物理物理光学章光的电磁理论及课后习题答案
郁道银 工程光学-物理光学答案整理
第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。
(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。
解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。
3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。
物理光学问题详解梁铨廷
物理光学问题详解梁铨廷九阳真经------搞仫仔第⼀章光的电磁理论1.1在真空中传播的平⾯电磁波,其电场表⽰为Ex=0,Ey=0,Ez=,(各量均⽤国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=,则频率υ= ==0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.⼀个平⾯电磁波可以表⽰为Ex=0,Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电⽮量的振动取哪个⽅向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=Hz,波长λ=υ=,原点的初相位φ0=+π/2;(2)传播沿z轴,振动⽅向沿y轴;(3)由B=,可得By=Bz=0,Bx=1.3.⼀个线偏振光在玻璃中传播时可以表⽰为Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ===5×1014Hz;(2)λ=;(3)相速度v=0.65c,所以折射率n=1.4写出:(1)在yoz平⾯内沿与y轴成θ⾓的⽅向传播的平⾯波的复振幅;(2)发散球⾯波和汇聚球⾯波的复振幅。
解:(1)由,可得;(2)同理:发散球⾯波,,汇聚球⾯波,。
1.5⼀平⾯简谐电磁波在真空中沿正x⽅向传播。
其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动⾯与xy平⾯呈45o,试写出E,B 表达式。
解:,其中=υ=υ=,1.6⼀个沿k⽅向传播的平⾯波表⽰为E=,试求k ⽅向的单位⽮。
解:,⼜,∴=。
1.9证明当⼊射⾓=45o时,光波在任何两种介质分界⾯上的反射都有。
证明:oooo==oooo==1.10证明光束在布儒斯特⾓下⼊射到平⾏平⾯玻璃⽚的上表⾯时,下表⾯的⼊射⾓也是布儒斯特⾓。
工学光学工程郁道银第三版课后答案 物理光学
第十一章 光的电磁理论基础1. 一个平面电磁波可以表示为140,2cos[210()],02x y z z E E t E cππ==⨯-+=,求(1)该电磁波的频率、波长、振幅和原点的初相位?(2)拨的传播方向和电矢量的振动方向?(3)相应的磁场B的表达式?解:(1)平面电磁波cos[2()]zE A t cπνϕ=-+ 对应有1462,10,,3102A Hz m πνϕλ-====⨯。
(2)波传播方向沿z 轴,电矢量振动方向为y 轴。
(3)B E →→与垂直,传播方向相同,∴0By Bz ==814610[210()]2z Bx CEy t c ππ===⨯⨯-+2. 在玻璃中传播的一个线偏振光可以表示2150,0,10cos 10()0.65y z x zE E E t cπ===-,试求(1)光的频率和波长;(2)玻璃的折射率。
解:(1)215cos[2()]10cos[10()]0.65z zE A t t ccπνϕπ=-+=- ∴1514210510v Hz πνπν=⇒=⨯72/2/0.65 3.910n k c m λππ-===⨯(2)8714310 1.543.910510n c c n v λν-⨯====⨯⨯⨯ 3.在与一平行光束垂直的方向上插入一片透明薄片,薄片的厚度0.01h mm =,折射率n=1.5,若光波的波长为500nm λ=,试计算透明薄片插入前后所引起的光程和相位的变化。
解:光程变化为 (1)0.005n h mm ∆=-=相位变化为)(20250010005.026rad πππλδ=⨯⨯=∆= 4. 地球表面每平方米接收到来自太阳光的功率为 1.33kw,试计算投射到地球表面的太阳光的电场强度的大小。
假设太阳光发出波长为600nm λ=的单色光。
解:∵22012I cA ε== ∴1322()10/I A v m c ε=5. 写出平面波8100exp{[(234)1610]}E i x y z t =++-⨯的传播方向上的单位矢量0k 。
《物理光学》第十一章光的电磁理论
(三)平面电磁波的性质 1、 1、电磁波是横波 散度: 取 E = A exp[i (k ⋅ r − ωt )] 散度:
∵∇ ⋅ E = 0 ⇒ k ⋅ E = 0
∇ ⋅ E = A ⋅ ∇ ⋅ exp[i(k ⋅ r - ωt )] = ik ⋅ Aexp[i(k ⋅ r − ωt )] = ik ⋅ E
二、物理光学的应用 分为成像和非成像两大类。 分为成像和非成像两大类。 成像应用涉及各种成像系统,如望远镜、 成像应用涉及各种成像系统,如望远镜、 显微镜、照相机、 光机 内窥镜、 光机、 显微镜、照相机、X光机、内窥镜、红外 夜视仪、全息术等。 夜视仪、全息术等。 非成像应用又可分为信息应用和能量应用。 非成像应用又可分为信息应用和能量应用。 信息应用包括光学测量、光通信、光计算、 信息应用包括光学测量、光通信、光计算、 光储存、光学加密和防伪等; 光储存、光学加密和防伪等;能量应用有 光学镊、打孔、切割、焊接表面处理、 光学镊、打孔、切割、焊接表面处理、原 子冷却、核聚变等等。 子冷却、核聚变等等。
(1)波动方程的平面波解: 波动方程的平面波解 平面电磁波指电场或磁场在与传播方向正交的平面上各点具有相同 值的波。如图所示,假设波沿直角坐标系xyz的z方向传播,则平面 波的E和B仅与z、t有关,而与x、y无关,则电磁场的波动方程变为
∂2E 1 ∂2E − 2 = 0 2 2 ∂z v ∂t
∂2B 1 ∂2B − 2 2 =0 2 ∂z v ∂t
同理得到 ∵ ∇ ⋅ B = 0 ⇒ k ⋅ B = 0
2、E、H相互垂直 、 、 相互垂直
∂Bቤተ መጻሕፍቲ ባይዱ∇× E = − ∂t
∇ × E = {∇ exp[i(k ⋅ r − ωt )]}× A = ik × E ∂B = −iωB ∂t
物理光学第一章 习题
