有机人名反应及其机理(整理缩小版)
有机化学人名反应机理
1.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:2. Birch还原反应实例3.Cannizzaro 反应4.反应实例4. Chichibabin反应反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。
本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。
5. Claisen酯缩合反应二元羧酸酯的分子内酯缩合见Dieckmann 缩合反应。
反应机理反应实例6. Claisen重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
交叉反应实验证明:Claisen重排是分子内的重排。
采用 γ-碳 14C 标记的烯丙基醚进行重排,重排后 γ-碳原子与苯环相连,碳碳双键发生位移。
两个邻位都被取代的芳基烯丙基酚,重排后则仍是α-碳原子与苯环相连。
芳环上取代基的电子效应对重排无影响。
取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。
反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。
7. Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
有机人名反应——机理及合成应用
有机人名反应——机理及合成应用有机化学里,有一个有趣的领域叫做“人名反应”,听到这个名字是不是觉得有点像是某种神秘的仪式?其实,人名反应是指那些以某个人名命名的经典化学反应。
就像有人给你起个外号,化学家们也给这些反应起了名字,以纪念那些对化学有重大贡献的前辈。
今天我们就来聊聊这些反应的机理以及它们在合成中的应用,让大家对这个领域有个直观的了解。
1. 有机人名反应的机理1.1 什么是机理?简单来说,机理就是解释化学反应为什么会这样发生的故事。
就像你在看一部悬疑剧时,想知道凶手怎么作案一样,化学家们也想弄清楚反应的“幕后黑手”是什么。
机理告诉我们每一步反应过程中的分子怎么舞动,反应怎么一步步进行,就像揭开了化学反应的神秘面纱。
1.2 经典人名反应的机理我们先从最著名的几个反应说起吧,比如费林反应(FriedelCrafts反应)和迈克尔加成反应。
费林反应是由化学家费林(Friedel)和克拉夫茨(Crafts)一起开发的,它主要用来生成芳香族化合物的衍生物。
简单来说,就是把一个芳香环(比如苯)跟一个其他的基团结合起来,形成新化合物。
这就好比把你喜欢的几个菜肴混合在一起,变成一道新的美味。
迈克尔加成反应就像是个“组合拳”,它把两个分子合并,形成一个新的结构。
具体来说,它是一种加成反应,其中一个分子上的亲电中心(可以理解成化学反应中的“吸引力中心”)和另一个分子的亲核中心(“发射点”)发生反应。
这个过程有点像一个化学版的“双簧”——需要两个分子之间的默契配合,才能奏效。
2. 有机人名反应的合成应用2.1 药物合成中的应用说到应用,那可真是五花八门。
药物合成中,有机人名反应简直就是神兵利器。
比如说,某些复杂的药物分子可以通过这些反应合成出来,像阿莫西林这样的抗生素就是通过特定的反应步骤制作的。
想象一下,你要制作一款超级复杂的料理,怎么做呢?得有可靠的食谱和技巧对吧?化学家们也是如此,他们用这些反应作为合成的“食谱”,让复杂的药物分子得以顺利生成。
有机化学人名反应大全
一.Arbuzov 反响亚磷酸三烷基酯作为亲核试剂与卤代烷感化,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反响时,其活性次序为:R′I >R′Br >R′Cl.除了卤代烷外,烯丙型或炔丙型卤化物.a-卤代醚.a- 或 b-卤代酸酯.对甲苯磺酸酯等也可以进行反响.当亚酸三烷基酯中三个烷基各不雷同时,老是先脱除含碳原子数起码的基团.本反响是由醇制备卤代烷的很好办法,因为亚磷酸三烷基酯可以由醇与三氯化磷反响制得:假如反响所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基雷同(即 R' = R),则Arbuzov 反响如下:这是制备烷基膦酸酯的经常运用办法.除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能产生该类反响,例如:反响机理一般以为是按 S N2 进行的分子内重排反响:反响实例二.Arndt-Eister 反响酰氯与重氮甲烷反响,然后在氧化银催化下与水共热得到酸.反响机理重氮甲烷与酰氯反响起首形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)产生重排得烯酮(3),(3)与水反响生成酸,若与醇或氨(胺)反响,则得酯或酰胺.反响实例三.Baeyer----Villiger反响反响机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁徙到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时产生O-O键异裂.是以,这是一个重排反响具有光学活性的3---苯基丁酮和过酸反响,重排产品手性碳原子的枸型保持不变,解释反响属于分子内重排:不合错误称的酮氧化时,在重排步调中,两个基团均可迁徙,但是照样有必定的选择性,按迁徙才能其次序为:醛氧化的机理与此类似,但迁徙的是氢负离子,得到羧酸.反响实例酮类化合物用过酸如过氧乙酸.过氧苯甲酸.间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边拔出一个氧原子生成响应的酯,个中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特色是反响速度快,反响温度一般在10~40℃之间,产率高.四.Beckmann重排肟在酸如硫酸.多聚磷酸以及能产生强酸的五氯化磷.三氯化磷.苯磺酰氯.亚硫酰氯等感化下产生重排,生成响应的代替酰胺,如环己酮肟在硫酸感化下重排生成己内酰胺:反响机理在酸感化下,肟起首产生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁徙到缺电子的氮原子上,所形成的碳正离子与水反响得到酰胺.迁徙基团假如是手性碳原子,则在迁徙前后其构型不变,例如:反响实例五.Birch还原芬芳化合物用碱金属(钠.钾或锂)在液氨与醇(乙醇.异丙醇或仲丁醇)的混杂液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物.反响机理起首是钠和液氨感化生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子系统中有7个电子,加到苯环上谁人电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭系统,(Ⅰ)暗示的是部分共振式.(Ⅰ)不稳固而被质子化,随即从乙醇中牟取一个质子生成环己二烯自由基(Ⅱ).(Ⅱ)在取得一个溶剂化电子改变成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,敏捷再从乙醇中牟取一个电子生成1,4-环己二烯.环己二烯负离子(Ⅲ)在共轭链的中央碳原子上质子化比末尾碳原子上质子快,原因尚不清晰.反响实例代替的苯也能产生还原,并且经由过程得到单一的还原产品.例如六.Bouveault---Blanc还原脂肪族羧酸酯可用金属钠和醇还原得一级醇.α,β-不饱和羧酸酯还原得响应的饱和醇.芬芳酸酯也可进行本反响,但收率较低.本法在氢化锂铝还原酯的办法发明以前,广泛地被运用,非共轭的双键可不受影响.反响机理起首酯从金属钠获得一个电子还原为自由基负离子,然后从醇中牟取一个质子改变成自由基,再从钠得一个电子生成负离子,清除烷氧基成为醛,醛再经由雷同的步调还原成钠,再酸化得到响应的醇.反响实例醛酮也可以用本法还原,得到响应的醇:七.Bucherer反响萘酚及其衍生物在亚硫酸或亚硫酸氢盐存鄙人和氨进行高温反响,可得萘胺衍生物,反响是可逆的.