历年初中数学竞赛试题精选(含解答)

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

初中中数学竞赛试题及答案

初中中数学竞赛试题及答案

初中中数学竞赛试题及答案初中数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0或13. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,则这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形4. 一个多项式f(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. 2, 3, 4C. 1, 3, 4D. 2, 2, 35. 一个圆的半径为5,圆心到直线的距离为4,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切6. 以下哪个是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 椭圆7. 一个数列1, 3, 5, ..., 19,这个数列共有多少项?A. 10B. 11C. 12D. 138. 一个等差数列的首项是2,公差是3,那么第10项是:A. 29B. 32C. 35D. 389. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加8平方米,求原长方形的宽是多少?A. 2米B. 3米C. 4米D. 5米10. 一个分数的分子与分母的和是21,如果分子增加5,分母增加1,新的分数等于1,求原分数是多少?A. 3/18B. 4/17C. 5/16D. 6/15二、填空题(每题4分,共20分)11. 如果一个数的平方根等于它本身,那么这个数是________。

12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。

13. 一个多项式f(x) = x^2 - 5x + 6可以分解为________。

14. 一个数的立方根等于它本身,这个数是________。

15. 如果一个数列的前三项是1, 2, 3,且每一项都是前一项的两倍,这个数列的第5项是________。

初中数学竞赛题试卷及答案

初中数学竞赛题试卷及答案

一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-1C. πD. 0.1010010001……2. 已知a,b是实数,且a+b=0,则下列选项中错误的是()A. a和b互为相反数B. a和b都是0C. ab>0D. ab≤03. 一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是()A. 32cmB. 34cmC. 36cmD. 38cm4. 若x^2-4x+3=0,则x的值是()A. 1或3B. 2或3C. 1或2D. 2或45. 下列各式中,正确的是()A. 2a + 3b = 2(a + b)B. 2a - 3b = 2(a - b)C. 2a + 3b = 2a + 3bD. 2a - 3b = 2a - 3b6. 已知函数f(x) = 2x - 1,则f(3)的值是()A. 5B. 6C. 7D. 87. 一个长方形的长是8cm,宽是5cm,则该长方形的对角线长是()A. 5cmB. 8cmC. 10cmD. 13cm8. 若a > b,且a + b = 0,则下列选项中正确的是()A. a < 0,b > 0B. a > 0,b < 0C. a = 0,b = 0D. 无法确定9. 下列各式中,分式有意义的条件是()A. 分子为0,分母为0B. 分子为0,分母不为0C. 分子不为0,分母为0D. 分子不为0,分母不为010. 下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 以上都是二、填空题(每题5分,共50分)11. 若a,b是实数,且a + b = 0,则ab的值是______。

12. 一个圆的半径是r,则该圆的周长是______。

13. 若x^2 - 4x + 3 = 0,则x^2 - 4x + 4的值是______。

14. 函数f(x) = 2x - 1的图象是一条______。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

全国初中数学竞赛历年竞赛试题及参考答案

全国初中数学竞赛历年竞赛试题及参考答案

一、选择题(只有一个结论正确)1、设的平均数为M,的平均数为N,N,的平均数为P,若,则M与P的大小关系是()。

(A)M=P;(B)M>P;(C)M<P;(D)不确定。

答:(B)。

∵M=,N=,P=,M-P=,∵,∴>,即M-P>0,即M>P。

2、某人骑车沿直线旅行,先前进了千米,休息了一段时间,又原路返回千米(),再前进千米,则此人离起点的距离S与时间t的关系示意图是()。

答:(C)。

因为图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意。

3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么()。

(A)甲比乙大5岁;(B)甲比乙大10岁;(C)乙比甲大10岁;(D)乙比甲大5岁。

答:(A)。

由题意知3×(甲-乙)=25-10,∴甲-乙=5。

4、一个一次函数图象与直线平行,与轴、轴的交点分别为A、B,并且过点(-1,-25),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有()。

(A)4个;(B)5个;(C)6个;(D)7个。

答:(B)。

在直线AB上,横、纵坐标都是整数的点的坐标是=-1+4N,=-25+5N,(N是整数).在线段AB上这样的点应满足-1+4N>0,且-25+5N≤0,∴≤N≤5,即N=1,2,3,4,5。

5、设分别是△ABC的三边的长,且,则它的内角∠A、∠B的关系是()。

(A)∠B>2∠A;(B)∠B=2∠A;(C)∠B<2∠A;(D)不确定。

答:(B)。

由得,延长CB至D,使BD=AB,于是CD=,在△ABC与△DAC中,∠C为公共角,且BC:AC=AC:DC,∴△ABC∽△DAC,∠BAC=∠D,∵∠BAD=∠D,∴∠ABC=∠D+∠BAD=2∠D=2∠BAC。

