高等数学(上)第三章练习题

合集下载

高数阶段练习第三章参考答案

高数阶段练习第三章参考答案

第三章 微分中值定理及导数的应用一、选择题1. 若30sin(6)()lim 0x x xf x x →+= ,则206()lim x f x x→+为( ) A. 0 B. 6 C. 36 D. ∞2. 设在][1,0上,0)(>''x f ,则下列不等式成立的是( )A . )0()0()1()1(f f f f '>->' B. )0()1()0()1(f f f f ->'>'C . )0()1()0()1(f f f f '>'>- D. )0()1()0()1(f f f f '>->'3. 设2()()lim 1()x a f x f a x a →-=--,则在x a =处( ) A. ()f x 的导数存在 B. ()f x 取得极大值C . ()f x 取得极小值 D. ()f x 的导数不存在4. 设k 为任意实数,则方程33x x k -+在[1,1]-上( )A. 一定没有实根B. 最多只有一个实根C. 最多有两个互异实根D. 最多有三个互异实根5. 设(),()f x g x 在0x 的某个去心邻域内可导,()0g x '≠,且适合0lim ()0x x f x →=,0lim ()0x x g x →=,则0()lim ()x x f x g x λ→=是0'()lim '()x x f x g x λ→=的: A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件。

6. 设()f x 在区间(a,b)内二阶可导,0(,)x a b ∈,且00()0,()=0f x f x '''≠,则()f x ( )A. 在0x x =处不取极值, 但00(,())x f x 是其图形的拐点B. 在0x x =处不取极值,但00(,())x f x 可能是其图形的拐点C. 在0x x =处可能取极值, 00(,())x f x 也可能是其图形的拐点D. 在0x x =处不取极值00(,())x f x 也不是其图形的拐点。

