简单命题▪命题变项:真值不确定的陈述句▪定义合式公式 (命题公式, 公式) 递归定义如下:▪(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1▪是合式公式▪(2) 若A是合式公式,则 (ØA)也是合式公式▪(3) 若A, B是合式公式,则(AÙB), (AÚB), (A®B), (A«B)也是合式公式▪(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式▪说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=ØB, B是n层公式;(b) A=BÙC, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=BÚC, 其中B,C的层次及n同(b);(d) A=B®C, 其中B,C的层次及n同(b);(e) A=B«C, 其中B,C的层次及n同(b).例如公式p 0层Øp 1层Øp®q 2层Ø(p®q)«r 3层((ØpÙq) ®r)«(ØrÚs) 4层▪公式的赋值▪定义给公式A中的命题变项p1, p2, … , p n指定▪一组真值称为对A的一个赋值或解释▪成真赋值: 使公式为真的赋值▪成假赋值: 使公式为假的赋值▪说明:▪赋值a=a1a2…a n之间不加标点符号,a i=0或1.▪A中仅出现p1, p2, …, p n,给A赋值a1a2…a n是▪指p1=a1, p2=a2, …, p n=a n▪A中仅出现p,q, r, …, 给A赋值a1a2a3…是指▪p=a1,q=a2 , r=a3 …▪含n个变项的公式有2n个赋值.▪真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q®p) Ùq®p的真值表例 B = Ø (ØpÚq) Ùq的真值表例C= (pÚq) ®Ør的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q®p)Ùq®p,B =Ø(ØpÚq)Ùq,C= (pÚq)®Ør1.3 等值演算⏹等值式定义若等价式A«B是重言式,则称A与B等值,记作AÛB,并称AÛB是等值式说明:定义中,A,B,Û均为元语言符号, A或B中可能有哑元出现.例如,在 (p®q) Û ((ØpÚq)Ú (ØrÙr))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p®(q®r) Û (pÙq) ®rp®(q®r) (p®q) ®r⏹基本等值式双重否定律 : ØØAÛA等幂律:AÚAÛA, AÙAÛA交换律: AÚBÛBÚA, AÙBÛBÙA结合律: (AÚB)ÚCÛAÚ(BÚC)(AÙB)ÙCÛAÙ(BÙC)分配律: AÚ(BÙC)Û(AÚB)Ù(AÚC)AÙ(BÚC)Û (AÙB)Ú(AÙC)德·摩根律: Ø(AÚB)ÛØAÙØBØ(AÙB)ÛØAÚØB吸收律: AÚ(AÙB)ÛA, AÙ(AÚB)ÛA零律: AÚ1Û1, AÙ0Û0同一律: AÚ0ÛA, AÙ1ÛA排中律: AÚØAÛ1矛盾律: AÙØAÛ0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若AÛB, 则F(B)ÛF(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p®(q®r) Û (pÙq)®r证p®(q®r)ÛØpÚ(ØqÚr) (蕴涵等值式,置换规则)Û(ØpÚØq)Úr(结合律,置换规则)ÛØ(pÙq)Úr(德×摩根律,置换规则)Û(pÙq) ®r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p®(q®r) (p®q) ®r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) qÙØ(p®q)解qÙØ(p®q)Û qÙØ(ØpÚq) (蕴涵等值式)Û qÙ(pÙØq) (德×摩根律)Û pÙ(qÙØq) (交换律,结合律)Û pÙ0 (矛盾律)Û 0 (零律)由最后一步可知,该式为矛盾式.