《管理运筹学》习题集-34页文档资料

合集下载

管理运筹学复习题及部分参考答案

管理运筹学复习题及部分参考答案

一、名词解释 1.模型 2.线性规划 3.树 4.网络 5.风险型决策二、简答题 1.简述运筹学的工作步骤。

2.运筹学中模型有哪些基本形式 3.简述线性规划问题隐含的假设。

4.线性规划模型的特征。

5.如何用最优单纯形表判断线性规划解的唯一性或求出它的另一些最优解 6.简述对偶理论的基本内容。

7.简述对偶问题的基本性质。

8.什么是影子价格?同相应的市场价格之间有何区别,以及研究影子价格的意义。

9.简述运输问题的求解方法。

10.树图的性质。

11.简述最小支撑树的求法。

12.绘制网络图应遵循什么规则。

三、书《收据模型与决策》2.13 14. 有如下的直线方程:2x 1 +x 2 =4 a. 当x 2 =0 时确定x 1 的值。

当x 1 =0 时确定x 2 的值。

b. 以x 1 为横轴x 2 为纵轴建立一个两维图。

使用a 的结果画出这条直线。

c. 确定直线的斜率。

d. 找出斜截式直线方程。

然后使用这个形式确定直线的斜率和直线在纵轴上的截距。

答案: 14. a. 如果x 2 =0,则x 1 =2。

如果x 1 =0,则x 2 =4。

c. 斜率= -2 d. x 2 =-2 x 1 +4 2.40 你的老板要求你使用管理科学知识确定两种活动(和)的水平,使得满足在约束的前提下总成本最小。

模型的代数形式如下所示。

Maximize 成本=15 x 1 +20 x 2 约束条件约束1:x 1 + 2x 2 10 约束2:2x 1 3x 2 6 约束3:x 1 +x 2 6和x 1 0,x 2 0 a. 用图解法求解这个模型。

b. 为这个问题建立一个电子表格模型。

c. 使用Excel Solver 求解这个模型。

答案: a. 最优解:(x 1 , x 2 )=(2, 4),C=110 b c.活动获利 1 2总计水平A B C 1 2 2 3 1 1 10 10 8 6 6 6 单位成本方案15 20 2 4 $110.00 3.2 考虑具有如下所示参数表的资源分配问题: 资源每一活动的单位资源使用量可获得的资源数量 1 2 1 2 3 2 3 2 1 3 4 10 20 20 单位贡献$20 $30 单位贡献=单位活动的利润b. 将该问题在电子表格上建模。

《管理运筹学》第四版课后习题

《管理运筹学》第四版课后习题

《管理运筹学》第四版课后习题答案第2章线性规划的图解法1.解:(1)可行域为OABC。

(2)等值线为图中虚线部分。

(3)由图2-1可知,最优解为B点,最优解1x=127,2157x=;最优目标函数值697。

图2-12.解:(1)如图2-2所示,由图解法可知有唯一解120.20.6xx=⎧⎨=⎩,函数值为3.6。

图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

(5)无穷多解。

(6)有唯一解3.解:(1)标准形式(2)标准形式(3)标准形式4.解: 标准形式松弛变量(0,0) 最优解为 ,x 2=3/2。

5.解:标准形式剩余变量(0, 0, 13) 最优解为 x 1=1,x2=5。

6.解:(1)最优解为 x 1=3,x 2=7。

(2(3 (4(5)最优解为 x 1=8,x 2(61,所以最优解不变。

7.解:设x ,y 分别为甲、乙两种柜的日产量,目标函数z=200x +240y , 线性约束条件:即作出可行域.解⎩⎨⎧=+=+162202y x y x 得)8,4(Q 272082404200=⨯+⨯=最大z答:该公司安排甲、乙两种柜的日产量分别为4台和8台,可获最大利润2720元.8.解:设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积zm2. +2y , 线性约束条件: ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0027315212y x y x y x y x 作出可行域,并做一组一组平行直线x +2y=t .解⎩⎨⎧=+=+12273y x y x 得)2/15,2/9(E.但E 不是可行域内的整点,在可行域的整点中,点)8,4(使z 取得最小值。