6、已知△ABC的三边长分别为,面积为S,△A1B1C1的三边长分别为,面积为S1,且,则S与S1的大小关系一定是()。

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。

A. - 2B. 2C. 6D. - 6答案:B。

解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。

2. 把多项式x² - 4x+4分解因式,结果正确的是()。

A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。

解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。

3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。

A. - 4B. - 2C. 0D. 2答案:C。

解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。

在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。

(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。

4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。

解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。

历年全国初中数学竞赛试卷及答案解析

历年全国初中数学竞赛试卷及答案解析

历年全国初中数学竞赛试卷及答案解析目录1998年全国初中数学竞赛试卷及答案解析 (3)1999年全国初中数学竞赛试卷及答案解析 (10)2000年全国初中数学竞赛试卷及答案解析 (17)2001年全国初中数学竞赛试卷及答案解析 (24)2002年全国初中数学竞赛试卷及答案解析 (31)2003年全国初中数学竞赛试卷及答案解析 (39)2004年全国初中数学竞赛试卷及答案解析 (49)2005年全国初中数学竞赛试卷及答案解析 (57)2006年全国初中数学竞赛试卷及答案解析 (64)2007年全国初中数学竞赛试卷及答案解析 (72)2008年全国初中数学竞赛试卷及答案解析 (84)2009年全国初中数学竞赛试卷及答案解析 (91)2010年全国初中数学竞赛试卷及答案解析 (99)2011年全国初中数学竞赛试卷及答案解析 (107)2012年全国初中数学竞赛试卷及答案解析 (115)2013年全国初中数学竞赛试卷及答案解析 (129)2014年全国初中数学竞赛预赛试题及参考答案 (137)1998年全国初中数学竞赛试卷及答案解析一、选择题(本大题共5小题,每小题6分,共30分).1、已知c b a ,,都是实数,并且c b a >>,那么下列式子中正确的是(B ).A. ;bc ab >B. ;c b b a +>+C. ;c b b a ->-D..cbc a > 【解析】B.根据不等式的基本性质.2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为(D ).A. 2;B. 4;C. ;3D. .5【解析】D..514)(14)()(.1.200422212212212121212=⇒⨯--=⇒-+=-∴⎩⎨⎧=-=+>⇒⎭⎬⎫>>-=∆p p x x x x x x x x px x x x p p p 为方程的两根,那么有、设由3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且64==⊥CE BD CE BD ,,,那么△ABC的面积等于(C ). A. 12; B. 14; C. 16; D. 18.【解析】C..16123434.4141.12642121=⨯==∴=-⇒=⇒∆=⨯⨯=⋅⋅=⇒⊥∆∆∆∆∆BCDE ABC ABC BCDE ABC ABC AED BCDE S S S S S S S ABC DE CE BD S CE BD DE 四边形四边形四边形的中位线是,则如图所示,连接 DACBE4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第()象限.(B ) A. 一、二; B. 二、三; C. 三、四; D. 一、四.【解析】B...11222.12.10.02)()(2一定通过第二、三象限直线过第二、三、四象限时,直线当过第一、二、三象限;时,直线当或或p px y x y p x y p p p ccc b a p c b a c b a p c b a p c b a pba c pa cb pcb a p b ac a c b c b a +=∴--=-=+==-==∴-=-=+=⇒=++=++=⇒++=++⇒⎪⎩⎪⎨⎧=+=+=+⇒=+=+=+ 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有(C ). A. 17个; B. 64个; C. 72个; D. 81个.【解析】C..7298)(.832313029282726259987654321.322490483190.89个有,满足条件的整数有序对个,共,,,,,,,个;,共,,,,,,,,则依题意,知由原不等式组可得=⨯∴==∴⎩⎨⎧≤<≤<⇒⎪⎩⎪⎨⎧≤<≤<<≤b a b a b a b a b x a二、填空题(本大题共5小题,每小题6分,共30分).6、在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_____.【解析】.1360.136013560135.1355125sin135605125)12(sin.12)120(2222=-+=+∴=+⋅=∠⋅=-=+⨯-=∠⋅=∴-=<<=xxPFPExxPAFAPPFxxPDEDPPExDPxxAP;,则如图所示,设FEA DCBP7、已知直线32+-=xy与抛物线2xy=相交于A、B两点,O为坐标原点,那么△OAB的面积等于_____.【解析】6..639211121)31()91(21'.''').93()11(32''''2=⨯⨯-⨯⨯-+⨯+⨯=--=-=+-=∆∆∆OBBOAABBAAOABSSSSBAxBBAABAxyxy梯形则,轴,垂足分别为分别垂直于,作,,,的交点为与抛物线如图所示,直线8、已知圆环内直径为cma,外直径为cmb,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为_____cm.【解析】49a+b..49)150(225050242332222baabbbaabbbaabb+=-⨯--⋯⋯+=⨯--+=⨯--个时,链长为当圆环为;个时,链长为当圆环为;个时,链长为如图所示,当圆环为9、已知方程())(15132832222是非负整数其中aaaxaaxa=+-+--,至少有一个整数根,那么a=_____.【解析】1,3或5..53151322)2()83(2)15132(4)83()83(21222222222,或,可取故,a ax a x a a a a a a a a a a a a a x -=-=∴+±-=+---±-= 10、B 船在A 船的西偏北o 45处,两船相距km 210,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是_____km .【解析】52..52''620)6-(5)210()10(''''./.''.102221045sin 102221045cos 22222o o 取得最小值时,当则船的速度为并设处,船分别航行到船、小时后,设经过,如图所示,B A xt xt xt xt C B C A B A h km x A B A B A t AB BC AB AC =+=-+-=+==⨯=⋅==⨯=⋅=三、解答题(本大题共3小题,每小题20分,共60分).11、如图,在等腰ABC ∆中,o 901=∠=A AB ,,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积.AB CEF【解】解法一:.24161212121612214522122∽9090.o o o =⨯⨯=⋅⋅=∴=⇒=-∴=⇒=∠-=-=∴=⇒==∴=⇒∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆GF CE S GF GF GF GF CG C GFGE CE CG GF GE AEABGF GE GEABGF AE GEF Rt ABE Rt GEF ABE AEB GEF AEB ABE G CE FG CEF 于如图所示,作GFEACB解法二:241)21()(∽9090.22o o ==∴====∴∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆∆AEABCH CE CE AB CH AE AB CE S S CEH Rt ABE Rt CEH ABE AEB CEH AEB ABE H EF CE CH C ABE CEH ,的延长线交于,与作如图所示,过 HFEACB.2412112141324132322.45o =⨯⨯⨯⨯=⨯==∴==∴⇒∠⇒=∠=∠∆∆∆∆∆ABE CHE CEF CHF CEF S S S CH CE S S CE CH F HCE CF HCF ECF 的距离相等、到的角平分线是12、设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点.(1)求a 的值; (2)求618323-+a a 的值. 【解】.5796)138(323)15972584(3231381011)1(310113)2)(53(1115344)1(44)2()1(1212)1(12)1()1(11101159725846101597)1(9876101597987)1)(610987(610987169546)1(441169546441)1321()(1321412)1(94129)23()(2312)1(12)1()(101)1()2(.251010)452(4)12(.0452)12(.452)12()1(618224622224222222216182228162224822224222222=+-++=+∴+-=+-+=+-=+-+-=⋅=+-=+-+=+-=+-==+-=+-+=+-=-==-=∴=--+=+++=++=++=⋅=+=+++=++=+==+=+++=++=+==+=+++=++=+==+=∴=--±=∴=+-=+-+=∆∴=++++∴++++=-a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a x a x x a x a x y 又知,由,即有两个相等的实根一元二次方程轴只有一个交点的图像与抛物线13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值. 【解】.1420014200100142001720010300020017200)(300200.98009800810980017200183001020017200)(300200.1810100100172003005001810100100818010010017200300500)10(500)10(700)10(800)18(400300200.101010182.132005100009958218010017200800)102(500)10(700)10(800)218(400300200.10210102181元的最大值是,故时,,即当;又元的最小值是,故时,,即当是整数,,,且又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(元取到最大值时,元;当取到最小值时,所以,当又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(W W y x y x x W W W y x y x x W y x y x y x y x W y x y x y x y x y x y x y x y x y x W y x y x E y x y x D C B A W x W x x x x x x x x x x x W x x x E x x x D C B A ====+⨯-⨯-≤++--=====+⨯-⨯-≥++--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤+--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤⇒⎪⎩⎪⎨⎧≤--≤≤≤≤≤+--=-++-+-+--++=-+----==≤≤⇒⎩⎨⎧≤-≤≤≤+-=-+-+-+-++=----1999年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).14、一个凸n 边形的内角和小于1999°,那么n 的最大值是(C ).A. 11;B. 12;C. 13;D. 14.