(2) (p®q)«(Øq®Øp)解 (p®q)«(Øq®Øp)Û (ØpÚq)«(qÚØp) (蕴涵等值式)Û (ØpÚq)«(ØpÚq) (交换律)Û 1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((pÙq)Ú(pÙØq))Ùr)解 ((pÙq)Ú(pÙØq))Ùr)Û (pÙ(qÚØq))Ùr(分配律)Û pÙ1Ùr(排中律)Û pÙr(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当AÛ0A为重言式当且仅当AÛ1说明:演算步骤不惟一,应尽量使演算短些1.5 对偶与范式对偶式与对偶原理定义在仅含有联结词Ø, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) ØA(p1,p2,…,p n) ÛA* (Øp1, Øp2,…, Øp n)(2) A(Øp1, Øp2,…, Øp n) ÛØA* (p1,p2,…,p n)定理(对偶原理)设A,B为两个命题公式,若A Û B,则A*Û B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, Øq, pÚØq, pÚqÚr, …简单合取式:有限个文字构成的合取式如p, Øq, pÙØq, pÙqÙr, …析取范式:由有限个简单合取式组成的析取式AÚA2Ú¼ÚA r, 其中A1,A2,¼,A r是简单合取式1合取范式:由有限个简单析取式组成的合取式AÙA2Ù¼ÙA r , 其中A1,A2,¼,A r是简单析取式1范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式pÙØqÙr, ØpÚqÚØr既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的®, «(若存在)(2) 否定联结词Ø的内移或消去(3) 使用分配律Ù对Ú分配(析取范式)Ú对Ù分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p®Øq)ÚØr解 (p®Øq)ÚØrÛ (ØpÚØq)ÚØr(消去®)Û ØpÚØqÚØr(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p®Øq)®r解 (p®Øq)®rÛ (ØpÚØq)®r(消去第一个®)Û Ø(ØpÚØq)Úr(消去第二个®)Û (pÙq)Úr(否定号内移——德×摩根律)这一步已为析取范式(两个简单合取式构成)继续: (pÙq)ÚrÛ (pÚr)Ù(qÚr) (Ú对Ù分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1£i£n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为i极小项(极大项)的名称.m与M i的关系: Øm i Û M i , ØM i Û m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(ØpÙØqÙr)Ú(ØpÙqÙr) Û m1Úm3是主析取范式(pÚqÚØr)Ù(ØpÚqÚØr) Û M1ÙM5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p®Øq)®r的主析取范式与主合取范式.(1) 求主析取范式(p®Øq)®rÛ (pÙq)Úr , (析取范式)①(pÙq)Û (pÙq)Ù(ØrÚr)Û (pÙqÙØr)Ú(pÙqÙr)Û m6Úm7 ,rÛ(ØpÚp)Ù(ØqÚq)ÙrÛ(ØpÙØqÙr)Ú(ØpÙqÙr)Ú(pÙØqÙr)Ú(pÙqÙr)Û m1Úm3Úm5Úm7 ③②, ③代入①并排序,得(p®Øq)®rÛ m1Úm3Úm5Ú m6Úm7(主析取范式)(2) 求A的主合取范式(p®Øq)®rÛ (pÚr)Ù(qÚr) , (合取范式)①pÚrÛ pÚ(qÙØq)ÚrÛ (pÚqÚr)Ù(pÚØqÚr)Û M0ÙM2,②qÚrÛ (pÙØp)ÚqÚrÛ (pÚqÚr)Ù(ØpÚqÚr)Û M0ÙM4 ③②, ③代入①并排序,得(p®Øq)®rÛ M0ÙM2ÙM4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p®Øq)®rÛ m1Úm3Úm5Ú m6Úm7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式ÛA的主析取范式含2n个极小项ÛA的主合取范式为1.A为矛盾式Û A的主析取范式为0Û A的主合取范式含2n个极大项A为非重言式的可满足式ÛA的主析取范式中至少含一个且不含全部极小项ÛA的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p®q)(2) (sÚu)(3) ((qÙØr)Ú(ØqÙr))(4) ((rÙs)Ú(ØrÙØs))(5) (u®(pÙq))③ (1) ~ (5)构成的合取式为A=(p®q)Ù(sÚu)Ù((qÙØr)Ú(ØqÙr))Ù((rÙs)Ú(ØrÙØs))Ù(u®(pÙq))④ A Û (ØpÙØqÙrÙsÙØu)Ú(pÙqÙØrÙØsÙu)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:AÛ (ØpÚq)Ù((qÙØr)Ú(ØqÙr))Ù(sÚu)Ù(ØuÚ(pÙq))Ù((rÙs)Ú(ØrÙØs)) (交换律) B= (ØpÚq)Ù((qÙØr)Ú(ØqÙr))1Û ((ØpÙqÙØr)Ú(ØpÙØqÙr)Ú(qÙØr)) (分配律)B= (sÚu)Ù(ØuÚ(pÙq))2Û ((sÙØu)Ú(pÙqÙs)Ú(pÙqÙu)) (分配律)BÙB2 Û (ØpÙqÙØrÙsÙØu)Ú(ØpÙØqÙrÙsÙØu)1Ú(qÙØrÙsÙØu)Ú(pÙqÙØrÙs)Ú(pÙqÙØrÙu)再令B3 = ((rÙs)Ú(ØrÙØs))得AÛ B1ÙB2ÙB3Û (ØpÙØqÙrÙsÙØu)Ú(pÙqÙØrÙØsÙu)注意:在以上演算中多次用矛盾律要求:自己演算一遍1.6 推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p®r, r®Øs结论:s®q证明① s附加前提引入②p®r前提引入③r®Øs前提引入④p®Øs②③假言三段论⑤Øp①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。
离散数学总复习-知识点

离散数学总复习第1章命题逻辑一、命题的判断例:1、仁者无敌!2、x+y<23、如果雪是红的,那么地球是月亮的卫星。
4、我正在说谎。
二、命题符号化例:1、蓝色和黄色可以调成绿色。
2、付明和杨进都是运动员。
3、刘易斯是百米游泳冠军或百米跨栏冠军。
4、李飞现在在宿舍或在图书馆。
5、只要天不下雨,我就步行上学校。
6、只有天不下雨,我才步行上学校。
7、并非只要你努力了,就一定成功。
三、主范式1、会等值演算;2、主合取和主析取范式的相互转换。
例:求命题公式P∨Q的主析取范式和主合取范式。
3、根据主范式进行方案的选择例1:某科研所要从3名科研骨干A,B,C中挑选1-2名出国进修,由于工作需要,选派需同时满足条件:(1)若A去,则C同去;(2)只有C不去,B才去;(3)只要C不去,则A或B就可以去。
问有哪些选派方案?例2:甲、乙、丙、丁四人有且仅有两个人参加比赛,下列四个条件均要满足:(1)甲和乙有且只有一人参加;(2)丙参加,则丁必参加;(3)乙和丁至多有一人参加;(4)丁不参加,甲也不会参加。
问哪两个人参加了比赛?四、简单的推理例1:如果明天天气好我们就去爬长城。
明天天气好。
所以我们去爬长城。
例3:课后习题16第2章谓词逻辑一、谓词逻辑中的命题符号化例:1、所有运动员都是强壮的2、并非每个实数都是有理数3、有些实数是有理数二、量词的辖域,约束变元换名、自由变元代替例:1、∀x(P(x)∨∃yR(x,y))→Q(x)2、∀x(P(x,z)∨∃yR(x,y))→Q(x)中量词的辖域,重名情况,改名等三、命题逻辑永真式的任何代换实例必是谓词逻辑的永真式。
同样,命题逻辑永假式的任何代换实例必是谓词逻辑的永假式。
例:1、(∀xP(x)→∃xQ(x))↔(⌝∀xP(x)∨∃xQ(x))2、(∀xP(x)→∃xQ(x))∧(∃xQ(x))→∀zR(z)))→(∀xP(x) →∀zR(z))1-2是永真式(重言式)3、⌝(∀xF(x) ∃yG(y)) ∧ ∃yG(y) 永假式(矛盾式)四、消量词例:个体域D={1,2},对∀x∀y(P(x)→Q(y))消量词五、简单的前束范式会判断即可。
