用样本的数字特征估计总体的数字特征-(高考题)
用样本的数字特征估计总体-高考数学复习
1. (多选)如图是某班50名学生期中考试数学成绩的频率分布直方
图,其中成绩分组区间是[40,50),
[50,60),[60,70),[70,80),
[80,90),[90,100],则下列说
法正确的是(
)
A. 图中的 x 的值为0.018
B. 该班50 名学生期中考试数学成绩的众数是75
C. 该班50 名学生期中考试数学成绩的中位数是72
目录
1
C O N T E N T S
2
3
知识 逐点夯实
考点 分类突破
课时 跟踪检测
PART
1
知识 逐点夯实
课前自修
必备知识 系统梳理 基础重落实
目录
高中总复习·数学
1. 总体百分位数的估计
(1)百分位数
定义
意义
百 一组数据的第 p 百分位数是这样一个值,
分 它使得这组数据中 至少
有 p %的数据小
为 ,第二层抽取 n 个,即 y 1, y 2,…, yn ,平均数为 ,则
x 1, x 2,…, xm , y 1, y 2,…, yn 的平均数 =
+
+
.
+
(2)中位数:将一组数据按大小依次排列,处于
最中间 位置
的一个数据(或最中间两个数据的平均数)叫做这组数据的
目录
高中总复习·数学
2. 平均数、方差的公式推广
若数据 x 1 , x 2 ,…, x n 的平均数为 ത ,方差为 s 2 ,那么 mx 1 +
a , mx 2 + a , mx 3 + a ,…, mx n + a 的平均数是 m ത + a ,方
(完整版)用样本的数字特征估计总体的数字特征
2.2.2用样本的数字特征估计总体的数字特征 (两课时)零号作业一、众数、中位数、平均数1、众数:(1)定义:一组数据中出现次数最多的数称为这组数据的众数.(2)特征:一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势 [破疑点] 众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使其无法客观地反映总体特征.(3)在直方图中为最高矩形下端中点的横坐标 2、中位数:(1)定义:一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数. (2)特征:一组数据中的中位数是唯一的,反映了该组数据的集中趋势.在频率分布直方图中,中位数左边和右边的直方图的面积相等.[破疑点] 中位数不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点.(3) 直方图面积平分线与横轴交点的横坐标.左右两边面积各占一半3、平均数:(1)定义:一组数据的和与这组数据的个数的商.数据x 1,x 2,…,x n 的平均数为xn=x 1+x 2+…+x nn(2)特征:平均数对数据有“取齐”的作用,代表该组数据的平均水平.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中极端值的影响较大,使平均数在估计总体时可靠性降低.(3) 直方图中每个小矩形的面积与小矩形底边中点的横坐标的乘积之和. 二、标准差、方差1、标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s 表示,通常用以下公式来计算s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较_ 小.2.方差(1)定义:标准差的平方,即s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](2)特征:与标准差的作用相同,描述一组数据围绕平均数波动程度的大小. (3)取值范围:[0,+∞)3、数据组x 1,x 2,…,x n 的平均数为x ,方差为s 2,标准差为s ,则数据组ax 1+b ,ax 2+b ,…,ax n +b (a ,b 为常数)的平均数为a x +b ,方差为a 2s 2,标准差为4、规律总结(1)用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据. 样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据(2)平均数对数据有“取齐”的作用,代表一组数据的平均水平.标准差描述一组数据围绕平均数波动的幅度.在实际应用中,我们常综合样本的多个统计数据,对总体进行估计,为解决问题作出决策.(3)标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.列出一组样本数据的频率分布表步骤说明:1、对同一个总体,可以抽取不同的样本,相应的平均数与标准差都会发生改变.如果样本的代表性差,则对总体所作的估计就会产生偏差;如果样本没有代表性,则对总体作出错误估计的可能性就非常大,由此可见抽样方法的重要性.2.在抽样过程中,抽取的样本是具有随机性的,如从一个包含6个个体的总体中抽取一个容量为3的样本就有20中可能抽样,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有惟一答案.3.在实际应用中,调查统计是一个探究性学习过程,需要做一系列工作,我们可以把学到的知识应用到自主研究性课题中去.一号作业11、众数(1)定义:一组数据中出现次数______的数称为这组数据的众数.(2)特征:一组数据中的众数可能______一个,也可能没有,反映了该组数据的____________.在直方图中为最高矩形下端中点的____________最多不止集中趋势横坐标2.中位数(1)定义:一组数据按从小到大的顺序排成一列,处于______位置的数称为这组数据的中位数.(2)特征:一组数据中的中位数是______的,反映了该组数据的______________.在频率分布直方图中,中位数左边和右边的直方图的面积______..中间唯一集中趋势相等3.平均数(1)定义:一组数据的和与这组数据的个数的商.数据x1,x2,…,x n的平均数为x n=_________________.(2)特征:平均数对数据有“取齐”的作用,代表该组数据的_____________.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的______,但平均数受数据中_________的影响较大,使平均数在估计总体时可靠性降低.直方图中每个小矩形的面积与小矩形底边中点的横坐标的. ______x1+x2+…+x nn平均水平信息极端值乘积之和4.标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s表示,通常用以下公式来计算s=__________________________.可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕______波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较______;标准差较小,数据的离散程度较______.1n[(x1-x)2+(x2-x)2+…+(x n-x)2]平均数大小5.方差(1)定义:标准差的平方,即s2=________________________________________.(2)特征:与____________的作用相同,描述一组数据围绕平均数波动程度的大小.(3)取值范围:___________.1n[(x1-x)2+(x2-x)2+…+(x n-x)2] 标准差[0,+∞)数据组x1,x2,…,x n的平均数为x,方差为s2,标准差为s,则数据组ax1+b,ax2+b,…,ax n+b(a,b为常数)的平均数为a x+b,方差为a2s2,标准差为as.典例讲解中位数、众数、平均数的应用例1据报道,某公司的33名职工的月工资(以元为单位)如下:(1)求该公司的职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到1元)(3)你认为哪个统计量更能反映这个公司职工的工资水平?结合此问题谈一谈你的看法.[解析](1)平均数是x=1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)平均数是x′=1 500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司职工的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数偏差较大,所以平均数不能反映这个公司职工的工资水平.练习1:某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):甲群13,13,14,15,15,15,15,16,17,17;乙群54,3,4,4,5,5,6,6,6,57.(1)甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好反映甲群市民的年龄特征?(2)乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好反映乙群市民的年龄特征?[答案](1)甲群市民年龄的平均数为13+13+14+15+15+15+15+16+17+1710=15(岁),中位数为15岁,众数为15岁.平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.(2)乙群市民年龄的平均数为54+3+4+4+5+5+6+6+6+5710=15(岁),中位数为5岁,众数为6岁.由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.例2:(1)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差(2)某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.①求这次测试数学成绩的众数.②求这次测试数学成绩的中位数.③求这次测试数学成绩的平均分.