《数形结合思想》专题(整理)
中考数学——数形结合专题
第九讲数形结合思想【中考热点分析】数形结合思想是数学中重要的思想方法,它根据数学问题中的条件和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙的结合起来,并充分利用这种结合,探求解决问题的思路,使问题得以解决的思考方法。
几何图形的形象直观,便于理解;代数方法的一般性,解题过程的操作性强,便于把握。
【经典考题讲练】例1.(2015衢州)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ =BQ 时,a 的值是 .例2.(2014•广州)已知平面直角坐标系中两定点A (-1,0),B (4,0),抛物线()过点A 、B ,顶点为C .点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式与顶点C 的坐标. (2)当∠APB 为钝角时,求m 的取值范围. (3)若,当∠APB 为直角时,将该抛物线向左或向右平移t ()个单位,点P 、C 移动后对应的点分别记为、,是否存在t ,使得首尾依次连接A 、B 、、所构成的多边形的周长最短?若存在,求t 值并说明抛物线平移的方向;若不存在,请说明理由.解析:(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB 为直径,所以当抛物线上的点P 在⊙C 的内部时,满足∠APB 为钝角,所以-1<m <0,或3<m <4.(3)左右平移时,使A ′D+DB ″最短即可,那么作出点C ′关于x 轴对称点的坐标为C ″,得到直线P ″C ″的解析式,然后把A 点的坐标代入即可.答案:(1)解:依题意把的坐标代入得: ;解得:抛物线解析式为顶点横坐标,将代入抛物线得(2)如图,当时,设,则过作直线轴,(注意用整体代入法)解得,当在之间时,或时,为钝角.(3)依题意,且设移动(向右,向左)连接则又的长度不变四边形周长最小,只需最小即可将沿轴向右平移5各单位到处沿轴对称为∴当且仅当、B、三点共线时,最小,且最小为,此时,设过的直线为,代入∴即将代入,得:,解得:∴当,P、C向左移动单位时,此时四边形ABP’C’周长最小。
(完整版)数形结合思想例题分析(最新整理)
数形结合思想例题分析
一、构造几何图形解决代数与三角问题: 1、证明恒等式:
例 1 已知 x 、 y 、 z 、 r 均为正数,且 x2 y2 z2 , z
求证: rz xy.
C
x2 r2 x2
y A
r
x
B z
分析:由 x2 y2 z2 , 自然联想到勾股定理。由 z x2 r 2 x2. 可以联想到
则 G、E、D 三点共线时,GE+ED=DG 最短。作出图形,延长 DB 至 F,使 BF//AG 且
BF=AG,连接 GF.
2
则在 Rt△DGF 中,DF=1+2=3,GF=AB=2
D
1 a Eb B
2
DG DF 2 GF 2 32 22 13
G
2
F
CE+DE 的最小值是 13.
即 a2 4 b2 1 的最小值是 13.
AB CF > AC BE
当A 90时 , AB CF = AC BE .
3 /5
数形结合思想例题分析
综上: AB CF AC BE.
小结:以上两种证明方法,分别采用了三角法与代数法,较之纯几何证法来,易于想到。
例 7 如图,在正△ABC 的三边 AB、BC、CA 上分别有点 D、E、F.若 DE BC,EF AC,FD AB 同时成立,
射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。
证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然 后利用图形的几何性质去解决恒等式的证明问题。
2、证明不等式:
例 2 已知:0< a <1,0< b <1. 求证
数形结合思想专题复习
分析:要解不等式
x2 1 ax ≤1
即 x2 1 ≤1+ax
进而转化为y= x2 1 与y=1+ax两函 数图象关系。只要求使y=1+ax图象在 y= x2 1 上方的自变量x取值范围。
3.设函数 f (x) x2 1 ax , 其中 a >0.解不等式f (x)≤1
y x2 1
y
y= ax+1
o x0
当a ≥ 1时,x≥0;
当a< 1时,0≤x≤x0 2a
x 即:0≤x≤ 1 a2
4试、求已︳知z+:6 ︳z+∈︳z-C3i,︳a的rg最(z小+3值)=。43π
Y ︳z+6 ︳+ ︳z-3i ︳
3
62 32
பைடு நூலகம்
-6 -3
=3 5
OX
5.若函数 f (x) 1 x2 13 在区间[ a , b ]
22
2
f(a)=2a 1 a2 13 2a f(a)=2a 1 a2 13 2a
2
2
22
无解
a= 2 17 13 b= 4
y
y
ab x
ab x
a 0 a b
0ab
f(0)=2b 13 2b 2
f(a)=2b 1 a2 13 2b
1998-2000年高考试题中对数形结合的考查统计表
年份 题数
1998 15
1999 15
2000 14
权重
60%
62%
63%
1、集合M={(x,y)|x=3cosθ,y=3sinθ,0 θπ },
高中数学数形结合思想必考题型全梳理(附例题)
⾼中数学数形结合思想必考题型全梳理(附例题)数学好教师2020-07-17⼀数形结合的三个原则⼀等价性原则在数形结合时,代数性质和⼏何性质的转换必须是等价的,否则解题将会出现漏洞.⾸先,由代数式、⽅程、不等式构造函数时⼀要注意变量(包括⾃变量和因变量)的取值范围。
⼆双向性原则既要进⾏⼏何直观分析,⼜要进⾏相应的代数抽象探求,直观的⼏何说明不能代替严谨的代数推理.另⼀⽅⾯,仅⽤直观分析,有时反倒使问题变得复杂,⽐如在⼆次曲线中的最值问题,有时使⽤三⾓换元,反倒简单轻松.三简单性原则不要为了“数形结合”⽽数形结合.具体运⽤时,⼀要考虑是否可⾏和是否有利;⼆要选择好突破⼝,确定好主元;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运⽤函数图象时应设法选择动直线(直线中含有参数)与定⼆次曲线.⼆数形结合的应⽤⼀利⽤数轴、韦恩图求集合利⽤数形结合的思想解决集合问题,常⽤的⽅法有数轴法、韦恩图法等。
当所给问题的数量关系⽐较复杂,不好找线索时,⽤韦恩图法能达到事半功倍的效果。
⼆数形结合在解析⼏何中的应⽤解析⼏何问题往往综合许多知识点,在知识⽹络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的⾓度把抽象的数学语⾔与直观的⼏何图形结合起来,达到研究、解决问题的⽬的.构建解析⼏何中的斜率、截距、距离等模型研究最值问题;如果等式、代数式的结构蕴含着明显的⼏何特征,就要考虑⽤数形结合的⽅法来解题,即所谓的⼏何法求解,⽐较常见的对应有:(⼀)与斜率有关的问题(⼆)与距离有关的问题三数形结合在函数中的应⽤(⼀)利⽤数形结合解决与⽅程的根有关的问题【点拨】数形结合可⽤于解决⽅程的根的问题,准确合理地作出满⾜题意的图象是解决这类问题的前提.(⼆)利⽤数形结合解决函数的单调性问题(三)利⽤数形结合解决⽐较数值⼤⼩的问题(四)函数的最值问题(五)利⽤数形结合解决抽象函数问题四运⽤数形结合思想解不等式(⼀) 解不等式(⼆)求参数的取值范围五运⽤数形结合思想解决三⾓函数问题纵观近三年的⾼考试题,巧妙地运⽤数形结合的思想⽅法来解决⼀些问题,可以简化计算,节省时间,提⾼考试效率,起到事半功倍的效果.六解决⼏何问题图象解决⼏何问题借助向量的借助向量的图象利⽤向量可以解决线段相等,直线垂直,⽴体⼏何中空间⾓(异⾯直线的⾓、线⾯⾓、⼆⾯⾓)和空间距离(点线距、线线距、线⾯距、⾯⾯距),利⽤空间向量解决⽴体⼏何问题,将抽象的逻辑论证转化为代数计算,以数助形,⼤⼤降低了空间想象能⼒,是数形结合的深化。
专题复习数形结合(含答案)
专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。
2。
」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。
数学中考复习:数形结合思想PPT课件
距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0
数形结合思想(精华)
第一讲:数形结合思想在解题中的应用例1设f (x )=x 2–2ax +2,当x ∈[–1,+∞)时,f (x )>a 恒成立,求a 的取值范围 解法一 由f (x )>a ,在[–1,+∞)上恒成立⇔x 2–2ax +2–a >0在[–1,+∞)上恒成立考查函数g (x )=x 2–2ax +2–a 的图象在[–1,+∞]时位于x 轴上方 如图两种情况不等式的成立条件是(1)Δ=4a 2–4(2–a )<0⇒a ∈(–2,1)(2)⇒⎪⎩⎪⎨⎧>--<≥∆0)1(10g a a ∈(–3,–2], 综上所述a ∈(–3,1)解法二 由f (x )>a ⇔x 2+2>a (2x +1)令y 1=x 2+2,y 2=a (2x +1),在同一坐标系中作出两个函数的图象如图满足条件的直线l 位于l 1与l 2之间,而直线l 1、l 2对应的a 值(即直线的斜率)分别为1,–3, 故直线l 对应的a ∈(–3,1)例2的取值范围。
之间,求和的两根都在的方程若关于k k kx x x 310322-=++分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02b f f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例3. 解不等式x x+>2解:法一、常规解法:原不等式等价于或()()I x x x xII x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩2020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x xB B A+===-222故不等式的解集为。
数形结合思想专题练习 (含答案)
数形结合思想单元测试一、选择题.1.设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。
则ðU (A∩B)=( ) A .(-∞,1)∪(2,+∞) B .(-∞,1)∪[2,+∞) C .(-∞,1]∪[2,+∞) D .(-∞,1]∪(2,+∞)解析:涉及数集的运算,画出数轴可求{}A B=/12x x ⋂<<,进而得ðU (A∩B)=(-∞,1]∪[2,+∞); 2.如图,直线A x +B y +C =0(AB ≠0)的右下方有一点(m ,n ),则A m +B n +C 的值( ) A 与A 同号,与B 同号 B 与A 同号,与B 异号 C 与A 异号,与B 同号D 与A 异号,与B 异号A,D ,不妨设 A>0, 则B<0,C<0,因为点(m ,n )在直线的下方,所以A m +B n +C>0,故选B.3.设关于x 的方程sin x +3cos x +a =0在(0,π)内有相异解α、β.则a 的取值范围是( ); A (–2,–3)∪(–3,2) B (–2,–3) C (–3,2) D 不确定 解析:作出y =sin(x +3π)(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a ≠23时,曲线与直线有两个交点,故a ∈(–2,–3)∪(–3,2).故选A 。
4.方程sin(x –4π)=41x 的实数解的个数是( )A.2B.3C.4D.以上均不对解析:由函数与方程思想知:方程的根转化为对应函数图像的交点的横坐标,分别作出函数y=sin(x –4π)和函数y=41x 的图像,由图像知交点个数为3个,故方程的根有3个。
5.已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( )A.α<a <b <βB.α<a <β<bC.a <α<b <βD.a <α<β<b解析:令g (x )= f (x ) +2=(x –a )(x –b )(其中a <b ),可知函数f (x )的图像向上平移2个单位可得函数g (x ),而方程g (x )=0的两个跟为a ,b ,结合图像可知α<a <b <β。
高中数学的数形结合思想方法_全(讲解+例题+巩固+测试)
数形结合的思想方法(1)---讲解篇一、知识要点概述数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。
因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
二、解题方法指导1.转换数与形的三条途径:①通过坐标系的建立,引入数量化静为动,以动求解。