答:应截第一种钢板4张,第二种钢板8张,能得所需三种规格的钢板,且使所用钢板的面积最小.9.解:设用甲种规格原料x 张,乙种规格原料y 张,所用原料的总面积是zm 2,目标函数z=3x +2y ⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+003222y x y x y x 作出可行域.作一组平等直线3x +2y=t . 解⎩⎨⎧=+=+3222y x y x 得)3/1,3/4(CC 不是整点,C 不是最优解.在可行域内的整点中,点B(1,1)使z 取得最小值. z 最小=3×1+2×1=5,答:用甲种规格的原料1张,乙种原料的原料1张,可使所用原料的总面积最小为5m 2.10.解:设租用大卡车x 辆,农用车y 辆,最低运费为z 元.目标函数为z=960x +360y .线性约束条件是⎪⎩⎪⎨⎧≥+≤≤≤≤1005.28200100y x y x 作出可行域,并作直线960x +360y=0. 即8x +3y=0,向上平移由⎩⎨⎧=+=1005.2810y x x 得最佳点为()10,8作直线960x +360y=0. 即8x +3y=0,向上平移至过点B(10,8)时,z=960x +360y 取到最小值.z 最小=960×10+360×8=12480答:大卡车租10辆,农用车租8辆时运费最低,最低运费为12480元.11.解:设圆桌和衣柜的生产件数分别为x 、y ,所获利润为z ,则z=6x +10y .⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+005628.008.07209.018.0y x y x y x 即⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+001400728002y x y x y x 作出可行域.平移6x +10y=0 ,如图⎩⎨⎧=+=+1400728002y x y x 得⎩⎨⎧==100350y x 即C(350,100).当直线6x +10y=0即3x +5y=0平移到经过点C(350,100)时,z=6x +10y 最大12.解:模型12max 500400z x x =+ 1211121223003540224401.2 1.5300,0x x x x x x x x ++≤≤≤≤≥(1)1150x =,270x =,即目标函数最优值是103 000。

管理运筹学习题集

管理运筹学习题集
表5—1单位:万元
增设销售店个数
营业区A
营业区B
营业区C
1
100
120
150
2
160
150
165
3
190
170
175
4
200
180
190
4.某工厂与用户签订了4个月的交货合同如表5—2所示,该厂仓库的存货能力为4万件,每万件的生产费用为20000元,在进行生产的月份,工厂要支出固定费用6000元,仓库的保管费每万件每月1500元,假定开始时及4月底交货后无存货,试问应在每月各生产多少件产品,才能满足交货任务,同时使总费用最小?
第一目标:充分利用正常的生产能力,避免开工不足;
第二目标:优先满足老客户的需求,A,B,C3种型号的电脑各为50台、50台、80台,同时根据3种电脑的纯利润分配不同的加权系数;
第三目标:限制装配线加班时间,最好不超过200小时;
第四目标:满足各种型号电脑的销售目标,A,B,C3种型号分别为100台、120台、100台,再根据3种电脑的纯利润分配不同的加权系数;
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4Байду номын сангаас
3
2800
利润(百元)
2.7
3
4.5
2.5
3
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表1—17所示。
表1—3产品生产工艺消耗系数


《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案一、选择题1. 管理运筹学的研究对象是()A. 生产过程B. 管理活动C. 经济活动D. 运筹问题参考答案:D2. 以下哪个不属于管理运筹学的基本方法?()A. 线性规划B. 整数规划C. 非线性规划D. 人力资源规划参考答案:D3. 在线性规划中,约束条件是()A. 等式B. 不等式C. 方程组D. 矩阵参考答案:B4. 以下哪种方法不属于线性规划的对偶问题求解方法?()A. 单纯形法B. 对偶单纯形法C. 拉格朗日乘数法D. 牛顿法参考答案:D5. 在目标规划中,以下哪个不是目标约束的类型?()A. 等式约束B. 不等式约束C. 目标函数约束D. 线性约束参考答案:C二、填空题1. 管理运筹学的核心思想是______。

参考答案:最优化2. 在线性规划中,最优解存在的条件是______。

参考答案:可行性、有界性3. 整数规划的求解方法主要有______和______。

参考答案:分支定界法、动态规划法4. 在目标规划中,目标函数的求解方法有______、______和______。

参考答案:单纯形法、拉格朗日乘数法、动态规划法5. 非线性规划问题可以分为______、______和______。

参考答案:无约束非线性规划、约束非线性规划、非线性规划的对偶问题三、判断题1. 管理运筹学的研究对象是管理活动。

()参考答案:正确2. 在线性规划中,最优解一定存在。

()参考答案:错误3. 整数规划的求解方法比线性规划复杂。

()参考答案:正确4. 目标规划的求解方法与线性规划相同。

()参考答案:错误5. 非线性规划问题一定比线性规划问题复杂。

()参考答案:错误四、计算题1. 某工厂生产甲、乙两种产品,甲产品每件利润为10元,乙产品每件利润为8元。

生产甲产品每件需消耗2小时机器工作时间,3小时人工工作时间;生产乙产品每件需消耗1小时机器工作时间,2小时人工工作时间。

工厂每周最多可利用机器工作时间100小时,人工工作时间150小时。

《管理运筹学》试题及答案

《管理运筹学》试题及答案

中国矿业大学2010~2011学年第二学期《 管理运筹学 》模拟试卷一考试时间:120 分钟 考试方式:闭 卷1212121212max 334262180,0z x x x x x x x x x x =+⎧⎪+≤⎪⎪-+≤⎨⎪+≤⎪≥≥⎪⎩2. 用表上作业法求下表中给出的运输问题的最优解。