1.9 球面电磁波的电场E是r和t的函数,其中r 是一定点到波源的距离,t是时间。 (1)写出与球面波相应的波动方程的形式; (2)写出波动方程的解。
1. 9 解:球坐标系中:
2 1 2 E 1 E 1 E 2 E 2 r 2 sin 2 2 r r r r sin r sin 2
sinsinsin50sin0511153072sincos2sincos06651335sinsin2sincos2sincos07051414sincossincos14光矢量垂直于入射面和平行于入射面的两束等强度的线偏振光以50度角入射到一块平行平板玻璃上试比较两者透射光的强度
第一章 光的电磁理论 习题
By 0,
Bz 0
由麦克斯韦方程得:
B E t
分量式为:
i E x Ex
j y Ey
k z Ez
Ez E y Ex Ez E y Ex ( )i ( )j ( )k y z z x x y Bx By Bz i j k t t t
由题意球面电磁波的电场E是r和t的函数:
1 2 E 2 E 2 E 1 2 E 2 r rE 2 2 r r r r r r r r
2
则球坐标系下的波动方程为:
1 2 1 2 E rE 2 2 2 r r v t 2 2 1 rE rE 2 2 r v t 2
1.1 一个平面电磁波可以表示为
14 z Ex 0, Ey 2cos 2 10 t , Ex 0 c 2
求: (1)该电磁波的频率、波长、振幅和原点的初 位相为多少? (2)波的传播和电矢量的振动各沿什么方向? (3)写出与电场相联系的磁感应强度的表达式。
物理光学课后答案叶玉堂
第四章 光的电磁理论4-1计算由8(2)exp 610)i y t ⎡⎤=-+++⨯⎢⎥⎣⎦E i 表示的平面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长。
解:由题意:)81063(2t y x i eE x ⨯++-= )81063(32t y x i e E y ⨯++=∴3-=xy E E ∴振动方向为:j i3+-由平面波电矢量的表达式: 3=x k 1=y k∴传播方向为: j i+3平面电磁波的相位速度为光速: 8103⨯=c m/s 振幅:4)32()2(222200=+-=+=oy x E E E V/m频率:8810321062⨯=⨯==πππωf Hz 波长:πλ==fcm 4-2 一列平面光波从A 点传到B 点,今在AB 之间插入一透明薄片,薄片的厚度mm h 2.0=,折射率n =1.5。
假定光波的波长为5500=λnm ,试计算插入薄片前后B 点光程和相位的变化。
解:设AB 两点间的距离为d ,未插入薄片时光束经过的光程为:d d n l ==01 插入薄片后光束经过的光程为:h n d nh h d n l )1()(02-+=+-= ∴光程差为:mm h n l l 1.02.05.0)1(12=⨯=-=-=∆ 则相位差为:ππλπδ6.3631.010550226=⨯⨯=∆=-4-3 试确定下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω(2))cos(0kz t E E x -=ω,)4/cos(0πω+-=kz t E E y (3))sin(0kz t E E x -=ω,)sin(0kz t E E x --=ω 解:(1)∵)2cos()sin(00πωω--=-=kz t E kz t E E x∴2πϕϕϕ=-=x y∴ 为右旋圆偏振光。
(2)4πϕϕϕ=-=x y∴ 为右旋椭圆偏振光,椭圆长轴沿y =x (3)0=-=x y ϕϕϕ∴ 为线偏振光,振动方向沿y =-x4-4 光束以30°角入射到空气和火石玻璃(n 2=1.7)界面,试求电矢量垂直于入射面和平行于入射面分量的反射系数s r 和p r 。
物理光学课后习题答案-汇总
,
两式相减,可得 ,利用折射定律和小角度近似,得 ,( 为平行平板周围介质的折射率)
对于中心点,上下表面两支反射光线的光程差为 。因此,视场中心是暗点。由上式,得 ,因此,有12条暗环,11条亮环。
解:由题意,得,波列长度 ,
由公式 ,
又由公式 ,所以频率宽度
。
某种激光的频宽 Hz,问这种激光的波列长度是多少?
解:由相干长度 ,所以波列长度 。
第二章光的干涉及其应用
在与一平行光束垂直的方向上插入一透明薄片,其厚度 ,若光波波长为500nm,试计算插入玻璃片前后光束光程和相位的变化。
解:由时间相干性的附加光程差公式
,所以
。
杨氏干涉实验中,若波长 =600nm,在观察屏上形成暗条纹的角宽度为 ,(1)试求杨氏干涉中二缝间的距离(2)若其中一个狭缝通过的能量是另一个的4倍,试求干涉条纹的对比度
解:角宽度为 ,
所以条纹间距 。
由题意,得 ,所以干涉对比度
若双狭缝间距为,以单色光平行照射狭缝时,在距双缝远的屏上,第5级暗条纹中心离中央极大中间的间隔为,问所用的光源波长为多少是何种器件的光源
解:由公式 ,所以
= 。
此光源为氦氖激光器。
在杨氏干涉实验中,照明两小孔的光源是一个直径为2mm的圆形光源。光源发光的波长为500nm,它到小孔的距离为。问两小孔可以发生干涉的最大距离是多少?
解:因为是圆形光源,由公式 ,
则 。
月球到地球表面的距离约为 km,月球的直径为3477km,若把月球看作光源,光波长取500nm,试计算地球表面上的相干面积。
高二物理选修4《光学、电磁场和电路分析》练习题及答案
高二物理选修4《光学、电磁场和电路分
析》练习题及答案
1. 光学题目
1.1. 问题:一束光从空气射入玻璃,其入射角为45度。
如果玻璃的折射率为1.5,计算反射角和折射角。
答案:根据斯涅尔定律,反射角等于入射角,折射角由正弦关系计算得出,折射角约为29.1度。
1.2. 问题:一束光通过凹透镜聚焦。
如果物距为30厘米,凹透镜的焦距为10厘米,计算像距和放大率。
答案:根据薄透镜公式,1/f = 1/v - 1/u,其中f为焦距,v为像距,u为物距。
代入数值计算,得到像距为20厘米,放大率为2。
2. 电磁场题目
2.1. 问题:一根长直导线通电,产生的磁场强度如何随距离变化?
答案:根据安培定律,距离直线导线越远,磁场强度越弱。
2.2. 问题:一个平行板电,两板间的电场强度如何随距离变化?
答案:根据电场的定义,两平行板间的电场强度与距离成反比
关系。
3. 电路分析题目
3.1. 问题:一个由电阻、电容和电感串联的电路,如何计算电流?
答案:根据欧姆定律和基尔霍夫定律,可以通过计算电路中的
总电阻,以及应用电压和总电阻的关系计算电流。
3.2. 问题:一个并联电路中,两个电阻的等效电阻如何计算?