②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。
③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。
高中数学二轮专题复习——数形结合思想
思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。
三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。
四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。
中考数学复习专题 数形结合思想(含答案)
数形结合思想一、选择题1、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是( )(A )a>-2 (B)-2<a<1 (C)a<-2 (D)a>1 2、在频率分布直方图中,小长方形的面积等于( )(A )相应各组的频数 (B )组数 (C )相应各组的频率 (D )组距 3、已知一次函数y kx b =+的图象如图所示,当y <0时,x 的取值范围是( )A .x >0B .x <0C .-2<x <0D .x <1 4、过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm . 则OM 的长为( )A.3cmB .5cmC .2cmD .3cm5、一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图(扇形)的圆心角的度数为( ) A .600B .1800C .300D .9006、若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序。
① 小车从光滑的斜面上滑下(小车的速度与时间的关系)② 一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) ③ 运动员推出去的铅球(铅球的高度与时间的关系)④ 小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系) 正确的顺序是A .③④②①B .①②③④C .②③①④D .④①③②7、小圆圈是网络的结点,结点之间的边线表示它们之间的网线相联,边线标注的数字表示该网线单位时间内可以通过的最大信息量,现在的结O 1-2点A向结点B传递信息,可以分开沿不同的路线同时传递,单位时间内传递的最大信息量为:A.19B.20C.24D.268、如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图像是( )9、如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD面积为()(A)98 (B)196 (C)280 (D) 28410、如图,在□ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相等的平行四边形有()(A)0对(B)1对(C)2对(D)3对二、填空题:1、把正方形ABCD沿着对角线AC的方向移动到正方形A'B'C'D'的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=2,则正方形移动的距离AA'是2、如图,在直角坐标系中,矩形ABCD的顶点B的坐标为(4,2),直线12y x b=+恰好将矩形OACB分成面积相等的两部分,则b= 。
数学总复习之数学思想《数形结合》
数学总复习之数学思想《数形结合思想》一、要点:数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面。
题型一数形结合思想在解决方程的根的个数、不等式解集的问题中的应用【例题1】已知函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时, f (x )=x 2,则方程f (x )=lg x 解的个数是 ;A .5B .7C .9D .10题型二 数形结合思想在求参数、代数式的取值范围、最值问题中的应用【例题2】若关于x 的方程x x m 245-+=||有四个不相等的实根,求m 的取值范围.题型三 数形结合思想在向量中的应用【例题3】设,a b 是非零向量,且2a =,22a b +=,则a b b ++的最大值是 .题型三 数形结合思想在求最值中的应用【例题4】设{}2()min 24,1,53f x x x x =++-,则max ()f x = .二、课后作业1. 方程lg sin x x =的实根的个数为( )A. 1个B. 2个C. 3个D. 4个2. 函数y a x y x a ==+||与的图象恰有两个公共点,则实数a 的取值范围是( )A. ()1,+∞B. ()-11,C. (][)-∞-+∞,,11D. ()()-∞-+∞,,11 3. 设命题甲:03<<x ,命题乙:||x -<14,则甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 不充分也不必要条件4.设函数,021(),0x x f x x x -≤⎧-=⎨>⎩,若f (x 0)>1,则x 0的取值范围是 ( )A.(-1,1)B.(-1,+∞)C.(-∞,-2)∪(0,+∞)D.(-∞,-1)∪(1,+∞)5.已知集合A={}{}|23,|14x x B x x x -≤≤=<->或,则集合A B =_________.6.设等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为___________.7.设全集U ={x |0<x ≤10,x ∈N*},若A ∩B ={3},A ∩ðU B ={1,5,7},ðU A ∩ðU B ={9},求A ,B .8.已知实系数一元二次方程x 2+ax +2b =0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)点(a ,b )对应的区域的面积;(2)b -2a -1的取值范围;(3)(a -1)2+(b -2)2的值域.。
(整理版)圆中的数学思想