精选-高一上册数学第三章测试题及答案:函数的应用-文档资料

精选-高一上册数学第三章测试题及答案:函数的应用-文档资料

高一上册数学第三章测试题及答案:函数的应用函数是发生在非空数集之间的一种对应关系。

查字典数学网为大家推荐了高一上册数学第三章测试题及答案,请大家仔细阅读,希望你喜欢。

1.设U=R,A={x|x0},B={x|x1},则A?UB=( )A{x|01} B.{x|0C.{x|x0}D.{x|x1}【解析】 ?UB={x|x1},A?UB={x|0【答案】 B2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=( )A.log2xB.12xC.log12xD.2x-2【解析】 f(x)=logax,∵f(2)=1,loga2=1,a=2.f(x)=log2x,故选A.【答案】 A3.下列函数中,与函数y=1x有相同定义域的是( )A.f(x)=ln xB.f(x)=1xC.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+).故选A.【答案】 A4.已知函数f(x)满足:当x4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=( )A.18B.8C.116D.16【解析】 f(3)=f(4)=(12)4=116.【答案】 C5.函数y=-x2+8x-16在区间[3,5]上( )A.没有零点B.有一个零点C.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,函数在[3,5]上只有一个零点4.【答案】 B6.函数y=log12(x2+6x+13)的值域是( )A.RB.[8,+)C.(-,-2]D.[-3,+)【解析】设u=x2+6x+13=(x+3)2+44y=log12u在[4,+)上是减函数,ylog124=-2,函数值域为(-,-2],故选C.【答案】 C7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( )A.y=x2+1B.y=|x|+1C.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选C.【答案】 C8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是( )A.(0,1)B.(1,2)C(2,3) D.(3,4)【解析】由函数图象知,故选B.【答案】 B9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a 的取值范围是( )A.a-3B.a3C.a5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-,4)上为减函数,只须使(-,4)?(-,-3a+12)即-3a+124,a-3,故选A.【答案】 A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是( )A.y=100xB.y=50x2-50x+100C.y=502xD.y=100log2x+100【解析】对C,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选C. 【答案】 C11.设log32=a,则log38-2 log36可表示为( )A.a-2B.3a-(1+a)2C.5a-2D.1+3a-a2【解析】 log38-2log36=log323-2log3(23)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】 A12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lg x)f(1),则x的取值范围是( )A.110,1B.0,110(1,+)C.110,10D.(0,1)(10,+)【解析】由已知偶函数f(x)在[0,+)上递减,则f(x)在(-,0)上递增,f(lg x)f(1)?01,或lg x0-lg x1?110,或0-1?110,或110x的取值范围是110,10.故选C.【答案】 C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若?UA={1},则实数a的值是________.【答案】 -1或214.已知集合A={x|log2x2},B=(-,a),若A?B,则实数a 的取值范围是(c,+),其中c=________.【解析】 A={x|04,即a的取值范围为(4,+),c=4.【答案】 415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+).【答案】 [1,+)16.有下列四个命题:①函数f(x)=|x||x-2|为偶函数;②函数y=x-1的值域为{y|y③已知集合A={-1,3},B={x|ax-1=0,aR},若AB=A,则a的取值集合为{-1,13};④集合A={非负实数},B={实数},对应法则f:求平方根,则f是A到B的映射.你认为正确命题的序号为:________. 【解析】函数f(x)=|x||x-2|的定义域为(-,2)(2,+),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;函数y=x-1的定义域为{x|x1},当x1时,y0,即命题②正确;因为AB=A,所以B?A,若B=?,满足B?A,这时a=0;若B?,由B?A,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1【解析】 A={x|x-2,或x5}.要使AB=?,必有2m-1-2,3m+25,3m+22m-1,或3m+22m-1,解得m-12,m1,m-3,或m-3,即-121,或m-3.18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.【解析】 (1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x[-5,5].由于f(x)的对称轴为x=1,结合图象知,当x=1时,f(x)的最小值为1,当x=-5时,f(x)的最大值为37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,∵f(x)在区间[-5,5]上是单调函数,-a-5或-a5.故a的取值范围是a-5或a5.19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.【解析】 (1)原式=25912+(lg5)0+343-13=53+1+43=4.(2)由方程log3(6x-9)=3得6x-9=33=27,6x=36=62,x=2.经检验,x=2是原方程的解.20.(本小题满分12分)有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x440.118(xN).去乙商场花费80075%x(xN*).当118(xN*)时y=(800-20x)x-600x=200x-20x2,当x18(xN*)时,y=440x-600x=-160x,则当y0时,1当y=0时,x=10;当y0时,x10(xN).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;【解析】 (1)由1+x0,1-x0,得-1函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x(-1,1),有-x(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x)f(x)为奇函数.22.(本小题满分14分)设a0,f(x)=exa+aex是R上的偶函数.(1)求a的值;(2)证明:f(x)在(0,+)上是增函数.【解析】 (1)解:∵f(x)=exa+aex是R上的偶函数,f(x)-f(-x)=0.小编为大家提供的高一上册数学第三章测试题及答案,大家仔细阅读了吗?最后祝同学们学习进步。