[解析](1)x甲=15(4+5+6+7+8)=6,x乙=15(5×3+6+9)=6,甲的中位数是6,乙的中位数是5.甲的成绩的方差为15(22×2+12×2)=2,乙的成绩的方差为15(12×3+32×1)=2.4.甲的极差是4,乙的极差是4.所以A,B,D错误,C正确.(2)①由图知众数为70+802=75.②由图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.③由图知这次数学成绩的平均分为:40+502×0.005×10+50+602×0.015×10+60+702×0.02×10+70+802×0.03×10+80+902×0.025×10+90+1002×0.005×10=72.[答案](1)C (2)见解析练习1:参加市数学调研抽测的某校高三学生成绩分布的茎叶图1和频率分布直方图2均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:求参加数学抽测的人数n,抽测成绩的中位数及分数分布在[80,90),[90,100]内的人数.[答案]分数在[50,60)内的频率为2,由频率分布直方图可以看出,分数在[90,100]内的同样有2人.由2n=10×0.008,得n=25.由茎叶图可知抽测成绩的中位数为73.∴分数在[80,90)之间的人数为25-(2+7+10+2)=4.参加数学竞赛人数n=25,中位数为73,分数在[80,90),[90,100]内的人数分一号作业21.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值都不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的值相等.其中正确的结论的个数() A.1B.2 C.3 D.42、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如下图所示,假设得分值的中位数为m e,众数为m O,平均值为x,则()A.m e=m O=x B.m e=m O<x C.m e<m O<x D.m O<m e<x3、某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是() A.31,6岁B.32.6岁C.33.6岁D.36.6岁4、阶段考试以后,班长算出了全班40个人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均分为N,那么M N为________.1、A 2 D 3、C 4、 15、为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.4 1.60.5 1.80.6 2.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据绘制茎叶图,从茎叶图看,哪种药的疗效更好?[解析](1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y,因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.标准差、方差的应用例3、从甲、乙两种玉米的苗中各抽10株,分别测它们的株高如下:(单位:cm)甲:25414037221419392142乙:27164427441640401640问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?[解析]看哪种玉米的苗长得高,只要比较甲、乙两种玉米的苗的均高即可;要比较哪种玉米的苗长得齐,只要看两种玉米的苗高的方差即可,因为方差是体现一组数据波动大小的特征数.(1)x甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x乙=110(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm).所以x甲<x乙.(2)s2甲=110[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110(25+121+100+49+64+256+121+81+81+144)=110×1042=104.2(cm2),s2乙=110[(2×272+3×162+3×402+2×442)-10×312]=110×1288=128.8(cm2).所以s2甲<s2乙.[答案](1)乙种玉米的苗长得高,(2)甲种玉米的苗长得齐.练习1:甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s1,s2,s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有() A.s3>s1>s2B.s2>s1>s3C.s1>s2>s3D.s2>s3>s1[答案] B练习2:一次数学知识竞赛中,两组学生成绩如下表:已经算得两个组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.[答案](1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)s2甲=12+5+10+13+14+6×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172.s2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256.因为s2甲<s2乙,所以甲组成绩较乙组成绩稳定.(3)甲、乙两组成绩的中位数、平均数都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,从这一角度看,甲组成绩总体较好.(4)从成绩统计表看,甲组成绩大于或等于90分的人数为20人,乙组成绩大于或等于90分的人数为24人,所以乙组成绩在高分阶段的人数多,同时,乙组得满分的比甲组得满分的多6人,从这一角度看,乙组成绩较好.一号作业31. 若样本数据x 1,x 2,……,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .322.为了稳定市场,确保农民增收,某农产品7个月份的每月市场收购价格与其前三个月的市场收购价格有关,并使其与前三个月的市场收购价格之差的平方和最小,下表列出的是该产品今年前6个月的市场收购价格:则前7A.757 B.767 C .11D.7873. 某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数4.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)1、C2、B3、C4、1,1,3,3。
用样本的数字特征估计总体的数字特征练习
在关于居民月均用水量的例子中,平均数
x 1.973
标准差s=0.868
所以
x s 2.841, x 2s 3.709
x s 1.105, x 2s 0.237.
这 100个 数据 中, 在区 间x
2 s ,x
2 s
0 . 2 3 7 , 3 . 790
外 的 只 有 4 个也。就是说, x
7.如果一组数中每个数减去同一个非零
常数,则这一组数的( D).
A.平均数不变,方差不变 B.平均数改变,方差改变 C.平均数不变,方差改变 D.平均数改变,方差不变
6
频率
频率分布直方图
组距
0.6 前四个小矩形的 面积和=0.49
0.5
0.4
0.25
后四个小矩形的 面积和=0.26
0.3 0.22
均单位面积产量如下(单位:t/hm2),试
根据这组数据估计哪一种水稻品种的产量
比较稳定。
品种 第1年 第2年 第3年 第4年 第5年
甲
9.8
9.9 10.1 10 10.2
乙
9.4 10.3 10.8 9.7
9.8
解:甲品种的样本平均数为10,样本方差 为 [(9.8-10)2 +(9.9-10)2+(10.1-10)2+ (10-10)2+(10.2-10)2]÷5=0.02.
一个社会调查机构就某地居民的月收入调 查了10000人,并根据所得数据画了样本的 频率分布直方图如图所示,根据样本估计 月收入的平均数为 2400 ,众数为2500 中位数为 2400
练习:”八.一”前夕,某中学举行国防知识竞赛:满分为 100分,80分以上为优秀,现将高一的两个班参赛学生的 成绩进行整理后分成五组绘制成如图所示的频率分布直 方图,已知图中从左到右的第一、第二、第三、第四、 第五小组的频率分别是0.3,0.4,0.15,0.1,0.05
高中数学2.2.2 用样本的数字特征估计总体的数字特征1
2.(1)由平均数公式得 x=
(182×27+80×21)≈81.13(分).
48
(2)因为男生的中位数是75分,所以至少有14人得分不超过75
分.
又因为女生的中位数是80分,所以至少有11人得分不超过80分.
所以全班至少有25人得分不超过80分.
(3)男生的平均分与中位数的差别较大,说明男生中两极分化现
2.2.2 用样本的数字特征估计总体的数字特征
1.正确理解样本数据标准差的意义和作用,学会计算数据的标 准差. 2.能根据实际问题的需要合理地选取样本,从样本数据中提取 基本的数字特征(如平均数、标准差),并作出合理的解释. 3.会用样本的基本数字特征估计总体的基本数字特征,形成对 数据处理过程进行初步评价的意识.
x1 x2 xn
则 x =_______n_______.
2.方差、标准差 假设样本数据是x1,x2,x3,…,xn, x 是平均数,则 (1)方差是
s2=__n1[___x1___x_2____x_2 __x__2 ______x_n__x__2_].
(2)标准差为
s=__n1_[__x_1__x__2___x_2___x_2____ __x_n___x__2 ]_.
【解题指南】1.由平均数和方差的定义直接求解.
2.先画出茎叶图,再利用平均数和方差结合的形式分析稳定性.
【自主解答】1.
s2
1 [ 21
a1
x
2
a2 x
2
a20 x
2
xx
2
]
1 20 0.20 4 0.19.