【解析】C.18019131999)2(180o o <⇒<-n n .15、某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费(B ). A. 60元; B. 66元; C. 75元; D. 78元.【解析】B.设4月份用户使用煤气x (x >60)立方米.则 60×0.8+1.2×(x -60)=0.88x .解得x =75. 故4月份该用户应交煤气费0.88×75=66元.16、已知11=-a a,那么代数式a a +1的值为(D ).A.;25B. ;25-C. ;5-D. .5【解析】D..1111110②52321)1(113111110①2222222此时无解时,当;时,当-=+⇒=+⇒=-<=+=++=+=+⇒+∴=+⇒=-⇒=->a aa a a a a a a a a a a a a a aa a a a a 17、在ABC ∆中,D 是边BC 上的一点,已知51065====CD BD AD AC ,,,,那么ABC ∆的面积是(B ). A. 30; B. 36; C. 72; D. 125.【解析】B..36524)510(212152454621214353621215.2222=⨯+⨯=⋅⋅=∴=⨯=⋅=⇒⋅⋅=⋅⋅=∴=-=-=∴=⨯==⇒⊥==⊥⊥∆∆AF BC S CD CE AD AF AF CD CE AD S AE AC CE AD AE AD CE CD AC F BC AF E AD CE ABC ADC ,则于,于如图所示,作FEACD B18、如果抛物线1)1(2----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值是(A ). A. 1; B. 2; C. 3; D. 4.【解析】A.().1 184)1(452522145221214524)]1([)1(444212)1(252)1(4)1(4)(11.1)1(32222212222221221212121212取得最小值时,当,,则,的两实根为设一元二次方程ABCCABCSkkkkkkkkxxyABSkkkkabackkabkkkkxxxxxxkxxkxxxxkxkx∆∆-=++=++⋅++⋅=++⋅-⋅=⋅⋅=∴++-=-----=--=---=-++=----=-+=-∴--=-=+=----19、在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为(D).A.2;B.3;C.4;D.5.【解析】D..③②①.31452PPBABPBABPPABAPABAPPPABPBPAPABPCDCDBPBCDPCD,为半径的圆上,此时有为圆心,必在以时,点当;为半径的圆上,此时有为圆心,必在以时,点当;,的中垂线上,此时有必在线段时,点当是等腰三角形,则要使的对称直线上的直线或此直线关于且平行于一定在过点的面积相等,则点与如图所示,要使===∆∆∆二、填空题(本大题共6小题,每小题5分,共30分).20、已知231231-=+=yx,,那么22yx+的值为_____.【解析】10..10)23)(23(2)]23()23[(2)(23232312312222=+--++-=-+=+∴+=-=⇒-=+=xyyxyxyxyx,,21、如图,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是_____(0<x<10).【解析】y=5x+50.50510)]215([2110)215(21)(2121215)215(10215)10(21)(212121101010∽+=⨯++⨯+⨯-⨯=⋅+⋅+⋅⋅=+=∴+=--=-=∴-=-=-==⇒=+==⇒∆∆∆x x x x AD AF DP BE BF S S y xx BF AB AF x x DP DC CP BF EC EB CP BF ECP EBF AFPD EFB 四边形 22、已知02022=-+≠b ab a ab ,,那么ba ba +-22的值为_____. 【解析】3135或.35)2(2)2(22231222220)2)((0222=+-⨯--⨯=+-=+-=+-∴-==⇒=+-⇒=-+b b b b b a b a b b b b b a b a b a b a b a b a b ab a 或或23、如图,已知边长为1的正方形OABC 在直角坐标系中,A 、B 两点在第Ⅰ象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是_____.【解析】)213213(+-,.212321232323130cos 2121130sin 2323130cos 2121130sin .o o o o +=+=+=-=-=-=∴=⨯=⋅==⨯=⋅==⨯=⋅==⨯=⋅=⊥⊥⊥AE BF FD BF BD AF OE DE OE OD AB BF AB AF OA OE OA AE F BD AF D x BD E x AE ,,,则于,轴于,轴于如图所示,作F EDCBOxyA24、设有一个边长为1的正三角形,记作A 1(如图3),将A 1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A 2(如图4);将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3(如图5);再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么A 4的周长_____.【解析】964..964])31(1)[43(316])31(1)[43(4)311()43(313.31433422321=⨯⨯=⨯⨯=⨯⨯⨯=⨯的周长是,的周长是,的周长是,的周长是为原来的条边,每条线段长度变把一条边变成变化规律为:每次变化A A A A25、江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等.如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机_____台.【解析】6..6103210316010103231601641640240台故至少需要抽水机,则水,每台抽水机每分钟抽,每分钟涌出的江水是涌出的江水是设使用抽水机抽水前已=⨯+=+⎪⎩⎪⎨⎧==⇒⎩⎨⎧⨯=+⨯=+ccc c b a c b ca cb ac b a c b a三、解答题(本大题共3小题,每小题20分,共60分).26、设实数t s ,分别满足0199901991922=++=++t t s s ,,并且1≠st ,求ts st 14++的值. 【解】.519141991419199191991.01999111019199)1(0199190222-=++--=++∴⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=⋅-=+∴=++∴≠⇒≠=+⋅+⇒=++∴≠ss s t s st s t s st t st s x x t s st st ss s s s 的两个不等实根是一元二次方程, 27、如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB =BD ,且PC =0.6,求四边形ABCD 的周长.【解】如图所示,连接BO 并延长交AD 于H ,连接OD .则HDP O CA B.632213)6(36)2123()2221()()21(221316.0236.023∽∥909022222222222222o o +++∴=-=-==++⨯=++=+==-=-==-⨯=⋅=∴=⇒∆∆∴∠=∠⇒∴=∠⇒∠=∠=∠⇒≅∆∴∠=∠⇒∆≅∆⇒=的周长为四边形上的圆周角是直径ABCD AB AC BC OH BO AD BH AH AB CD AC AD OP CP OB CD CPOPCD OB CPD OPB CDP OBP CD BH ADC AC ADC DHB AHB DBH ABH DBO ABO DOB AOB BD AB28、有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3.例如,30可以这样得到:30108413223−→−−→−−→−−→−⨯+⨯+.(1)证明:可以得到22; (2)证明:可以得到22297100-+.【解析】(1)倒过来考虑:①22假设是通过乘法得到,则必是×2; A ,11假设是通过+2得到;9必是×3得到. 3必是+2得到.(*) B ,11假设是通过+3得到. 8必是×2得到. (A)4是+2得到; 2必是×2得到.(*) (B)4是+3得到.(*) ②22假设是通过加法得到. A ,假设是+2得到; 20必是×2得到. (A)10假设是+2得到; 8必是×2得到. a ,4是+2得到; 2必是×2得到.(*) b ,4是+3得到.(*) (B)10假设是+3得到. 7不能通过乘法得到,不满足. B ,假设是+3得到.19不能通过乘法得到,不满足. 故所有方法有148102022124810202214811221248112213911223-22-22-22-22-22-3-23-222-23-22-32-2−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−÷÷÷÷÷÷÷÷÷÷÷÷(2)倒过来考虑:148423)2293(423223423123322122222③)(2471416222)23247(222422122222②)(247222)2296(222422222①3-222-2952-952963-96396992-969929710023-22-1423-29598296993-969929710023-0322-96992971002-97100−→−−→−=-⨯→-÷−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-+−→−-+−→−-+−→−−→−−→−−→−=-+→÷-÷−→−−→−−→−⋯-+−→−-+−→−-+−→−-+−→−−→−=-+→÷-−→−−→−⋯-+−→−-+−→−-+÷÷÷÷÷÷÷÷÷÷÷÷÷÷,次不满足,,次不满足,次【解】证明:(1)22119312232−→−−→−−→−−→−⨯+⨯+.或222010841222010842122118412211842122223222222232323222−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−+⨯+⨯++⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯证明:(2)222229129329123423)2292(423223423223423223197100972962963963962242323222223-+=-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯→⨯+−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−⨯+⨯+⨯+⨯+⨯+⨯+,次2000年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).29、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a >>,则M 与P 的大小关系是(B ). A. ;P M = B. ;P M > C. ;P M < D. 