反响时如用一级胺或二级胺与萘酚反响则制得二级或三级萘胺.如有萘胺制萘酚,可将其参加到热的亚硫酸氢钠中,再参加碱,经煮沸除去氨而得.反响机理本反响的机理为加成清除进程,反响的第一步(无论从哪个偏向开端)都是亚硫酸氢钠加成到环的双键上得到烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):反响实例八.苯基羟胺(N-羟基苯胺)和稀硫酸一路加热产生重排成对-氨基苯酚:在H2SO4-C2H5OH(或CH3OH)中重排生成对-乙氧基(或甲氧基)苯胺:其他芳基羟胺,它的环上的o-p位上未被代替者会起类似的重排.例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反响机理反响实例九.Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl2存鄙人加热起缩合感化,生成吖啶类化合物.反响机理反响机理不详反响实例十.Cannizzaro 反响凡α位碳原子上无生动氢的醛类和浓NaOH或KOH水或醇溶液感化时,不产生醇醛缩合或树脂化感化而起歧化反响生成与醛相当的酸(成盐)及醇的混杂物.此反响的特点是醛自身同时产生氧化及还原感化,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会产生此反响,其他醛类与强碱液,感化产生醇醛缩合或进一步变成树脂状物资.具有α-生动氢原子的醛和甲醛起首产生羟醛缩合反响,得到无α-生动氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反响,如乙醛和甲醛反响得到季戊四醇:反响机理醛起首和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的情势转移到另一分子的羰基不克不及碳原子上.反响实例十一.Chichibabin 反响杂环碱类,与碱金属的氨基物一路加热时产生胺化反响,得到响应的氨基衍生物,如吡啶与氨基钠反响生成2-氨基啶,假如α位已被占领,则得γ-氨基吡啶,但产率很低.本法是杂环上引入氨基的轻便有用的办法,广泛实用于各类氮杂芳环,如苯并咪唑.异喹啉.丫啶和菲啶类化合物均能产生本反响.喹啉.吡嗪.嘧啶.噻唑类化合物较为艰苦.氨基化试剂除氨基钠.氨基钾外,还可以用代替的碱金属氨化物:反响机理反响机理还不是很清晰,可能是吡啶与氨基起首加成,(Ⅰ),(Ⅰ)转移一个负离子给质子赐与体(AH),产生一分子氢气和形成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的赐与体,最后的产品是2-氨基吡啶的钠盐,用水分化得到2-氨基吡啶:反响实例吡啶类化合物不轻易进行硝化,用硝基还原法制备氨基吡啶甚为艰苦.本反响是在杂环上引入氨基的轻便有用的办法,广泛实用于各类氮杂芳环,如苯并咪唑.异喹啉.吖啶和菲啶类化合物均能产生本反响.十二.Claisen酯缩合反响含有α-氢的酯在醇钠等碱性缩合剂感化下产生缩合感化,掉去一分子醇得到β-酮酸酯.如2分子乙酸乙酯在金属钠和少量乙醇感化下产生缩合得到乙酰乙酸乙酯.二元羧酸酯的分子内酯缩合见Dieckmann缩合反响.反响机理乙酸乙酯的α-氢酸性很弱(pK a-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pK a~15.9), 是以,乙酸乙酯与乙醇钠感化所形成的负离子在均衡系统是很少的.但因为最后产品乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠感化形成稳固的负离子,从而使平衡朝产品偏向移动.所以,尽管反响系统中的乙酸乙酯负离子浓度很低,但一形成后,就不竭地反响,成果反响照样可以顺遂完成.经常运用的碱性缩合剂除乙醇钠外,还有叔丁醇钾.叔丁醇钠.氢化钾.氢化钠.三苯甲基钠.二异丙氨基锂(LDA)和Grignard试剂等.反响实例假如酯的α-碳上只有一个氢原子,因为酸性太弱,用乙醇钠难于形成负离子,须要用较强的碱才干把酯变成负离子.如异丁酸乙酯在三苯甲基钠感化下,可以进行缩合,而在乙醇钠感化下则不克不及产生反响:两种不合的酯也能产生酯缩合,理论上可得到四种不合的产品,称为混杂酯缩合,在制备上没有太大意义.假如个中一个酯分子中既无α-氢原子,并且烷氧羰基又比较生动时,则仅生成一种缩合产品.如苯甲酸酯.甲酸酯.草酸酯.碳酸酯等.与其它含α-氢原子的酯反响时,都只生成一种缩合产品.现实上这个反响不限于酯类自身的缩合,酯与含生动亚甲基的化合物都可以产生如许的缩合反响,这个反响可以用下列通式暗示:十三.Claisen—Schmidt反响一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存鄙人产生缩合反响,并掉水得到不饱和醛或酮:反响机理反响实例十四.Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚.当烯丙基芳基醚的两个邻位未被代替基占满时,重排重要得到邻位产品,两个邻位均被代替基占领时,重排得到对位产品.对位.邻位均被占满时不产生此类重排反响.交叉反响试验证实:Claisen重排是分子内的重排.采取 g-碳14C 标识表记标帜的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键产生位移.两个邻位都被代替的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连.反响机理Claisen 重排是个协同反响,中央经由一个环状过渡态,所以芳环上代替基的电子效应对重排无影响.从烯丙基芳基醚重排为邻烯丙基酚经由一次[3,3]s 迁徙和一次由酮式到烯醇式的互变异构;两个邻位都被代替基占领的烯丙基芳基酚重排时先经由一次[3,3]s 迁徙到邻位(Claisen 重排),因为邻位已被代替基占领,无法产生互变异构,接着又产生一次[3,3]s 迁徙()到对位,然后经互变异构得到对位烯丙基酚.代替的烯丙基芳基醚重排时,无论本来的烯丙基双键是Z-构型照样E-构型,重排后的新双键的构型都是E-型,这是因为重排反响所经由的六员环状过渡态具有稳固椅式构象的缘故.反响实例Claisen 重排具有广泛性,在醚类化合物中,假如消失烯丙氧基与碳碳相连的构造,就有可能产生Claisen 重排.十五.Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只实用于对酸稳固的化合物.对酸不稳固而对碱稳固的化合物可用还原.反响机理本反响的反响机理较庞杂,今朝尚不很清晰.反响实例十六.Combes 喹啉合成法Combes合成法是合成喹啉的另一种办法,是用芳胺与1,3-二羰基化合物反响,起首得到高产率的β-氨基烯酮,然后在浓硫酸感化下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水得到喹啉.反响机理在氨基的间位有强的邻.对位定位基团消失时,关环反响轻易产生;但当强邻.对位定位基团消失于氨基的对位时,则不轻易产生关环反响.反响实例十七.Cope清除反响叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二代替羟胺,产率很高.现实上只需将叔胺与氧化剂放在一路,不需分别出氧化叔胺即可持续进行反响,例如在湿润的二甲亚砜或四氢呋喃中这个反响可在室温进行.此反响前提平和.副反响少,反响进程中不产生重排,可用来制备很多烯烃.当氧化叔胺的一个烃基上二个β位有氢原子消失时,清除得到的烯烃是混杂物,但是 Hofmann 产品为主;如得到的烯烃有顺反异构时,一般以 E-型为主.例如:反响机理这个反响是E2顺式清除反响,反响进程中形成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要产生如许的环状构造,氨基和β-氢原子必须处于统一侧,并且在形成五员环过度态时,α,β-碳原子上的原子基团呈重叠型,如许的过度态须要较高的活化能,形成后也很不稳固,易于进行清除反响.