21
21
答案:0.19
2.(1)作出茎叶图如下:
(2)派甲参赛比较合适.理由如下:
专题2-2-2 用样本的数字特征估计总体的数字特征-2017-
第二章统计2.2.2 用样本的数字特征估计总体的数字特征一、选择题1.一组数据为1,1,3,3,则这组数据的众数和中位数分别是A.1或3,2 B.3,2 C.1或3,1或3 D.3,3【答案】A2.与原数据单位不一样的是A.众数B.平均数C.标准差D.方差【答案】D【解析】根据众数、平均数,标准差,方差的含义及其计算方法,可知方差原数据单位不一样,故选D.3.对一个样本容量为100的数据分组,各组的频数如表:区间[17,19)[19,21)[21,23)[23,25)[25,27)[27,29)[29,31)[31,33]频数 1 1 3 3 18 16 28 30估计小于29的数据大约占总体的A.42% B.58% C.40% D.16%【答案】A【解析】由表格可以看出,样本在区间[17,29)上的数据个数为1+1+3+3+18+16=42,因为样本容量为100,所以样本在区间[17,29)上的频率为42100,则估计小于29的数据大约占总体的42%,故选A.4.下列说法正确的是A.甲乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样B.期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好C.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好D.期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好【答案】D【解析】在A 中,甲乙两个班期末考试数学平均成绩相同,但方差不一定相同,故这不能表明这两个班数学学习情况一样,故A 错误;在B 中,期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比较均衡,但学习成绩不一定比乙班好,故B 错误;在C 中,期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班不如乙班好,故C 错误;在D 中,期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好,故D 正确.故选D .5.为了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高1.60 m ;从南方抽取了200个男孩,平均身高为1.50 m .由此可推断我国13岁男孩的平均身高为 A .1.57 mB .1.56 mC .1.55 mD .1.54 m【答案】B6.一组数据的方差为S 2,将这组数据中的每个数都乘以2,所得的一组新数据的标准差为A .12SB .2SC .SD .4S【答案】B【解析】设该组数据为x 1、x 2、x 3…x n ,则设其平均数为x ;若将每个数据都乘以2,则有2x 1、2x 2、2x 3…2x n ,则其平均数为2x .于是原数据方差为:S 2=1n[(x 1–x )2+(x 2–x )2+…+(x n –x )2],新数据方差为:1n[(2x 1–2x )2+(2x 2–2x )2+…+(2x n –2x )2]=4S 2.故新数据的标准差为2S ,故选B . 7.将一组数据x 1,x 2,…,x n 改变为x 1–m ,x 2–m ,…,x n –m (m ≠0),则下列结论错误的是A .平均数减小B .方差变小C .平均数变化,方差不变D .平均数和方差都变小【答案】C【解析】因为一组数据x 1,x 2,…,x n 的平均数是12nx x x n +++,而x 1–m ,x 2–m ,…,x n –m 的平均数是12–nx x x nm nn+++, 所以将一组数据x 1,x 2,…,x n 改变为x 1–m ,x 2–m ,…,x n –m (m ≠0),平均数要变小,因为方差反应一组数据的波动大小,当一组数据都加上或者减去同一个数字,方差不变,所以平均数变小,方差不变.故选C .二、填空题8.已知一组数据:87,x,90,89,93的平均数为90,则该组数据的方差为__________.【答案】49.在如图所示的茎叶图中,甲、乙两组数据的中位数之和为__________.【答案】91【解析】根据茎叶图知,甲组数据从小到大分别为:28,31,39,42,45,55,57,58,66;乙组数据从小到大分别为:29,34,35,42,46,48,53,55,67;甲组数据共9个,中位数为45;乙组数据共9个,中位数为46,所以甲、乙两组数据的中位数之和为45+46=91.故答案为:91.10.随机抽取某班10名同学,测量他们的身高(单位:cm)获得身高数据的茎叶图(如图),则这个班的众数为__________,极差__________.【答案】168,179;24【解析】由茎叶图可知这个班的众数有两个,为:168,179,极差为:182–158=24.故答案为:168,179;24.11.某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如图所示,则这组数据的中位数与众数分别为__________.【答案】24,1312.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1–1,2x 2–1,…,2x 10–1的标准差为__________.【答案】16【解析】因为样本数据x 1,x 2,…,x 10的标准差为8,所以DX =8,即DX =64,数据2x 1–1,2x 2–1,…,2x 10–1的方差为D (2X –1)=4DX =4×64,则对应的标准差为()21D X -=16,故答案为:16. 三、解答题13.9个数据的和为1350,其中有3个数据的平均数为154,那么另6个数据的平均数是多少?【解析】设另6个数据的平均数是x , 则6x +3×154=1350, 解得x =148.所以另6个数据的平均数是148.14.2016年年底以来,国内共享单车突然就火爆了起来,由于其符合低碳出行理念,共享单车已经越来越多地引起人们的注意.某市调查市民共享单车的使用情况,随机采访10位经常使用共享单车的市民,收集到他们每周使用的事件如下(单位:小时):6.2,7.0,7.6,5.9,6.7,7.3,6.5,8.1,7.8,7.9.(1)根据以上数据,画出使用事件的茎叶图; (2)求出其中位数,平均数,方差.【解析】(1)如图所示,茎表示时间的个位数,叶表示小数点后的数字,(2)根据中位数的公式,计算中位数是7.07.37.152+=, 平均数是()16.27.07.6 5.9 6.77.3 6.58.17.87.97.110x =⨯+++++++++=;方差是 2222221[(6.27.1)(7.07.1)(7.67.1)(5.97.1)(6.77.1)10s =-+-+-+-+-+(7.3–7.1)2+ (6.5–7.1)2+(8.1–7.1)2+(7.8–7.1)2+(7.9–7.1)2=0.52.故答案为:0.52.15.某次运动会甲、乙两名射击运动员的成绩如下:甲:9.48.77.58.410.110.510.77.27.810.8 乙:9.18.77.19.89.78.510.19.210.19.1 (1)用茎叶图表示甲、乙两人的成绩; (2)根据茎叶图分析甲、乙两人的成绩;(3)分别计算两个样本的平均数x 和标准差s ,并根据计算结果估计哪位运动员的成绩比较稳定.(3)110x =甲×(9.4+8.7+7.5+8.4+10.1+10.5+10.7+7.2+7.8+10.8)=9.11; S 甲=(2221[(9.49.11)(8.79.11)10.89.11)10⎤⨯-+-++-⎦=1.3;(3)110x =乙×(9.1+8.7+7.1+9.8+9.7+8.5+10.1+9.2+10.1+9.1)=9.14; S 乙=(2221[(9.19.14)(8.79.14)9.19.14)10⎤-+-++-⎦=0.9.因为S 甲>S 乙,这说明了甲运动员的波动大于乙运动员的波动,所以我们估计,乙运动员比较稳定. 16.在某次综合素质测试中,共设有40个考室,每个考室30名考生.在考试结束后,为调查其测试前的培训辅导情况与测试成绩的相关性,抽取每个考室中座位号为05的考生,统计了他们的成绩,得到如图所示的频率分布直方图.(1)在这个调查采样中,采用的是什么抽样方法?(2)估计这次测试中优秀(80分及以上)的人数;(3)写出这40名考生成绩的众数、中位数、平均数的估计值.。
2-2-2 用样本的数字特征估计总体的数字特征