高数上册第三章

高数上册第三章

河北科技大学《高等数学》(上册)第三章一. 单项选择题1. 函数()sin f x x =在,22ππ⎛⎫- ⎪⎝⎭内 【 D 】 A.有最大值 B.有最小值C.既有最大值又有最小值D.既无最大值又无最小值2. 函数()y f x =在0x 处取得极大值,则必有 【D 】 A.0()0f x '= B.0()0f x ''<C.0()0f x '=且0()0f x ''<D.0()0f x '=或0()f x '不存在3.对函数38y x =+在区间[0,1]上应用拉格朗日中值定理时,所得中间值ξ为【 B】 A.3C.13 D.13-4. 曲线233y x x =-的拐点为 【 C】 A.(2,1) B.(2,1)- C.(1,2) D.(1,2)-5. 已知函数32()f x x ax bx =++在1x =处取得极值2-,则 【 B】 A.3a =-,0b =,且1x =为函数()f x 的极小值点B.0a =,3b =-,且1x =为函数()f x 的极小值点C.3a =-,0b =,且1x =为函数()f x 的极大值点D.0a =,3b =-,且1x =为函数()f x 的极大值点6. 曲线324x y x +=的图形应为 【 D】 A.在(,0)-∞和(0,)+∞内凸 B.在(,0)-∞内凹,在(0,)+∞内凸C.在(,0)-∞内凸,在(0,)+∞内凹D.在(,0)-∞和(0,)+∞内凹7. 函数32()23f x x x =-的极小值为 【 A 】A.1-B.1C.0D.不存在8.使函数()=f x 【 A 】A.[0,1]B. [1,2]C. [1,1]-D. [2,2]-9. 设函数()f x 的导函数()(1)(21)f x x x '=-+,则在区间1(,1)2内,()f x 单调【 B 】 A.增加,曲线()y f x =为凹的 B.减少,曲线()y f x =为凹的C.减少,曲线()y f x =为凸的D.增加,曲线()y f x =为凸的二、填空题1. 设()f x 在[,]a b 内可导,则至少存在一点(,)a b ξ∈,使()()f b f a e e -= _.2.2x y =的麦克劳林公式中n x 项的系数为 .3.曲线y =的拐点坐标为 .三. 计算下列各题1. 求43()21f x x x =-+的凹凸区间与拐点.2. 求.函数23()(5)f x x x =-的极值.3. 求函数3210496y x x x=-+的单调区间和极值. 4.求极限10lim (,,3→⎛⎫++ ⎪⎝⎭x x x x x a b c a b c 均大于零且不为1). 5.确定,,a b c 的值,使得32y x ax bx c =+++有拐点(1,1)-,且在0x =处有极值.四. 证明题1. 证明,当0x ≥时,(1)ln(1)arctan x x x ++≥.2.证明:当0x >时,2ln(1)2x x x -<+. 3. 证明:当02x π<<时,31tan 3x x x >+.4.证明:当0>x 时,ln(1).1<+<+x x x x5.设(),()f x g x 二阶可导且0()(),(0)(0),(0)(0).x f x g x f g f g ''''''>>==时 证明:0()().x f x g x >>时恒有五.证明题1. 已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0f =,(1)1f =.证明:(1)存在(0,1)ξ∈,使得()1f ξξ=-;(2)存在不同的两点,(0,1)ηζ∈,使得()()1f f ηζ''=.2. 设()f x ,()g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且在不同的点处存在相等的最 大值,且()()f a g a =,()()f b g b =,证明:(1)存在(,)a b η∈,使得()()f g ηη=; (2)存在(,)a b ξ∈,使得()()f g ξξ''''=.3. 设()f x 在[0,1]上连续,在(0,1)内二阶可导,过点(0,(0))A f 与点(1,(1))B f 的直线与曲线()y f x =相交于点(,())C c f c ,其中01c <<.证明:(1)在(0,1)内至少存在两点1ξ,2ξ,使得12()()f f ξξ''=;(2)在(0,1)内至少存在一点η,使得()0f η''=.4.设函数()f x 处处可导,1x 和2x 是函数的两个零点,且12x x <。