反响实例十八.Cope重排1,5-二烯类化合物受热时产生类似于 O-烯丙基重排为 C-烯丙基的重排反响()反响称为Cope重排.这个反响30多年来引起人们的广泛留意.1,5-二烯在150—200℃单独加热短时光就轻易产生重排,并且产率异常好.Cope重排属于周环反响,它和其它周环反响的特色一样,具有高度的立体选择性.例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产品几乎全体是(Z, E)-2,6辛二烯:反响机理Cope重排是[3,3]s-迁徙反响,反响进程是经由一个环状过渡态进行的协同反响:在立体化学上,表示为经由椅式环状过渡态:反响实例十九.Curtius 反响酰基叠氮化物在惰性溶剂中加热分化生成异氰酸酯:异氰酸酯水解则得到胺:反响机理反响实例二十.Crigee,R 反响1,2-二元醇类的氧化产品因所用的氧化剂的种类而不合.用K2Cr2O7或KMnO4氧化时生成酸类.用特别氧化剂四乙醋酸铅在CH3COOH或苯等不生动有机溶剂中缓和氧化,生成二分子羰基化合物(醛或酮).氧化反响也可以在酸催化剂(三氯醋酸)存鄙人进行.本反响被广泛地运用于研讨醇类构造及制备醛.酮类,产率很高.反响机理反响进程中师长教师成环酯中央产品,进一步C--C键裂开成醛或酮.酸催化的场合,反响过程可以用下式暗示:反响实例二十一.Dakin反响酚醛或酚酮类用H2O2在NaOH存鄙人氧化时,可将分子中的-CHO基或CH3CO-基被-OH基所置换,生成相对应的酚类.本反响可运用以制备多远酚类.反响机理反响实例二十二.Elbs反响羰基的邻位有甲基或亚甲基的二芳基酮,加热时产生环化脱氢感化,生成蒽的衍生物:因为这个反响平日是在回流温度或高达400-450 °C的温度规模内进行,不必催化剂和溶剂,直到反响物没有水放出为止,在如许的高温前提下,一部分原料和产品产生碳化,部分原料酮被释放出的水所裂解,烃基产生清除或降解以及分子重排等副反响,致使产率不高.反响机理本反响的机理尚不清晰.反响实例二十三.Edvhweiler-Clarke 反响在过量甲酸存鄙人,一级胺或二级胺与甲醛反响,得到甲基化后的三级胺:甲醛在这里作为一个甲基化试剂.反响机理反响实例二十四.将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类.分子中的醛基或双键等都不影响.产率约20~48%.过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,变成硝基化合物.反响机理反响实例二十五.Favorskii重排a-卤代酮在氢氧化钠水溶液中加热重排生成含雷同碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小.如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较大的四员环.反响机理反响实例二十六.Friedel-Crafts烷基化反响芳烃与卤代烃.醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4,H3PO4, BF3, HF等)存鄙人,产生芳环的烷基化反响.卤代烃反响的生动性次序为:RF > RCl > RBr > RI ; 当烃基超出3个碳原子时,反响进程中易产生重排.反响机理起首是卤代烃.醇或烯烃与催化剂如三氯化铝感化形成碳正离子:所形成的碳正离子可能产生重排,得到较稳固的碳正离子:碳正离子作为亲电试剂进攻芳环形成中央体s-络合物,然后掉去一个质子得到产生亲电代替产品:反响实例二十七.Friedel-Crafts酰基化反响芳烃与酰基化试剂如酰卤.酸酐.羧酸.烯酮等在Lewis酸(通经常运用无水三氯化铝)催化下产生酰基化反响,得到芬芳酮:这是制备芬芳酮类最重要的办法之一,在酰基化中不产生烃基的重排.反响机理反响实例二十八.Fries 重排酚酯在Lewis酸存鄙人加热,可产生酰基重排反响,生成邻羟基和对羟基芳酮的混杂物.重排可以在硝基苯.硝基甲烷等溶剂中进行,也可以不必溶剂直接加热进行.邻.对位产品的比例取决于酚酯的构造.反响前提和催化剂等.例如,用多聚磷酸催化时重要生成对位重排产品,而用四氯化钛催化时则重要生成邻位重排产品.反响温度对邻.对位产品比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产品(动力学掌握),较高温度下重排有利于形成邻位异构产品(热力学掌握).反响机理反响实例二十九.Fischer,O-Hepp,E重排N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处理时氨基氮上的亚硝基转移到芳核上去形成p-亚硝基芳胺(对位重排):平日产生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则产生邻位重排成1-亚硝基化合物:反响机理在HCl存鄙人,N-亚硝基化合物起首解离成仲胺及NOCl然落后行亚硝基化:三十.Gabriel合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液感化改变成邻苯二甲酰亚胺盐,此盐和卤代烷反响生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性前提下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种办法.有些情形下水解很艰苦,可以用肼解来代替:反响机理邻苯二甲酰亚胺盐和卤代烷的反响是亲核代替反响,代替反响产品的水解进程与酰胺的水解类似.反响实例三十一.Gattermann反响重氮盐用新制的铜粉代替亚铜盐(见)作催化剂,与浓盐酸或氢溴酸产生置换反响得到氯代或溴代芳烃:本法长处是操纵比较简略,反响可在较低温度下进行,缺陷是其产率一般较低.反响实例三十二.Gattermann-Koch 反响芬芳烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存鄙人反响,生成芬芳醛:反响机理反响实例三十三.Gomberg-Bachmann 反响芬芳重氮盐在碱性前提下与其它芬芳族化合物偶联生成联苯或联苯衍生物:反响机理反响实例三十四.Hantzsch 合成法两分子b-羰基酸酯和一分子醛及一分子氨产生缩合反响,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物.这是一个很广泛的反响,用于合成吡啶同系物.反响机理反响进程可能是一分子b-羰基酸酯和醛反响,另一分子b-羰基酸酯和氨反响生成b-氨基烯酸酯,所生成的这两个化合物再产生Micheal加成反响,然后掉水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化得到吡啶衍生物:反响实例三十五.Haworth 反响萘和丁二酸酐产生然后按尺度的办法还原.关环.还原.脱氢得到多环芬芳族化合物.反响实例三十六.Hell-Volhard-Zelinski 反响羧酸在催化量的三卤化磷或红磷感化下,能与卤素产生a-卤代反响生成a-卤代酸:本反响也可以用酰卤作催化剂.反响机理反响实例三十七.Hinsberg反响伯胺.仲胺分别与对甲苯磺酰氯感化生成响应的对甲苯磺酰胺沉淀,个中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反响.此反响可用于伯仲叔胺的分别与判定.三十八.Hofmann烷基化卤代烷与氨或胺产生烷基化反响,生成脂肪族胺类:因为生成的伯胺亲核性平日比氨强,能持续与卤代烃反响,是以本反响不成防止地产生仲胺.叔胺和季铵盐,最后得到的往往是多种产品的混杂物.用大过量的氨可防止多代替反响的产生,从而可得到优越产率的伯胺.