一、选择题1.甲、乙两中学生在一年里学科平均分相等,但他们的方差不相等,正确评价他们的学习情况是()A.因为他们平均分相等,所以学习水平一样B.成绩平均分虽然一样,方差较大的,说明潜力大,学习态度端正C.表面上看这两个学生平均成绩一样,但方差小的成绩稳定D.平均分相等,方差不等,说明学习不一样,方差较小的同学,学习成绩不稳定,忽高忽低[答案] C2.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体均值为3,中位数为4B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体均值为2,总体方差为3[答案] D3.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88,若样本B数据恰好是样本A都加上2后所得数据,则A、B两样本的下列数字特征对应相同的是() A.众数B.平均数C.中位数D.标准差[答案] D[解析]B样本数据恰好是A样本数据加上2后所得的众数、中位数、平均数比原来的都多2,而标准差不变.4.(2012·陕西高考)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53[答案] A[解析]直接列举求解.由题意知各数为12,15,20,22,23,23,31,32,34,34,38,39,45,45,45,47,47,48,48,49,50,50,51,5 1,54,57,59,61,67,68,中位数是46,众数是45,最大数为68,最小数为12,极差为68-12=56.5.(2012·山东卷)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是() A.众数B.平均数C.中位数D.标准差[答案] D[解析]样本数据都加2后所得数据的波动性并没有发生改变,所以标准差不变,故选D.6.某市在非典期间一手抓防治非典,一手抓经济发展,下表是利群超市5月份一周的利润情况记录:A.6.51万元B.6.4万元C.1.47万元D.5.88万元[答案] A[解析]从表中一周的利润可得一天的平均利润为x=0.20+0.17+0.23+0.21+0.23+0.18+0.257=0.21.又五月份共有31天,∴五月份的总利润约是0.21×31=6.51(万元).7.(2012~2013·江西南昌一模)甲、乙两个数学兴趣小组各有5名同学,在一次数学测试中,成绩统计用茎叶图表示,如图所示.若甲、乙小组的平均成绩分别是x甲、x乙,则下列结论正确的是()A.x甲>x乙,甲比乙成绩稳定B.x甲>x乙,乙比甲成绩稳定C.x甲<x乙,甲比乙成绩稳定D.x 甲<x 乙,乙比甲成绩稳定 [答案] A[解析] 根据茎叶图可知,甲组5名同学的成绩分别是88,89,90,91,92,乙组5名同学的成绩分别是83,84,88,89,91,可得x 甲=90,x 乙=87,故有x 甲>x 乙;s 2甲=2,s 2乙=9.2,故有s 2甲>s 2乙,所以甲比乙的成绩稳定,所以选A.8.如图是一次考试结果的频数分布直方图,根据该图可估计,这次考试的平均分数为( )A .46B .36C .56D .60 [答案] A[解析] 根据频数分布直方图,可估计有4人成绩在[0,20)之间,其考试分数之和为4×10=40;有8人成绩在[20,40)之间,其考试分数之和为8×30=240;有10人成绩在[40,60)之间,其考试分数之和为10×50=500;有6人成绩在[60,80)之间,其考试分数之和为6×70=420;有2人成绩在[80,100)之间,其考试分数之和为2×90=180,由此可知,考生总人数为4+8+10+6+2=30,考虑总成绩为40+240+500+420+180=1 380,平均数=1 38030=46.二、填空题9.(2012~2013·江苏南京高三一模)为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为________.[答案] 5[解析] 由茎叶图可知,该篮球运动员6场比赛的得分分别是14,17,18,18,20,21,得分的平均数x =14+17+18+18+20+216=18,根据方差公式得s 2=16[(14-18)2+(17-18)2+(18-18)2+(18-18)2+(20-18)2+(21-18)2]=5.10.(2012·广东高考卷)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)[答案] 1,1,3,3[解析] 不妨设x 1≤x 2≤x 3≤x 4,得:x 2+x 3=4,x 1+x 2+x 3+x 4=8⇒x 1+x 4=4 s 2=1⇔(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2=4⇒①如果有一个数为0或4;则其余数为2,不合题意; ②只能取|x 1-2|=1;得:这组数据为1,1,3,3.11.若a 1,a 2,…,a 20这20个数据的平均数为x ,方差为0.20,则a 1,a 2,…,a 20,x 这21个数据的方差约为________.[答案] 0.19[解析] s 2=121×[(a 1-x )2+(a 2-x )2+…+(a 20-x )2+(x -x )2]=121×20×0.20=421≈0.19.12.某人5次上班途中所花的时间(单位:min)分别为x ,y,10,11,9.若这组数据的平均数为10,方差为2,则|x -y |的值为________.[答案] 4[解析] 由平均数公式,得(x +y +10+11+9)×15=10,则x +y =20;又∵方差为2,则[(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]×15=2,得x 2+y 2=208,2xy =192,∴有|x -y |=(x -y )2=x 2+y 2-2xy =4. 三、解答题13.下图是甲、乙两人在一次射击比赛中中靶的情况(击中靶中心的圆面为10环,靶中各数字表示该数字所在圆环被击中所得的环数),每人射击了6次.(1)请用列表法将甲、乙两人的射击成绩统计出来;(2)请你用学过的统计知识,对甲、乙两人这次的射击情况进行比较.[解] (1)(2)x甲=9,x乙=9环,s2甲=23环2,s2乙=1环2.因为x甲=x乙,s2甲<s2乙,所以甲与乙的平均成绩相同,但甲发挥得比乙稳定.14.某良种培育基地正在培育一种小麦新品种A.将其与原有的一个优良品种B进行对照试验.两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427 ,430,430,434,443,445,445,451,454品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403 ,406,407,410,412,415,416,422,430(1)完成所附的茎叶图;(2)用茎叶图处理现有的数据,有什么优点?(3)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.[解析](1)(2)由于每个品种的数据都只有25个,样本不大,画茎叶图很方便;此时茎叶图不仅清晰明了的展示了数据的分布情况,便于比较,没有任何信息损失,而且还可以随时记录新的数据.(3)通过观察茎叶图可以看出:①品种A的亩产平均数(或均值)比品种B高;②品种A的亩产标准差(或方差)比品种B大,故品种A 的亩产稳定性较差.15.某学校高一(1)班和高一(2)班各有49名学生,两班在一次数学测验中的成绩统计如下:高一(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均分为79分,得70分的人最多,我得了85分,在班里算上上游了!”(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出建议.[分析](1)根据平均数、中位数、众数所反映的情况来分析;(2)结合方差的意义来提出建议.[解析](1)由于(1)班49名学生数学测验成绩的中位数是87,则85分排在全班第25名之后,所以从位次上看,不能说85分是上游,成绩应该属于中游.但也不能以位次来判断学习的好坏,小刚得了85分,说明他对这段的学习内容掌握得较好,从掌握学习的内容上讲,也可以说属于上游.(2)①班成绩的中位数是87分,说明高于87分(含87)的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难的学生的帮助.②班的中位数和平均数都是79分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的也很少,建议采取措施提高优秀率.16.(2012~2013·广东省惠来一中高一阶段考)对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图如图所示.(1)求出表中M ,p 及图中a 的值;(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(3)估计这次学生参加社区服务人数的众数、中位数以及平均数. [解析] (1)由分组[10,15)内的频数是10,频率是0.25知,10m =0. 25,所以M =40.因为频数之和为40,所以10+24+m +2=40,m =4,p =m M =440=0.10.因为a 是对应分组[15,20)的频率与组距的商,所以a =2440×5=0. 12.(2)因为该校高二学生有240人,分组[10,15)内的频率是0. 25, 所以估计该校高三学生参加社区服务的次数在此区间内的人数为60.(3)估计这次学生参加社区服务的人数众数是15+202=17.5.因为n =2440=0.6,所以样本中位数是15+0.5-0.25a≈17.1, 估计这次学生参加社区服务人数的中位数是17.1,样本平均人数是12.5×0.25+17.5×0.6+22.5×0.1+27.5×0.05=17. 25.估计这次学生参加社区服务人数的平均数是17. 25.。
2.2.2用样本的数字特征估计总体的数字特征
举例 1. 甲在一次射击比赛中的得分如下: ( 单 位:环).7,8,6,8,6,5,9,10,7,5,则他命中的平均 数是_____. 7.1 2. 某次数学试卷得分抽样中得到:90分 的有3个人,80分的有10人,70分的有5人,60 77分 分的有2人,则这次抽样的平均分为______.
思考
2.2.2用样本的数字特征 估计总体的数字特征
创设意境
在一次射击比赛中,甲、乙两名运动员各射击
10次,命中环数如下﹕ 甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8,6,7,7. 观察上述样本数据,你能判断哪个运动员发挥
的更稳定些吗?为了从整体上更好地把握总体的规
如何从频率分布直方图中估计中位数?
练习
应该采用平均数来表示每一个国家项目的平 均金额,因为它能反映所有项目的信息.但平均数 会受到极端数据2200万元的影响,所以大多数项 目投资金额都和平均数相差比较大.
标准差
有两位射击运动员在一次射击测试中各射 靶十次,每次命中的环数如下:
如果你是教练,你应当如何对这次射击情况作出 评价?如果这是一次选拔性考核,你应当如何作出选 择?
律,我们要通过样本的数据对总体的数字特征进行 研究——用样本的数字特征估计总体的数字特征.