答案: 1.解:加入人工变量,化问题为标准型式如下:1234512312412512345max 3300042.6218,,,,0z x x x x x x x x x x x s t x x x x x x x x =++++++=⎧⎪-++=⎪⎨++=⎪⎪≥⎩(3分)下面用单纯形表进行计算得终表为:所以原最优解为 *(3,0,1,5,0)T X =2、解:因为销量:3+5+6+4+3=21;产量:9+4+8=21;为产销平衡的运输问题。

(1分)由最小元素法求初始解:(5分)用位势法检验得:(7分)所有非基变量的检验数都大于零,所以上述即为最优解且该问题有唯一最优解。

此时的总运费:min 45594103112011034150z =⨯+⨯+⨯+⨯+⨯+⨯+⨯=。

3、解:系数矩阵为:1279798966671712149151466104107109⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(3分)从系数矩阵的每行元素减去该行的最小元素,得:50202 23000 010572 98004 06365⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦经变换之后最后得到矩阵:70202 43000 08350 118004 04143⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦相应的解矩阵:01000 00010 00001 00100 10000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(13分)由解矩阵得最有指派方案:甲—B,乙—D,丙—E,丁—C,戊—A 或者甲—B,乙—C,丙—E,丁—D,戊—A (2分)所需总时间为:Minz=32 (2分)中国矿业大学2010~2011学年第二学期《管理运筹学》模拟试卷二考试时间:120 分钟考试方式:闭卷1.求解下面运输问题。

《管理运筹学》习题集

《管理运筹学》习题集
管理运筹学
物流管理教研室
1.什么是线性规划?线性规划三要素是什么?
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
5.用表格单纯形法求解如下线性规划。
1
1
1
100
B(小时)
10
4
5
600
C(小时)
2
2
6
300
单位产品利润(元)
10
6
4
(1)建立线性规划模型,求该厂获利最大的生产计划。
(2)产品丙每件的利润增加到多大时才值得安排生产?如产品丙每件的利润增加到6,求最优生产计划。
(3)产品甲的利润在多大范围内变化时,原最优计划保持不变?
(4)设备A的能力如为100+10q,确定保持原最优基不变的q的变化范围。
表5—11单位:万元
增设销售店个数
营业区A
营业区B
营业区C
1
100
120
150
2
160
150
165
3
190
170
175
4
200
180
190
4.某工厂与用户签订了4个月的交货合同如表5—12所示,该厂仓库的存货能力为4万件,每万件的生产费用为20000元,在进行生产的月份,工厂要支出固定费用6000元,仓库的保管费每万件每月1500元,假定开始时及4月底交货后无存货,试问应在每月各生产多少件产品,才能满足交货任务,同时使总费用最小?
7
9
5
3
2
0

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划线性规划的三要素是什么答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型松弛变量和剩余变量的管理含义是什么答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

.解:标准化.列出单纯形表412b02[8]2 /80868 /641241/41/81/8]/8(1/4/(1/813/265/4/43/4(13/2/(1/4 0-1/23/21/222806-221-12-502故最优解为,即,此时最优值为.6.表1—15中给出了求极大化问题的单纯形表,问表中为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

《管理运筹学》习题集

《管理运筹学》习题集
1
1
1
100
B(小时)
10
4
5
600
C(小时)
2
2
6
300
单位产品利润(元)
10
6
4
(1)建立线性规划模型,求该厂获利最大的生产计划。
(2)产品丙每件的利润增加到多大时才值得安排生产?如产品丙每件的利润增加到6,求最优生产计划。
(3)产品甲的利润在多大范围内变化时,原最优计划保持不变?
(4)设备A的能力如为100+10q,确定保持原最优基不变的q的变化范围。
第五目标:装配线加班时间尽可能少。
请列出相应的目标规划模型,并用LINGO软件求解。
2.已知3个工厂生产的产品供应给4个客户,各工厂生产量、用户需求量及从各工厂到用户的单位产品的运输费用如表4—1所示。由于总生产量小于总需求量,上级部门经研究后,制定了调配方案的8个目标,并规定了重要性的次序。
表4—1工厂产量—用户需求量及运费单价单位:元/单位
用户
工厂
用户1
用户2
用户3
用户4
生产量
工厂1
5
2
6
7
工厂2
3
5
4
6
工厂3
4
5
2
3
需求量(单位)
200
100
450
250
第一目标:用户4为重要部门,需求量必须全部满足;
第二目标:供应用户1的产品中,工厂3的产品不少于100个单位;
第三目标:每个用户的满足率不低于80%;
第四目标:应尽量满足各用户的需求;
热处理(2种方案)
检验
方案
生产费用
方案
生产费用
方案