不确定.【解析】B..01221221224234222223P M cc c c b a P M cb a cb ac b a c b a P M c b a cba c N Pb a Nc b a M >⇒=-+>-+=-∴>>-+=++-++=-∴++=++=+=+=++= ,,30、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(b ﹤a ),再前进c千米,则此人离起点的距离S 与时间t 的关系示意图是(C ).【解析】C.图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S 的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意.31、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么(A ).A. 甲比乙大5岁;B. 甲比乙大10岁;C. 乙比甲大10岁;D. 乙比甲大5岁.【解析】A.设甲、乙的年龄差是x 岁.则乙现在(10+x )岁,甲现在(25-x )岁,年龄差为[(25-x )-(10+x )]=15-2x 岁. 故15-2x =x ,即x =5.32、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有(B ). A. 4个; B. 5个; C. 6个; D. 7个.【解析】B..5012340419419)(419190)()4950()019().19(4549545)251(4954500000个点故共有,,,,是整数点,则上横纵坐标都是整数的是线段,设,,,则的一次函数的解析式是,平行,且过与直线----=⇒≤-=≤-⇒⎩⎨⎧=-≤≤∴--=-=--+=t x t t tx x AB y x B A x x y x y 33、设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是(B ). A. ∠B >2∠A ; B. ∠B =2∠A ; C. ∠B <2∠A ; D. 不确定.【解析】B.BACD BAD D ABC DBAD D BAC DAC ABC DCACAC BC C C DAC ABC c a CD AB BD D CB c a b b a c b a b b a a b a c b a b a b a c b a b a b a ∠=∠=∠+∠=∠∴∠=∠∠=∠⇒∆∆∴=∠=∠∆∆+==+=⇒+++-++-=--⇒+++=--⇒+++=22∽.)()( ,中,和在,于是,使到如图所示,延长ca b cDC B A34、已知ABC ∆的三边长分别为c b a ,,,面积为S ,111C B A ∆的三边长分别为111c b a ,,,面积为S 1,且111c c b b a a >>>,,,则S 与S 1的大小关系一定是(D ).A. ;1S S >B. ;1S S <C. ;1S S =D. 不确定.【解析】D..2121214121..2.2.11111111111111111`111S S h CB S S h CB S S h CB h AB S CB AB S c c b b a a ABc b a h AB C B A AB c ABAB b a l C AB l AB B >>==<<⋅=⋅⋅=>>>===∆==>=时,;当时,;当时,当,而,,显然满足,则为为边的等边三角形,高是以,则上任一点为的中垂线,是的中点,是如图所示,二、填空题(本大题共6小题,每小题5分,共30分).35、已知:333124++=a ,那么=++32133aa a _____. 【解析】1..11)]12(1[1)11(1)1(113313313312111)2()124)(12()12(12433333323323233333333333=--+=-+=-+=-+++=++=++∴-=⇒=-=++-=-⇒++=aa a a a a a a a a a a a aa a36、在梯形ABCD 中,o o 12045268∥=∠=∠==BAD BCD BC AB DC AB ,,,,,则梯形ABCD 的面积等于_____.【解析】3666+..36666)]3214(8[21)(21321468323223630tan 30120.62264526.o o o o +=⨯++=⋅+=∴+=++=++=∴=⨯=⋅=⇒=∠⇒=∠====⇒=∠=AE CD AB S FC EF DE DC AE DE DAE BAD CF BF AE BCD BC F E DC BF AE ABCD 梯形,、于垂直、如图所示,作37、已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数有_____个.【解析】5..5①②.32121112111②11①.0)]1()1)[(1(12)1(212个有知,符合条件的整数结合,,,,即,是整数知,,由,时,当;时,当aaaxaxxaxaaxaxaxxa-=±±=----==≠===++--⇒=--+-38、如图,工地上竖立着两根电线杆AB、CD,它们相距15米,分别自两杆上高出地面4米、6米的A、C处,向两侧地面上的E、D;B、F点处,用钢丝绳拉紧,以固定电线杆.那么钢丝绳AD与BC 的交点P离地面的高度为_____米.【解析】2.4..4.24.21561541515615∽415∽.米离地面的高度是即点则于如图所示,作PPQPQPQBQQDPQCDBDPQBQBDBQCDPQBCDBPQPQABBDPQQDBDQDABPQDABDPQQBDPQ=⇒=+∴=+=⋅=⇒=⇒∆∆=⋅=⇒=⇒∆∆⊥39、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线bxy+=31恰好将矩形OABC 分成面积相等的两部分,那么b=_____.【解析】0.5..211)515()0(===-==+bBQOPSSbBQbOPbQbPOPQABQPC,即,则要使,,知,,,由梯形梯形40、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是_____.)进价进价销售价(注:利润率%100⨯-=【解析】17%.%17%10017.117.1%8%100%100%)4.61(%)4.61(%.100%)4.61(%)4.61(%4.6%.100=⨯-==⨯--⨯---⨯---⨯-xxx xy x xy x x y xxy xxy y x 率为故这种商品原来的利润解得,依题意得,为后,在销售时的利润率原进价降低的利润率为元,那么按原进价销售元,销售价为设原进价为三、解答题(本大题共3小题,每小题20分,共60分).41、设m 是不小于-1的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根21x x ,.(1)若62221=+x x ,求m 的值; (2)求22212111x mx x mx -+-的最大值. 【解】.1011.101.11)11(25)23(2)13(2)13(2)1()13)(1(2)2882(1)42()33()]42)(33()10102[(1)()]([)1)(1()]1()1([11)2(.217511217561010210102)33(2)]2(2[2)()1(.1110)33(4)]2(2[.033)2(222212122222232222121212122212112222122212122222122122212222的最大值是故取得最大值时,当上是单调递减的在设根据题设,有有两个不相等的实数根方程x mx x mx y m m y m m m m y m m m m m m m m mm m m m m m m m m m m m m m x x x x x x x x x x m x x x x x x m x mx x mx m m m m m m m m m m x x x x x x m m m m m m m x m x -+--=∴<≤-<≤---=+-=+-=-+--=--+-=+-++--+-++-=++-+-+=---+-=-+--=∴<≤-±=⇒=+-∴+-=+----=-+=+<≤-<⇒>+---=∆∴=+-+-+42、如图,已知四边形ABCD 外接圆O 的半径为2,对角线AC 与BD 的交点为E ,322===BD AE AB EC AE ,且,,求四边形ABCD 的面积.ECOBAD【解】由题设,得ADAB ADB ABE ACBADB ACB ABE ACB ABE BACEAB AB AE AC AB AC AE AB EC AE AE AB AE AB =⇒∠=∠∴∠=∠∠=∠⇒∆∆∴∠=∠=⇒⋅=⇒⎭⎬⎫==⇒= ∽2222232333.313221211121)3(233221212222=+=+=∴==∴=⨯⨯=⋅⋅=∴=-=-==-=-=∴=⨯===⇒∆≅∆∴∠=∠⇒∆≅∆∆∆∆∆∆ABD CBD ABCD ABD CBD ABD S S S S S AC E AH BD S OH OA AH BH OB OH BD DH BH ADH ABH DAO BAO ADO ABO H BD AO DO BO AO 四边形的中点是,,则于交,、、如图所示,连接 HECO BAD43、一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次.对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)【解】易知,这32个人恰好是第2至第33层各住1人.先证明:要使不满意的总分达到最小,则对于每个乘电梯上、下楼的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数.证明:设乘电梯上、下楼和直接走楼梯上楼的2个人分别住第s 和第t 层. 并设电梯停在第x 层.①当x ≤s 时,这两者不满意总分为3(s -x )+3(t -1)=3s +3t -3x -3.与t ,s 的大小关系无关;②当x >s 时,这两者不满意总分为(x -s )+3(t -1)=3t +x -s -3,要使总分最小,则t <s . 故s <t ,即乘电梯上、下楼的人,他所住的层数大于直接走楼梯上楼的人所住的层数. 今设电梯停在第x 层,并设住在第2层到第a (a <x )层的人直接走楼梯上楼. 那么不满意总分为:.31672774101316)7(815)4101(216832)101(22)33)(34(32)1)((2)1(32)33)](33(1[32)1)](1(1[2)1)](1(1[3)]33(21[3)]1(21[)]1(21[32222取得最小值时,当S a x a a x a a x a a x a x x x a x a x a a x x a x a x a a x a x a S ⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=+-++-=+-++-=--+---+-=--+⨯+----++--+⨯=-+⋯+++--+⋯+++-+⋯++= 所以,当电梯停在第27层时,这32个人不满意的总分达到最小,最小值为316分.2001年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).44、化简)2(2)2(2234++-n n n ,得(C ). A. ;8121-+nB. ;12+-nC. ;87D. .47 【解析】C.872122)12(2222)2(2)2(223343141434=-=-=-=-+++++++n n n n n n n n .45、如果c b a ,,是三个任意整数,那么222ac c b b a +++,,(C ). A. 都不是整数; B. 至少有两个整数; C. 至少有一个整数; D. 都是整数.【解析】C.①若a ,b ,c 中有0个奇数,则3个数都是整数; ②若a ,b ,c 中有1个奇数,则只有1个数是整数; ③若a ,b ,c 中有2个奇数,则只有1个数是整数; ④若a ,b ,c 中有3个奇数,则3个数都是整数.46、如果b a ,是质数,且01301322=+-=+-m b b m a a ,,那么baa b +的值为(B ). A.;22123B.;或222125C.;22125D..222123或 【解析】B.