1. 众数
在一组数据中,出现次数最多
的数据叫做这一组数据的众数. 2. 中位数 将一组数据按大小依次排列,把 处在最中间位置的一个数据(或两个数据的 平均数)叫做这组数据的中位数. 3. 平均数 (1) x = (x1+x2+……+xn) /n (2) x = x’ +a (3) x = (x1f1+x2f2+……xkfk)/n
《用样本数据的数字特征估计总体数字特征》专题精讲
《用样本数据的数字特征估计总体数字特征》专题精讲现实中的总体所包含的个数往往是很多的,因此我们通过获取样本数据,分析样本的分布和数字特征,进而对总体数字特征作出估计.而常见的样本的数字特征可分为两大类,一类是反映样本数据的集中趋势,包括样本平均数、众数、中位数;另一类是反映样本数据的波动大小,包括样本方差及标准差.通常,我们用样本的数字特征估计总体的数字特征.有关样本平均数及方差的计算和应用是高考考查的热点.1.用样本的平均数、众数、中位数估计总体的平均数、众数、中位数.典例1 对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图.(1)求出表中M,p及图中a的值;(2)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(3)估计这次学生参加社区服务次数的众数、中位数以及平均数.思路:本题通过分析频率分布直方图计算频数和频率,考查了频率分布直方图表的特点,通过计算样本频率分布直方图中的众数、中位数以及平均数估计总体的数字特征.解析:(1)由[10,15)内的频数是10,频率是0.25,知10M=0.25,所以40M=.因为频数之和为40,所以1024240m +++=,解得4m =,所以40.1040m p M ===.因为a 是对应[15,20)的频率与组距的商,所以240.12405a ==⨯. (2)因为该校高三学生有240人,在[10,15)内的频率是0.25,所以估计该校高三学生参加社区服务的次数在此区间内的人数为2400.2560⨯=. (3)估计这次学生参加社区服务次数的众数是15202+=17.5.因为240.640n ==,所以样本的中位数是0.50.251517.1a-+≈,估计这次学生参加社区服务次数的中位数是17.1.样本平均数是12.50.2517.50.622.50.127.50.0517.25⨯+⨯+⨯+⨯=,估计这次学生参加社区服务次数的平均数是17.25.2.估计总体的数字特征,通常我们用样本的平均数和方差(标准差)来近似代替总体的平均数和方差(标准差),呈现样本数据的集中趋势及波动大小,从而实现对总体的估计(1)一般情况下,需要将平均数和标准差结合,得到更多样本数据的信息,从而对总体做出较好的估计.因为平均数容易掩盖一些极端情况,使我们做出对总体的片面判断,而标准差较好地避免了极端情况.(2)若两组数据的平均数差别很大,也可以仅比较平均数,估计总体的平均水平,从而做出判断.需要注意的是:通过样本数据的统计图表和数字特征,我们能够估计总体的信息,而且样本容量越大,这种估计也就越精确.当样本数据发生变化时,总体的这些信息不会变化.典例2 甲、乙两种水稻试验品种连续5年的平均单位面积产量如下(单位:2t/hm ),试根据这组数据估计哪一种水稻品种的产量比较稳定.思路:本题通过对样本的数据进行分析计算,得到样本的方差和平均数,呈现出样本数据的集中趋势及波动大小,并对总体进行估计和评价,解决本题需要认真计算,以免影响数据的估计功能.解析:甲品种的样本平均数为1(9.89.910.11010.2)105⨯++++=,样本方差为22(9.810)(9.910)⎡-+-+⎣222(10.110)(1010)(10.210)50.02⎤-+-+-÷=⎦,乙品种的样本平均数为9.410.310.89.79.8)101(5+++⨯+=,样本方差为22(9.410)(10.310)⎡-+-+⎣222(10.810)(9.710)(9.810)50.244⎤-+-+-÷=⎦,由于甲品种和乙品种的样本平均数都相同,而甲品种的样本方差远远小于乙品种的样本方差,所以由这组数据可以认为甲种水稻的产量比较稳定.3.用样本数据的数字特征进行评价或决策“评价”一般指在数据分析的基础上能够基于数字特征给出相应的统计意义上的评价结论, “决策”一般指在基于数字特征有意义的评价的基础上,分析利弊、观察风险,进而做出切实可行的合理决策、方案或建议.典例3 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:服用B 药的20位患者日平均增加的睡眠时间:(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据,除了平均数还有哪个数字特征能评价哪种药的疗效更好?思路:本题从数据分析的角度出发,通过实际应用,计算样本数据的平均数,以及其他数字特征,给出相应的统计意义上的评价结论,进而做出切实可行的合理决策.解析:(1)设A 药观测数据的平均数为,B x 药观测数据的平均数为y ,由观测结果可得1(0.6 1.2 1.2 1.5 1.5 1.8 2.2 2.320x =⨯++++++++2.3 2.4 2.5 2.6 2.7 2.7 2.8 2.9 3.0 3.1++++++++++3.2 3.5) 2.3+=,1(0.50.50.60.80.9 1.1 1.2 1.220y =⨯++++++++1.3 1.4 1.6 1.7 1.8 1.9 2.1 2.4 2.5 2.6++++++++++2.7 3.2) 1.6+=,由以上计算结果可得x y >,因此可看出A 药的疗效更好.(2)由于中位数与平均数都可以描述数据集中程度,因此除了平均数还可以用中位数评价疗效.。
用样本的数字特征估计总体的数字特征
用样本的数字特征估计总体的数字特征
在统计学中,样本是从总体中抽取的部分数据。
样本的数字特征是通过对样本数据的分析和计算得出的描述性统计量,可以用来估计总体的数字特征。
本文将介绍常用的样本数字特征,并讨论如何利用这些特征来估计总体的数字特征。
一、样本的数字特征
1. 平均数:样本的平均数是样本数据的总和除以样本的个数。
平均数是样本数据的中心位置的度量,可以用来估计总体的平均数。
2. 中位数:样本的中位数是将样本数据按照大小排列后,位于中间位置的数字。
中位数是样本数据的中心位置的度量,可以用来估计总体的中位数。
3. 众数:样本的众数是样本数据中出现次数最多的数字。
众数可以表示样本数据的最常见的数值,可以用来估计总体的众数。
4. 方差:样本的方差是样本数据与样本均值之差的平方的平均值。
方差反映了样本数据的离散程度,可以用来估计总体的方差。
5. 标准差:样本的标准差是样本方差的平方根。
标准差也反映了样本数据的离散程度,可以用来估计总体的标准差。
三、注意事项
1. 样本的数字特征只能提供对总体数字特征的估计,估计的准确程度取决于样本的大小和抽样方法的随机性。
样本越大,估计的准确性一般越高。
2. 在利用样本数字特征估计总体数字特征时,需要考虑样本的代表性。
抽样时要保证样本能够代表总体的各个特征和属性。
3. 样本数字特征只能给出对总体数字特征的一种估计,通过使用统计方法和推断技巧,可以给出估计结果的置信区间和可靠程度。
(完整版)用样本的数字特征估计总体的数字特征
2.2.2用样本的数字特征估计总体的数字特征 (两课时)零号作业一、众数、中位数、平均数1、众数:(1)定义:一组数据中出现次数最多的数称为这组数据的众数.(2)特征:一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势 [破疑点] 众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使其无法客观地反映总体特征.(3)在直方图中为最高矩形下端中点的横坐标 2、中位数:(1)定义:一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数. (2)特征:一组数据中的中位数是唯一的,反映了该组数据的集中趋势.在频率分布直方图中,中位数左边和右边的直方图的面积相等.[破疑点] 中位数不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点.(3) 直方图面积平分线与横轴交点的横坐标.左右两边面积各占一半3、平均数:(1)定义:一组数据的和与这组数据的个数的商.数据x 1,x 2,…,x n 的平均数为xn=x 1+x 2+…+x nn(2)特征:平均数对数据有“取齐”的作用,代表该组数据的平均水平.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中极端值的影响较大,使平均数在估计总体时可靠性降低.(3) 直方图中每个小矩形的面积与小矩形底边中点的横坐标的乘积之和. 二、标准差、方差1、标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s 表示,通常用以下公式来计算s =1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较_ 小.2.方差(1)定义:标准差的平方,即s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](2)特征:与标准差的作用相同,描述一组数据围绕平均数波动程度的大小. (3)取值范围:[0,+∞)3、数据组x 1,x 2,…,x n 的平均数为x ,方差为s 2,标准差为s ,则数据组ax 1+b ,ax 2+b ,…,ax n +b (a ,b 为常数)的平均数为a x +b ,方差为a 2s 2,标准差为4、规律总结(1)用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据. 样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.用样本的数字特征估计总体的数字特征,是指用样本的众数、中位数、平均数和标准差等统计数据,估计总体相应的统计数据(2)平均数对数据有“取齐”的作用,代表一组数据的平均水平.标准差描述一组数据围绕平均数波动的幅度.在实际应用中,我们常综合样本的多个统计数据,对总体进行估计,为解决问题作出决策.(3)标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围.