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案汇总《管理运筹学》(第二版)课后习题参考答案第一章线性规划(复习问题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(LP)是运筹学中最成熟的分支,也是运筹学中应用最广泛的分支。

线性规划在规划理论中属于静态规划。

它是解决有限资源优化配置问题的重要优化工具。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.在解决线性规划问题时,可能会有几个结果。

哪个结果表明建模中存在错误?答:(1)唯一最优解:只有一个最佳优势;(2)多重最优解:无限多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.线性规划的标准形式是什么?松弛变量和剩余变量的管理意义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.尝试解释线性规划问题的可行解、基本解、基本可行解和最优解的概念及其相互关系。

答:可行解:满足约束条件这个问题的解叫做可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基础:与可行解对应的基础称为可行基础。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.使用表格单纯形法求解以下线性规划。

s.t.解决方案:标准化s.t.列出单纯形表00441b二万八千四百一十一/4一3/20-1/2二[8]六2一/81/8]/8六5/4/43/43/21/22/88/6(1/4/(1/8(13/2/(1/422806-221-因此,最佳解决方案是125,即-2.为何值及变,最佳值为6.表1―15中给出了求极大化问题的单纯形表,问表中当数量属于哪种类型时:(1)表中的解是唯一的最优解;(2)表中的解是无限最优解之一;(3)下一次迭代将是代替基变量(4)线性规划问题有无界解;(5)该线性规划问题无可行解。

管理运筹学》-第四版课后习题答案.docx

管理运筹学》-第四版课后习题答案.docx

.《管理运筹学》第四版课后习题解析(上)第 2 章线性规划的图解法1.解:(1)可行域为 OABC。

(2)等值线为图中虚线部分。

()由图2-1可知,最优解为 B 点,最优解x=12,69。

315;最优目标函数值7x1277图 2-12.解:x10.2( 1)如图 2-2 所示,由图解法可知有唯一解,函数值为 3.6 。

x20.6图2-2(2)无可行解。

(3)无界解。

(4)无可行解。

word 资料.( 5)无穷多解。

x2092( 6)有唯一解3,函数值为。

183x2 33.解:( 1)标准形式maxf 3 12x2010s20s3 x s9 x12x2s1303x12x2s2132 x12x2s39x1,x2, s1,s2,s3≥0( 2)标准形式min f4x16x20 s10s23x1x2s16x1 2 x2s2107 x16x24x1, x2, s1, s2≥0( 3)标准形式min f x12x22x20 s10s23x15x25x2s1702 x15x25x2503x1 2 x2 2 x2s230x1, x2, x2, s1 , s2≥ 04.解:标准形式max z10 x15x20 s10s2word 资料.3x14x2s195 x12x2s28x1, x2, s1, s2≥0word 资料.松弛变量( 0,0)最优解为 x 1 =1,x 2=3/2 。

5.解: 标准形式min f11x 18 x 20 s 10s 20s 310x 1 2x 2 s 1 20 3x 1 3x 2 s 2 18 4 x 19x 2s 336x 1, x 2 , s 1 , s 2 , s 3 ≥ 0剩余变量( 0, 0, 13 )最优解为 x 1=1,x 2=5。

6.解:( 1)最优解为 x 1=3,x 2=7。

( 2) 1 c 1 3 。

( 3) 2 c 26 。

( 4)x 16。

x 24。

( 5)最优解为 x 1=8,x 2=0。

管理运筹学练习题

管理运筹学练习题

管理运筹学练习题1、某公司受委托,准备把120万元投资基金A和B,其中基金A的单位投资额为50元,年回报率为本10% ,基金B的单位投资额为100元,年回报率为本4% 。

委托人要求在每年的年回报金额至少达到6万元的基础上投资风险最小,根据测定单位基金A的风险指数为8 ,单位基金B的风险指数为3 ,风险指数越大表明投资风险越大。

委托人要求至少在基金B中的投资额不少于30万元。

(a)为了使总的投资风险指数最小,该公司应该在基金A和B中各投资多少。

(b)如果使总的投资回报金额最大,应该如何投资。

2、十个专业方向的班级参加6门课程的统一考试,由于专业方向不同,内容不同,考试门数也不一样,下表给出每个班级应参加考试的课程(打※)。

要求:考试在三天内结束,每天上、下午各考一门。

并且每人每天最多考一门,老师要求A必须在第一天上午考,F必须作为最后一门考,B只能下午考,请排一张考试日程表。

3、某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少? (图在下页)4、有四项工作要甲、乙、丙、丁四个人去完成.每项工作只允许一人去完成。