离散数学结构第1章命题逻辑基本概念

离散数学结构第1章命题逻辑基本概念第1章命题逻辑基本概念主要内容1. 命题与真值(或真假值)。
2. 简单命题与复合命题。
3. 联结词:否定联结词┐,合取联结词∧,析取联结词∨,蕴涵联结词→,等价联结词。
4. 命题公式(简称公式)。
5. 命题公式的层次和公式的赋值。
6. 真值表。
7. 公式的类型(重⾔式(或永真式),⽭盾式(或永假式),可满⾜式)。
学习要求1. 在5种联结词中,要特别注意蕴涵联结的应⽤,要弄清三个问题:① p→q的逻辑关系② p→q的真值③ p→q的灵活的叙述⽅法2. 写真值表要特别仔细认真,否则会出错误。
3. 深刻理解各联结词的逻辑含义。
4. 熟练地将复合命题符号化。
6. 会⽤真值表求公式的成真赋值和成假赋值。
1.1 命题与联结词 (2)⼀、命题的概念 (2)⼆、复合命题与联结词 (2)三、复合命题真假值 (5)1.2 命题公式及其赋值 (6)⼀、命题公式的定义 (6)⼆、公式的层次 (6)三、公式的赋值 (6)四、真值表 (7)五、公式的真假值分类 (8)1.1 命题与联结词⼀、命题的概念引⾔中的例⼦就是要对“我戴的是⿊帽⼦”进⾏判断。
这样的陈述句称为命题。
作为命题的陈述句所表达的判断结果称为命题的真值,真值只取两个值:真或假。
真值为真的命题称为真命题,真值为假的命题称为假命题。
真命题表达的判断正确,假命题表达的判断错误。
任何命题的真值都是唯⼀的。
判断给定句⼦是否为命题,应该分两步:⾸先判定它是否为陈述句,其次判断它是否有唯⼀的真值。
例1.1 判断下列句⼦是否为命题。
(1) 4是素数。
(2) 是⽆理数。
(3) x⼤于y。
(4) ⽉球上有冰。
(5) 2100年元旦是晴天。
(6) π⼤于吗?(7) 请不要吸烟!(8) 这朵花真美丽啊!(9) 我正在说假话。
解:本题的(9)个句⼦中,(6)是疑问句,(7)是祈使句,(8)是感叹句,因⽽这3个句⼦都不是命题。
剩下的6个句⼦都是陈述句,但(3)⽆确定的真值,根据x,y的不同取值情况它可真可假,即⽆唯⼀的真值,因⽽不是命题。
离散数学第一章知识点总结

离散数学第一章知识点总结(仅供参考)1.判断给定的句子是否为命题的基本步骤:首先应是陈述句;其次要有唯一的真值。
例:(1)我正在说谎。
不是命题。
因为无法判定其真假值,若假设它为假即我正在说谎,则意味着它的反为真,即我正在说实话,二者相矛盾;若假定它为真即我正在说实话,则意味着它的反为假,我正在说谎,二者也相矛盾。
这其实是一个语义上的悖论。
悖论不是命题(2)x-y?>2。
不是命题。
因为x, y的值不确定,某些x, y使x?y>2为真,某些x, y使x?y>2为假,即x?y>2的真假随x, y的值的变化而变化。
因此x?y>2的真假无法确定,所以x?y>2不是命题。
2.命题可以分为两种类型:原子命题(不能再分解为更简单命题,又可称为简单命题);复合命题(通过联结词、标点符号将原子命题联结而成的命题)3.命题常元:一个命题标识符如果表示确定的简单命题,就称为命题常元命题变元:如果一个命题标识符只表示任意简单命题的位置标志,就称它为命题变元注:当命题变元P用一个特定的简单命题取代时,P才能确定真值,这时也称对P进行指派4.联接词:(1)否定联接词:﹁假为真,真为假;还可以用“非”、“不”、“没有”、“无”、“并不”等多种方式表示否定(2)合取联接词:∧一个为假就为假还可用“并且”、“同时”、“以及”、“既……又……”、“不但……而且……”、“虽然……但是……”等多种方式表达合取(3)析取联接词:∨一个为真就为真;一般用或表示注:联结词∨是可兼或,因为当命题P和Q的真值都为真时,其值也为真。
但自然语言中的“或”既可以是“排斥或?”也可以是“可兼或?”。
例晚上我们去教室学习或去电影院看电影。
(排斥或)例他可能数学考了100分或英语考了100分。
(可兼或)例刘静今天跑了200米或300米远。
(既不表示“可兼或”也不表示“排斥或”,它只是表示刘静所跑的大概路程,因此它不是命题联结词,故例是原子命题。