高数上册第三章微分中值定理和导数的应用习题答案

高数上册第三章微分中值定理和导数的应用习题答案

《高等数学教程》第三章 习题答案习题3-1 (A)1. 34=ξ 2. 14-=πξ习题3-2 (A)1. (1)31 (2) 81- 1)12()11()10(1)9(31)8(21)7()6(21)5(1)4(3)3(31e e --∞习题3-2 (B)1. n a a a e e 21)8(1)7(0)6(2)5(21)4(32)3(1281)2(41)1(--2. 连续4. )(a f ''5. )0()1(g a '=⎪⎪⎩⎪⎪⎨⎧=+''≠--+'='0]1)0([210]c o s )([]s i n)([)()2(2x g x x x x g x x g x x f(3) 处处连续.习题3-31. 432)4()4(11)4(37)4(2156)(-+-+-+-+-=x x x x x f2. 193045309)(23456+-+-+-=x x x x x x x f3. )40(,)(cos 3]2)()[sin sin(31tan 4523<<+++=θθθθx x x x x x x4.)10()]4(4[16!4)4(15)4(5121)4(641)4(412432<<-+---+---+=θθx x x x x x5. )10()(!)1(2132<<+-++++=θn nxx O n x x x x xe6. 645.1≈e7. 430533103.1;3090.018sin )2(1088.1;10724.330)1(--⨯<≈⨯<≈R R8. 121)3(21)2(23)1(-习题3-4 (A)1. 单调减少2. 单调增加3. .),23()23,()1(内单调下降在内单调上升;在+∞-∞.),2[]2,0()2(内单调增加在内单调减少;在+∞ .),()3(内单调增加在+∞-∞.),21()21,()4(内单调增加在内单调减少;在+∞-∞ .),[]0[)5(内单调下降在上单调上升;,在+∞n n7. (1) 凸 (2) 凹 (3)内凸内凹,在在),0[]0,(+∞-∞ (4)凹 8. ),(内凹,拐点内凸,在)在(82),2[]2,(1-+∞-∞ ),(内凹,拐点内凸,在)在(222),2[]2,(2e+∞-∞ 内凹,无拐点)在(),(3+∞-∞),(),(:内凹,拐点,内凸,在),,)在(2ln 1;2ln 1]11[1[]1,(4--∞+--∞ ),(内凸,拐点内凹,在)在(3arctan 21),21[]21,(5e +∞-∞ ),(凹,拐点),、凸,在、)在(001[]0,1[]1,0[]1,(6∞+---∞ 9. 29,32=-=b a10. a = 3, b = -9, c = 811. a = 1, b = -3, c = 24, d = 16习题3-4 (B)1. .)1,21(),1()21,0()0,()1(内单调增加在内单调减少;、、在∞+-∞.]22,32[]32,2[)2(内单调下降在内单调上升;在πππππππ+++k k k k .],32[),[]32,()3(内单调下降在内单调上升;、在a a a a ∞+-∞ 2. .1)3(10)2(1)1(是有一个实根时有两个实根时无实根ea e a e a =<<>3. .)2,0(内只有一个实根在π8. .9320时及当=≤k k 9. 在)(凹,拐点凹,在2,),[],(a b b b +∞-∞ 12. 82±=k 习题3-5 (A)1. .1)2(,5)0()1(==y y 极小值极大值.0)0(,4)2()2(2==-y e y 极小值极大值.25)16(,1)4()3(==y y 极小值极大值.205101)512()4(=y 极大值.45)43()5(=y 极大值.0)0()6(=y 极小值 (7) 没有极值. .)()8(1e e e y =极大值.3)1()9(=y 极大值.0)5()1(,18881)21()10(3==-=y y y 极小值极大值2. .14)2(,11)3()1(-==y y 最小值最大值.22)2ln 21(,2)1()2(1=-+=-y e e y 最小值最大值.2ln )41(,0)1()3(-==y y 最小值最大值3. 