每个人只完成其中一项工作,已知每个人完成各项工作的时间如下表。

问应指派每个人完成哪项工作,使总的消耗时间最少?5、某公司从两个产地A1,A2将物品运往三个销售地B1,B2,B3 ,各产地的产量、各销售地的销量和各产地运往各销售地的每件物品的运费如下表:问如何调运,使得总运输费用最小。

6、在环境污染日益得到重视的今天,越来越多的企业开始注重工业废水污水排污。

某纸张制造厂生产一般类型纸张的利润为300元/吨,每吨纸产生的工业废水的处理费用为30元,生产某特种纸张的利润为500元/吨,每吨特种纸张产生的工业废水的处理费用40元。

该纸张制造厂近期目标如下:目标1:纸张利润不少于15万;目标2:工业废水的处理费用不超过1万元。

《管理运筹学》习题集

《管理运筹学》习题集
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表1—17所示。
表1—17产品生产工艺消耗系数



设备能力
A(小时)
管理运筹学
物流管理教研室
1.什么是线性规划?线性规划三要素是什么?
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
5.用表格单纯形法求解如下线性规划。
s.t.
(1)求出该问题产值最大的最优解和最优值。
(2)求出该问题的对偶问题的最优解和最优值。
(3)给出两种资源的影子价格,并说明其经济含义;第一种资源限量由2变为4,最优解是否改变?
(4)代加工产品丁,每单位产品需消耗第一种资源2单位,消耗第二种资源3单位,应该如何定价?
6.某企业生产甲、乙两种产品,产品生产的工艺路线如图2—1所示,试统计单位产品的设备工时消耗,填入表2—7。又已知材料、设备C和设备D等资源的单位成本和拥有量如表2—7所示。
机械加工(3种方案)
热处理(2种方案)
检验
方案
生产费用
方案
生产费用
方案

管理运筹学

管理运筹学

管理运筹学练习一一、判断题,错误的请说明原因。

(1)若线性规划问题的可行域无界,则该问题无最优解。

(2)单纯形法解线性规划问题时,等于零的变量一定是非基变量。

(3)若线性规划问题有两个最优解,则一定有无穷多最优解。

(4)如果原问题有无界解,则对偶问题没有可行解。

(5)个变量,个约束的标准线性规划,其基可行解数目恰好为。

(6)次为1的顶点为悬挂点,孤立点的次一定为0。

(7)图中所有顶点的次之和一定为偶数。

(8)最小支撑树是唯一的。

(9)下图中的次为4,的次为5。

(10)下图中(b)为(a)的支撑子图(a)(b)二、某钢铁公司生产一种合金,要求的成分规格是:锡不少于28%,锌不多于15%,铅恰好10%,镍要介于35%-55%之间,不允许有其他成分。

钢铁公司拟从五种不同级别的矿石中进行冶炼,每种矿物的成分含量和价格如下表所示。

矿石杂质在冶炼过程中废弃,求每吨四、伦敦(L)、墨西哥城(MC)、纽约(NY)、巴黎(Pa)、秘鲁(Pe)和东京(T)之间的航线如下图所示。

其中,,,,,,,,,,,,,,要游遍这六个城市,试问应如何设计航线使总航程最小?五、设有三个煤矿供应四个地区的煤炭,已知煤矿产量、各地区需要量及从各煤矿到各六、某厂生产录音机和收音机两种产品。

该厂装配车间每日共有工人140人可用来装配两种产品。

已知录音机装配速度为2人日/台,收音机1人日/台。

据预测市场每日需求为:录音机60台,收音机100台,每台录音机和收音机的利润分别为300元和120元。

显然,由于受到装配劳动力的限制,装配车间不能满足市场需求量。

为了增加收益,厂领导考虑从其它车间抽调工人支援装配车间,但人数不能太多,否则将会使成本增加。

最后,厂领导制定了4个目标,按优先等级列举如下:P1:避免开工不足,使装配车间能正常生产;P2:允许工人支援装配,但每天最多不能超过40名;P3:尽可能达到计划日装配量,录音机和收音机优先权系数由所带来的利润而定;P4:尽可能减少支援工人数节约费用;试建立该问题的目标规划模型。