圆中的数学思想1.数形结合思想例1 {}()M x y y x b ==+,|,{}2()9N x y y x ==-,|,假设M N φ≠,求b 的取值范围. 分析:由于此题所给圆不是整圆,而仅是圆的一局部,所以应用数形结合处理. 解:集合M 是斜率为1,在y 轴上截距为b 的一束平行线,集合N 是以原点为圆心,半径为3的圆在x 轴上方的局部〔包括与x 轴的交点〕.由题意作出图形,如上图,当直线y x b =+过(30)A ,时,3b =-.当直线与半圆相切时,由点到直线的距离公式得32b =. 32b =±∴,由图形易知0b >,故32b =.332b -∴≤≤. 评注:在涉及到半圆或圆的一局部的题目时,应用数形结合处理较简单.2.转化思想所谓转化思想,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而得到解决问题的一种方法.一般地,总是将复杂的问题转化为简单的问题,将难解决的问题通过变换转化为容易解决的问题,将未解决的问题通过变换转化为已解决的问题. 例2 求圆22(2)(3)4x y -++=上的点到直线20x y -+=的最小、最大距离.分析:由于圆是一个对称图形,依其对称性,圆上的点到直线的最小〔大〕距离为圆心到直线的距离减去〔加上〕半径.解:由圆的方程22(2)(3)4x y -++=易知圆心坐标为(23)-,,半径2r =. 而(23)-,到直线20x y -+=的距离为2327222++=. 故圆上的点到直线的最大距离为7222+,最小距离为7222-. 评注:但凡涉及与圆有关的距离问题,均可转化为圆心到直线的距离问题.3.方程思想通过观察、分析、判断将问题化归为方程的问题,利用方程的性质,实现问题与方程的互相转化,到达解决问题的目的.例3 过点(30),的直线l 与圆22630x y x y ++-+=相交于P Q ,两点,且OP OQ ⊥〔其中O 为原点〕,求直线l 的方程.分析:因为OP OQ ⊥,假设设1122()()P x y Q x y ,,,,那么12121y y x x =-·,由P Q ,在圆及直线上,可借助方程求解.解:设直线l 的方程为30(0)x ay a +-=≠,那么点1122()()P x y Q x y ,,,的坐标满足方程组2263030x y x y x ay ⎧++-+=⎨+-=⎩,,消去y ,得2233630x x x x a a --⎛⎫++-+= ⎪⎝⎭·, 212231891a a x x a -+=+∴. ① 由方程组消去x ,得22(3)(3)630ay y ay y -++--+=,122151y y a =+∴. ② 依题意知OP OQ ⊥,12121y y x x =-∴·,即12120y y x x +=. 由①,②知,222318915011a a a a -++=++, 整理,得2680a a -+=,解得2a =或4a =. ∴所求直线l 的方程为230x y +-=或430x y +-=. 评注:此题巧用根与系数的关系,列出12120y y x x +=,进而求得方程.。
数形结合的思想—2024年中考数学思想方法专项突破(全国通用)(解析版)
数形结合的思想目录数形结合的思想 (1)一、数形结合在解一元二次不等式中的应用 (1)二、数形结合在求最值中的应用 (6)三、方程中数形结合的应用 (10)四、三角函数中数形结合的应用 (12)五、数形结合在函数中的应用 (13)数形结合思想的运用贯穿于整个初中数学阶段的学习 , 而数形结合思想又可以细分为“以形助数”“以数解形”和“数形互化”三个方面 , 本专题从这三个方面入手 , 结合精选例题深入剖析分析数形结合思想在初中数学教学中的运用.一、数形结合在解一元二次不等式中的应用做题思路:一元二次不等式往往可以转化为二次函数的图象来解决,首先把一元二次不等式化为一般形式20ax bx c ++>,然后令2y ax bx c =++,作出二次函数2y ax bx c =++的图象,求出图象与坐标轴的交点,然后观察图象即可得出一元二次不等式20ax bx c ++>的解集. 1.阅读理解:自主学习,请阅读下列解题过程. 解一元二次不等式:250x x −>.解:设250x x −=,解得10x =,25x =,则抛物线25y x x =−与x 轴的交点坐标为(0,0)和(5,0),画出二次函数25y x x =−的大致图象(如图所示),由图象可知:当0x <或5x >时函数图象位于x 轴上方,此时0y >,即250x x −>,所以,一元二次不等式250x x −>的解集为0x <或5x >.通过对上述解题过程的学习,按其解题的思路和方法解答下列问题: (1)上述解题过程中,渗透的数学思想有 .(2250x x −…的解集为 . (3)用类似的方法解一元二次不等式:2340x x −−+>.【思路分析】(1)根据题意容易得出结论;(2)观察图象即可写出一元二次不等式250x x −…的解集;(3)先设函数解析式,根据a 的值确定抛物线的开口向上,再找出抛物线与x 轴相交的两点,大致画出画出抛物线,根据0y >确定一元二次不等式2340x x −−+>的解集即可.【详细解答】解:(1)根据解题过程中,渗透了转化思想和数形结合思想. 故答案为:转化思想和数形结合.(2)由图象可知:当05x ……时函数图象位于x 轴及其下方,此时0y …,即250x x −…, ∴一元二次不等式250x x −…的解集为:05x …….故答案为:05x …….(3)设2340x x −−+>,解得:14x =−,21x =,∴抛物线234y x x =−−−与x 轴的交点坐标为(4,0)−和(1,0).如图:画出二次函数234y x x =−−−的图象,由图象可知:当41x −<<时,函数图象位于x 轴上方,此时0y >,即2340x x −−+>, ∴一元二次不等式2340x x −−+>的解集为:41x −<<.2.请阅读下列解题过程:解一元二次不等式:2230x x −−<. 解:设2230x x −−=,解得:11x =−,23x =,则抛物线223y x x =−−与x 轴的交点坐标为(1,0)−和(3,0). 画出二次函数223y x x =−−的大致图象(如图所示). 由图象可知:当13x −<<时函数图象位于x 轴下方, 此时0y <,即2230x x −−<.所以一元二次不等式2230−−<的解集为:13x x−<<.x通过对上述解题过程的学习,按其解题的思路和方法解答下列问题:(1)上述解题过程中,渗透了下列数学思想中的和(只填序号).①转化思想;②分类讨论思想;③数形结合思想.