①当a =b 时,2=+=+aa a ab a a b ;②当a ≠b 时,a ,b 是一元二次方程x 2-13x +m =0的两实根.故a +b =13. 又a ,b 是质数,故a =2,b =11或a =11,b =2. 故22125112211=+=+ba ab .47、如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B ).A. 6;B. 8;C. 10;D. 12.【解析】B.设正方形的边长为a ,则分成的矩形的长为a /2.宽为(a -a /2)/2=a /4,故中间竖排有4个.所以,正方形分成8个全等的矩形.48、如图,若P A =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC 等于(B ).CDBPAA. 6;B. 7;C. 12;D. 16.【解析】B.如图所示,以P 为圆心,以PA =PB 为半径作圆,延长BD 交圆于M .MCDBPA则由∠APB =2∠ACB ,知点C 必在⊙P 上.故根据相交弦定理,有AD •DC =BD •DM =(PB -PD )(PM +PD )=(4-3)×(4+3)=7.49、若b a ,是正数,且满足)111)(111(12345b a -+=,则b a 和之间的大小关系是(A ).A. ;b a >B. ;b a =C. ;b a <D. 不能确定.【解析】A.由12345=(111+a )(111-b ),得111(a -b )-ab =24>0,故a >b .二、填空题(本大题共6小题,每小题5分,共30分).50、已知:23232323-+=+-=y x ,.那么=+22y x x y _____. 【解析】970.9701101310)()(3)(110625625232323232323223322=⨯⨯-=+-+=+=+∴⎩⎨⎧==+⇒⎩⎨⎧+=-=⇒⎪⎪⎩⎪⎪⎨⎧-+=+-=xy y x xy y x y x y x y x xy xy y x y x y x .51、若281422=++=++x xy y y xy x ,,则y x +的值为_____.【解析】6或-7.两式相加,得(x +y )2+(x +y )-42=0,即[(x +y )-6][(x +y )+7]=0,故x +y =6或-7.52、用长为1,4,4,5的线段为边作梯形,那么这个梯形的面积等于_____.【解析】1036或. ①若1,4为底.如图所示,延长DA ,CB 相交于G ,并设AG =x ,BG =y ,则4514GBCDA35345414==⇒+==+⇒==y x y y x x GC GB DC AB GD GA ,. 在△GAB 中,GA 2+AB 2=GB 2,故△GAB 是直角三角形,即∠D =∠GAB =90o . 于是,S =(AB +DC )·AD /2=(1+4)·4/2=10. ②若1,5为底.如图所示,作AE 、BF 垂直DC 于E 、F .则4145FE ACDBDE =CF =(5-1)/2=2,32242222=-=-=DE AD AE . 于是,3632)51(21)(21=⨯+=⋅+=AE DC AB S .③若4,4为底.应为平行四边形,但不满足.④若4,5为底.则1,4为腰,由于1+4=5,故不满足.53、销售某种商品,如果单价上涨%m ,则售出的数量就将减少150m.为了使该商品的销售总金额最大,那么m 的值应该确定为_____.【解析】25.设这种商品的原单价为A ,原销售量为B ,销售总额为W ,则)1500050(15000150150100100)1501(%)1(2---=-⋅+⋅=-⋅+=m m AB m m AB m B m A W 当25250=--=m 时,W 取得最大值.54、在直角坐标系xOy 中,x 轴上的动点)0(,x M 到定点)12()55(,、,Q P 的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,点M 的横坐标=x _____.【解析】25.如图所示,作P 关于x 轴的对称点P’.则H I M P'(5,-5)'Q (2,1)P (5,5)M'MP +MQ =MP’+MQ ,故当Q 、M 、P’三点共线时,MP +MQ 最小.过P’,Q 分别作x 轴的垂线,垂足分别为I ,H . 于是255251'=⇒--=⇒=x x x IM HM I P QH .55、已知实数b a ,满足22221b a ab t b ab a --==++,且,那么t 的取值范围是_____.【解析】313-≤≤-t .31)1(2123113121210)(211310)(231122222222222222-=--⨯≥-=--=-=-⨯≤-=--=∴-≥⇒≥+=++=+⇒++=≤⇒≥-=+-=-⇒++=ab b a ab t ab b a ab t ab b a b ab a ab b ab a ab b a b ab a ab b ab a .三、解答题(本大题共3小题,每小题20分,共60分).56、某个学生参加军训,进行打靶训练,必须射击10次.在第6、第7、第8、第9次射击中,分别得了9.0环、8.4环、8.1环、9.3环.他的前9次射击所得的平均环数高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环.那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)【解】设前5次射击的平均环数为x ,则前9次射击的平均环数为98.34593.91.84.80.95+=++++x x . 由题设知,x x >+98.345,即7.8<x . 故前9次的总环数至多为8.7×9-0.1=78.2.所以,第10次射击至少得8.8×10+0.1-78.2=9.9(环).57、如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线,过点P 作⊙O 的割线P AB ,交⊙O 于A ,B 两点,并交ST 于点C .求证:)11(211PBPA PC +=.ACPOSTB【解】如图所示,作OE ⊥AB 于E ,连接OP 交ST 于F ,连接OT .PBPA PB PA PB PA PC PB PA PC PB PA PE PC PB PA PE PC PB PA PBPA PT PAB PT POPF PT POPTPT PF PTO PFT PEPC PO PF PE PFPO PC POE PCF BEAE ST OP 112)(222.∽∽22+=⋅+=∴+⋅=⋅⇒⋅=⋅⇒⋅=⋅∴⋅=⇒⋅=⇒=⇒∆∆⋅=⋅⇒=⇒∆∆∴=⊥∴是割线是切线,, F E CA POS TB58、已知:关于x 的方程01)1)(72()1)(1(22=+-+---x x a x x a 有实根. (1)求a 取值范围;(2)若原方程的两个实数根为21x x ,,且113112211=-+-x x x x ,求a 的值. 【解】(1)令1-=x xt ,得)1(1≠-=t t t x . 原方程转化为关于t 的方程01)72()1(22=++--t a t a 有不为1的实数根. ①当a 2-1=0时,符合题意; ②当a 2-1≠0时,28530)1(4)]72([22-≥⇒≥--+-=∆a a a . 若t =1,则22101)72()1(2±=⇒=++--a a a . 故a 的取值范围是2212853±≠-≥a a 且. (2))(3810113172113111721)72(112122211222211舍去,-==⇒=-+∴=-+--+=-+--=-+-a a a a x x x x a a a a x x x x.所以,a 的值为10.2002年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).59、设ab b a b a 4022=+<<,,则ba ba -+的值为(A ). A. ;3 B. ;6 C. 2; D. 3.【解析】A ..3242422)()()(0002222222=-+=-+++=-+=-+=-+∴>-+⇒⎩⎨⎧<+<-⇒<<abab abab ab b a ab b a b a b a b a b a b a b a b a b a b a b a b a60、已知200219992001199920001999+=+=+=x c x b x a ,,,则多项式ca bc ab c b a ---++222的值为(D ). A. 0; B. 1; C. 2; D. 3.【解析】D..3]2)1()1[(21])()()[(21222222222=+-+-=-+-+-=---++a c c b b a ca bc ab c b a61、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于(D ).GFEDABCA. ;65B. ;54C. ;43D. .32 【解析】D..32612)(261412412....=⨯-=+-=∴=+⇒⎪⎩⎪⎨⎧=+==+=∴====∴=∆∆∆∆∆∆a aa S y x S S S ay x a y x S a y x S y S S x S S BC AB ABCD F E BG a S ABCDABCD ABCDAGCD ABF CBE AGE BGE BGF CGF ABCD 矩形矩形矩形四边形矩形,的中点、的边是矩形、如图所示,连接设 GFEDABC62、设c b a 、、为实数,323232222πππ+-=+-=+-=a c z c b y b a x ,,,则z y x 、、中至少有一个值(A ). A. 大于0; B. 等于0; C. 不大于0; D. 小于0.【解析】A. .00)3()1()1()1(222323232222222222中至少有一个大于、、,,z y x c b a c b a c b a z y x a c z c b y b a x ∴>-+-+-+-=+---++=++∴+-=+-=+-=πππππ63、设关于x 的方程09)2(2=+++a x a ax 有两个不等的实数根21211x x x x <<,且,,那么a 的取值范围是(D ). A. ;5272<<-aB. ;52>aC. ;72-<aD. .0112<<-a 【解析】D..0112102012901)(0)1)(1(121212121<<-⇒-<+⇒<+++∴<++-⇒<--⇒<<a a a a a x x x x x x x x64、9321A A A A ⋯是一个正九边形,b A A a A A ==3121,,则51A A 等于(D ).A. ;22b a +B. ;22b ab a ++C. ;)(21b a + D. .b a +【解析】D.ba A A A A P A A A P A A A A PA A PA A PA A PA A A A A A A A A A A PA A PA A A A Ab A A A A A A P A A A A +=+=+==∴∆∆∴=+=∠=∠∴=-=∠=∠∆=-=∠=∠∴=-⨯⋯==42212211515142oo o 2442ooo243423432o o o 3432o o 93213142424521.602040202140180.40140180.1409)29(180..是等边三角形是等边三角形,中,在的每个内角都为正九边形则,连接相交于点,如图所示,延长 ab PA 9A 8A 7A 6A 5A 4A 3A 2A 1二、填空题(本大题共6小题,每小题5分,共30分).65、设21x x 、是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为_____.【解析】863-..863863)49(21892)2(9)(29)(25]2)[(25)(2)2)(2(.04)2()2(4222212212121221212221122122-≤---=-+-=-+-⨯-=++-=+-+-=++-=-->+-=--=∆a a a a a x x x x x x x x x x x x x x x x x x a a a a 为一切实数知,由。