反响机理反响为典范的亲核代替反响(S N1或S N2)反响实例三十九.Hofmann清除反响季铵碱在加热前提下(100--200°C)产生热分化,当季铵碱的四个烃基都是甲基时,热分化得到甲醇和三甲胺:假如季铵碱的四个烃基不合,则热分化时老是得到含代替基起码的烯烃和叔胺:四十.Hofmann重排(降解)酰胺用溴(或氯)在碱性前提下处理改变成少一个碳原子的伯胺:反响机理反响实例四十一.Houben-Hoesch 反响酚或酚醚在氯化氢和氯化锌等Lewis酸的存鄙人,与腈感化,随落后行水解,得到酰基酚或酰基酚醚:反响机理反响机理较庞杂,今朝尚未完整解释反响实例四十二.Hunsdieecker 反响湿润的羧酸银盐在四氯化碳中与卤素一路加热放出二氧化碳,生成比原羧酸少一个碳原子的卤代烃:X = Br , Cl , I反响机理反响实例四十三.Kiliani氯化增碳法糖在少量氨的存鄙人与氢氰酸加成得到a-羟基腈,经水解得到响应的糖酸,此糖酸极易改变成内酯,将此内酯在含水的乙醚或水溶液顶用钠汞齐还原,得到比本来的糖多一个碳原子的醛糖.反响实例四十四.Knoevenagel 反响含生动亚甲基的化合物与醛或酮在弱碱性催化剂(氨.伯胺.仲胺.吡啶等有机碱)存鄙人缩合得到a,b-不饱和化合物.反响机理反响实例四十五.Koble 反响脂肪酸钠盐或钾盐的浓溶液电解时产生脱羧,同时两个烃基互相偶联生成烃类:假如运用两种不合脂肪酸的盐进行电解,则得到混杂物:反响机理反响实例四十六.Koble-Schmitt 反响酚钠和二氧化碳在加压下于125-150 ºC反响,生成邻羟基苯甲酸,同时有少量对羟基苯甲酸生成:反响产品与酚盐的种类及反响温度有关,一般来讲,运用钠盐及在较低的温度下反响重要得到邻位产品,而用钾盐及在较高温度下反响则重要得对位产品:邻位异构体在钾盐及较高温度下加热也能改变成对位异构体:反响机理反响机理今朝还不太清晰.反响实例四十七.Kolbe,H.Syntbexis of Nitroparsffini合成将含等摩尔的α-卤代羧酸与亚硝酸钠或钾的水溶液加热时,生成-硝基脂肪酸钠中央体,持续加热起分化感化,掉去CO2改变成硝基烷类及NaHCO3.本办法仅可实用于小量制备碳原子数在以下的硝基烷类(特别合适于制备硝基甲烷及硝基乙烷).而b-卤代羧酸与亚硝酸钾感化生成产品不克不及放出CO2,故不克不及产生此反响.反响实例四十八.Leuckart 反响醛或酮在高温下与甲酸铵反响得伯胺:除甲酸铵外,反响也可以用代替的甲酸铵或甲酰铵.反响机理反响中甲酸铵一方面供给氨,另一方面又作为还原剂.反响实例四十九.Lossen 反响或其酰基化物在单独加热或在碱.脱水剂(如五氧化二磷.乙酸酐.亚硫酰氯等)存鄙人加热产生重排生成异氰酸酯,再经水解.脱羧得伯胺:本重排反响后来有过反响机理本重排反响的反响机理与 ..机理相类似,也是形成异氰酸酯中央体:在重排步调中,R的迁徙和离去基团的离去是协同进行的.当R是手性碳原子时,重排后其构型保持不变:反响实例五十.Mannich 反响含有a-生动氢的醛.酮与甲醛及胺(伯胺.仲胺或氨)反响,成果一个a-生动氢被胺甲基代替,此反响又称为胺甲基化反响,所得产品称为Mannich碱.。
有机合成人名反应及机理
有机合成人名反应及机理
有机合成中有很多重要的反应,这些反应的机理大多数都是经过
详细论证的。
下面具体介绍几个重要的反应及其机理。
1. 化学家霍夫曼发明了非常有用的反应,叫做“霍夫曼降解反应”。
这个反应可以用来从胺中制备出烷基卤化物。
具体反应步骤是:首先将胺和次氯酸钠混合,然后将水加入混合液中,这样就可以生成
亚氯酰胺。
接下来,将氢氧化钠加入混合液中,反应会生成氯化胺和
氢氧化钠。
最后,烷基化剂加入反应混合物中,生成的产物就是烷基
化合物。
2. 另一个非常重要的有机反应称为“Suzuki–Miyaura偶联反应”,这个反应可以用来将芳香化合物和烯丙基铜或锂互相连接。
这
个反应的机理是:首先,碘化物和芳基卤化物混合,这样就可以形成
碘化芳基化合物。
然后,在其上添加烯丙基铜或锂,这样就可以连接
两种芳香化合物。
最后,加入铜催化剂来促进反应的进行。
3. 最后一个重要的反应是“Diazo反应”,这个反应可以用来制
备罕见的化合物,并且这个反应的机理也比较简单。
首先,从亚硝酸
和苯甲酸中制备出叠氮化物。
接下来,将目标化合物与叠氮化物混合,这样就可以生成新的化合物。
这个反应的一个很好的例子是,将间苯
二酚转化成二苯基二烯。
以上三个反应是有机合成中非常常见的反应,掌握这些反应及其
机理可以为有机合成研究提供非常有用的指导。
有机化学人名反应总结
有机化学人名反应总结是研究碳及其化合物的科学,其中许多反应被命名以纪念其首位发现者或发展者。
这些人名反应不仅对于的发展起到了巨大的推动作用,也源自于对科学家们的敬意和对他们贡献的赞扬。
在本文中,将总结几个人名反应,了解它们的原理和应用。
一、丁基锂合成反应(BuLi 生成反应)丁基锂是一种有机锂化合物,它的生成反应是通过将溶于正丁脱氢剂(n-BuLi)加入至正丁锂反应(floats-buLi)中得到的。
正丁锂反应是以但钾为催化剂,会使其在高压下进行。
该反应的关键是高温和高压条件下n-BuLi和粉末锂(floats-Li)之间的快速反应。
这个反应的应用十分广泛,可以用来合成各种有机锂试剂,如烃基锂、脂基锂,进而合成复杂的有机化合物。
二、格氏试剂合成反应 (Grignard 试剂生成反应)格氏试剂是有机锂试剂的后继者,由法国化学家弗朗索瓦·格里尼亚(francois auguste)发明并得名。
该反应以季碳基物质镁为催化剂,与卤化烃或卤化芳烃发生取代反应得到格氏试剂。
格氏试剂常用于合成范围广泛的有机化合物,主要反应机制类似于亲核取代反应,并使其非常重要的有机合成试剂之一。
三、斯托茨勒合成(Storz reaction)斯托茨勒合成反应是醛、酮与硫酸钠或硫酸食盐反应,生成酯的方法。
该反应是由俄罗斯化学家弗拉基米尔·利奥诺维奇·斯托茨(Vladimir Leontievich Stotsky)发现并命名的。
通过控制反应条件和底物的选择,可以合成具有多种不同结构的酯。
四、诺贝尔-加斯基诺反应 (Nobel-Gassman 试剂生成反应)诺贝尔-加斯基诺反应是一种用于合成β-哌啶酮的方法,是由德国化学家赫尔曼·斯图尔特·诺贝尔(Herman Staudinger)和法国化学家约瑟夫·加斯奥诺(Joseph Köck)合作发现的。
这个反应的关键是氰甲酸酯的转化,通过底物的选择,可以合成出不同结构的β-哌啶酮,具有广泛的应用前景。
有机化学人名反应大全
一、Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R′I 〉R′Br〉R′Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a—卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应.当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R’X的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR' 也能发生该类反应,例如:反应机理一般认为是按S N2 进行的分子内重排反应:反应实例二、Arndt-Eister反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸.反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例三、Baeyer--—-Villiger反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O—O键异裂.因此,这是一个重排反应具有光学活性的3-—-苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸.反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
常见人名反应及机理
1. Aldol Condensation:羟醛缩合是一种有机反应:烯醇或烯醇负离子和羰基化合物反应形成β-羟基醛或者β-羟基酮,然后发生脱水得到共轭烯酮。
反应第一步为羟醛反应,第二部反应为脱水反应。
酸催化碱催化图例使用OCH3 做碱2.Baeyer –Villiger Oxidation酮在过氧化物如过氧化氢、过氧化羧酸等氧化下,在羰基和一个邻近烃基之间引入一个氧原子,得到相应的酯的化学反应。
醛可以进行同样的反应,氧化的产物是相应的羧酸。