答案:在并联电路中,两个电阻的等效电阻可以通过公式1/R
= 1/R1 + 1/R2 计算得出。
以上是《光学、电磁场和电路分析》的一些练题及答案,希望
能对您的研究有所帮助。
物理光学课后部分习题答案2015
(1)由于 ,平板上下表面反射都是从低折射率介质传输到高折射率介质,半波损失的情况一样,所以上、下表面反射光的光程差为
条纹中心对应折射角 , ;
,光程差是波长的整数N个亮纹有 ,所以第10个亮条纹的角半径为 ,半径为
(3)条纹间距
14、用等厚条纹测量玻璃楔板的楔角时,在长达5cm的范围内共有15条亮条纹,玻璃楔板的折射率 ,所用光波波长 ,求楔角。
解:
条纹间隔 ;
楔角
第十三章光的衍射
5、单位振幅的单色平面波垂直照明半径为1的圆孔,试利用式(13-12)证明,圆孔后通过圆孔中心光轴上的点的光强分布为
式中,z是考察点到圆孔中心的距离。
证明:
菲涅耳衍射公式
圆孔中心轴上点x、y坐标都为零,所以其光场为
所以轴上点光强
8、波长 的单色光垂直入射到边长为3cm的方孔上,在光轴附近离孔z处观察衍射,试求夫琅和费衍射区的大致范围。
第十一章光的电磁理论基础
1、一个平面电磁波可以表示为 , , ,求:(1)该电磁波的频率、波长、振幅和原点的初相位;(2)波的传播方向和电矢量的振动方向;(3)相应的磁场 的表达式。
解:
(1)根据电磁波表达式可知振幅矢量 , ;
传播速度 ,频率 ,波长 ,初相位 。
(2)传播方向:z轴方向,电矢量振动方向:沿y轴。
(3)根据电磁波性质,电场、磁场、传输方向两两垂直,且满足 和 ,所以磁场为 , , 。
2、在玻璃中传播的一个线偏振光可以表示为 , , ,试求:(1)光的频率和波长;(2)玻璃的折射率。
解:
(1)传播速度 ,频率 ,波长
(2)折射率
8、太阳光(自然光)以 角入射到窗玻璃( )上,试求太阳光进入玻璃的透射比。
华中科技大学-物理光学-第一章
他的灿烂一生属于爱丁堡,属于剑桥大学,更属于全世界”。
2021/7/11
1-2 平面电磁波
波动方程
2E
1 v2
2E t 2
0..........(1 8)
2B
1 v2
2B t 2
0..........(1 9)
1-2
• 平面波方向余弦为cosα,cosβ的情况
在z=z0平面的复振幅:
E~( x )
A ex p (i
2
z0 cos )
exp[i 2 (x cos y cos )] y
x
y
kz x
x cos y cos const
x
dx y dy
dx / cos,dy / cos
u 1 cos ,v 1 cos
Ex
Acos
z c
t , Ey
0, Ez
0
试写出相联系的磁场表达式。
2021/7/11
1-5 光波的辐射
➢光源:热光源、气体放电光源、激光器
➢原子发光—电中心振荡 电偶极子辐射模型
+q Bk
p ql p0 exp(it)
l
距离谐振偶极子很远的地方考察
E
辐射球面波,幅度随角变化 -q
E在p和r的平面内,E、B和k
式中: A、 A'— —电场、磁场的振幅,
— —简谐波的波长, [2 (z vt)] — —波的相位.
[ 2 (z vt)] const — —等相面或波面,
其中最前面的波面称为波前.
2021/7/11
1-2
《物理光学》简答题
第4章光的电磁理论1由“玻片堆”产生线偏振光的原理是什么?答:采用“玻片堆”可以从自然光获得偏振光。
其工作原理是:“玻片堆”是由一组平行平面玻璃片叠在一起构成的,当自然光以布儒斯特角(B)入射并通过“玻片堆”时,因透过“玻片堆”的折射光连续不断地以布儒斯特角入射和折射,每通过一次界面,都会从入射光中反射掉一部分振动方向垂直于入射面的分量,当界面足够多时,最后使通过“玻片堆”的透射光接近为一个振动方向平行于入射面的线偏振光。
2解释“半波损失”和“附加光程差”。
答:半波损失是光在界面反射时,在入射点处反射光相对于入射光的相位突变,对应的光程为半个波长。
附加光程差是光在两界面分别反射时,由于两界面的物理性质不同(一界面为光密到光疏,而另一界面为光疏到光密;或相相反的情形)使两光的反射系数反号,在两反射光中引入的附加相位突变,对应的附加光程差也为半个波长。
第5章光的干涉1相干叠加与非相干叠加的区别和联系?区别:非相干叠加(叠加区域内各点的总光强是各光波光强的直接相加);相干叠加(叠加区域内各点的总光强不是各光波光强的直接相加,有强弱分布)。
联系:相干叠加与非相干叠加都满足波叠加原理。
2利用普通光源获得相干光束的方法答:可分为两大类:分波阵面法由同一波面分出两部分或多部分子波,然后再使这些子波叠加产生干涉。
(杨氏双缝干涉是一种典型的分波阵面干涉。
)分振幅法:1)利用薄膜的上、下表面反射和透射,将一束光的振幅分成两部分或多部分,再将这些波束相遇叠加产生干涉。
(薄膜干涉、迈克耳逊干涉仪和多光束干涉仪都利用了分振幅干涉。
)2)利用晶体的双折射将一束线偏振光分为两束正交的偏振光,经过不同的相移后叠加(在同一方向的分量叠加)产生干涉(分振动面干涉)。
3常见的分波面双光束干涉实验有哪些?其共同点是什么?1)杨氏双缝实验2)菲涅耳双棱镜实验:d=2l(n-1)3)菲涅耳双面镜实验:d=2l4)洛挨镜实验:d=2a(有半波损失)共同点:1)在整个光波叠加区内都有干涉条纹,这种干涉称为非定域干涉;2)在这些干涉装臵中,为得到清晰的干涉条纹,都要限制光束的狭缝或小孔,因而干涉条纹的强度很弱,以致于在实际上难以应用。
工程光学 第10章 光的电磁理论基础
一、波的叠加原理
波的叠加原理:几个波在相遇点产生的合振动是各个波在
该点产生振动的矢量和。
叠加条件:媒介、光强
E( p) E1( p) E2 ( p)
注意几个概念:
1、叠加结果为光波振幅的矢量和,而不是光强的和。
2、光波传播的独立性:两个光波相遇后又分开,每个光波仍 然保持原有的特性(频率、波长、振动方向、传播方向等)。
E B t
H j D t
1. 高斯定律(有源电场,电力线由正电荷指向负电荷) 2. 磁通连续定律(无源磁场,磁力线闭合,磁通量0) 3. 法拉第电磁感应定律 4. 安培全电流定律
=x 0
x
y 0
y
z0
z
t
空间位置的变化 时域的变化
二、物质方程
描述物质在场作用下的关系式
j E D E B H
3、叠加的合矢量仍然满足波动方程的通解,一个实际的光场 是许多个简谐波叠加的结果。
二、两个频率相同、振动方向相同的单色光波的叠加 (一)代数加法
E1=a1 cos(kr1 t) E2=a2 cos(kr2 t) 令:kr1=1,kr2= 2 E=E1+E2=a1 cos(1 t)+a2 cos(2 t) 得到的合振动:E=Acos( t)
P(x,y,z)
k
复振幅:
r
E=Aexp(ik • r)
o
z
复振幅:只关心光波在 y
s=r k
空间的分布。
(三)平面电磁波的性质
1、横波特性:电矢量和磁矢量的方向均垂直波的传播
方向。
2、E、B、k互成右手螺旋系。
B
1 v
(k0
E)
(k0 E)
3、E和B同项
物理光学 梁铨廷 答案电子教案
大所在点被第 5 级亮纹所占据。设
nm,求玻
璃片厚度 t 以及条纹迁移的方向。
解:由题意,得
,
所以
=
。
此光源为氦氖激光器。
2.12 在杨氏干涉实验中,照明两小孔的光源是一个
直径为 2mm 的圆形光源。光源发光的波长为 500nm,
它到小孔的距离为 1.5m。问两小孔可以发生干涉的
最大距离是多少?
解:因为是圆形光源,由公式
解
Hz , ,求该
:
= =
=
=
。
1.20 求如图所示的周期性三角波的傅立叶分析表
达式。
解:由图可知,
,
1.12 证明光波在布儒斯特角下入射到两种介质的
=
,
分界面上时,
,其中
。
精品文档
精品文档
,
= = 数),
)
=
,(m 为奇 =
,
,
所以
所以
=
。
1.21 试求如图所示的周期性矩形波的傅立叶级数
的表达式。
精品文档
第一章 光的电磁理论
1.1 在真空中传播的平面电磁波,其电场表示为
Ex=0,Ey=0 ,Ez=
,
(各量均用国际单位),求电磁波的频率、波长、
周期和初相位。
解 : 由 Ex=0 , Ey=0 ,
Ez=
,则频率υ=
=
=0.5×1014Hz, 周期 T=1/υ=2×10-14s,
初相位 φ0=+π/2(z=0,t=0), 振幅 A=100V/m,
解:由图可知,
,
1.23 氪同位素 放电管发出的红光波长为
605.7nm,波列长度约为 700mm,试求该光波的
物理光学梁铨廷版习题答案