列出一组样本数据的频率分布表步骤说明:1、对同一个总体,可以抽取不同的样本,相应的平均数与标准差都会发生改变.如果样本的代表性差,则对总体所作的估计就会产生偏差;如果样本没有代表性,则对总体作出错误估计的可能性就非常大,由此可见抽样方法的重要性.2.在抽样过程中,抽取的样本是具有随机性的,如从一个包含6个个体的总体中抽取一个容量为3的样本就有20中可能抽样,因此样本的数字特征也有随机性.用样本的数字特征估计总体的数字特征,是一种统计思想,没有惟一答案.3.在实际应用中,调查统计是一个探究性学习过程,需要做一系列工作,我们可以把学到的知识应用到自主研究性课题中去.一号作业11、众数(1)定义:一组数据中出现次数______的数称为这组数据的众数.(2)特征:一组数据中的众数可能______一个,也可能没有,反映了该组数据的____________.在直方图中为最高矩形下端中点的____________最多不止集中趋势横坐标2.中位数(1)定义:一组数据按从小到大的顺序排成一列,处于______位置的数称为这组数据的中位数.(2)特征:一组数据中的中位数是______的,反映了该组数据的______________.在频率分布直方图中,中位数左边和右边的直方图的面积______..中间唯一集中趋势相等3.平均数(1)定义:一组数据的和与这组数据的个数的商.数据x1,x2,…,x n的平均数为x n=_________________.(2)特征:平均数对数据有“取齐”的作用,代表该组数据的_____________.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的______,但平均数受数据中_________的影响较大,使平均数在估计总体时可靠性降低.直方图中每个小矩形的面积与小矩形底边中点的横坐标的. ______x1+x2+…+x nn平均水平信息极端值乘积之和4.标准差(1)定义:标准差是样本数据到平均数的一种平均距离,一般用s表示,通常用以下公式来计算s=__________________________.可以用计算器或计算机计算标准差.(2)特征:标准差描述一组数据围绕______波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差较大,数据的离散程度较______;标准差较小,数据的离散程度较______.1n[(x1-x)2+(x2-x)2+…+(x n-x)2]平均数大小5.方差(1)定义:标准差的平方,即s2=________________________________________.(2)特征:与____________的作用相同,描述一组数据围绕平均数波动程度的大小.(3)取值范围:___________.1n[(x1-x)2+(x2-x)2+…+(x n-x)2] 标准差[0,+∞)数据组x1,x2,…,x n的平均数为x,方差为s2,标准差为s,则数据组ax1+b,ax2+b,…,ax n+b(a,b为常数)的平均数为a x+b,方差为a2s2,标准差为as.典例讲解中位数、众数、平均数的应用例1据报道,某公司的33名职工的月工资(以元为单位)如下:(1)求该公司的职工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5 000元提升到20 000元,董事长的工资从5 500元提升到30 000元,那么新的平均数、中位数、众数又是什么?(精确到1元)(3)你认为哪个统计量更能反映这个公司职工的工资水平?结合此问题谈一谈你的看法.[解析](1)平均数是x=1 500+4 000+3 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+591=2 091(元).中位数是1 500元,众数是1 500元.(2)平均数是x′=1 500+28 500+18 500+2 000×2+1 500+1 000×5+500×3+0×2033≈1 500+1 788=3 288(元).中位数是1 500元,众数是1 500元.(3)在这个问题中,中位数或众数均能反映该公司职工的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数偏差较大,所以平均数不能反映这个公司职工的工资水平.练习1:某小区广场上有甲、乙两群市民正在进行晨练,两群市民的年龄如下(单位:岁):甲群13,13,14,15,15,15,15,16,17,17;乙群54,3,4,4,5,5,6,6,6,57.(1)甲群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好反映甲群市民的年龄特征?(2)乙群市民年龄的平均数、中位数和众数各是多少岁?其中哪个统计量能较好反映乙群市民的年龄特征?[答案](1)甲群市民年龄的平均数为13+13+14+15+15+15+15+16+17+1710=15(岁),中位数为15岁,众数为15岁.平均数、中位数和众数相等,因此它们都能较好地反映甲群市民的年龄特征.(2)乙群市民年龄的平均数为54+3+4+4+5+5+6+6+6+5710=15(岁),中位数为5岁,众数为6岁.由于乙群市民大多数是儿童,所以中位数和众数能较好地反映乙群市民的年龄特征,而平均数的可靠性较差.例2:(1)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差(2)某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.①求这次测试数学成绩的众数.②求这次测试数学成绩的中位数.③求这次测试数学成绩的平均分.[解析](1)x甲=15(4+5+6+7+8)=6,x乙=15(5×3+6+9)=6,甲的中位数是6,乙的中位数是5.甲的成绩的方差为15(22×2+12×2)=2,乙的成绩的方差为15(12×3+32×1)=2.4.甲的极差是4,乙的极差是4.所以A,B,D错误,C正确.(2)①由图知众数为70+802=75.②由图知,设中位数为x,由于前三个矩形面积之和为0.4,第四个矩形面积为0.3,0.3+0.4>0.5,因此中位数位于第四个矩形内,得0.1=0.03(x-70),所以x≈73.3.③由图知这次数学成绩的平均分为:40+502×0.005×10+50+602×0.015×10+60+702×0.02×10+70+802×0.03×10+80+902×0.025×10+90+1002×0.005×10=72.[答案](1)C (2)见解析练习1:参加市数学调研抽测的某校高三学生成绩分布的茎叶图1和频率分布直方图2均受到不同程度的破坏,但可见部分信息如下,据此解答如下问题:求参加数学抽测的人数n,抽测成绩的中位数及分数分布在[80,90),[90,100]内的人数.[答案]分数在[50,60)内的频率为2,由频率分布直方图可以看出,分数在[90,100]内的同样有2人.由2n=10×0.008,得n=25.由茎叶图可知抽测成绩的中位数为73.∴分数在[80,90)之间的人数为25-(2+7+10+2)=4.参加数学竞赛人数n=25,中位数为73,分数在[80,90),[90,100]内的人数分一号作业21.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值都不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的值相等.其中正确的结论的个数() A.1B.2 C.3 D.42、为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如下图所示,假设得分值的中位数为m e,众数为m O,平均值为x,则()A.m e=m O=x B.m e=m O<x C.m e<m O<x D.m O<m e<x3、某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是() A.31,6岁B.32.6岁C.33.6岁D.36.6岁4、阶段考试以后,班长算出了全班40个人数学成绩的平均分为M,如果把M当成一个同学的分数,与原来的40个分数一起,算出这41个分数的平均分为N,那么M N为________.1、A 2 D 3、C 4、 15、为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.90.80.9 2.4 1.2 2.6 1.3 1.4 1.60.5 1.80.6 2.1 1.1 2.5 1.2 2.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据绘制茎叶图,从茎叶图看,哪种药的疗效更好?[解析](1)设A药观测数据的平均数为x,B药观测数据的平均数为y.由观测结果可得x=120×(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y=120×(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x>y,因此可看出A药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上,而B药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A药的疗效更好.标准差、方差的应用例3、从甲、乙两种玉米的苗中各抽10株,分别测它们的株高如下:(单位:cm)甲:25414037221419392142乙:27164427441640401640问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?[解析]看哪种玉米的苗长得高,只要比较甲、乙两种玉米的苗的均高即可;要比较哪种玉米的苗长得齐,只要看两种玉米的苗高的方差即可,因为方差是体现一组数据波动大小的特征数.(1)x甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x乙=110(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm).所以x甲<x乙.(2)s2甲=110[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=110(25+121+100+49+64+256+121+81+81+144)=110×1042=104.2(cm2),s2乙=110[(2×272+3×162+3×402+2×442)-10×312]=110×1288=128.8(cm2).