管理运筹学课后习题

管理运筹学课后习题

管理运筹学课后习题第一章思考题、主要概念及内容1、介绍运筹学的分支,运筹学产生的背景、研究的内容和意义。

2、介绍运筹学在工商管理中的应用领域。

3、体会管理运筹学使用相应的计算机软件,注重学以致用的原则。

第二章思考题、主要概念及内容图解法、图解法的灵敏度分析复习题1.考量下面的线性规划问题:maxz=2x1+3x2;约束条件:x1+2x2≤6,5x1+3x2≤15,x1,x2≥0.(1)画出其可行域.(2)当z=6时,图画出来等值线2x1+3x2=6.(3)用图解法求出其最优解以及最优目标函数值.2.用图解法解以下线性规划问题,并表示哪个问题具备惟一最优求解、无穷多最优求解、无界求解或并无可取求解.(1)minf=6x1+4x2;约束条件:2x1+x2≥1,3x1+4x2≥3,x1,x2≥0.(2)maxz=4x1+8x2;约束条件:2x1+2x2≤10,-x1+x2≥8,x1,x2≥0.(3)maxz=3x1-2x2;约束条件:x1+x2≤1,2x1+2x2≥4,x1,x2≥0.(4)maxz=3x1+9x2;约束条件:x1+3x2≤22,-x1+x2≤4,x2≤6,2x1-5x2≤0,x1,x2≥03.将下列线性规划问题化为标准形式:(1)maxf=3x1+2x2;约束条件:9x1+2x2≤30,3x1+2x2≤13,2x1+2x2≤9,x1,x2≥0.(2)minf=4x1+6x2;约束条件:3x1-x2≥6,x1+2x2≤10,7x1-6x2=4,x1,x2≥0.(3)minf=-x1-2x2;约束条件:3x1+5x2≤70,-2x1-5x2=50,-3x1+2x2≥30,x1≤0,-∞≤x2≤∞.(提示:可以令x′1=-x1,这样可得x′1≥0.同样可以令x′2-x″2=x2,其中x′2,x″2≥0.可见当x′2≥x″2时,x2≥0;当x′2≤x″2时,x2≤0,即-∞≤x2≤∞.这样原线性规划问题可以化为含有决策变量x′1,x′2,x″2的线性规划问题,这里决策变量x′1,x′2,x″2≥0.)4.考虑下面的线性规划问题:minf=11x1+8x2;约束条件:10x1+2x2≥20,3x1+3x2≥18,4x1+9x2≥36,x1,x2≥0.(1)用图解法解.(2)写出此线性规划问题的标准形式.(3)算出此线性规划问题的三个余下变量的值.5.考量下面的线性规划问题:maxf=2x1+3x2;约束条件:x1+x2≤10,2x1+x2≥4,x1+3x2≤24,2x1+x2≤16,x1,x2≥0.(1)用图解法解.(2)假定c2值不变,求出使其最优解不变的c1值的变化范围.(3)假定c1值不变,求出使其最优解不变的c2值的变化范围.(4)当c1值从2变为4,c2值不变时,求出新的最优解.(5)当c1值不变,c2值从3变为1时,求出新的最优解.(6)当c1值从2变为25,c2值从3变为25时,其最优解是否变化?为什么?6.某公司正在生产两种产品,产品ⅰ和产品ⅱ,每天的产量分别为30个和120个,利润分别为500元/个和400元/个.公司负责管理生产的副总经理期望介绍与否可以通过发生改变这两种产品的数量而提升公司的利润.公司各个车间的加工能力和生产单位产品所需的加工工时例如表中2-4(25页)右图.表中2-4(1)假设生产的全部产品都能销售出去,用图解法确定最优产品组合,即确定使得总利润最大的产品ⅰ和产品ⅱ的每天的产量.(2)在(1)所求出的最优产品组合中,在四个车间中哪些车间的能力除了余下?余下多少?这在线性规划中称作余下变量还是僵硬变量?(3)四个车间加工能力的对偶价格各为多少?即四个车间的加工能力分别增加一个加工时数时能给公司带来多少额外的利润?(4)当产品ⅰ的利润维持不变时,产品ⅱ的利润在什么范围内变化,此最优求解维持不变?当产品ⅱ的利润维持不变时,产品ⅰ的利润在什么范围内变化,此最优求解维持不变?(5)当产品ⅰ的利润从500元/个升为450元/个,而产品ⅱ的利润从400元/个减少为430元/个时,原来的最优产品组合与否还是最优产品组合?例如存有变化,代莱最优产品组合就是什么?第三章思考题、主要概念及内容“管理运筹学”软件的操作方法“管理运筹学”软件的输出信息分析复习题1.见到第二章第7题,设x1为产品ⅰ每天的产量,x2为产品ⅱ每天的产量,可以创建下面的线性规划模型:maxz=500x1+400x2;约束条件:2x1≤300,3x2≤540,2x1+2x2≤440,1.2x1+1.5x2≤300,x1,x2≥0.使用“管理运筹学”软件,得到的计算机解如图3-5)所示根据图3-5提问下面的问题:(1)最优解即最优产品组合是什么?此时最大目标函数值即最大利润为多少?(2)哪些车间的加工工时数已采用回去?哪些车间的加工工时数还不行回去?其僵硬变量即为不行回去的加工工时数为多少?(3)四个车间的加工工时的对偶价格各为多少?请对此对偶价格的含义予以说明.(4)如果恳请你在这四个车间中挑选一个车间展开上班生产,你可以挑选哪个车间?为什么?(5)目标函数中x1的系数c1,即为每单位产品ⅰ的利润值,在什么范围内变化时,最优产品的女团维持不变?(6)目标函数中x2的系数c2,即每单位产品ⅱ的利润值,从400元提高为490元时,最优产品组合变化了没有?为什么?(7)恳请表述约束条件中的常数项的下限与上限.(8)第1车间的加工工时数从300增加到400时,总利润能增加多少?这时最优产品的组合变化了没有?(9)第3车间的加工工时数从440减少至480时,从图3-5中我们若想求出总利润减少的数量?为什么?(10)当每单位产品ⅰ的利润从500元降至475元,而每单位产品ⅱ的利润从400元升至450元时,其最优产品组合(即最优解)是否发生变化?请用百分之一百法则进行判断.(11)当第1车间的加工工时数从300减少至350,而第3车间的加工工时数从440降至380时,用百分之一百法则若想推论原来的对偶价格与否发生变化?例如不发生变化,命令出来其最小利润.2.见第二章第8题(2),仍设xa为购买基金a的数量,xb为购买基金b的数量,建立的线性规划模型如下:maxz=5xa+4xb;约束条件:50xa+100xb≤1200000,100xb≥300000,xa,xb≥0.使用“管理运筹学”软件,求得计算机解如图3-7所示.根据图3-7,提问以下问题:(1)在这个最优解中,购买基金a和基金b的数量各为多少?这时获得的最大利润是多少?这时总的投资风险指数为多少?(2)图3-7中的僵硬/余下变量的含义就是什么?(3)请对图3-7中的两个对偶价格的含义给予解释.(4)恳请对图3-7中的目标函数范围中的上时、上限的含义给与具体内容表明,并阐释如何采用这些信息.(5)请对图3-7中的常数项范围的上、下限的含义给予具体说明,并阐述如何使用这些信息.(6)当投资总金额从1200000元下降到600000元,而在基金b上至少投资的金额从300000元增加到600000元时,其对偶价格是否发生变化?为什么?。