历年初中数学竞赛试题精选(含解答)

历年初中数学竞赛试题精选(含解答)

初中数学竞赛专项训练(1)1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 1111 解:依题意设六位数为abcabc ,则abcabc =a ×105+b ×104+c ×103+a ×102+b ×10+c =a ×102(103+1)+b ×10(103+1)+c (103+1)=(a ×103+b ×10+c )(103+1)=1001(a ×103+b ×10+c ),而a ×103+b ×10+c 是整数,所以能被1001整除。

故选C方法二:代入法2、若2001119811198011⋯⋯++=S ,则S 的整数部分是____________________解:因1981、1982……2001均大于1980,所以9022198019801221==⨯>S ,又1980、1981……2000均小于2001,所以22219022*********221==⨯<S ,从而知S 的整数部分为90。

3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。

解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。

历届初中数学竞赛试题及答案

历届初中数学竞赛试题及答案

历届初中数学竞赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4 或 -4D. 16答案:C3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数列1, 1, 2, 3, 5, ...,每个数都是前两个数的和,这个数列的第6个数是多少?A. 8B. 13C. 21D. 34答案:B5. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是________。

答案:非负数7. 一个长方体的长、宽、高分别是2cm、3cm和4cm,它的体积是________。

答案:24立方厘米8. 一个分数的分子和分母同时乘以一个相同的数,这个分数的值________。

答案:不变9. 如果一个数的立方等于它本身,那么这个数是________。

答案:1,-1,010. 一个圆的周长是2πr,其中r是圆的半径,π是圆周率,π的值约等于________。

答案:3.14三、解答题(每题5分,共20分)11. 一个班级有50名学生,其中30名学生参加了数学竞赛,20名学生参加了英语竞赛,并且有5名学生同时参加了数学和英语竞赛。

请问只参加数学竞赛的学生有多少人?答案:只参加数学竞赛的学生有30-5=25人。

12. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

答案:等差数列的公差d=5-2=3,第10项a10=a1+(10-1)*d=2+9*3=29。

13. 一个直角三角形的斜边长为13,一条直角边长为5,求另一条直角边长。

答案:根据勾股定理,另一条直角边长b=√(13²-5²)=12。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列表达式的值:(3x^2 - 2x + 1) + (x^2 + 4x - 3) = ?A. 4x^2 + 2x - 2B. 4x^2 + 2x + 2C. 5x^2 + 2x - 2D. 5x^2 + 2x + 2答案:D3. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C4. 如果一个数的平方是36,那么这个数是?A. 6B. ±6C. 36D. ±36答案:B5. 以下哪个分数是最简分数?A. 6/8B. 9/12C. 5/10D. 7/14答案:B6. 一个等差数列的第一项是2,公差是3,那么第5项是多少?A. 17B. 14C. 11D. 8答案:A7. 下列哪个图形的面积是最大的?A. 边长为4的正方形B. 半径为2的圆C. 长为5,宽为3的矩形D. 底为6,高为2的三角形答案:B8. 一个正方体的体积是27立方厘米,那么它的表面积是多少?A. 54平方厘米B. 63平方厘米C. 81平方厘米D. 108平方厘米答案:A9. 一个数的立方根是2,那么这个数是?A. 6B. 8C. 2D. 4答案:D10. 下列哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 5x + 6 = 0D. x^2 - 6x + 9 = 0答案:A二、填空题(每题4分,共20分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是________厘米。