第一章光的电磁理论1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=,(各量均用国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=,则频率υ===0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.一个平面电磁波可以表示为Ex=0,Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=Hz,波长λ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y 轴;(3)由B=,可得By=Bz=0,Bx=1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ===5×1014Hz;(2)λ=;(3)相速度v=0.65c,所以折射率n=1.4写出:(1)在yoz平面内沿与y 轴成θ角的方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。
解:(1)由,可得;(2)同理:发散球面波,汇聚球面波。
1.5一平面简谐电磁波在真空中沿正x方向传播。
其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动面与xy平面呈45º,试写出E,B 表达式。
解:,其中===,同理:。
,其中=。
1.6一个沿k方向传播的平面波表示为E=,试求k 方向的单位矢。
解:,又,∴=。
1.9证明当入射角=45º时,光波在任何两种介质分界面上的反射都有。
证明:====1.10证明光束在布儒斯特角下入射到平行平面玻璃片的上表面时,下表面的入射角也是布儒斯特角。
(完整版)物理光学-第一章习题与答案
物理光学习题 第一章 波动光学通论一、填空题(每空2分)1、.一光波在介电常数为ε,磁导率为μ的介质中传播,则光波的速度v= 。
【εμ1=v 】2、一束自然光以 入射到介质的分界面上,反射光只有S 波方向有振动。
【布儒斯特角】3、一个平面电磁波波振动表示为 E x =E z =0, E y =cos[⎪⎭⎫⎝⎛-⨯t c x 13102π], 则电磁波的传播方向 。
电矢量的振动方向 【x 轴方向 y 轴方向】4、在光的电磁理论中,S 波和P 波的偏振态为 ,S 波的振动方向为 , 【线偏振光波 S 波的振动方向垂直于入射面】5、一束光强为I 0的自然光垂直穿过两个偏振片,两个偏振片的透振方向夹角为45°,则通过两偏振片后的光强为 。
【I 0/4】6、真空中波长为λ0、光速为c 的光波,进入折射率为n 的介质时,光波的时间频率和波长分别为 和 。
【c/λ0 λ0 /n 】7、证明光驻波的存在的维纳实验同时还证明了在感光作用中起主要作用是 。
【电场E 】8、频率相同,振动方向互相垂直两列光波叠加,相位差满足 条件时,合成波为线偏振光波。
【0 或Π】9、会聚球面波的函数表达式 。
【ikre rA r E -)(=】 10、一束光波正入射到折射率为1.5的玻璃的表面,则S 波的反射系数为 ,P 波透射系数: 。
【-0.2 0.2 】11、一束自然光垂直入射到两透光轴夹角为θ的偏振片P 1和P 2上,P 1在前,P 2在后,旋转P 2一周,出现 次消光,且消光位置的θ为 。
【2 Π/2】12、当光波从光疏介质入射到光密介质时,正入射的反射光波 半波损失。
(填有或者无) 【有】13、对于部分偏振光分析时,偏振度计算公式为 。
(利用正交模型表示) 【xy x y I I I I P +-=】二、选择题(每题2分)1.当光波从光密介质入射到光疏介质时,入射角为θ1,布儒斯特角为θB ,临界角为θC ,下列正确的是 ( )A .0<θ1<θB , S 分量的反射系数r S 有π位相突变 B .0<θ1<θB , P 分量的反射系数r P 有π位相突变C .θB <θ1<θC , S 分量的反射系数r S 有π位相突变D .θB <θ1<θC , P 分量的反射系数r P 有π位相突变 【B 】2.下面哪种情况产生驻波 ( ) A .两个频率相同,振动方向相同,传播方向相同的单色光波叠加 B .两个频率相同,振动方向互相垂直,传播方向相反的单色光波叠加 C .两个频率相同,振动方向相同,传播方向相反的单色光波叠加 D .两个频率相同,振动方向互相垂直,传播方向相同的单色光波叠加 【C 】3.平面电磁波的传播方向为k ,电矢量为E ,磁矢量为B, 三者之间的关系下列描述正确的是 ( ) A .k 垂直于E , k 平行于B B .E 垂直于B , E 平行于k C .k 垂直于E , B 垂直于k D .以上描述都不对 【C 】4、由两个正交分量]cos[0wt kz A x E x -= 和]87cos[0π+-=wt kz A y E y表示的光波,其偏振态是( )A 线偏振光B 右旋圆偏振光C 左旋圆偏振光D 右旋椭圆偏振光 【D 】5、一列光波的复振幅表示为ikre rA r E =)(形式,这是一列( )波 A 发散球面波 B 会聚球面波 C 平面波 D 柱面波 【A 】6、两列频率相同、振动方向相同、传播方向相同的光波叠加会出现现象( ) A 驻波现象 B 光学拍现象 C 干涉现象 D 偏振现象 【C 】7、光波的能流密度S 正比于( )A E 或HB E 2或H 2C E 2,和H 无关D H 2,和E 无关 【B 】8、频率相同,振动方向互相垂直两列光波叠加,相位差满足( )条件时,合成波为二、四象限线偏振光波。
物理课后习题及解析
第十一章恒定磁场11-1两根长度一样的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度一样,R =2r ,螺线管通过的电流一样为I ,螺线管中的磁感强度大小r R B B 、满足〔 〕〔A 〕r R B B 2= 〔B 〕r R B B = 〔C 〕r R B B =2 〔D 〕r R B B 4=分析与解在两根通过电流一样的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度一样的细导线绕成的线圈单位长度的匝数之比因而正确答案为〔C 〕.11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为〔 〕〔A 〕B r 2π2 〔B 〕B r 2π〔C 〕αB r cos π22 〔D 〕αB r cos π2题 11-2 图分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为〔D 〕.11-3以下说法正确的选项是〔 〕〔A 〕闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过〔B 〕闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零〔C 〕磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零〔D 〕磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为〔B 〕.11-4在图〔a〕和〔b〕中各有一半径一样的圆形回路L1、L2,圆周内有电流I1、I2,其分布一样,且均在真空中,但在〔b〕图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则〔 〕〔A 〕⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = 〔B 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = 〔C 〕 ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ 〔D 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 题 11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为〔C 〕.11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,假设导体中流过的恒定电流为I ,磁介质的相对磁导率为μr〔μr<1〕,则磁介质内的磁化强度为〔 〕 〔A 〕()r I μr π2/1-- 〔B 〕()r I μr π2/1-〔C 〕r I μr π2/-〔D 〕r μI r π2/分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =〔μr-1〕H 求得磁介质内的磁化强度,因而正确答案为〔B 〕.11-11如下图,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直局部和圆弧局部,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0. 