管理运筹学全部试题

管理运筹学全部试题

《管理运筹学》复习题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

3.模型是一件实际事物或现实情况的代表或抽象。

4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。

运筹学研究和解决问题的效果具有连续性。

6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解。

13用运筹学解决问题时,要分析,定议待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s·t”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过( C )来验证模型最优解。

A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括( A )阶段。

A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量 B变量 C 约束条件 D 目标函数5.模型中要求变量取值( D )A可正 B可负 C非正 D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料 斤)
(公 60
50
200
4 200
设备 C(小时)
10
3 000
设备 D(小时)
20
4 500
据市场分析,甲、乙产品销售价格分别为 13 700 元和 11 640 元,试确定
获利最大的产品生产计划。
(1)设产品甲的计划生产量为 x1,产品乙的计划生产量为 x2,试建立其线 性规划的数学模型;若将材料约束加上松弛变量 x3,设备 C 约束加上松弛变量 x4,设备 D 约束加上松弛变量 x5,试化成标准型。
Max Z=4x1+x2+2x3
s.t. (1)求出该问题产值最大的最优解和最优值。
(2)求出该问题的对偶问题的最优解和最优值。
(3)给出两种资源的影子价格,并说明其经济含义;第一种资源限量由 2
变为 4,最优解是否改变?
(4)代加工产品丁,每单位产品需消耗第一种资源 2 单位,消耗第二种资
源 3 单位,应该如何定价?
样的投资方案,才能使该公司在这个计划期获得最大利润?
10.某家具制造厂生产五种不同规格的家具。每种家具都要经过机械成
型、打磨、上漆几道主要工序。每种家具的每道工序所用时间、每道工序的
可用时间、每种家具的利润由表 1—16 给出。问工厂应如何安排生产,使总利
润最大?
表 1—16 家具生产工艺耗时与利润表
划模型,求将可供电量用完的最低总费用分配方案。
表 2 单位电力输电费单位:元
城市电站
A
B
C