提示:可导函数的极值点必为驻点,.在题设条件下无驻点所以可证明y '4. .29)1(-=y 最大值5. .27)3(=-y 最小值6. .3)32(,2为极大值==f a7. .21,2-=-=b a8. 长为100m ,宽为5m.9. .1:1:;22,233===h d v h v r ππ 10. .44ππππ++aa ,正方形周长为圆的周长为11. .3843a a h π时,最小体积为锥体的高为=12. .22.1.776小时时间为公里处应在公路右方13. .6000)2(1000)1(==x x14. .45060075.3元件,每天最大利润为元,进货量为定价为 15. .167080,101利润=p习题3-5 (B)1. 1,0,43,41==-==d c b a 2. x = 1为极小点,y (1) = 1为极小值3. 当c = 1时,a = 0,b = -3,当c = -1时,a = 4,b = 5.4. 296)(23++-=x x x x P5. (1) f (x ) 在x = 0处连续;(2) 当ex 1=时,f (x ) 取极小值;当 x = 0时f (x ) 取极大值. 6. 310=x 当时,三角形面积最小7. 323)2()(11)1(032=--=-l x x x x y 8. .1222-≥<b b b b 时为,当时为当 9. 400 10.bc a 2 11. c a e bd L ae bd q -+-=+-=)(4)(,)(2)1(2最大利润eqedd -=η)2( ed q 21)3(==得当η 12. 2)2()4(25)1(=-=t t x 13. 156250元14. (1) 263.01吨 (2) 19.66批/年 (3)一周期为18.31天 (4)22408.74元15. 2)2()111(1)()1(-+-+=e n n n n M n16. 提示:.)1()1(ln )1()(22是极小值,证明令f x x x x f ---=习题3-6 (A)1. (1) x = 0, y = 1; (2) x = -1, y = 0; (3) x = -1, x = 1, y = 0 ; (4) x = 1, x = 2, x = -3.2. 略习题3-6 (B)1. ex y e x 1,1)1(+=-=(2)x= -1,x=1,y= -2 (3)y=x, x=0 (4)y= -2, x=0 4121,21)5(-=-=x y x2. 略习题3-7 (A)1. k=22. x x k sec ,cos ==ρ3. 02sin 32t a k =4. a a k t 4,41,===ρπ 5. 233)22ln ,22(处曲率半径有最小值- 习题3-7 (B)1. 略2. ⎪⎪⎭⎫ ⎝⎛++=)2(),2(,332323132323131x a y y a x axyR 曲率圆心3. 8)2()3(22=++-ηξ4. 约1246 (N) [提示:作匀速圆周运动的物体所受的向心力为Rmv F 2=]5. 16125)49()410(22=-+--ηπξ 习题3-81.19.018.0<<ξ 2. 19.020.0-<<-ξ 3. 33.032.0<<ξ 4. 51.250.2<<ξ总复习题三一. (1)B (2)B (3)B (4)D (5)C (6)B (7)C (8)B (9)C (10)C] 二. 25)8(/82)7()0,1()6(3)5(63)4()22,22()3(2ln 1)2(2)1(3s cm π+--x x x xeyx y 4)1(,)1(4)10()9(2222+++=三. 9)3(0)2(3)1(,7541,6,50,40,31,221,123---e⎪⎪⎩⎪⎪⎨⎧=-''≠++-'='-0)1)0((210)1()()()()1(,82x g x x e x x g x g x x f x上连续在),()()2(+∞-∞'x f 9, 略四、证明题和应用题 6.)027.0,025.0()2(450449)1(7.)2,2(b a P8.12ln 31,2ln 3121-+ 9.%82.0%13)3(173)2(20)1(总收益增加,时,若价格上涨当=-p pp10.略。