解 〔a〕长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4圆弧电流所激发,故有 B 0的方向垂直纸面向外.〔b〕将载流导线看作圆电流和长直电流,由叠加原理可得B 0的方向垂直纸面向里.〔c 〕将载流导线看作1/2圆电流和两段半无限长直电流,由叠加原理可得B 0的方向垂直纸面向外.11-13如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d *,如图〔b〕所示,载流长直导线的磁场穿过该面元的磁通量为 矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量第十二章电磁感应电磁场和电磁波12-1一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动〔如下图〕,则〔 〕〔A 〕线圈中无感应电流〔B 〕线圈中感应电流为顺时针方向〔C 〕线圈中感应电流为逆时针方向〔D 〕线圈中感应电流方向无法确定题 12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为〔B 〕.12-2将形状完全一样的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则〔 〕〔A 〕铜环中有感应电流,木环中无感应电流〔B 〕铜环中有感应电流,木环中有感应电流〔C 〕铜环中感应电动势大,木环中感应电动势小〔D 〕铜环中感应电动势小,木环中感应电动势大分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为〔A 〕.12-3有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.假设它们分别流过i 1和i 2的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1中产生的互感电动势为12,由i 1变化在线圈2中产生的互感电动势为ε21,下述论断正确的选项是〔 〕. 〔A 〕2112M M =,1221εε=〔B 〕2112M M ≠,1221εε≠〔C 〕2112M M =, 1221εε<〔D 〕2112M M =,1221εε<分析与解教材中已经证明M21=M12,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为〔D 〕.12-4对位移电流,下述说法正确的选项是〔 〕〔A 〕位移电流的实质是变化的电场〔B 〕位移电流和传导电流一样是定向运动的电荷〔C 〕位移电流服从传导电流遵循的所有定律〔D 〕位移电流的磁效应不服从安培环路定理分析与解位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为〔A 〕.12-5以下概念正确的选项是〔 〕〔A 〕感应电场是保守场〔B 〕感应电场的电场线是一组闭合曲线〔C 〕LI Φm =,因而线圈的自感系数与回路的电流成反比〔D 〕 LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为〔B 〕.12-7 载流长直导线中的电流以tI d d 的变化率增长.假设有一边长为d 的正方形线圈与导线处于同一平面内,如下图.求线圈中的感应电动势.分析 此题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如下图的坐标系.由于B 仅与*有关,即B =B (*),故取一个平行于长直导线的宽为d *、长为d 的面元d S ,如图中阴影局部所示,则d S =d d *,所以,总磁通量可通过线积分求得〔假设取面元d S =d *d y ,则上述积分实际上为二重积分〕.此题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为 当电流以tI d d 变化时,线圈中的互感电动势为 题 12-7 图第十四章 波 动 光 学14-1 在双缝干预实验中,假设单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则〔 〕〔A 〕 中央明纹向上移动,且条纹间距增大〔B 〕 中央明纹向上移动,且条纹间距不变〔C 〕 中央明纹向下移动,且条纹间距增大〔D 〕 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程一样,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.应选〔B 〕.题14-1 图14-2 如下图,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,假设用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两外表反射的光束的光程差是〔 〕题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上外表的反射光有半波损失,下外表的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为〔B 〕.14-3 如图〔a 〕所示,两个直径有微小差异的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干预条纹,如果滚柱之间的距离L 变小,则在L *围内干预条纹的〔 〕〔A 〕 数目减小,间距变大 〔B 〕 数目减小,间距不变〔C 〕 数目不变,间距变小 〔D 〕 数目增加,间距变小题14-3图分析与解 图〔a 〕装置形成的劈尖等效图如图〔b 〕所示.图中 d 为两滚柱的直径差,b 为两相邻明〔或暗〕条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为〔C 〕14-4用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.假设屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为〔 〕〔A 〕 3 个 〔B 〕 4 个 〔C 〕 5 个 〔D 〕 6 个分析与解 根据单缝衍射公式因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.应选〔B 〕.14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4cm 的光栅上,可能观察到的光谱线的最大级次为〔 〕〔A 〕 4 〔B 〕 3 〔C 〕 2 〔D 〕 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为即只能看到第1 级明纹,正确答案为〔D 〕.14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为〔 〕〔A 〕 3I 0/16 〔B 〕 3I 0/8 〔C 〕 3I 0/32 〔D 〕 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为〔C 〕.14-7自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为〔 〕〔A 〕 完全线偏振光,且折射角是30°〔B 〕 局部偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30° 〔C 〕 局部偏振光,但须知两种介质的折射率才能确定折射角〔D 〕 局部偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为局部偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.应选〔D 〕.14-9 在双缝干预实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2mm ,求双缝间的距离.