)(4)蕴涵联结词: ? 前真后假才为假;还可以用当……则……、因为……所以……、仅当、只有……才……、除非……才……、除非……、否则非……表示(5)等价联接词:? 同真同假才为真;还可以用当且仅当、充分必要表示5.命题公式:1)单个命题变元是合式公式,并简称为原子命题公式;2)如果A是合式公式,那么(﹁A)也是合式公式;3)如果A, B都是合式公式,那么(A∧B ), (A∨B ), (A?B ), (A B )都是合式公式;4)当且仅当有限次地应用1), 2), 3)所得到的包含命题变元、联结词和括号的字符串是合式公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理逻辑部分第1章命题逻辑命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假真命题: 真值为真的命题假命题: 真值为假的命题注意: 感叹句、祈使句、疑问句都不是命题,陈述句中的悖论以及判断结果不惟一确定的也不是命题。
简单命题(原子命题):简单陈述句构成的命题复合命题:由简单命题与联结词按一定规则复合而成的命题简单命题符号化用小写英文字母p, q, r, … ,p i,q i,r i (i≥1)表示简单命题用“1”表示真,用“0”表示假例如,令p:是有理数,则p 的真值为 0q:2 + 5 = 7,则q 的真值为 1联结词与复合命题1.否定式与否定联结词“”定义设p为命题,复合命题“非p”(或“p的否定”)称为p的否定式,记作p. 符号称作否定联结词,并规定p为真当且仅当p为假.2.合取式与合取联结词“∧”定义设p,q为二命题,复合命题“p并且q”(或“p与q”)称为p与q 的合取式,记作p∧q. ∧称作合取联结词,并规定 p∧q为真当且仅当p 与q同时为真注意:描述合取式的灵活性与多样性分清简单命题与复合命题例将下列命题符号化.(1) 王晓既用功又聪明.(2) 王晓不仅聪明,而且用功.(3) 王晓虽然聪明,但不用功.(4) 张辉与王丽都是三好生.(5) 张辉与王丽是同学.解令p:王晓用功,q:王晓聪明,则(1) p∧q(2) p∧q(3) p∧q.令r : 张辉是三好学生,s :王丽是三好学生(4) r∧s.(5) 令t : 张辉与王丽是同学,t 是简单命题 .说明:(1)~(4)说明描述合取式的灵活性与多样性.(5) 中“与”联结的是两个名词,整个句子是一个简单命题.3.析取式与析取联结词“∨”定义设p,q为二命题,复合命题“p或q”称作p与q的析取式,记作p∨q. ∨称作析取联结词,并规定p∨q为假当且仅当p与q同时为假.例将下列命题符号化(1) 2或4是素数.(2) 2或3是素数.(3) 4或6是素数.(4) 小元元只能拿一个苹果或一个梨.(5) 王晓红生于1975年或1976年.解令p:2是素数, q:3是素数, r:4是素数, s:6是素数,则 (1), (2), (3) 均为相容或.分别符号化为: p∨r , p∨q, r∨s,它们的真值分别为 1, 1, 0.而 (4), (5) 为排斥或.令t :小元元拿一个苹果,u:小元元拿一个梨,则 (4) 符号化为 (t∧u) ∨(t∧u).令v :王晓红生于1975年,w:王晓红生于1976年,则 (5) 既可符号化为 (v∧w)∨(v∧w), 又可符号化为v∨w , 为什么?4.蕴涵式与蕴涵联结词“”定义设p,q为二命题,复合命题“如果p,则q” 称作p与q的蕴涵式,记作p q,并称p是蕴涵式的前件,q为蕴涵式的后件. 称作蕴涵联结词,并规定,p q为假当且仅当p 为真q 为假.p q 的逻辑关系:q 为p 的必要条件“如果p,则q ” 的不同表述法很多:若p,就q只要p,就qp 仅当q只有q 才p除非q, 才p 或除非q, 否则非p.当p 为假时,p q 为真常出现的错误:不分充分与必要条件5.等价式与等价联结词“”定义设p,q为二命题,复合命题“p当且仅当q”称作p与q的等价式,记作p q. 称作等价联结词.并规定p q为真当且仅当p与q同时为真或同时为假.说明:(1) p q 的逻辑关系:p与q互为充分必要条件(2) p q为真当且仅当p与q同真或同假联结词优先级:( ),, , , ,同级按从左到右的顺序进行以上给出了5个联结词:, , , , ,组成一个联结词集合{, , , , },联结词的优先顺序为:, , , , ; 如果出现的联结词同级,又无括号时,则按从左到右的顺序运算; 若遇有括号时,应该先进行括号中的运算.