高数(上)第三章 复习题(含参考答案)

高数(上)第三章 复习题(含参考答案)

高数上第三章 复习题1. 验证罗尔定理对函数y =ln sin x 在区间]65 ,6[ππ上的正确性.解 因为y =ln sin x 在区间]65 ,6[ππ上连续, 在)65 ,6(ππ内可导, 且)65()6(ππy y =, 所以由罗尔定理知, 至少存在一点)65 ,6(ππξ∈, 使得y '(ξ)=cotξ=0.由y '(x )=cot x =0得)65 ,6(2πππ∈.因此确有)65 ,6(2πππξ∈=, 使y '(ξ)=cot ξ=0.2. 证明: 若函数.f (x )在(-∞, +∞)内满足关系式f '(x )=f (x ), 且f (0)=1则f (x )=e x .证明 令x ex f x )()(=ϕ, 则在(-∞, +∞)内有0)()()()()(2222≡-=-'='xx x x e e x f e x f e e x f e x f x ϕ, 所以在(-∞, +∞)内ϕ(x )为常数. 因此ϕ(x )=ϕ(0)=1, 从而f (x )=e x . 3. 用洛必达法则求下列极限:(1)xe e xx x sin lim0-→-;解2cos lim sin lim 00=+=--→-→xe e x e e x x x x x x . (2)22)2(sin ln lim x x x -→ππ;解 812csc lim 41)2()2(2cot lim )2(sin ln lim 22222-=---=-⋅-=-→→→x x x x xx x x πππππ.(3)xx x x cos sec )1ln(lim20-+→;解 x x xx x x x x x x x 22022020cos 1lim cos 1)1ln(cos lim cos sec )1ln(lim -=-+=-+→→→(注: cos x ⋅ln(1+x 2)~x 2)1sin lim )sin (cos 22lim 00==--=→→xxx x x x x . 4. 证明不等式 :当x >0时, 221)1ln(1x x x x +>+++;解 设221)1ln(1)(x x x x x f +-+++=, 则f (x )在[0, +∞)内是连续的.因为0)1ln(1)11(11)1ln()(22222>++=+-++⋅++⋅+++='x x xx xx xx x x x x f ,所以f (x )在(0, +∞)内是单调增加的, 从而当x >0时f (x )>f (0)=0, 即 01)1ln(122>+-+++x x x x ,也就是221)1ln(1x x x x +>+++.5. 判定曲线y =x arctan x 的凹凸性: 解21arctan xx x y ++=',22)1(2x y +=''.因为在(-∞, +∞)内, y ''>0, 所以曲线y =x arctg x 在(-∞, +∞)内是凹的.6. 求下列函数图形的拐点及凹或凸的区间: (1) y =xe -x ;解 y '=e -x -x e -x , y ''=-e -x -e -x +x e -x =e -x (x -2). 令y ''=0, 得x =2. 因为当x <2时, y ''<0; 当x >2时, y ''>0, 所以曲线在(-∞, 2]内是凸的, 在[2, +∞)内是凹的, 拐点为(2, 2e -2). (2) y =ln(x 2+1); 解122+='x x y ,22222)1()1)(1(2)1(22)1(2++--=+⋅-+=''x x x x x x x y . 令y ''=0, 得x 1=-1, x 2=1.列表得可见曲线在(-∞, -1]和[1, +∞)内是凸的, 在[-1, 1]内是凹的, 拐点为(-1, ln2)和(1,ln2).7. 设f (x )在[0, a ]上连续, 在(0, a )内可导, 且f (a )=0, 证明存在一点ξ∈(0, a ), 使f (ξ)+ξf '(ξ)=0.证明 设F (x )=xf (x ), 则F (x )在[0, a ]上连续, 在(0, a )内可导, 且F (0)=F (a )=0. 由罗尔定理, 在(0, a )内至少有一个点ξ , 使F (ξ )=0. 而F (x )=f (x )+x f '(x ), 所以f (ξ)+ξf '(ξ)=0. 8. 求数列}{n n 的最大项. 解 令xx x x x f 1)(==(x >0), 则x x x f ln 1)(ln =,)ln 1(1ln 11)()(1222x xx x x x f x f -=-='⋅,)ln 1()(21x x x fx -='-.令f '(x )=0, 得唯一驻点x =e .因为当0<x<e时, f'(x)>0; 当x>e时, f'(x)<0, 所以唯一驻点x=e 为最大值点.因此所求最大项为333max{=.,2}3。

高一数学资源:高一数学上册第三章课堂练习题(附答案)

高一数学资源:高一数学上册第三章课堂练习题(附答案)