15
18
22
第2页

21
25
16
9.某公司在 3 年的计划期内,有 4 个建设项目可以投资:项目Ⅰ 从第一年
到第三年年初都可以投资。预计每年年初投资,年末可收回本利 120%,每年又
可以重新将所获本利纳入投资计划;项目Ⅱ 需要在第一年初投资,经过两年
Right hand Side Ranges
第6页
Resource
Current Rhs
Allowable Increase
Allowable Decrease
材料
4 200
300
450
设备 C
3 000
360
900
设备 D
4 500
Infinity
300
试问非紧缺资源最多可以减少到多少,而紧缺资源最多可以增加到多少?
所需时间 (小时)
生产工序
1
2
3
4
5
每道工序可用 时间(小时)
成型
3
4
6
2
3
3 600
打磨
4
3
5
6
4
3 950
上漆
2
3
3
4
3
2 800
利润(百 2.7 3 4.5 2.5 3
元)
第3页
11.某厂生产甲、乙、丙三种产品,分别经过 A,B,C 三种设备加工。已知
生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如
6.某企业生产甲、乙两种产品,产品生产的工艺路线如图 2—1 所示,试统计单
位产品的设备工时消耗,填入表 2—7。又已知材料、设备 C 和设备 D 等资源
的单位成本和拥有量如表 2—7 所示。
图 2—1 工艺路线
表 2—7 资源消耗与资源成本表
资源
产品 资源消耗
资源成本

乙 元/单位资源
资源拥有量
第5页
(2)利用 LINDO 软件求得:最优目标函数值为 18 400,变量的最优取值分
别为 x1=20,x2=60,x3=0,x4=0,x5=300,则产品的最优生产计划方案是什么?并解 释 x3=0,x4=0,x5=300 的经济意义。
(3)利用 LINDO 软件对价值系数进行敏感性分析,结果如下:
Obj Coefficient Ranges
表 1—17 所示。
表 1—17 产品生产工艺消耗系数



设备能力
A(小时)
1
1
1
100
B(小时)
10
4
5
600Βιβλιοθήκη C(小时)22
6
300
单位产品利润
10
6
4
(元)
(1)建立线性规划模型,求该厂获利最大的生产计划。
(2)产品丙每件的利润增加到多大时才值得安排生产?如产品丙每件的利
润增加到 6,求最优生产计划。
自治区重点产业紧缺人才专业建设
物流管理专业——课程建设 管理运筹学 习题集 物流管理教研室
2014 年 3 月
第1页
第一章 线性规划 1.什么是线性规划?线性规划三要素是什么? 2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么? 4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其 相互关系。 5.用表格单纯形法求解如下线性规划。
7.用大 M 法求解如下线性规划。
8. A,B,C 三个城市每年需分别供应电力 320,250 和 350 单位,由Ⅰ,Ⅱ
两个电站提供,它们的最大可供电量分别为 400 单位和 450 单位,单位费用如
表 1—15 所示。由于需要量大于可供量,决定城市 A 的供应量可减少 0~30 单
位,城市 B 的供应量不变,城市 C 的供应量不能少于 270 单位。试建立线性规
(5)写出本题中线性规划的对偶模型;如果对甲乙产品生产计划的线性规
可收回本利 150%,又可以重新将所获本利纳入投资计划,但用于该项目的最
大投资额不得超过 20 万元;项目Ⅲ 需要在第二年年初投资,经过两年可收
回本利 160%,但用于该项目的最大投资额不得超过 15 万元;项目Ⅳ 需要在
第三年年初投资,年末可收回本利 140%,但用于该项目的最大投资额不得超
过 10 万元。在这个计划期内,该公司第一年可供投资的资金有 30 万元。问怎
Variable
Current Coef
Allowable Increase
Allowable Decrease
x1
200
88
x2
240
26.67
20 73.33
试问如果生产计划执行过程中,甲产品售价上升到 13 800 元,或者乙产品
售价降低 60 元,所制定的生产计划是否需要进行调整?
(4)利用 LINDO 软件对资源向量进行敏感性分析,结果如下:
(3)产品甲的利润在多大范围内变化时,原最优计划保持不变?
(4)设备 A 的能力如为 100+10q,确定保持原最优基不变的 q 的变化范围。
(5)如合同规定该厂至少生产 10 件产品丙,试确定最优计划的变化。
第4页
第 2 章 对偶规划 1.对偶问题和对偶变量(即影子价值)的经济意义是什么? 2.什么是资源的影子价格?它与相应的市场价格有什么区别? 3.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、 解及检验数之间的关系? 4.已知线性规划问题
相关文档
最新文档