注意: 本书中使用的括号全为园括号.命题常项命题变项命题公式及分类命题变项与合式公式命题常项:简单命题命题变项:真值不确定的陈述句定义合式公式 (命题公式, 公式) 递归定义如下:(1) 单个命题常项或变项p,q,r,…,p i ,q i ,r i ,…,0,1是合式公式(2) 若A是合式公式,则 (A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B), (A B)也是合式公式(4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式说明: 元语言与对象语言, 外层括号可以省去合式公式的层次定义(1) 若公式A是单个的命题变项, 则称A为0层公式.(2) 称A是n+1(n≥0)层公式是指下面情况之一:(a) A=B, B是n层公式;(b) A=B C, 其中B,C分别为i层和j层公式,且n=max(i, j);(c) A=B C, 其中B,C的层次及n同(b);(d) A=B C, 其中B,C的层次及n同(b);(e) A=B C, 其中B,C的层次及n同(b).例如公式p 0层p 1层p q 2层(p q)r 3层((p q) r)(r s) 4层公式的赋值定义给公式A中的命题变项p1, p2, … , p n指定一组真值称为对A的一个赋值或解释成真赋值: 使公式为真的赋值成假赋值: 使公式为假的赋值说明:赋值=12…n之间不加标点符号,i=0或1.A中仅出现p1, p2, …, p n,给A赋值12…n是指p1=1, p2=2, …, p n=nA中仅出现p,q, r, …, 给A赋值123…是指p=1,q=2 , r= 3 …含n个变项的公式有2n个赋值.真值表真值表: 公式A在所有赋值下的取值情况列成的表例给出公式的真值表A= (q p) q p的真值表例 B = (p q) q的真值表例C= (p q) r的真值表命题的分类重言式矛盾式可满足式定义设A为一个命题公式(1) 若A无成假赋值,则称A为重言式(也称永真式)(2) 若A无成真赋值,则称A为矛盾式(也称永假式)(3) 若A不是矛盾式,则称A为可满足式注意:重言式是可满足式,但反之不真.上例中A为重言式,B为矛盾式,C为可满足式A= (q p)q p,B =(p q)q,C= (p q)r等值演算等值式定义若等价式A B是重言式,则称A与B等值,记作A B,并称A B是等值式说明:定义中,A,B,均为元语言符号, A或B中可能有哑元出现.例如,在 (p q) ((p q) (r r))中,r为左边公式的哑元.用真值表可验证两个公式是否等值请验证:p(q r) (p q) rp(q r) (p q) r基本等值式双重否定律 : A A等幂律:A A A, A A A交换律: A B B A, A B B A结合律: (A B)C A(B C)(A B)C A(B C)分配律: A(B C)(A B)(A C)A(B C) (A B)(A C)德·摩根律: (A B)A B(A B)A B吸收律: A(A B)A, A(A B)A零律: A11, A00同一律: A0A, A1A排中律: A A1矛盾律: A A0等值演算:由已知的等值式推演出新的等值式的过程置换规则:若A B, 则(B)(A)等值演算的基础:(1) 等值关系的性质:自反、对称、传递(2) 基本的等值式(3) 置换规则应用举例——证明两个公式等值例1 证明p(q r) (p q)r证p(q r)p(q r) (蕴涵等值式,置换规则)(p q)r(结合律,置换规则)(p q)r(德摩根律,置换规则)(p q) r(蕴涵等值式,置换规则)说明:也可以从右边开始演算(请做一遍)因为每一步都用置换规则,故可不写出熟练后,基本等值式也可以不写出应用举例——证明两个公式不等值例2 证明: p(q r) (p q) r用等值演算不能直接证明两个公式不等值,证明两个公式不等值的基本思想是找到一个赋值使一个成真,另一个成假.方法一真值表法(自己证)方法二观察赋值法. 容易看出000, 010等是左边的的成真赋值,是右边的成假赋值.方法三用等值演算先化简两个公式,再观察.应用举例——判断公式类型例3 用等值演算法判断下列公式的类型(1) q(p q)解q(p q)q(p q) (蕴涵等值式)q(p q) (德摩根律)p(q q) (交换律,结合律)p0 (矛盾律)0 (零律)由最后一步可知,该式为矛盾式.