(2)用类似的方法解一元二次不等式:220−+>.x x(3)某“数学兴趣小组”根据以上的经验,对函数(1)(||3)=−−−的图象和性质进行了y x x探究,探究过程如下,请补充完整:①自变量x的取值范围是;x与y的几组对应值如表,其中m=;②如图,在直角坐标系中画出了函数的部分图象,用描点法将这个图象补画完整;③结合函数图象,解决下列问题:解不等式:3(1)(||3)0…….−−−−x x【思路分析】(1)依据解答过程体现的数学思想方法解答即可; (2)利用题干中的方法,画出函数的图象,观察图象解答即可; (3)①依据函数的解析式填表计算即可; ②利用描点法解答即可; ③观察图象解答即可.【详细解答】解:(1)上述解题过程中,渗透了下列数学思想中的转化思想和数形结合思想, 故答案为:①;③;(2)解一元二次不等式:220x x −+>. 设220x x −+=,解得:10x =,22x =,则抛物线22y x x =−+与x 轴的交点坐标为(0,0)和(2,0). 画出二次函数22y x x =−+的大致图象(如图所示),由图象可知:当02x <<时函数图象位于x 轴上方,此时0y >,即220x x −+>. 所以一元二次不等式220x x −+>的解集为:02x <<;(3)①自变量x 的取值范围是:任意实数;x 与y 的几组对应值如表,其中4m =−. 故答案为:任意实数,4−; ②如图,③由图象可知:当32x −−……或01x ……或34x ……时函数图象位于3−与0之间,此时30y −……,即3(1)(||3)0x x −−−−…….所以不等式3(1)(||3)0x x −−−−……的解集为:32x −−……或01x ……或34x …….3.已知关于x 的方程 x 2 - 2kx +3k - 2 = 0,求当方程有两个实数根时,k 的取值范围 .思路解析:代入k 并 根 据 求 根 公 式 得 出Δ= 4k 2 - 12k +8, 由于公式Δ含有未知数k ,得到一个关于Δ和k 的二次函数 ,其中k 为自变量 ,Δ 为因变量 ,画出 “函数 ”Δ=4k 2 - 12k+8的图象就可以 判断出 “函 数 ”的 正 负 了 . 要 想 画 出 “函 数 ”大 致 图 象 ,需要 先 判 断 出 函 数 开口 , 再 判 断 函 数 是 否 有 零 点 ,这时就要使用以数解形的思想: 函数Δ的零点实质就是在 解 Δ= 0的根 , 使 用 因 式 分 解 法 将 4k 2 -12k+8= 0这个方程化为 4(k 2-3k+2)= 0,进一 步因式分 解 得 到 :4(k - 1)(k - 2)= 0, , 就 可以解出方程有两个根分别为1和2,再回到函数上 , 可以得到函数的两个零点的坐标分别为(1,0) , (2,0)就 可以画出函数Δ=4k 2 - 12k+8的大致图象 :通过图象 ,学生就能很容易地看出Δ的正负随k 改变的情况.二、数形结合在求最值中的应用解题思路:在求此类函数y可以看做点(x ,0)到(0,4)和(2,1)的距离和最小.典例精析1.已知正实数x ,求y 【思路分析】根据轴对称的性质和勾股定理即可得到结论.【详细解答】解:由y =, 故可理解为(,0)M x 到(0,4)A 和(2,1)B 的距离和的最小值. 作A 关于轴的对称点(0,4)A '−,连接A B ',与x 轴交点即为M , 则(,0)M x 到(0,4)A 和(2,1)B 的距离的最小值A B =', 过B 作BD y ⊥轴于D ,在Rt △A DB '中,A B '==y ∴=.2.【问题情境】如图1,已知点A ,B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小军的思路是:如图2,作点A 关于直线l 的对称点A ',连接A B ',则A B '与直线l 的交点P 即为所求.【启发应用】请参考小军同学的思路,探究并解答下列问题:(1)如图3,在图2的基础上,设AA '与直线l 的交点为点C ,过点B 作BD l ⊥,垂足为点D .若1CP =,2PD =,1AC =,求出此时AP BP +的最小值;(2)如图3,若1AC =,2BD =,6CD =,则此时AP BP +的最小值为 ;(3)的最小值.【思路分析】(1)根据等腰三角形的判定证得ACP ∆和BDP ∆为等腰直角三角形,利用勾股定理求得PA 和PB ,从而求得PA PB +;(2)作//A E l ',交BD 的延长线于E ,根据已知条件求得BE 、A E ',然后根据勾股定理即可求得A B ',从而求得AP BP +的值;(3)设53AC m =−,1PC =,可得PA ,设85BD m =−,3PD =,可得PB ,结合(2)即可求解.【详细解答】解:(1)AA l '⊥,1AC =,1PC =,AC CP ∴=,90ACP ∠=︒, 45CAP CPA ∴∠=∠=︒,PA ∴=,点A 关于直线l 的对称点为A ',PA PA ∴'== 45CPA CPA ∴∠'=∠=︒,BD l ⊥,45BPD CPA ∠=∠'=︒,904545PBD BPD ∴∠=︒−︒=︒=∠,2BD PD ∴==,PB ∴==AP PB ∴++(2)作//A E l ',交BD 的延长线于E ,如图3,则四边形A EDC '是矩形,6A E DC ∴'==,1DE A C AC ='==,2BD =,3BD AC BD DE ∴+=+=,即3BE =,在Rt △A BE '中,A B '=,AP BP A P BP A B ∴+='+='=故答案为:(3)如图3,设53AC m =−,1PC =,则PA =设85BD m =−,3PD =,则PB =, 53DE AC m ==−,5BE BD DE ∴=+=,4A E CD PC PD '==+=,PA PB A B ∴+='=∴22+=3.探究:如图,C 为线段BD 上一动点,分别过点B 、D 作AB BD ⊥,ED BD ⊥,连接AC 、EC ,已知5AB =,1DE =,8BD =,设CD x =.(1)用含x 的代数式表示AC CE +的值.(2)请问点C 满足什么条件时,AC CE +的值最小?(3)根据(2的最小值.(4x 是任意实数)的最大值.