分析 双缝干预在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δ*,则由中央明纹两侧第五级明纹间距*5 -*-5 =10Δ* 可求出Δ*.再由公式Δ* =d ′λ/d 即可求出双缝间距d .解 根据分析:Δ* =〔*5 -*-5〕/10 =1.22×10-3m双缝间距: d =d ′λ/Δ* =1.34 ×10-4 m14-11如下图,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:〔1〕条纹如何移动? 〔2〕 云母片的厚度t.题14-11图 分析(1)此题是干预现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程一样,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干预条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上*点P 〔明纹或暗纹位置〕,只要计算出插入介质片前后光程差的变化,即可知道其干预条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1λ〔对应k 1 级明纹〕,插入介质后的光程差Δ2 =〔n -1〕d +r 1 -r 2 =k 1λ〔对应k 1 级明纹〕.光程差的变化量为Δ2 -Δ1 =〔n -1〕d =〔k 2 -k 1 〕λ式中〔k 2 -k 1 〕可以理解为移过点P 的条纹数〔此题为5〕.因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有将有关数据代入可得14-13 利用空气劈尖测细丝直径.如下图,λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干预公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δ* 除以〔N -1〕.对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 题14-13 图14-21 一单色平行光垂直照射于一单缝,假设其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比拟法来确定波长.对应于同一观察点,两次衍射的光程差一样,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得第十五章 狭义相对论15-1有以下几种说法:(1) 两个相互作用的粒子系统对*一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都一样.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的根底.前者是理论根底,后者是实验根底.按照这两个原理,任何物理规律(含题述动量守恒定律)对*一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m ·s -1.迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,应选(C).15-2 按照相对论的时空观,判断以下表达中正确的选项是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地(E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δ*,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为 221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δ*=0)还是不同地(Δ*≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δ*≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δ*′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.15-3 有一细棒固定在S′系中,它与O*′轴的夹角θ′=60°,如果S′系以速度u 沿O*方向相对于S系运动,S系中观察者测得细棒与O* 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿O* 正方向运动时大于60°,而当S′系沿O*负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即O* 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与O* 轴夹角将会大于60°,此结论与S′系相对S系沿O* 轴正向还是负向运动无关.由此可见应选(C).15-4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A)21v v +L (B)12v -v L (C)2v L (D)()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.应选(C).讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.15-5 设S′系以速率v =0.60c 相对于S系沿**′轴运动,且在t =t ′=0时,* =*′=0.(1)假设有一事件,在S系中发生于t =2.0×10-7s,*=50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,*=10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(*,y ,z ,t )表示一个事件.因此,此题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为(2) 同理,第二个事件发生的时刻为所以,在S′系中两事件的时间间隔为15-6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8s ,*′=60m ,y ′=0,z ′=0处,假设S′系相对于S系以速率v =0.6c 沿**′轴运动,问该事件在S系中的时空坐标各为多少?分析 此题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 y =y ′=0z =z ′=015-7 一列火车长0.30km(火车上观察者测得),以100km ·h -1的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δ*′=*′2 -*′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述根本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为 ()()21221212/1cx x c t t t t 2v v -'-'+'-'=- (1) ()()21221212/1c x x c t t t t 2v v ----='-' (2) 将条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中12x x -为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运动物体(火车)有长度收缩效应,即()21212/1c x x x x 2v -'-'=-.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为负号说明火车上的观察者测得闪电先击中车头*′2 处.解2 根据分析,把关系式()21212/1c x x x x 2v -'-'=- 代入式(2)亦可得 与解1一样的结果.相比之下解1较简便,这是因为解1中直接利用了12x x '-'=0.30km 这一条件.15-8 在惯性系S中,*事件A 发生在*1处,经过2.0 ×10-6s后,另一事件B 发生在*2处,*2-*1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿* 轴正向运动,因在S 系中两事件的时空坐标,由洛伦兹时空变换式,可得 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)两事件在S′系中发生在同一地点,即*′2-*′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于此题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt ′为固有时间间隔(原时),由时间延缓效应关系式2/1ΔΔc t t 2v -='可直接求得结果.