答案:2213. 如果一个数除以3余1,除以5余2,那么这个数最小是________。

初中数学全国竞赛试题及答案

初中数学全国竞赛试题及答案

初中数学全国竞赛试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是:A. 4B. ±4C. 16D. ±163. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 84. 将一个圆分成四个相等的扇形,每个扇形的圆心角是多少度?A. 45°B. 60°C. 90°D. 120°5. 一个数的立方等于-8,这个数是:A. -2B. 2C. -8D. 8二、填空题(每题2分,共10分)6. 一个数的平方根等于它本身,这个数是______。

7. 如果一个数的绝对值等于5,那么这个数可以是______。

8. 一个数的倒数是1/4,那么这个数是______。

9. 一个数的平方是25,这个数可以是______。

10. 一个数的立方根是2,那么这个数是______。

三、解答题(每题10分,共30分)11. 已知一个长方体的长、宽、高分别是a、b、c,求长方体的体积。

12. 一个圆的半径是r,求圆的面积。

13. 已知一个等腰三角形的两个腰长为a,底边长为b,求三角形的面积。

四、证明题(每题15分,共30分)14. 证明:直角三角形的斜边的平方等于两直角边的平方和。

15. 证明:如果一个角的余弦值等于1/2,那么这个角是60°。

五、应用题(每题20分,共20分)16. 某工厂生产一种零件,每个零件的成本是5元,售价是10元。

如果工厂想要获得10000元的利润,需要生产和销售多少个这种零件?初中数学全国竞赛试题答案一、选择题1. B2. B3. A4. C5. A二、填空题6. 0或17. ±58. 49. ±510. 8三、解答题11. 长方体的体积 = 长× 宽× 高= a × b × c。

初中数学竞赛试题及答案pdf

初中数学竞赛试题及答案pdf

初中数学竞赛试题及答案pdf一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的平方等于9,这个数是?A. 3B. -3C. 3或-3D. 以上都不是答案:C3. 计算下列算式的结果:(2x + 3)(2x - 3) = ?A. 4x^2 - 6x + 6B. 4x^2 - 9C. 4x^2 + 6x - 9D. 4x^2 + 9答案:B4. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为90度,那么这个三角形的周长是多少?A. 7B. 8C. 9D. 10答案:D5. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 以下哪个是完全平方数?A. 36B. 49C. 64D. 81答案:C8. 一个数的立方等于-8,这个数是?A. -2B. 2C. -2或2D. 以上都不是答案:A9. 计算下列算式的结果:(a + b)^2 = ?A. a^2 + 2ab + b^2B. a^2 - 2ab + b^2C. a^2 + b^2D. a^2 - b^2答案:A10. 如果一个数的绝对值是5,那么这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题4分,共20分)11. 一个数的平方根是2,那么这个数是______。

答案:412. 一个等差数列的首项是2,公差是3,那么这个数列的第5项是______。

答案:1713. 一个等腰三角形的底边长是6厘米,两腰长分别是8厘米,那么这个三角形的周长是______厘米。

答案:2214. 如果一个数除以3余2,除以5余1,那么这个数可能是______(写出一个符合条件的数即可)。

答案:1115. 一个直角三角形的两直角边长分别是3厘米和4厘米,那么这个三角形的斜边长是______厘米。

数学竞赛初中试题及答案

数学竞赛初中试题及答案

数学竞赛初中试题及答案一、选择题(每题3分,共30分)1. 已知等腰三角形的两边长分别为5和8,那么这个等腰三角形的周长是:A. 18B. 21C. 26D. 282. 一个数的平方等于它的4倍,这个数是:A. 0B. 2C. -2D. 0或23. 一个长方形的长是宽的2倍,如果宽增加2厘米,长减少2厘米,那么面积不变。

设长方形的宽为x厘米,根据题意可得方程:A. 2x(x+2) = x(x-2)B. 2x(x-2) = x(x+2)C. 2x^2 = x^2 - 4x + 4D. 2x^2 = x^2 + 4x - 44. 一个数列的前四项依次为1, 2, 4, 8,那么第五项是:A. 16B. 32C. 64D. 1285. 一个圆的直径是10厘米,那么它的面积是:A. 78.5平方厘米B. 157平方厘米C. 314平方厘米D. 785平方厘米6. 一个数的相反数是-4,那么这个数是:A. 4B. -4C. 0D. 87. 一个分数的分子比分母小3,且这个分数等于1/2,那么这个分数是:A. 1/3B. 2/5C. 3/6D. 4/78. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 09. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1或-110. 一个等差数列的前三项依次为2, 5, 8,那么第四项是:A. 11B. 12C. 13D. 14二、填空题(每题4分,共20分)1. 一个数的立方根是它本身的数是______。

2. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角是______度。

3. 一个数的绝对值是它本身,这个数是______。

4. 一个数的平方等于16,这个数是______。

5. 一个数的相反数是它本身,这个数是______。

三、解答题(每题10分,共50分)1. 已知一个等腰三角形的两边长分别为3和4,求这个等腰三角形的周长。

近三年初中数学竞赛真题及解答汇总

近三年初中数学竞赛真题及解答汇总

近三年初中数学竞赛真题及解答汇总在初中数学的学习中,参加数学竞赛是一项极具挑战性和有益的活动。

它不仅能够检验学生对数学知识的掌握程度,还能培养学生的思维能力和创新精神。

以下是近三年初中数学竞赛的部分真题及详细解答,希望能对同学们的学习有所帮助。

一、2021 年真题(1)已知直角三角形的两条直角边分别为 3 和 4,则斜边的长度为()A 5B 7C 5 或 7D 无法确定解答:根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。

所以斜边的长度为√(3²+ 4²) =√(9 + 16) =√25 = 5,答案选 A。

(2)若关于 x 的方程 x²+ 2x + k = 0 有两个相等的实数根,则 k 的值为()A 1B -1C 2D -2解答:对于一元二次方程 ax²+ bx + c = 0,当判别式△= b² 4ac = 0 时,方程有两个相等的实数根。

在方程 x²+ 2x + k = 0 中,a =1,b = 2,c = k,所以△= 2² 4×1×k = 4 4k = 0,解得 k = 1,答案选 A。

(3)在平行四边形 ABCD 中,∠A :∠B :∠C :∠D 的值可能是()A 1 : 2 : 3 : 4B 1 : 2 : 2 : 1C 2 : 2 : 1 : 1D 2 : 1 :2 : 1解答:因为平行四边形的两组对角分别相等,所以∠A =∠C,∠B =∠D。

所以∠A :∠B :∠C :∠D 的值应该是 2 : 1 : 2 :1,答案选 D。

二、2022 年真题(1)若 a + b = 5,ab = 6,则 a²+ b²的值为()A 13B 19C 25D 28解答:因为(a + b)²= a²+ 2ab + b²,所以 a²+ b²=(a + b)²2ab = 5² 2×6 = 25 12 = 13,答案选 A。

初中数学竞赛试卷带答案

初中数学竞赛试卷带答案

一、选择题(每题5分,共25分)1. 下列各数中,哪个数是负数?A. -3B. 0C. 3D. -3.5答案:D2. 如果一个长方形的面积是24平方厘米,长是6厘米,那么宽是多少厘米?A. 2B. 3C. 4D. 5答案:B3. 下列哪个数是偶数?A. 23B. 25C. 26D. 27答案:C4. 下列哪个图形的对称轴最多?A. 等腰三角形B. 等边三角形C. 长方形答案:D5. 一个正方体的棱长为a,那么它的表面积是多少?A. 4a^2B. 6a^2C. 8a^2D. 12a^2答案:B二、填空题(每题5分,共25分)6. 1/2 + 3/4 = _______答案:5/47. 9.6 - 3.8 = _______答案:5.88. 0.3 × 0.4 = _______答案:0.129. 下列分数中,哪个是最简分数?A. 6/8B. 3/4C. 4/6D. 8/10答案:B10. 下列哪个数是整数?A. 1.5C. 1.1D. 1.01答案:A三、解答题(每题10分,共30分)11. 一个长方形的长是8厘米,宽是5厘米,求它的周长。