【思路分析】(1)由于ABC ∆和CDE ∆都是直角三角形,故AC ,CE 可由勾股定理求得; (2)若点C 不在AE 的连线上,根据三角形中任意两边之和>第三边知,AC CE AE +>,故当A 、C 、E 三点共线时,AC CE +的值最小;(3)由(1)(2)的结果可作12BD =,过点B 作AB BD ⊥,过点D 作ED BD ⊥,使2AB =,3ED =,连接AE 交BD 于点C ,则AE 的最小值,然后构造矩形AFDB ,Rt AFE ∆,利用矩形和直角三角形的性质可求得AE 的值; (4)过点A 作AB OA ⊥,使3AB =,2OC =,连接BC 交x 轴负半轴于点D ,则BC 的长的最大值,然后构造矩形AOCE ,Rt BCE ∆,利用矩形和直角三角形的性质可求得BC 的值.【详细解答】解:(1)AC CE + (2)当A 、C 、E 三点共线时,AC CE +的值最小;(3)如图1,作12BD =,过点B AB BD ⊥,过点D 作ED BD ⊥,使2AB =,3ED =, 连接AE 交BD 于点C ,设BC x =,则AE 的最小值. 过点A 作//AF BD 交ED 的延长线于点F ,得矩形ABDF , 则2AB DF ==,12AF BD ==,325EF ED DF =+=+=,所以13AE ===,13.的最小值为13;(4)如图2,作4OA =,过点A 作AB OA ⊥,使3AB =,2OC =,连接BC 交x 轴负半轴于点D ,设D 的坐标为(,0)x ,则BC 的最大值,过点C 作CE AB ⊥,则2AE OC ==,4CE OA ==,1BE ∴=.在Rt CBE ∆中,根据勾股定理,得BC ==x三、方程中数形结合的应用1.关于x 的方程2230x kx k ++=的两个相异实根均大于1−且小于3,那么k 的取值范围是()A .10k −<<B .0k <C .3k >或0k <D .1k >−【思路分析】把一元二次方程解的问题转化为抛物线与x 轴的交点问题,则利用题意得抛物线223y x kx k =++与x 轴的两个交点到在(1,0)−和(3,0)之间,利用二次函数图象得到1x =−时,0y >和当3x =时,0y >,接着由△0>确定抛物线与x 轴有2个交点,然后解关于k 的不等式组确定k 的范围.【详细解答】解:关于x 的方程2230x kx k ++=的两个相异实根均大于1−且小于3, ∴抛物线223y x kx k =++与x 轴的两个交点都到在(1,0)−和(3,0)之间,∴△24430k k =−⨯>,解得0k <或3k >,1x =−时,0y >,1230k k ∴−+>,解得1k >−;当3x =时,0y >,9630k k ∴++>,解得1k >−,k ∴的范围为10k −<<.故选:A .2.已知方程2240x ax a ++−=有两个不同的实数根,方程220x ax k ++=也有两个不同的实数根,且其两根介于方程2240x ax a ++−=的两根之间,求k 的取值范围.【思路分析】由方程2240x ax a ++−=恒有相异两实根,则△0>,而△22211544(4)4(4)4[()]24a a a a a =−−=−+=−+,得a 为任意实数,由方程220x ax k ++=也有相异两实根,△2440a k '=−>,即2k a <;并且它的两根介于上面方程的两根之间,可利用二次函数的图象继续求k 的范围.【详细解答】解:方程2240x ax a ++−=有两个不同的实数根∴△0>,而△22144(4)4()15152a a a =−−=−+…. 又方程220x ax k ++=也有两个不同的实数根∴△2440a k '=−>,即2k a <对于二次函数2124y x ax a =++−和222y x ax k =++,它们的对称轴相同,且与x 轴都有两个不同的交点2y 与x 轴的两个交点都在1y 与x 轴的两个交点之间2y ∴与y 轴的交点在1y 与y 轴的交点上方,如图,4k a ∴>−,k ∴的取值范围是:24a k a −<<.四、三角函数中数形结合的应用1.已知11tan,tan23αβ==,求证45αβ+=︒思路分析根据正切函数的定义将图7 翻转形成图8,即可求出.图7 图8证明如图8,连接 BC,可知AD=EC,BD=BE,∠D=∠BEC,所以△ABD≌△CBE,所以AB=BC,∠ABD=∠CBE,从而∠ABC是直角,所以△ABC是等腰直角三角形,所以α+β=45°.五、数形结合在函数中的应用1.求函数y=3x ²+6x +9的图象的基本性质.图 1解:将函数y =3x ²+6x +9变式为y=3(x +1)²+6,如图1所示,对称轴是x =-1.增减性:当x >-1时 ,y 随x 的增大而增大,当x <-1时,y 随x 的增大而减小.最值:当x =-1时,y m =6,顶点坐标为(-1,6)2.如图,抛物线223y x x =−−+与x 轴交于(1,0)A ,(3,0)B −两点,与y 轴交于点C .点P 为抛物线第二象限上一动点,连接PB ,PC ,BC ,求PBC ∆面积的最大值.【思路分析】根据抛物线223y x x =−−+先求出点C 坐标,再用待定系数法求出直线BC 解析式,设P 的横坐标是(30)x x −<<,则P 的坐标是2(,23)x x x −−+,过点P 作y 轴的平行线交BC 于M ,则(,3)M x x +,然后根据三角形的面积公式求出2221133327||(3)3(3)()222228PBC B C S PM x x x x x x x ∆=⋅−=−−⨯=−+=−++,再根据函数的性质求最值.【详细解答】方法一:解:令0x =,则3y =,(0,3)C ∴,设直线BC 的解析式为3(0)y kx k =+≠,把点B 坐标代入3y kx =+得330k −+=,解得1k =,∴直线BC 的解析式为3y x =+,设P 的横坐标是(30)x x −<<,则P 的坐标是2(,23)x x x −−+, 过点P 作y 轴的平行线交BC 于M ,则(,3)M x x +,2223(3)3PM x x x x x ∴=−−+−+=−−,2221133327||(3)3(3)()222228PBC B C S PM x x x x x x x ∆∴=⋅−=−−⨯=−+=−++, 302−<, ∴当32x =−时,PBC S ∆有最大值,最大值是278, PBC ∴∆面积的最大值为278; 方法二:如图6,设P 的坐标是2(,23)x x x −−+且(30)x −<<,连接OP . 2221113(23)3()332223389279()222823327()2722832PBC OBP OCP OBC PBC S SS S x x x x x x S ∆∆=++=⨯−−++⨯−−⨯⨯==−+++−=−++==−最值当时,大图 6。
七上数学复习专题七 数形结合思想
A. 文具店
B. 玩具店