所以s2甲<s2乙.[答案](1)乙种玉米的苗长得高,(2)甲种玉米的苗长得齐.练习1:甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s1,s2,s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有() A.s3>s1>s2B.s2>s1>s3C.s1>s2>s3D.s2>s3>s1[答案] B练习2:一次数学知识竞赛中,两组学生成绩如下表:已经算得两个组的平均分都是80分,请根据你所学过的统计知识,进一步判断这两个组这次竞赛中成绩谁优谁次,并说明理由.[答案](1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较看,甲组成绩好些.(2)s2甲=12+5+10+13+14+6×[2×(50-80)2+5×(60-80)2+10×(70-80)2+13×(80-80)2+14×(90-80)2+6×(100-80)2]=150×(2×900+5×400+10×100+13×0+14×100+6×400)=172.s2乙=150×(4×900+4×400+16×100+2×0+12×100+12×400)=256.因为s2甲<s2乙,所以甲组成绩较乙组成绩稳定.(3)甲、乙两组成绩的中位数、平均数都是80分,其中甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,从这一角度看,甲组成绩总体较好.(4)从成绩统计表看,甲组成绩大于或等于90分的人数为20人,乙组成绩大于或等于90分的人数为24人,所以乙组成绩在高分阶段的人数多,同时,乙组得满分的比甲组得满分的多6人,从这一角度看,乙组成绩较好.一号作业31. 若样本数据x 1,x 2,……,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .322.为了稳定市场,确保农民增收,某农产品7个月份的每月市场收购价格与其前三个月的市场收购价格有关,并使其与前三个月的市场收购价格之差的平方和最小,下表列出的是该产品今年前6个月的市场收购价格:则前7A.757 B.767 C .11D.7873. 某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数4.由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)1、C2、B3、C4、1,1,3,3。
用样本的数字特征估计总体的数字特征
用样本的数字特征估计总体的数字特征估计总体的数字特征是统计学中的一个重要问题,在实际应用中经常需要通过样本数据对总体数据的统计参数进行估计。
估计总体的数字特征包括均值、方差、标准差、偏度、峰度等多个方面。
首先,对于总体的均值μ的估计,可以使用样本的平均值x_bar作为总体均值的近似值,即:μ ≈ x_bar这是因为样本的平均值是总体均值的无偏估计量。
在大样本条件下,由于中心极限定理的作用,样本的平均值的标准差会越来越小,从而使得x_bar更加接近总体均值μ。
其次,对于总体的方差σ^2的估计,可以使用样本方差s^2作为总体方差的无偏估计量,即:σ^2 ≈ s^2其中,样本方差的计算公式为:s^2 = ∑(x_i - x_bar)^2 / (n-1)其中,x_i表示第i个样本数据,x_bar表示样本的平均值,n表示样本容量。
在样本容量较大时,样本方差与总体方差之间的差别会越来越小,从而可以更加准确地估计总体方差。
然而,使用样本方差进行总体方差的估计存在一个问题,即样本方差的值通常比总体方差的值偏小。
因此,为了更加准确地估计总体方差,可以使用修正样本方差s_*^2,即将分母从n-1改为n,计算公式为:除了均值和方差的估计外,偏度和峰度等数字特征的估计也是非常重要的。
偏度是衡量数据分布对称性的数字特征,偏度为0表示数据分布对称。
正偏度表示数据分布向右倾斜,负偏度表示数据分布向左倾斜。
偏度的计算公式为:其中,s是样本标准差。
峰度是衡量数据分布尖峭程度的数字特征,峰度为0表示数据分布与正态分布相同。
正峰度表示数据分布比正态分布更加集中,负峰度表示数据分布较为平缓。
峰度的计算公式为:通过样本的数字特征估计总体的数字特征是数据分析的一个基本问题。
在实际应用中,要根据数据分析的目的选择合适的估计方法,并掌握估计方法的优缺点,以确保估计结果的准确性和可靠性。
2.2.2 用样本的数字特征估计总体的数字特征标准差
标准差
平均数向我们提供了样本数据的重要信息,但是 平均数向我们提供了样本数据的重要信息 但是 平均有时也会使我们作出对总体的片面判断. 平均有时也会使我们作出对总体的片面判断.因 为这个平均数掩盖了一些极端的情况, 为这个平均数掩盖了一些极端的情况,而这些极 端情况显然是不能忽的.因此, 端情况显然是不能忽的.因此,只有平均数还难 以概括样本数据的实际状态. 以概括样本数据的实际状态. 如:有两位射击运动员在一次射击测试中各 射靶10次 每次命中的环数如下: 射靶 次,每次命中的环数如下:
考察样本数据的分散程度的大小, 考察样本数据的分散程度的大小,最常用的统计量是 标准差. 标准差. 标准差是样本平均数的一种平均距离,一般用s表示 表示. 标准差是样本平均数的一种平均距离,一般用 表示. 所谓“平均距离” 其含义可作如下理解: 所谓“平均距离”,其含义可作如下理解: 假设样本数据是 x1 , x 2 ,⋅ ⋅ ⋅, x n , x 表示这组数据的平均 的距离是: 数,则 x i 到 x 的距离是: 则 的平均距离是: 于是样本数据 x1 , x 2 ,⋅ ⋅ ⋅, x n 到 x 的平均距离是:
甲 25.46, 25.32, 25.45, 25.39, 25.36 25.34, 25.42, 25.45, 25.38, 25.42 25.39, 25.43, 25.39, 25.40, 25.44 乙 25.40, 25.42, 25.35, 25.41, 25.39 25.40, 25.43, 25.44, 25.48, 25.48 25.47, 25.49, 25.49, 25.36, 25.34 25.33, 25.43, 25.43, 25.32, 25.47 25.31, 25.32, 25.32, 25.32, 25.48
用样本的数字特征估计总体的数字特征
解:用计算器计算可得: x甲≈25.401,x乙≈25.406;s甲0.037,
s乙≈0.068 从样本平均数看,甲生产旳零件内径比乙生产
旳更接近内径原则(25.40mm),但是差别很小; 从样本原则差看,因为,所以甲生产旳零件内径 比乙旳稳定程度高诸多.于是,能够作出判断, 甲生产旳零件旳质量比乙旳高某些.
分析:先画出数据旳直方图,根据样本数据算出 样本数据旳平均数,利用原则差旳计算公式即可 算出每一组数据旳原则差.
解:四组样本数据旳直方图是:
频率
频率
1.0
0.9
0.8 0.7 0.6
x=5 s=0.00
0.5
0.4
0.3
0.2
0.1
0 12345678
(1)
1.0
0.9
0.8 0.7 0.6
x=5 s=0.82
xi-x(i=1,2,…n). (3)算出(2)中xi-x(i=1,2,…n)旳平方. (4)算出(3)中n个平方数旳平均数,即为样 本方差.
(5)算出(4)中平均数旳算术平方根,即为样
本原则差.其计算公式为:
S=
1 n
[(x1-x)2+(x2-x)2+…+(xn-x)2]
显然,原则差较大,数据旳离散程度较大;原则
中位数是1500元,众数是1500元.
(3)在这个问题中,中位数或众数均能反应公 司员工旳工资水平.因为企业中少数人旳工资额 与大多数人旳工资额差别较大,这么造成平均数 偏差较大,所以平均数不能反应这个企业工资水 平.
2.甲、乙两种玉米苗中各抽10株,分别测得它 们旳株高如下(单位:cm): 甲:25 41 40 37 22 14 19 39 21 42 乙:27 16 44 27 44 16 40 40 16 40 问:(1)哪种玉米旳苗长得高?(2)哪种玉 米旳苗长得齐? 解:(1) x甲=110(25+41+40+37+22+14+19+39+21110+42)= ×300=30(cm);
2.2.2 用样本的数字特征估计总体的数字特征
众数、中位数、平均数都是描述一组数 众数、中位数、平均数都是描述一组数 据的集中趋势的特征数, 据的集中趋势的特征数,只是描述的角度不 其中以平均数的应用最为广泛. 同,其中以平均数的应用最为广泛
巩固练习 1、求下列各组数据的众数 )、1 (1)、 ,2,3,3,3,5,5,8,8,8,9,9 )、 , , , , , , , , , , 众数是: 和 众数是:3和8 )、1 (2)、 ,2,3,3,3,5,5,8,8,9,9 )、 , , , , , , , , , 众数是: 众数是:3 2、求下列各组数据的中位数 、 )、1 (1)、 ,2,3,3,3,4,6,8,8,8,9,9 )、 , , , , , , , , , , 中位数是: 中位数是:5 (2)1 ,2,3,3,3,4,8,8,8,9,9 ) , , , , , , , , , 中位数是: 中位数是:4
频率 组距
提示: 频率分布直方图 提示:在频率分布 直方图中,各个组的 直方图中 各个组的 平均数如何找? 平均数如何找?
0.6 0.5 0.4 0.3
0.22 0.25
0.2
0.15
0.14 0.08 0.04
0.1 0
0.5
0.06 0.04 1 1.5 2 2.5 3 3.5 0.02 4 4.5
频率 组距
0.6 0.5 0.4 0.3 0.2 0.1
0.04 0.08 0.15
提示: 频率分布直方图 提示:中位数左边的 数据个数与右边的 与右边的数 数据个数与右边的数 据个数是相等的 是相等的。 据个数是相等的。
0.25
0.22
0.14 0.06 0.04 0.02 4 4.5
0
0.5
1
2.2.2 用样本的数字特征 估计总体的数字特征
2.2.2用样本的数字特征估计总体的
25.49 25.32
从生产零件内径的尺寸看,谁生产的零件质量 ks5u精品课件 较高?
x 甲 » 25.401 s甲 » 0.037
x 乙 » 25.406
s乙 » 0.068
甲生产的零件内径更接近内径标准,且稳定 程度较高,故甲生产的零件质量较高.