解 (1) 令*′2-*′1=0,由式(1)可得(2) 将v 值代入式(2),可得这说明在S′系中事件A 先发生.第十六章 量子物理16-1 以下物体哪个是绝对黑体( )(A) 不辐射可见光的物体 (B) 不辐射任何光线的物体(C) 不能反射可见光的物体 (D) 不能反射任何光线的物体分析与解 一般来说,任何物体对外来辐射同时会有三种反响:反射、透射和吸收,各局部的比例与材料、温度、波长有关.同时任何物体在任何温度下会同时对外辐射,实验和理解证明:一个物体辐射能力正比于其吸收能力.做为一种极端情况,绝对黑体(一种理想模型)能将外来辐射(可见光或不可见光)全部吸收,自然也就不会反射任何光线,同时其对外辐射能力最强.综上所述应选(D).16-2 光电效应和康普顿效应都是光子和物质原子中的电子相互作用过程,其区别何在? 在下面几种理解中,正确的选项是( )(A) 两种效应中电子与光子组成的系统都服从能量守恒定律和动量守恒定律(B) 光电效应是由于电子吸收光子能量而产生的,而康普顿效应则是由于电子与光子的弹性碰撞过程(C) 两种效应都相当于电子与光子的弹性碰撞过程(D) 两种效应都属于电子吸收光子的过程分析与解 两种效应都属于电子与光子的作用过程,不同之处在于:光电效应是由于电子吸收光子而产生的,光子的能量和动量会在电子以及束缚电子的原子、分子或固体之间按照适当的比例分配,但仅就电子和光子而言,两者之间并不是一个弹性碰撞过程,也不满足能量和动量守恒.而康普顿效应中的电子属于"自由〞电子,其作用相当于一个弹性碰撞过程,作用后的光子并未消失,两者之间满足能量和动量守恒.综上所述,应选(B).16-3 关于光子的性质,有以下说法(1) 不管真空中或介质中的速度都是c ; (2) 它的静止质量为零;(3) 它的动量为ch v ; (4) 它的总能量就是它的动能; (5) 它有动量和能量,但没有质量.其中正确的选项是( )(A) (1)(2)(3) (B) (2)(3)(4)(C) (3)(4)(5) (D) (3)(5)分析与解 光不但具有波动性还具有粒子性,一个光子在真空中速度为c (与惯性系选择无关),在介质中速度为nc ,它有质量、能量和动量,一个光子的静止质量m 0=0,运动质量2c h m v = ,能量v h E =,动量cv h λh p ==,由于光子的静止质量为零,故它的静能E 0 为零,所以其总能量表现为动能.综上所述,说法(2)、(3)、(4)都是正确的,应选(B). 16-4 关于不确定关系h p x x ≥ΔΔ有以下几种理解:(1) 粒子的动量不可能确定,但坐标可以被确定;(2) 粒子的坐标不可能确定,但动量可以被确定;(3) 粒子的动量和坐标不可能同时确定;(4) 不确定关系不仅适用于电子和光子,也适用于其他粒子.其中正确的选项是( )(A) (1)、(2) (B) (2)、(4)(C) (3)、(4) (D) (4)、(1)分析与解 由于一切实物粒子具有波粒二象性,因此粒子的动量和坐标(即位置)不可能同时被确定,在这里不能简单误认为动量不可能被确定或位置不可能被确定.这一关系式在理论上适用于一切实物粒子(当然对于宏观物体来说,位置不确定量或动量的不确定量都微缺乏道,故可以认为可以同时被确定).由此可见(3)、(4)说法是正确的.应选(C).16-5 粒子在一维矩形无限深势阱中运动,其波函数为则粒子在* =a /6 处出现的概率密度为( ) (A) a /2 (B) a /1 (C) a /2 (D) a /1分析与解 我们通常用波函数Ψ来描述粒子的状态,虽然波函数本身并无确切的物理含义,但其模的平方2ψ表示粒子在空间各点出现的概率.因此题述一线粒子在a x ≤≤0区间的概率密度函数应为()x aa x ψπ3sin 222=.将* =a /6代入即可得粒子在此处出现的概率为a /2.应选(C).16-7 太阳可看作是半径为7.0 ×108 m 的球形黑体,试计算太阳的温度.设太阳射到地球外表上的辐射能量为1.4 ×103 W ·m -2 ,地球与太阳间的距离为1.5 ×1011m.分析 以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的*一位置上.太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因而可根据地球外表单位面积在单位时间内承受的太阳辐射能量E ,计算出太阳单位时间单位面积辐射的总能量()T M ,再由公式()4T σT M =,计算太阳温度.。
物理光学课后答案叶玉堂
第四章 光的电磁理论4-1计算由8(2)exp 610)i y t ⎡⎤=-+++⨯⎢⎥⎣⎦E i 表示的平面波电矢量的振动方向、传播方向、相位速度、振幅、频率、波长。
解:由题意:)81063(2t y x i eE x ⨯++-= )81063(32t y x i e E y ⨯++=∴3-=xy E E ∴振动方向为:j i3+-由平面波电矢量的表达式: 3=x k 1=y k∴传播方向为: j i+3平面电磁波的相位速度为光速: 8103⨯=c m/s 振幅:4)32()2(222200=+-=+=oy x E E E V/m频率:8810321062⨯=⨯==πππωf Hz 波长:πλ==fcm 4-2 一列平面光波从A 点传到B 点,今在AB 之间插入一透明薄片,薄片的厚度mm h 2.0=,折射率n =。
假定光波的波长为5500=λnm ,试计算插入薄片前后B 点光程和相位的转变。
解:设AB 两点间的距离为d ,未插入薄片光阴束通过的光程为:d d n l ==01 插入薄片后光束通过的光程为:h n d nh h d n l )1()(02-+=+-= ∴光程差为:mm h n l l 1.02.05.0)1(12=⨯=-=-=∆ 则相位差为:ππλπδ6.3631.010550226=⨯⨯=∆=-4-3 试确信下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω (2))cos(0kz t E E x -=ω,)4/cos(0πω+-=kz t E E y(3))sin(0kz t E E x -=ω,)sin(0kz t E E x --=ω 解:(1)∵)2cos()sin(00πωω--=-=kz t E kz t E E x∴2πϕϕϕ=-=x y∴ 为右旋圆偏振光。
(2)4πϕϕϕ=-=x y∴ 为右旋椭圆偏振光,椭圆长轴沿y =x (3)0=-=x y ϕϕϕ∴ 为线偏振光,振动方向沿y =-x4-4 光束以30°角入射到空气和火石玻璃(n 2=)界面,试求电矢量垂直于入射面和平行于入射面分量的反射系数s r 和p r 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*物质方程
D E,
B H,
j E
0 r
0 r
(1.3~1.5)
式中:、、σ分别称为介电系数(或电容 率),磁导率和电导率。
线性光学:
➢ 、与光强无关;
➢ 在透明、无损介质中=0;
➢ 非铁磁性材料: r=1 2、非线性:
光强很强:
非线性光学
f
(E)
三、 电磁场的波动性
*波动方程:
四、电磁波
电磁波在传播介质中的绝对折射率—真空光速/介质光速:
n c v
0 0
r r
式中r,r分别为相对介电系数和相对磁导率。除了铁 磁物质之外,对于大多数物质,r=l,因而上式变为
n r
n() r () 色散效应
1889年,赫兹在实验中得到了波长为60厘米的电 磁波,观察了电磁波在金属镜面上的反射,折射,以及干 涉现象。赫兹的实验不仅以无可质疑的事实证实了电磁波 的存在,而且也证明了电磁波具有光波的性质。
高斯定理: 是空间区域上三重积分与其边界上曲面积分之
间关系的定理。
FdV
F
d
V
斯托克斯:定理是关于曲面积分与其边界曲线积分之间关
系的定理。
Fd
F
dl
l
2、微分形式Maxwell方程
对方程组的第一式,如果闭合曲面积分域内包含
的电荷是连续分布的:
D
d
Q
B
d
0
Q dV
D
V
d
DdV
V
B)变化的电场也能够产生磁场:
传导电流意味着电荷的流动,而位移电流却意味着 电场的变化,但是两者在产生磁场方面是等效的 .