2.Baylis –Hillman Reactionαβ-不饱和化合物与亲电试剂(醛、酮)在合适的催化剂作用下,生成烯烃α-位加成产物的反应。
催化剂一般采用DABCO(14-二氮双环222辛烷的缩写形式,俗称:三亚乙基二胺),生成物为烯丙基醇1。
贝里斯-希尔曼反应经历叔胺与活化烯烃的Michael 加成反应启动的加成-消除反应历程4. Beckmann Rearrangement是一个由酸催化的重排反应,反应物肟在酸的催化作用下重排为酰胺。
若起始物为环肟,产物则为内酰胺。
α-二酮、α-酮酸、α-叔烃基酮反式、α-二烷基氨基酮、α-羟基酮和β-酮醚生成的肟在路易,又斯酸或质子酸的作用下断裂为腈及相应的官能团化合物。
这个反应称为―异常贝克曼重排‖称非正常贝克曼重排;二级贝克曼重排;贝克曼断裂反应等。
5. Benzoin Condensation 安息香缩合反应,又称苯偶姻缩合,是一个有机反应,是氰离子催化下两分子芳香醛进行缩合生成一个偶姻分子的反应。
由于生成物是安息香(Ph-CO-CHOH-Ph)的衍生物,故名??. Birch Reduction钠和醇在液氨中将芳香环还原成14-环己二烯的有机还原反应。
Birch 还原的重要性在于:尽管剩下的双键(非芳香性)更为活泼,该反应却能停留在环己双烯上,而不继续还原。
反应中的钠也可以用锂或钾取代,使用的醇通常是甲醇或叔丁醇。
有机化学人名反应
有机化学人名反应取代反应:1,加特曼反应:加特曼(Gattermann L)发现:用催化量的金属铜代替氯化亚铜或溴化亚铜作催化剂,也可使重氮盐与盐酸或氢溴酸反应制得芳香氯化物或溴化物。
这样进行的反应叫做加特曼反应。
2,加特曼-科赫反应:苯、一氧化碳和氯化氢反应生成苯甲醛,此反应称为加特曼-科赫反应。
3,傅-克反应:芳香化合物芳环上的氢被烷基取代的反应称为傅-克烷基化反应;芳香化合物芳环上的氢被酰基取代的反应称为傅-克酰基化反应;统称傅-克反应。
4,布赫尔反应:萘酚在亚硫酸氢钠存在下与氨作用,转变成相应萘胺的反应称为布赫尔反应。
5,齐齐巴宾反应:吡啶与氨基钠反应,生成?-氨基吡啶,如果?位已被占据,则得?-氨基吡啶,但产率很低。
这个反应称为齐齐巴宾(Chichibabin)反应。
6,刚穆伯―巴赫曼反应:芳香重氮盐中的芳基在碱性条件下与其它芳香族化合物偶联成联苯或联苯衍生物的反应称为刚穆伯(Gomberg)―巴赫曼(Bachmann)反应。
7,柯尔伯―施密特反应:干燥的酚钠或酚钾与二氧化碳在加温加压下生成羟基苯甲酸的反应称为柯尔伯―施密特(Kolbe-Schmitt)反应。
8,威廉森合成法:在无水条件下,醇钠和卤代烷作用生成醚的反应称为威廉森(Williamson A W)合成法。
9,席曼反应:芳香重氮盐和氟硼酸反应,生成溶解度较小的氟硼酸盐,后者加热分解产生氟苯,这称为席曼(Schiemann)反应。
10,桑德迈耳反应:1884年,桑德迈耳(Sandmeyer T)发现:在氯化亚铜或溴化亚铜的催化下,重氮盐在氢卤酸溶液中加热,重氮基可分别被氯或溴原子取代,生成芳香氯化物或溴化物。
这一反应称为桑德迈耳反应。
11,普塑尔反应:一些重氮盐在碱性条件下或稀酸的条件下可以发生分子内的偶联反应。
这个反应是普塑尔(Pschorr R)在寻找合成菲环的新方法中首先发现的,故称为普塑尔反应。
12,瑞穆尔―悌曼反应:酚与氯仿在碱性溶液中加热生成邻位及对位羟基醛的反应称为瑞穆尔―悌曼(Reimer ―Tiemann)反应。
有机化学人名反应
引言概述:有机化学人名反应是有机化学领域中的重要反应,以发现或命名人物命名,旨在纪念对有机化学做出重大贡献的科学家。
本文将介绍五个涉及有机化学人名反应的重要反应,包括Sn2反应、Friedel-Crafts反应、Hofmann降解反应、Diels-Alder反应和Hofmann重排反应。
正文内容:1. Sn2反应1.1 概述:Sn2反应是一种亲核取代反应,其中一个亲核试剂攻击官能团上的消极部分,然后将其替换为新的官能团。
1.2 人名来源:Sn2反应是以科学家在有机化学领域做出开创性贡献的Edwin S. Gould命名。
1.3 反应特点:Sn2反应的反应速率与亲核试剂浓度成正比,但与底物浓度无关。
1.4 影响因素:影响Sn2反应速率的因素包括底物结构、溶剂选择和温度等。
1.5 应用领域:Sn2反应在合成有机化学中广泛应用于底物的碳-氮键或碳-氧键的形成。
2. Friedel-Crafts反应2.1 概述:Friedel-Crafts反应是一种芳香族碳-碳键形成的反应,在芳香族化合物上引入新的取代基团。
2.2 人名来源:Friedel和Crafts是两位法国化学家,他们共同发现并开发了这一重要反应。
2.3 反应类型:Friedel-Crafts反应可以分为两种类型,即芳香烃的烷基化和芳香烃的酰基化。
2.4 反应机理:Friedel-Crafts反应的机理通常涉及亲电取代和负离子取代两种机制。
2.5 应用领域:Friedel-Crafts反应在药物合成和农药合成等领域具有重要的应用价值。
3. Hofmann降解反应3.1 概述:Hofmann降解反应是一种将主要氨基酸转化为次级氨基酸的反应。
3.2 人名来源:Hofmann是德国化学家Hermann Emil Fischer 的学生,他发现并研究了这个反应。
3.3 反应过程:Hofmann降解反应涉及以次氨基酸为中间体进行进一步反应,最终生成次级氨基酸。
(完整版)经典有机人名反应
有机化学人名反应1.拜耳维利格Baeyer----Villiger 反应(p317)反应机理(不要求)过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例2.康尼查罗Cannizzaro 反应(p321)凡α位碳原子上无活泼氢的醛类和浓NaOH或KOH水或醇溶液作用时,不发生醇醛缩合或树脂化作用而起歧化反应生成与醛相当的酸(成盐)及醇的混合物。
此反应的特征是醛自身同时发生氧化及还原作用,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只有甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,作用发生醇醛缩合或进一步变成树脂状物质。
具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的形式转移到另一分子的羰基不能碳原子上。
反应实例3.克莱森许密特Claisen—Schmidt 反应(交叉羟醛缩合)(p314)一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到不饱和醛或酮:反应机理反应实例3.Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
有机化学人名反应机理全解
人名反应1.Arbuzov反应(Michaelis-Arbuzov重排)2.Arndt-Eistert反应3.Baeyer-Villiger氧化重排4.Beckmann重排5.Birch还原6.Bischler-Napieralski合成法7.Bouveault-Blanc还原8.Bucherer反应9.Cannizzaro反应10.Chichibabin反应11.Chugaev反应12.Claisen重排13.Claisen缩合反应14.Claisen-Schmidt反应15.Clemmensen还原bes合成法17.Cope重排18.Cope消除19.Corey-House合成法20.Cristol反应21.Curtius重排22.Darzen反应23.Demjanov重排24.Dieckmann反应25.Diels-Alder反应26.Döebner-Miller合成法27.Edman降解法28.Eschweiler-Clarke反应29.Favorski重排30.Fischer吲哚合成法31.Friedel-Crafts烷基化反应32.Friedel-Crafts酰基化反应33.Fries重排34.Gabriel合成法35.Gatterman反应(1)36.Gatterman反应(2)37.