(2) (p q)(q p)解 (p q)(q p)(p q)(q p) (蕴涵等值式)(p q)(p q) (交换律)1由最后一步可知,该式为重言式.问:最后一步为什么等值于1?(3) ((p q)(p q))r)解 ((p q)(p q))r)(p(q q))r(分配律)p1r(排中律)p r(同一律)这不是矛盾式,也不是重言式,而是非重言式的可满足式.如101是它的成真赋值,000是它的成假赋值.总结:A为矛盾式当且仅当A0A为重言式当且仅当A1说明:演算步骤不惟一,应尽量使演算短些对偶与范式对偶式与对偶原理定义在仅含有联结词, ∧,∨的命题公式A中,将∨换成∧, ∧换成∨,若A中含有0或1,就将0换成1,1换成0,所得命题公式称为A的对偶式,记为A*.从定义不难看出,(A*)* 还原成A定理设A和A*互为对偶式,p1,p2,…,p n是出现在A和A*中的全部命题变项,将A和A*写成n元函数形式,则 (1) A(p1,p2,…,p n) A* (p1, p2,…, p n) (2) A(p1, p2,…, p n) A* (p1,p2,…,p n) 定理(对偶原理)设A,B为两个命题公式,若A B,则A* B*.析取范式与合取范式文字:命题变项及其否定的总称简单析取式:有限个文字构成的析取式如p, q, p q, p q r, …简单合取式:有限个文字构成的合取式如p, q, p q, p q r, …析取范式:由有限个简单合取式组成的析取式A 1A2Ar, 其中A1,A2,,A r是简单合取式合取范式:由有限个简单析取式组成的合取式A 1A2Ar, 其中A1,A2,,A r是简单析取式范式:析取范式与合取范式的总称公式A的析取范式: 与A等值的析取范式公式A的合取范式: 与A等值的合取范式说明:单个文字既是简单析取式,又是简单合取式p q r, p q r既是析取范式,又是合取范式(为什么?)命题公式的范式定理任何命题公式都存在着与之等值的析取范式与合取范式.求公式A的范式的步骤:(1) 消去A中的, (若存在)(2) 否定联结词的内移或消去(3) 使用分配律对分配(析取范式)对分配(合取范式)公式的范式存在,但不惟一求公式的范式举例例求下列公式的析取范式与合取范式(1) A=(p q)r解 (p q)r(p q)r(消去)p q r(结合律)这既是A的析取范式(由3个简单合取式组成的析取式),又是A的合取范式(由一个简单析取式组成的合取式)(2) B=(p q)r解 (p q)r(p q)r(消去第一个)(p q)r(消去第二个)(p q)r(否定号内移——德摩根律)这一步已为析取范式(两个简单合取式构成)继续: (p q)r(p r)(q r) (对分配律)这一步得到合取范式(由两个简单析取式构成)极小项与极大项定义在含有n个命题变项的简单合取式(简单析取式)中,若每个命题变项均以文字的形式在其中出现且仅出现一次,而且第i(1i n)个文字出现在左起第i位上,称这样的简单合取式(简单析取式)为极小项(极大项).说明:n个命题变项产生2n个极小项和2n个极大项2n个极小项(极大项)均互不等值用m i表示第i个极小项,其中i是该极小项成真赋值的十进制表示. 用M i 表示第i个极大项,其中i是该极大项成假赋值的十进制表示, m i(M i)称为极小项(极大项)的名称.m与M i的关系: m i M i , M i m ii主析取范式与主合取范式主析取范式: 由极小项构成的析取范式主合取范式: 由极大项构成的合取范式例如,n=3, 命题变项为p, q, r时,(p q r)(p q r) m1m3是主析取范式(p q r)(p q r) M1M5 是主合取范式A的主析取范式: 与A等值的主析取范式A的主合取范式: 与A等值的主合取范式.定理任何命题公式都存在着与之等值的主析取范式和主合取范式, 并且是惟一的.用等值演算法求公式的主范式的步骤:(1) 先求析取范式(合取范式)(2) 将不是极小项(极大项)的简单合取式(简单析取式)化成与之等值的若干个极小项的析取(极大项的合取),需要利用同一律(零律)、排中律(矛盾律)、分配律、幂等律等.(3) 极小项(极大项)用名称m i(M i)表示,并按角标从小到大顺序排序.求公式的主范式例求公式A=(p q)r的主析取范式与主合取范式.