说明:1.生产质量可以从总体的平均数与标准差 两个角度来衡量,但甲、乙两个总体的平均数与 标准差都是不知道的,我们就用样本的平均数与 标准差估计总体的平均数与标准差. 2.问题中25.40mm是内径的标准值,而不是 总体的平均数.
ks5u精品课件
例5 有20种不同的零食,它们的热量 含量如下: 110 120 123 165 432 190 174 235 428 318 249 280 162 146 210 120 123 120 150 140 (1)以上20个数据组成总体,求总体平 均数与总体标准差; (2)设计一个适当的随机抽样方法,从 总体中抽取一个容量为7的样本,计算样 本的平均数和标准差.
(3)
O
1Байду номын сангаас2 3 4 5 6 7 8
(4)
ks5u精品课件
例2 甲、乙两人同时生产内径为25.40mm的一种 零件,为了对两人的生产质量进行评比,从他们 生产的零件中各随机抽取20件,量得其内径尺寸 如下(单位:mm):
甲 : 25.46 25.45 25.44 乙: 25.40 25.49 25.47 25.32 25.38 25.40 25.43 26.36 25.31 25.45 25.42 25.42 25.44 25.34 25.32 25.39 25.39 25.35 25.48 25.33 25.32 25.36 25.43 25.41 25.48 25.43 25.32 25.34 25.39 25.39 25.47 25.43 25.48 25.42 25.40
用样本的数字特征估计总体的数字特征
(B)4
(C)2
(D)1
1.有甲、乙两种水稻,测得每种水稻各10株 的分蘖数后,计算出样本方差分别为S甲2=11 ,S乙2=3.4,由此可以估计( B ) (A)甲种水稻比乙种水稻分蘖整齐 (B)乙种水稻比甲种水稻分蘖整齐 (C)甲、乙种水稻分蘖整齐程度相同 (D)甲、乙两种水稻分蘖整齐程度不能比 较
频率分布直方图损失了一些样本数据,得到的是 一个估计值,且所得的估计值与数据分组有关.
注: 在只有样本频率分布直方图的情况下, 我们可以按上述方法估计众数、中位数和平 均数,并由此估计总体特征.
频率 组距
0.5 0.44 0.3 0.28
众数: 最高矩形的中点 中位数:左右两边直方图的面积相等.
平均数:频率分布直方图中每 个小矩形的面积乘以 小矩形底边中点的横 坐标之和.
x乙
=
1(13+14+12+12+14)=13 5
s2甲
=
1 5
[(10
13)2
+(13
13)2
+(12
13)2
+(14
13)2
+(16
13)2
]=4
s2乙
=
1 5
[(13
13)2
+(14
13)2
+(12
13)2
+(12
13)
2
+(14
13)2
]=0.8
(2)由 s2甲>s2乙可知乙的成绩较稳定.
从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,
算一算:在城市居民月均用水量样本数据的频率分布
直方图中,从左至右各个小矩形的面积分别是0.04, 0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此 估计总体的平均数是什么?
用样本的数字特征估计总体的数字特征
用样本的数字特征估计总体的数字特征【知识点的知识】1.样本的数字特征:众数、中位数、平均数众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛.(1)众数:在一组数据中,出现次数最多的数据叫做这组数据的众数;(2)中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数;(3)平均数:一组数据的算术平均数,即.2、三种数字特征的优缺点::(1)样本众数通常用来表示分类变量的中心值,比较容易计算,但是它只能表示样本数据中的很少一部分信息.(2)中位数不受少数几个极端值的影响,容易计算,它仅利用了数据排在中间的数据的信息.(3)样本平均数与每个样本数据有关,所以,任何一个样本数据的改变都会引起平均数的改变.这是中位数,众数都不具有的性质,也正因为这个原因,与众数,中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.(4)如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.(5)使用者根据自己的利益去选择使用中位数或平均数来描述数据的中心,从而产生一些误导作用.3、如何从频率分布直方图中估计众数、中位数、平均数?利用频率分布直方图估计众数、中位数、平均数:估计众数:频率分布直方图面积最大的方条的横轴中点数字.(最高矩形的中点)估计中位数:中位数把频率分布直方图分成左右两边面积相等.估计平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.4、样本平均数、标准差对总体平均数、标准差的估计现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道(或不可求)的.如何求得总体的平均数与标准差呢?通常的做法是用样本的平均数与标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.如要考查一批灯泡的质量,我们可从中随机抽取一部分作为样本,要分析一批钢筋的强度,可以随机抽取一定数目的钢筋作为样本,只要样本的代表性强就可以用来对总体作出客观的判断.但需要注意的是,同一个总体,抽取的样本可以是不同的.如一个总体包含6个个体,现在要从中抽取3个作为样本,所有可能的样本会有20种不同的结果,若总体与样本容量较大,可能性就更多,而只要其中的个体是不完全相同的,这些相应的样本频率分布与平均数、标准差都会有差异.这就会影响到我们对总体情况的估计.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2用样本的数字特征估计总体的数字特征
链接高考
1.(2014课标Ⅰ,18,12分,★★☆)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:
质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125)
频数 6 26 38 22 8
(1)作出这些数据的频率分布直方图;
(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?
2.(2014陕西,9,5分,★★☆)某公司10位员工的月工资(单位:元)为x1,x2, (x10)
其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()
A.,s2+1002
B.+100,s2+1002
C.,s2
D.+100,s2
3. (2015广东,17,12分,★★☆)某城市100户居民的月平均用电量(单位:度),以
[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图
.
(1)求直方图中x 的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
4. (2014课标Ⅱ节选,19,★★☆)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下: 甲部门
乙部门 4
97
97665332110 98877766555554443332100 6655200
632220 3 4 5 6 7 8 59 0448 122456677789
011234688
00113449 123345
9
10
011456
000
(1)分别估计该市的市民对甲、乙两部门评分的中位数;
(2)根据茎叶图分析该市的市民对甲、乙两部门的评价.
三年模拟
1.(2016湖南长沙长郡中学期中,★☆☆)10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()
A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a
2.(2016福建漳州东山二中期末,★☆☆)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()
A.91.5和91.5
B.91.5和92
C.91和91.5
D.92和92
3.(2016湖南株洲十八中期中,★☆☆)某班级有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如表:
学生1号2号3号4号5号
投中次数67 7 8 7
则投中次数的方差为s2=()
A.2
B.0.4
C.4
D.0.2
4.(2016吉林辽源田家炳高中友好学校联考,★☆☆)甲、乙两位同学在5次考试
中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字.若甲、乙两人的平均成绩分别是、,则下列说法正确的是()
A.<,甲比乙成绩稳定
B.<,乙比甲成绩稳定
C.>,甲比乙成绩稳定
D.>,乙比甲成绩稳定
5.(2014安徽学业水平测试,★☆☆)根据下边的茎叶图,以下判断正确的是
()
甲乙
2 4 12
3 6
9 3 5 9
63 1 62
33 1 73 3
5 4 8 389
A.甲的中位数大于乙的中位数
B.乙的中位数大于甲的中位数
C.甲的众数大于乙的众数
D.乙的众数大于甲的众数
6.(2016河北衡水景县中学期中,★☆☆)以下茎叶图记录了某赛季甲、乙两名篮
球运动员参加11场比赛的得分(单位:分),若甲运动员的中位数为a,乙运动员的众数为b,则a-b的值是________.
7.(2015江苏沭阳银河中学调研,★☆☆)如果数据x1,x2,x3,…,x n的方差是a,数据3x1-2,3x2-2,3x3-2,…,3x n-2的方差为9,则a=________.
8.(2015江苏南京金陵中学模拟,★☆☆)为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如图所示,则该组数据的方差为______.
1 4 7 8 8
2 0 1
9.(2014山东学业水平测试,★☆☆)甲、乙两位射击选手射击10次所得成绩的
标准差分别为s
甲=1.29,s
乙
=1.92,则________成绩稳定.
10.(2016安徽安庆宿松凉亭中学期中,★★☆)为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:
甲27 38 30 37 35 31
乙33 29 38 34 28 36
请判断:谁参加这项重大比赛更合适,并阐述理由.
11.(2016山西右玉一中期末,★★☆)甲、乙两位学生参加数学竞赛培训,现分别
从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲:8281797895889384
乙:9295807583809085
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.。