Gatterman-Koch反应38.Gomberg-Bachmann反应39.Hantzsch吡啶合成法40.Hantzsch吡咯合成法41.Haworth反应42.Hell-Volhard-Zelinsky反应43.Hell-Volhard-Zelinskyα-溴化法44.Henry反应45.Hinsberg反应46.Hofmann重排(Hofmann降解)47.Hofmann烷基化48.Hofmann消除反应49.Houben-Hoesch反应50.Hunsdiecker反应51.Knoevenagel反应52.Knorr合成法53.Kochi反应54.Kolbe反应55.Kolbe-Schmidt反应56.Kucherov反应57.Leuckart反应58.Lossen重排59.Mannich反应60.McMurry反应61.Meerwein-Ponndorf-Verley还原62.Michael加成反应tkin重排64.Nazarov反应65.Oppenauer氧化66.Paal-Knorr合成法67.Perkin反应68.Pschorr反应69.Reformatsky反应70.Reimer-Tiemann反应71.Ritter反应72.Robinson增环反应73.Rosenmund还原74.Sandmeyer反应75.Schiemann反应76.Schmidt重排77.Shapiro反应78.Simmons-Smith反应79.Skraup合成法80.Smiles重排81.Stephen还原82.Stevens重排83.Strecker氨基酸合成法84.Tiffeneau-Demjanov重排85.Ullmann反应86.Vilsmeier反应87.von Richter重排88.Wacker氧化反应89.Wagner-Meerwein重排90.Williamson合成法91.1,2-Wittig重排92.Wittig反应93.Wittig-Horner反应(Emmons反应、Horner-Emmons反应、Wadsworth-Emmons反应)94.Wolff重排95.Wolff-Kisher-黄鸣龙还原96.Wurtz反应97.Wurtz-Fittig反应Arbuzov反应亚磷酸三烷基酯与卤代烷或其衍生物反应生成烷基膦酸酯和一个新的卤代烷的反应称为Arbuzov反应,也称Michaelis-Arbuzov重排。
有机化学人名反应机理(比较完整)
有机化学人名反应机理(比较完整)1.Arbuzov反应卤代烷反应时,其活性次序为:R'I>R'Br>R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a-或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:一般认为是按SN2进行的分子内重排反应:2.Arndt-Eiter反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
3.Baeyer----Villiger反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:4.Beckmann重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变。
5.Bouveault---Blanc还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。
α,β-不饱和羧酸酯还原得相应的饱和醇。
芳香酸酯也可进行本反应,但收率较低。
本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。
有机化学人名命名的反应
1.Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例2.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例3.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
有机化学人名反应机理
1.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己酰胺:反应机理:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:2. Birch还原反应实例3.Cannizzaro 反应4.反应实例4. Chichibabin反应反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。
本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。
5. Claisen 酯缩合反应二元羧酸酯的分子酯缩合见Dieckmann 缩合反应。
反应机理反应实例6. Claisen重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚。
当烯丙基芳基醚的两个邻位未被取代基占满时,重排主要得到邻位产物,两个邻位均被取代基占据时,重排得到对位产物。
对位、邻位均被占满时不发生此类重排反应。
交叉反应实验证明:Claisen重排是分子的重排。
采用 γ-碳14C 标记的烯丙基醚进行重排,重排后 γ-碳原子与苯环相连,碳碳双键发生位移。
两个邻位都被取代的芳基烯丙基酚,重排后则仍是α-碳原子与苯环相连。
芳环上取代基的电子效应对重排无影响。
取代的烯丙基芳基醚重排时,无论原来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有稳定椅式构象的缘故。
反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排。
7. Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
有机化学人名反应机理(比较完整)
1.Arbuzov 反应卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:一般认为是按 S N2 进行的分子内重排反应:2.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
3.Baeyer----Villiger 反应过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:4.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变。
5.Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇。
α,β-不饱和羧酸酯还原得相应的饱和醇。
芳香酸酯也可进行本反应,但收率较低。
本法在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共轭的双键可不受影响。
有机化学人名反应机理
Friedel-Crafts烷基化反应
• 芳烃与卤代烃、醇类或烯类化合物在Lewis催 化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF 等)存在下,发生芳环的烷基化反应。
卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生 重排。
• 反应实例
Cope 重排( 科普)
• 1,5-二烯类化合物受热时发生 类似于 O-烯丙基重排为 C-烯 丙基的重排反应(Claisen 重排) 反应称为Cope重排。这个反应 30多年来引起人们的广泛注意。 1,5-二烯在150—200℃单独加 热短时间就容易发生重排,并 且产率非常好。
• Cope重排属于周环反应,它和其它周环反应的特点一样, 具有高度的立体选择性。例如:内消旋-3,4-二甲基-1,5己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:
这是一个重排反应,在合成上意义不大,但可以了解环 发生的一些重排反应。
• 反应机理
反应实例
1-氨甲基环烷醇也能发生类似的重排反应,详 见Tiffeneau-Demjanov重排。
Dieckmann 缩合反应(狄克曼)
• 反应机理:见 Claisen 酯缩合反应。
• 反应实例
Diels-Alder 反应
• 含有一个活泼的双键或叁键的化合物(亲双烯体) 与共轭二烯类化合物(双烯体)发生1,4-加成,生 成六员环状化合物:
这个反应极易进行并且反应速度快,应用范围极广泛, 是合成环状化合物的一个非常重要的方法。 带有吸电子取代基的亲双烯体和带有给电子取代基的双烯 体对反应有利。常用的亲双烯体有:
下列基团也能作为亲双烯体发生反 应:
有机人名反应及其机理
本文整理出常见的有机人名反应80多个,共计约100页,大部分内容在竞赛考察范围之内。
全国初赛有机难度虽然有所降低,但有能力冲刺决赛的选手对于有机反应必须熟练掌握,熟记反应实例与机理。
熟记有机人名反应不仅是化学竞赛的要求,也是考研的重要内容,更是对化学先驱们的尊重与缅怀。
索引:Arbuzov反应Arndt-Eister反应Baeyer-Villiger 氧化Beckmann 重排Birch 还原Bischler-Napieralski 合成法Bouveault-Blanc还原Bucherer 反应Cannizzaro 反应Chichibabin 反应Claisen 酯缩合反应Claisen-Schmidt 反应Clemmensen 还原Combes 合成法Cope 重排Cope 消除反应Curtius 反应Dakin 反应Darzens 反应Demjanov 重排Dieckmann 缩合反应Elbs 反应Eschweiler-Clarke 反应Favorskii 反应Favorskii 重排Friedel-Crafts烷基化反应Friedel-Crafts酰基化反应Fries 重排Gabriel 合成法Gattermann 反应Gattermann-Koch 反应Gomberg-Bachmann 反应Hantzsch 合成法Haworth 反应Hell-V olhard-Zelinski 反应Hinsberg 反应Hofmann 烷基化Hofmann 消除反应Hofmann 重排(降解) Houben-Hoesch 反应Hunsdiecker 反应Kiliani 氰化增碳法Knoevenagel 反应Knorr 反应Koble 反应Koble-Schmitt 反应Leuckart 反应Lossen反应Mannich 反应Meerwein-Ponndorf 反应Meerwein-Ponndorf 反应Michael 加成反应Norrish I和II 型裂解反应Oppenauer 氧化Paal-Knorr 反应Pictet-Spengler 合成法Pschorr 反应Reformatsky 反应Reimer-Tiemann 反应Reppe 合成法Robinson 缩环反应Rosenmund 还原Ruff 递降反应Sandmeyer 反应Schiemann 反应Schmidt反应Skraup 合成法Sommelet-Hauser 反应Stephen 还原Stevens 重排Strecker 氨基酸合成法Tiffeneau-Demjanov 重排Ullmann反应Vilsmeier 反应Wagner-Meerwein 重排Wacker 反应Williamson 合成法Wittig 反应Wittig-Horner 反应Wohl 递降反应Wolff-Kishner-黄鸣龙反应Yurév 反应Zeisel 甲氧基测定法亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
常见人名反应及机理
Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:Birch还原反应机理Cannizzaro 反应反应机理Claisen 酯缩合含有α-氢的酯在醇钠等碱性缩合剂作用下发生缩合作用,失去一分子醇得到β-酮酸酯。
如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合得到乙酰乙酸乙酯。
二元羧酸酯的分子内酯缩合见 Dieckmann 缩合反应。
反应机理乙酸乙酯的α-氢酸性很弱(pKa-24.5),而乙醇钠又是一个相对较弱的碱(乙醇的pKa~15.9),因此,乙酸乙酯与乙醇钠作用所形成的负离子在平衡体系是很少的。
但由于最后产物乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠作用形成稳定的负离子,从而使平衡朝产物方向移动。
所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一形成后,就不断地反应,结果反应还是可以顺利完成。
Claisen_Schmidt反应一个无a-氢原子的醛与一个带有a-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到a,b-不饱和醛或酮:反应机理Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。
Cope 重排1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为 C-烯丙基的重排反应(Claisen重排)反应称为Cope重排。
这个反应30多年来引起人们的广泛注意。
1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文整理出常见的有机人名反应80多个,共计约100页,大部分内容在竞赛考察范围之内。
全国初赛有机难度虽然有所降低,但有能力冲刺决赛的选手对于有机反应必须熟练掌握,熟记反应实例与机理。
熟记有机人名反应不仅是化学竞赛的要求,也是考研的重要内容,更是对化学先驱们的尊重与缅怀。
索引:Arbuzov反应Arndt-Eister反应Baeyer-Villiger 氧化Beckmann 重排Birch 还原Bischler-Napieralski 合成法Bouveault-Blanc还原Bucherer 反应Cannizzaro 反应Chichibabin 反应Claisen 酯缩合反应Claisen-Schmidt 反应Clemmensen 还原Combes 合成法Cope 重排Cope 消除反应Curtius 反应Dakin 反应Darzens 反应Demjanov 重排Dieckmann 缩合反应Elbs 反应Eschweiler-Clarke 反应Favorskii 反应Favorskii 重排Friedel-Crafts烷基化反应Friedel-Crafts酰基化反应Fries 重排Gabriel 合成法Gattermann 反应Gattermann-Koch 反应Gomberg-Bachmann 反应Hantzsch 合成法Haworth 反应Hell-V olhard-Zelinski 反应Hinsberg 反应Hofmann 烷基化Hofmann 消除反应Hofmann 重排(降解)Houben-Hoesch 反应Hunsdiecker 反应Kiliani 氰化增碳法Knoevenagel 反应Knorr 反应Koble 反应Koble-Schmitt 反应Leuckart 反应Lossen反应Mannich 反应Meerwein-Ponndorf 反应Meerwein-Ponndorf 反应Michael 加成反应Norrish I和II 型裂解反应Oppenauer 氧化Paal-Knorr 反应Pictet-Spengler 合成法Pschorr 反应Reformatsky 反应Reimer-Tiemann 反应Reppe 合成法Robinson 缩环反应Rosenmund 还原Ruff 递降反应Sandmeyer 反应Schiemann 反应Schmidt反应Skraup 合成法Sommelet-Hauser 反应Stephen 还原Stevens 重排Strecker 氨基酸合成法Tiffeneau-Demjanov 