C. 文具店西40米
D. 玩具店东-60米
首页
下一页
3. 有理数a,b在数轴上的位置如图所示,则下列各式 正确的是( A )
A. a+b>0
B. ab>0
C. |a|+b<0
D. a-b>0
4. 如图,数轴上标出若干个点,每相邻两点相距1个单
位,点A,B,C,D对应的数分别是整数a,b,c,d
专题七 数形结合思想
首页
下一页
一、 选择题
1. 有理数a,b,c在数轴上的位置如图所示,则a的相 反数是( C )
A. a
B. b
C. c
D. -b
2. 文具店、书店、玩具店依次坐落在一条东西走向的
大街上,文具店在书店西20米,玩具店位于书店东
100米处,小明从书店出发,沿街向东走了位置在( A )
段AB沿数轴向右移动为A′B′,且线段A′B′
的中点对应的数是3,则点A′对应的数是
,
点A移动的距离是
.
首页
下一页
三、 解答题
13. 已知数轴上的点A和点B之间的距离为28个单位长 度,点A在原点O的左边,距离原点8个单位长度, 点B在原点的右边.
(1)求A,B两点所对应的数; (2)数轴上点A以每秒1个单位长度出发向左运动,同 时点B以每秒3个单位长度的速度向左运动,在点C处追 上了点A,求点C对应的数; (3)已知在数轴上点M从点A出发向右运动,速度为每 秒1个单位长度,同时点N从点B出发向右运动,速度为 每秒2个单位长度,设线段NO的中点为P,在运动的过 程中线段PO-AM的值是否变化?若不变,求其值;若变 化,请说明理由.
数形结合思想(提示版)
数形结合思想一、构造途径题型一:两点间的距离例1、求函数3712134)(22+-++-=x x x x x f 的最小值。
题型二:利用“直线的斜率” 例2、实系数方程022=++b ax x 的一个根在)1,0(内,另一个根在)2,1(内,求12--a b 的取值范围。
题型三:利用“点到直线的距离”例3、求函数212x x y --+=的最小值。
题型四:利用“函数图象”例4、设)()(x g x f 、分别是定义在R 上的奇函数和偶函数,当0<x 时,0)(')()()('>+x g x f x g x f 且0)3(=g ,则不等式0)()(<x g x f 的解集是_____________. 题型五:利用“单位圆”例5、已知),,0(sin cos sin cos Z k k ab c b a c b a ∈≠-≠=+=+πβαββαα,,求证:22222cos b a c +=-βα 题型六:利用“正余弦定理”构图例6、求︒︒+︒+︒50cos 20sin 50cos 20sin 22的值。
例7、设正数z y x ,,满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++2222222224331531z xz x z y y xy x ,试求xz yz xy 32++的值。
题型七:利用“平行线间的距离”例8、已知R y x b a ∈,,,,且12,042=+=++y x b a ,求证:5)()(22≥-+-y b x a二、应用方面举例题型一:函数的图象与性质例9、方程0log 44223=-+-x x x x 的实根个数为_________。
题型二:三角函数的图象与性质例10、在)2,0(π内使x x cos sin >成立的x 的取值范围为________________。
题型三:与解方程、解不等式有关的问题例11、已知)(22)(2R x x a x x f ∈+-=在区间[]1,1-上是增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合思想
知识综述
(1)函数几何综合问题是近年来各地中考试题中引人注目的新题型,这类试题将几何问题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合问题的能力,此类试题倍受命题者青睐,究其原因,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式出现。
(2)解答此类问题必须充分注意以下问题:
a. 认识平面坐标系中的两条坐标轴具有垂直关系
b. 灵活将点的坐标与线段长度互相转化
c. 理解二次函数与二次方程间的关系——抛物线与x轴的交点,横坐标是对应方程的根。
d. 熟练掌握几个距离公式:
点P(x,y)到原点的距离
e. 具备扎实的几何推理论证能力。
一、填空题(每空5分,共50分)
1. 如果a,b两数在数轴上的对应点如图所示:
则化简:__________。
2. 已知A,B是数轴上的两点,AB=2,点B表示数-1,则点A表示的数为__________。
3. 已知△ABC的三边之比是,则这个三角形是__________三角形。
4. 已知点A在第二象限,它的横坐标与纵坐标之和是1,则点A的坐标是__________。
(写出符合条件的一个点即可)
5. 如图,在梯形ABCD中,AB∥CD,E为CD的中点,△BCE的面积为1,则△ACD 的面积为__________。
6. 已知二次函数的图象如图所示,则由抛物线的特征写出如下含有系数
a,b,c的关系式:①②③④,其中正确结论的序号是__________(把你认为正确的都填上)
7. 如图,AB是半圆的直径,AB=10,弦CD∥AB,∠CBD=45°,则阴影部分面积为__________。
8. 某公司市场营销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是__________元。
9. 如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为
__________。
10. 如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若
,则AD的长为__________。
二、解答题(第11~14题每题10分,第15~19题,每题12分,共100分)
11. 在Rt△ABC中,∠C=90°,斜边c=10,并且a,b()为关于x的方程
的两根。
(1)求m的值;
(2)求sinA,tanB的值。
12. 如图,在直角坐标系中,直线AB⊥BC,垂足为,E为线段AB的中点,且OE=1,
①求E点的坐标;
②设直线经过B,C两点,求k,b的值。
13. 如图点C,D在线段AB上,△PCD是等边三角形。
(1)当AC,CD,DB满足什么关系时,△ACP∽△PDB?