电场中任一截面的位移电流强度等于通过该截面的
电通量的时间变化率。
ID
d dt
D
d
D t
d
ID
JD
d
JD
D t
H
dl
I
D t
d
交变电磁场的普遍规律:
D
d
Q
2E z 2
1
2
2E t 2
0
两个结论:
第一,任何随时间变化的磁场在周围空间产生电场, 这种电场具有涡旋性,电场的方向由左手定则决定;
第二,任何随时间变化的电场在周围空间产生磁场, 磁场是涡旋的,磁场的方向出右手定则决定。
电场和磁场相互激发形成电磁场
从Maxwell方程到波动方程 ,证明电磁场的波动性
➢ 根据真空中的介电常数和磁导率得出真空中的光速: 2.99794x108m/s
➢ 实验结果计算出电磁波在真空中的速度为:3.1074x108m /s,
➢ 测量的光速为:3.14858x108m/s。
B
d
0
HEddllI BtdDtd
(1.1)
这四个方程通常称为积分形式的麦克斯韦方程组。
二)微分形式的Maxwell方程
1、矢量运算与场论基础:矢量运算:
b
点积(内积):
a
b
a
b
cos
0
a
叉积(外积):
abcos
a
b
a
b
s in
i j k a b ax ay az
bx by bz
一)积分形式的Maxwell方程
D:电感应强度(电位移矢量)
B:磁感应强度
E:电场强度
H:磁场强度
D E
B H
D
d
Q
B
d
0
E dl
H dl I
Bd
t
D t
d
、分别称为介电系数(或电容率),磁导率
高斯定理——电和磁
D
•
d
Q
B•
d
0
1)E高斯(Gauss)定理: 通过任意封闭曲面的电感通 量等于曲面内所包含自由电荷 的代数和。
0 ,
a a 0
axb
b a
梯度:标量场f(x,y,z)在某点M(x,y,,z)的梯度是 一个矢量,它以f(x,y,z)在该点的偏导数,为 其在“x,y,z”座标轴上的投影,记作:
f
(x,
y,
z)
f x
x0
f y
y0
f z
z0
微分算符(也称为哈密顿算符),定义为:
x0
x
y0
y
z0
z
散度:矢量函数
F
(M)在坐标轴上的投影为P、Q、R,它的
散度是一个标量函数,定义为微分算符与矢量F的数量
积,
记作:
F
( x0
x
y0
y
z0
z ) (Px0
Qy0
Rz0 )
(P Q R ) x y z
旋度: 矢量函数 F(M)在坐标轴上的投影为P、Q、R,它的
旋度是一个矢量函数,定义为微分算符与矢量F的矢量
D
B 0
方程组第三四式:
HEddllI BtdDtd
I
j
d
H
dl
(
H)d
H
j
D
E
t B
t
*微分形式的 Maxwell方程:
D
B 0
E
B
H
t
j
D
t
(1.2)
二、物质方程:
1、一般特性:
E
、B
:电磁场基本物理量,代表介质中总的宏观
电磁场;
D
、H
:与介质特性相关的辅助场量;
2)B高斯定律:通过任意封闭 曲面的磁感通量为零,说明穿 入与穿出任一封闭曲面的磁通 量永远相等,即磁场没有起止 点,磁力线是闭合曲线。
法拉第电磁感应定律
e
t 随时间变化的磁场会产生感生电动势
A)交变的磁场产生涡旋电场;
法拉第(Farady)电磁感应定律:变化电场中,
沿任一封闭路径的感应电动势e等于路径所包
面积上的磁感通量的变化率,
e d d
B
d
dt dt
B d
t
感应电动势:单位正电荷沿闭合回路移动一周
时涡旋电场所作的功,
e E dlຫໍສະໝຸດ E dl Bdt
安培环流定则
H • dl I
随时间变化的电场 会产生涡旋磁场
I E
t
磁场强度H沿任意闭合回路的环流等于穿过 闭合回路所围曲面的全电流之和
1.1 光的电磁波性质
一、麦克斯韦方程组
麦克斯韦(Maxwell)在法拉第(Faraday)、安 培(Anper)等人研究电磁场工作的基础上:于1864 年总结出了一组描述电磁场变化规律的方程组, 从而建立了经典电磁理论。 Maxwell方程两种等效的表达形式: 积分形式适用于解释物理现象;微分形式适用于 理论推导。
在无限大均匀介质中,=常数,=常数,并且不 存在自由电荷和传导电流(ρ=0,j=0)。
第三式的旋度代入四式,
( E)
H
2
E
t
t 2
( E) ( E) 2E
E 0
2
E
2E t 2
0
1
同样:
2
H
1
2
2H t 2
0
电场和磁场以波动形式在空间传播,传播速度为v;解的 形式取决于边界条件。
积,即:
F (x0 x y0 y z0 z ) (Px0 Qy0 Rz0 )
(
R y
Q z
)
x0
(
P z
R x
)
y0
(
Q x
P y
) z0
矢量分析基本公式:
矢量积分定理:
(f ) 0
( F ) 0
(f ) 2 f
( F ) ( F ) 2F