重排Ullmann反应Vilsmeier 反应Wagner-Meerwein 重排Wacker 反应Williamson 合成法Wittig 反应Wittig-Horner 反应Wohl 递降反应Wolff-Kishner-黄鸣龙反应Yurév 反应Zeisel 甲氧基测定法Arbuzov反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、α-卤代醚、α-或β-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚磷酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷R'X 的烷基和亚磷酸三烷基酯(RO)3P 的烷基相同(即R' = R),则Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法除了亚磷酸三烷基酯外,亚膦酸酯RP(OR')2和次亚膦酸酯R2POR'也能发生该类反应,例如:反应机理一般认为是按S N2进行的分子内重排反应:反应实例Arndt-Eister反应反应机理反应实Baeyer-Villiger氧化反应机理反应实例Beckmann重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例Birch还原反应机理反应实例Bischler-Napieralski合成法反应机理Bouveault-Blanc还原反应机理反应实例Bucherer反应反应机理反应实例Cannizzaro反应反应机理反应实例Chichibabin反应反应机理反应实例吡啶类化合物不易进行硝化,用硝基还原法制备氨基吡啶甚为困难。
本反应是在杂环上引入氨基的简便有效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应。
Claisen酯缩合反应二元羧酸酯的分子内酯缩合见Dieckmann 缩合反应反应机理反应实例Claisen-Schmidt反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:反应机理反应实Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。
反应机理本反应的反应机理较复杂,目前尚不很清楚反应实例Combes合成法在氨基的间位有强的邻、对位定位基团存在时,关环反应容易发生;但当强邻、对位定位基团存在于氨基的对位时,则不易发生关环反应。
反应实例Cope重排1,5-二烯类化合物受热时发生类似于O-烯丙基重排为C-烯丙基的重排反应(Claisen 重排)反应称为Cope 重排。
这个反应30多年来引起人们的广泛注意。
1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。
Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。
例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3] -迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:反应实例Cope消除反应反应机理反应实例Curtius反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则得到胺:反应机理反应实例Dakin反应反应机理反应实例Darzens反应反应机理反应实例Demjanov重排环烷基甲胺或环烷基胺与亚硝酸反应,生成环扩大与环缩小的产物。
如环丁基甲胺或环丁胺与亚硝酸反应,除得到相应的醇外,还有其它包括重排的反应产物:这是一个重排反应,在合成上意义不大,但可以了解环发生的一些重排反应。
反应机理反应实例1 氨甲基环烷醇也能发生类似的重排反应,详见Tiffeneau-Demjanov重排Dieckmann缩合反应反应机理反应实例Elbs反应羰基的邻位有甲基或亚甲基的二芳基酮,加热时发生环化脱氢作用,生成蒽的衍生物:由于这个反应通常是在回流温度或高达400-450 °C的温度范围内进行,不用催化剂和溶剂,直到反应物没有水放出为止,在这样的高温条件下,一部分原料和产物发生碳化,部分原料酮被释放出的水所裂解,烃基发生消除或降解以及分子重排等副反应,致使产率不高。
反应机理本反应的机理尚不清楚反应实例Eschweiler-Clarke反应在过量甲酸存在下,一级胺或二级胺与甲醛反应,得到甲基化后的三级胺甲醛在这里作为一个甲基化试剂。
反应机理反应实例Favorskii反应炔烃与羰基化合物在强碱性催化剂如无水氢氧化钾或氨基钠存在下于乙醚中发生加成反应,得到炔醇液氨、乙二醇醚类、四氢呋喃、二甲亚砜、二甲苯等均能作为反应的溶剂。
反应机理反应实例Favorskii重排α-卤代酮在氢氧化钠水溶液中加热重排生成含相同碳原子数的羧酸;如为环状α-卤代酮,则导致环缩小。
如用醇钠的醇溶液,则得羧酸酯此法可用于合成张力较大的四员环。
反应机理反应实例Friedel-Crafts烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis催化剂(如AlCl3,FeCl3, H2SO4, H3PO4, BF3, HF等)存在下,发生芳环的烷基化反应。
卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超过3个碳原子时,反应过程中易发生重排。
反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝作用形成碳正离子:所形成的碳正离子可能发生重排,得到较稳定的碳正离子:碳正离子作为亲电试剂进攻芳环形成中间体 络合物,然后失去一个质子得到发生亲电取代产物:反应实例Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通常用无水三氯化铝)催化下发生酰基化反应,得到芳香酮:这是制备芳香酮类最重要的方法之一,在酰基化中不发生烃基的重排。
反应机理反应实例Fries重排酚酯在Lewis酸存在下加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物。
重排可以在硝基苯、硝基甲烷等溶剂中进行,也可以不用溶剂直接加热进行。
邻、对位产物的比例取决于酚酯的结构、反应条件和催化剂等。
例如,用多聚磷酸催化时主要生成对位重排产物,而用四氯化钛催化时则主要生成邻位重排产物。
反应温度对邻、对位产物比例的影响比较大,一般来讲,较低温度(如室温)下重排有利于形成对位异构产物(动力学控制),较高温度下重排有利于形成邻位异构产物(热力学控制)。
反应机理反应实例Gabriel合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液作用转变为邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种方法。
有些情况下水解很困难,可以用肼解来代替:反应机理邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产物的水解过程与酰胺的水解相似。
反应实例Gattermann反应重氮盐用新制的铜粉代替亚铜盐(见Sandmeyer反应)作催化剂,与浓盐酸或氢溴酸发生置换反应得到氯代或溴代芳烃:本法优点是操作比较简单,反应可在较低温度下进行,缺点是其产率一般较Sandmeyer反应低。
反应机理见Sandmeyer反应反应实例Gattermann-Koch反应芳香烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存在下反应,生成芳香醛:反应机理反应实例Gomberg-Bachmann反应芳香重氮盐在碱性条件下与其它芳香族化合物偶联生成联苯或联苯衍生物:反应机理反应实例Hantzsch合成法两分子 羰基酸酯和一分子醛及一分子氨发生缩合反应,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物。