(2)当△ACP∽△PDB时,求∠APB的度数。
14. 如图,PA为⊙O的切线,A为切点,PBC为过圆心O的割线,PA=10,PB=5,
(1)求∠APC的余弦值;
(2)求作以sin∠APC,cos∠APC为两根的一元二次方程。
15. 如图,已知两点A(-8,0),B(2,0),以AB为直径的半圆与y轴正半轴交于点C。
(1)求过A,C两点的直线的解析式和经过A,B,C三点的抛物线的解析式;
(2)若点D是(1)中抛物线的顶点,求△ACD的面积。
16. 如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC。
连结DE,DE=。
(1)求EM的长;
(2)求sin∠EOB的值。
17. 如图,在矩形ABCD中,AB=12cm,BC=6cm。
点P沿AB边从点A开始向点B以2 厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动。
如果P,Q 同时出发,用t(秒)表示移动的时间(),那么:
(1)当t为何值时,△QAP为等腰直角三角形?
(2)求四边形QAPC的面积;提出一个与计算结果有关的结论;
(3)当t为何值时,以点Q,A,P为顶点的三角形与△ABC相似?
18. 阅读函数图象,并根据你所获得的信息回答问题:
(1)折线OAB表示某个实际问题的函数图象,请你编写一道符合该图象意义的应用题;
(2)根据你给出的应用题分别指出x轴,y轴所表示的意义,并写出A,B两点的坐标;
(3)求出线段AB的函数解析式,并注明自变量x的取值范围。
19. 已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O'的直径,BD切半圆O'于点D,CE⊥AB交半圆O于点E。
(1)求证:BD=BE;
(2)若两圆半径的比为3:2,试判断∠EBD是直角、锐角还是钝角?并给出证明。
试题答案
一、填空题:
1. 26
2. 1或-3
3. 直角
4. (-1,2)
5. 2
6. ①②④
7.
8. 300
9.
10. 2
二、解答题:
11. 解:(1)由韦达定理得
又∵
由③得④
把①、②式代入④
其中m=-8不合题意,舍去
∴m=14
(2)又∵a>b
∴a=8,b=6
∴
12. 解:①过E作EH⊥x轴于H
∵∠AOB=Rt∠,E为AB的中点,
OE=1
∴AB=2,
又∵,∴OA=1
∴
∴E点坐标为()
②又∵AB⊥BC
∴由射影定理得:
∴OC=3
∴C(-3,0)
又∵直线BC过B、C两点
∴
∴
13. 解:(1)若△ACP∽△PDB
则有:
又∵PC=PD=CD
∴
∴当时
△ACP∽△PDB
(2)当△ACP∽△PDB时
又∵
∴
14. 解:连结OA
(1)∵PA为⊙O的切线,PBC为过圆心O的割线。
∴
∴
∴PC=20
∴
∴在Rt△APO中
(2)∵
∴
∴新方程为:
即
15. 解:(1)连AC、BC
∵直径AB,∴∠ACB=90°
∴由射影定理得OC=4
∴C点坐标(0,4)
∴直线AC的函数解析式
为
设过A、B、C的解析式为
把C(0,4)代入得
∴
(2)∵D
∴
16. 解:(1)∵∴
EM=4
(2)过E作EF⊥AB于F
17. 解:(1)当AQ=AP时即(秒)
(2),发现在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变。
(3)若△QAP∽△CBA
则∴
若
则
当t=3秒或1.2秒时,相似。
18. (1)小明从家里出发,步行去上学,每分钟走50米,12分钟到学校,到校后他发现忘带了数学作业本,立即跑步回家:跑了3分钟到达家里。
(2)x轴表示时间,单位:分,y轴表示路程,单位:米
A(12,600),B(15,0)
(3)
19. 解:(1)证:连AE,
(2)∵AB:AC=3:2
∴设AB=3k,则AC=2k,BC=k
则
又∵
∴
∴
∴∠EBC<60°
∴∠EBD=∠EBC+∠O'BD<60°+30°=90°故∠EBD是锐角。