答案:周长= 2 × (长 + 宽) = 2 × (8 + 5) = 2 × 13 = 26厘米12. 一个梯形的上底是6厘米,下底是10厘米,高是4厘米,求它的面积。

答案:面积 = (上底 + 下底) × 高÷ 2 = (6 + 10) × 4 ÷ 2 = 16 × 4 ÷ 2 = 64 ÷ 2 = 32平方厘米13. 一个圆的半径是3厘米,求它的周长和面积。

答案:周长= 2 × π × 半径= 2 × 3.14 × 3 = 18.84厘米面积= π × 半径^2 = 3.14 × 3^2 = 3.14 × 9 = 28.26平方厘米四、附加题(10分)14. 一个等腰三角形的底边长是10厘米,腰长是13厘米,求这个三角形的面积。

初中数学竞赛试题及答案

初中数学竞赛试题及答案

初中数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数不是质数?A. 2B. 3C. 4D. 52. 如果一个数的平方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 84. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 0C. 负数D. 正数或05. 以下哪个表达式的结果不是整数?A. 3 + 2C. 4 × 2D. 6 ÷ 26. 如果一个数的立方等于其本身,那么这个数可能是:A. 0B. 1C. -1D. 27. 一个圆的半径是5,它的面积是:A. 25πB. 50πC. 100πD. 125π8. 如果一个数的倒数是其本身,那么这个数可能是:A. 1B. -1C. 2D. 09. 一个数的平方根是其本身,这个数可能是:A. 0B. 1C. -1D. 210. 一个数的立方根是其本身,这个数可能是:A. 0B. 1D. 8答案:1. C2. A, B3. A4. D5. C6. A, B, C7. C8. A, B9. A, B10. A, B, C二、填空题(每题4分,共20分)11. 一个数的平方是16,这个数可能是________。

12. 如果一个数的绝对值是5,那么这个数可能是________。

13. 一个三角形的内角和是________度。

14. 一个数的立方是-27,这个数可能是________。

15. 一个数的平方根是2,那么这个数是________。

答案:11. ±412. ±513. 18014. -315. 4三、解答题(每题10分,共50分)16. 证明勾股定理。

17. 解方程:2x + 5 = 15。

18. 一个长方体的长、宽、高分别是3厘米、4厘米和5厘米,求其体积。

19. 一个圆的周长是12π,求其半径。

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全

全国初中数学竞赛试题及答案大全试题一:代数基础题目:若\( a \), \( b \), \( c \)为实数,且满足\( a + b + c = 3 \),\( ab + ac + bc = 1 \),求\( a^2 + b^2 + c^2 \)的值。

解答:根据已知条件,我们可以使用配方法来求解。

首先,我们知道\( (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \)。

将已知条件代入,得到\( 3^2 = a^2 + b^2 + c^2 + 2 \times 1 \)。

简化后,我们得到\( a^2 + b^2 + c^2 = 9 - 2 = 7 \)。

试题二:几何问题题目:在直角三角形ABC中,∠A=90°,AB=6,AC=8,求斜边BC的长度。

解答:根据勾股定理,直角三角形的斜边BC的平方等于两直角边的平方和,即\( BC^2 = AB^2 + AC^2 \)。

代入已知数值,得到\( BC^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。

因此,\( BC = \sqrt{100} = 10 \)。

试题三:数列问题题目:一个等差数列的首项是2,公差是3,求第10项的值。

解答:等差数列的第n项可以通过公式\( a_n = a_1 + (n - 1)d \)来计算,其中\( a_1 \)是首项,d是公差,n是项数。

将已知条件代入公式,得到\( a_{10} = 2 + (10 - 1) \times 3 = 2 + 9 \times 3 = 29 \)。

试题四:概率问题题目:一个袋子里有5个红球和3个蓝球,随机取出2个球,求取出的两个球颜色相同的概率。

解答:首先计算总的可能情况,即从8个球中取2个球的组合数,用组合公式C(8,2)计算。

然后计算取出两个红球或两个蓝球的情况。

两个红球的情况有C(5,2)种,两个蓝球的情况有C(3,2)种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学竞赛试题 4、某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,那么调价后每件衬衣的零售价是()
A. m(1+a%)(1-b%)元
B. m?a%(1-b%)元
C. m(1+a%)b%元
D. m(1+a%b%)元
解:选C。

设全天下雨a天,上午晴下午雨b天,上午雨下午晴c天,全天晴d天。

由题可得关系式a=0①,b+d=6②,c+d=5③,a+b+c=7④,②+③-④得2d-a=4,即d=2,故b=4,c=3,于是x=a+b+c+d=9。

解:出发1小时后,①、②、③号艇与④号艇的距离分别为
各艇追上④号艇的时间为
对>>>有,即①号艇追上④号艇用的时间最小,①号是冠军。

解:设开始抽水时满池水的量为,泉水每小时涌出的水量为,水泵每小时抽水量为,2小时抽干满池水需n台水泵,则
由①②得,代入③得:
∴,故n的最小整数值为23。

答:要在2小时内抽干满池水,至少需要水泵23台
解:设第一层有客房间,则第二层有间,由题可得
由①得:,即
由②得:,即
∴原不等式组的解集为
∴整数的值为。

答:一层有客房10间。

解:设劳动竞赛前每人一天做个零件
由题意
解得
∵是整数∴=16
(16+37)÷16≈3.3
故改进技术后的生产效率是劳动竞赛前的3.3倍。

初中数学竞赛专项训练(2)
(方程应用)
一、选择题:
答:D。

解:设甲的速度为千米/时,乙的速度为千米/时,根据题意知,从出发地点到A的路程为千米,到B的路程为千米,从而有方程:
,化简得,解得不合题意舍去)。

应选D。

答:C。

解:第k档次产品比最低档次产品提高了(k-1)个档次,所以每天利润为
所以,生产第9档次产品获利润最大,每天获利864元。

答:C。

解:若这商品原来进价为每件a元,提价后的利润率为,
则解这个方程组,得,即提价后的利润率为16%。

答:B。

解:设甲乙合作用天完成。

由题意:,解得。

故选B。

答:A。

解:A与B比赛时,A胜2场,B胜0场,A与B的比为2∶0。

就选A。

答:A。

解:设从起点到终点S千米,甲走(s+a)千米时,乙走x千米
答:B。

解:设小船自身在静水中的速度为v千米/时,水流速度为x千米/时,甲乙之间的距离为S 千米,于是有求得所以。

答:C。

解:设A、B、C各人的年龄为A、B、C,则A=B+C+16 ①
A2=(B+C)2+1632 ②由②可得(A+B+C)(A-B-C)=1632 ③,由①得A-B-C=16 ④,①代入③可求得A+B+C=102
二、填空题
答:2∶1。

解:甲厂该产品的年产量为,乙厂该产品的年产量为。

则:,解得。

相关文档
最新文档