(1) 求主析取范式(p q)r(p q)r , (析取范式)①(p q)(p q)(r r)(p q r)(p q r)m 6m7,r(p p)(q q)r(p q r)(p q r)(p q r)(p q r)m 1m3m5m7③②, ③代入①并排序,得(p q)r m1m3m5m6m7(主析取范式)(2) 求A的主合取范式(p q)r(p r)(q r) , (合取范式)①p rp(q q)r(p q r)(p q r)M 0M2,②q r(p p)q r(p q r)(p q r)M 0M4③②, ③代入①并排序,得(p q)r M0M2M4 (主合取范式)主范式的用途——与真值表相同(1) 求公式的成真赋值和成假赋值例如 (p q)r m1m3m5m6m7,其成真赋值为001, 011, 101, 110, 111,其余的赋值 000, 010, 100为成假赋值.类似地,由主合取范式也可立即求出成假赋值和成真赋值.(2) 判断公式的类型设A含n个命题变项,则A为重言式A的主析取范式含2n个极小项A的主合取范式为1.A为矛盾式A的主析取范式为0A的主合取范式含2n个极大项A为非重言式的可满足式A的主析取范式中至少含一个且不含全部极小项A的主合取范式中至少含一个且不含全部极大项例某公司要从赵、钱、孙、李、周五名新毕业的大学生中选派一些人出国学习. 选派必须满足以下条件:(1)若赵去,钱也去;(2)李、周两人中至少有一人去;(3)钱、孙两人中有一人去且仅去一人;(4)孙、李两人同去或同不去;(5)若周去,则赵、钱也去.试用主析取范式法分析该公司如何选派他们出国?解此类问题的步骤为:①将简单命题符号化②写出各复合命题③写出由②中复合命题组成的合取式④求③中所得公式的主析取范式解①设p:派赵去,q:派钱去,r:派孙去,s:派李去,u:派周去.② (1) (p q)(2) (s u)(3) ((q r)(q r))(4) ((r s)(r s))(5) (u(p q))③ (1) ~ (5)构成的合取式为A=(p q)(s u)((q r)(q r))((r s)(r s))(u(p q))④ A (p q r s u)(p q r s u)结论:由④可知,A的成真赋值为00110与11001,因而派孙、李去(赵、钱、周不去)或派赵、钱、周去(孙、李不去).A的演算过程如下:A (p q)((q r)(q r))(s u)(u(p q)) ((r s)(r s)) (交换律) B1= (p q)((q r)(q r))((p q r)(p q r)(q r)) (分配律)B2= (s u)(u(p q))((s u)(p q s)(p q u)) (分配律)B 1B2(p q r s u)(p q r s u) (q r s u)(p q r s)(p q r u)再令B3 = ((r s)(r s))得A B1B2B3(p q r s u)(p q r s u)注意:在以上演算中多次用矛盾律要求:自己演算一遍推理理论推理的形式结构推理的形式结构—问题的引入推理举例:(1) 正项级数收敛当且仅当部分和有上界.(2) 若推理: 从前提出发推出结论的思维过程上面(1)是正确的推理,而(2)是错误的推理.证明: 描述推理正确的过程.判断推理是否正确的方法•真值表法•等值演算法判断推理是否正确•主析取范式法•构造证明法证明推理正确说明:当命题变项比较少时,用前3个方法比较方便, 此时采用形式结构“” . 而在构造证明时,采用“前提: , 结论: B”.推理定律与推理规则推理定律——重言蕴涵式构造证明——直接证明法例构造下面推理的证明:若明天是星期一或星期三,我就有课. 若有课,今天必备课. 我今天下午没备课. 所以,明天不是星期一和星期三.解设p:明天是星期一,q:明天是星期三,r:我有课,s:我备课推理的形式结构为例构造下面推理的证明:2是素数或合数. 若2是素数,则是无理数.若是无理数,则4不是素数. 所以,如果4是素数,则2是合数.用附加前提证明法构造证明解设p:2是素数,q:2是合数,r:是无理数,s:4是素数推理的形式结构前提:p∨q, p r, r s结论:s q证明① s附加前提引入②p r前提引入③r s前提引入④p s②③假言三段论⑤p①④拒取式⑥p∨q前提引入⑦q⑤⑥析取三段论请用直接证明法证明之。