高一数学资源:高一数学上册第三章课堂练习题(附答案)高一数学资源:高一数学上册第三章课堂练习题(附答案)第三章末一、选择题1.方程x-1=lgx必有一个根的区间是()A.(0.1,0.2)B.(0.2,0.3)C.(0.3,0.4)D.(0.4,0.5)[答案] A[解析] 设f(x)=x-1-lgx,f(0.1)=0.10,f(0.2)=0.2-1-lg0.2=0.2-lg20∴f(0.1)f(0.2)0,故选A.2.实数a、b、c是图象连续不断的函数y=f(x)定义域中的三个数,且满足aA.2B.奇数C.偶数D.至少是2[答案] D[解析] 由f(a)f(b)0 知y=f(x)在(a,b)上至少有一实根,由f(b)f(c)0知y=f(x)在(b,c)上至少有一实根,故y=f(x)在(a,c)上至少有2实根.3.已知函数f(x)=ex-x2+8x,则在下列区间中f(x)必有零点的是()A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)由y=x+2y=10-x,得x=4y=6,∴f(x)的最大值为6.7.对任意实数x-1,f(x)是2x,log12(x+1)和1-x中的最大者,则f(x)的最小值()A.在(0,1)内B.等于1C.在(1,2)内D.等于2[答案] B[解析] 在同一坐标系中,作出函数y=2x,y=log12(x+1),y=1-x的图象,由条件知f(x)的图象是图中实线部分,显见f(x)的最小值在y=2x与y=1-x交点(0,1)处取得.∴最小值为f(0)=1.8.(江门一中2009~2019高一期末)设f(x)=2x-x-4,x0是函数f(x)的一个正数零点,且x0∈(a,a+1),其中a∈N,则a=()A.1B.2C.3D.4[答案] B[解析] 由条件知,f(a)=2a-a-4与f(a+1)=2a+1-a-5异号,取a=2,有f(2)=22-2-40,f(3)=23-2-50满足,∴a=2,故选B.二、填空题9.下图是某县农村养鸡行业发展规模的统计结果,那么此县养鸡只数最多的那年有________万只鸡.[答案] 31.2[解析] 2019年,30×1=30万只,2019年,26×1.2=31.2万只,2019年,22×1.4=30.8万只,2019年,18×1.6=28.8万只,2019年,14×1.8=25.2万只,2019年,10×2=20万只.10.函数y=ax2-ax+3x+1的图象与x轴有且只有一个交点,那么a的值的集合为________.[答案] {0,1,9}[解析] 当a=0时,y=3x+1的图象与x轴只有一个交点;当a≠0时,由Δ=(3-a)2-4a=0得a=1或9.三、解答题11.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量y(件)与销售单价x(元/件),可近似看作一次函数y=kx+b的关系(如图所示).(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元.①试用销售单价x表示毛利润S;②试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?[解析] (1)由图象知,当x=600时,y=400;当x=700时,y=300,代入y=kx+b中,得400=600k+b,300=700k+b,解得k=-1,b=1 000.∴y=-x+1000(500≤x≤800).(2)销售总价=销售单价×销售量=xy,成本总价=成本单价×销售量=500y,代入求毛利润的公式,得s=xy-500y=x(-x+1000)-500(-x+1000)=-x2+1500x-500000=-(x-750)2+62500(500≤x≤800).∴当销售单价为750元/件时,可获得最大毛利润62500元,此时销售量为250件.12.2019年1月6日,我国的第13亿个小公民在北京诞生,若今后能将人口年平均递增率控制在1%,经过x年后,我国人口数为y(亿).(1)求y与x的函数关系y=f(x);(2)求函数y=f(x)的定义域;(3)判断函数f(x)是增函数还是减函数?并指出在这里函数增减有什么实际意义.[分析] 关键是理解年递增率的意义2019年人口数为13(亿)经过1年,2019年人口数为13+13×1%=13(1+1%)(亿)经过2年,2019年人口数为13(1+1%)+13(1+1%)×1%=13(1+1%)(1+1%)=13(1+1%)2(亿). 经过3年,2019年人口数为13(1+1%)2+13(1+1%)2×1%=13(1+1%)3(亿).[解析] (1)由题设条件知,经过x年后我国人口总数为13(1+1%)x(亿).∴y=f(x)=13(1+1%)x.(2)∵此问题以年作为单位时间,∴此函数的定义域是N*.(3)y=13(1+1%)x是指数型函数,∵1+1%0,∴y=13(1+1%)x是增函数,即只要递增率为正数时,随着时间的推移,人口的总数总在增长.。

高等数学第三章微分中值定理与导数的应用试题库(附带答案)

高等数学第三章微分中值定理与导数的应用试题库(附带答案)

>第三章 微分中值定理与导数的应用一、选择题1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( )是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A (2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( )0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''=3、的凸区间是 x e y x -=( )) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞,4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( )(A)xx sin )x (f = (B)2)1x ()x (f += (C) 3 2x )x (f = (D)1x )x (f 2+=5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( )(A) [-1,1] (B) [0,1] (C) [-2,2] (D) ]5 4, 5 3[- 7、x 2 e x y -=的凹区间是( )(A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-,&8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) .(A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3x 3sin3x asinx f(x)π=+=( ) (A) 1 (B) 2 (C)3 π(D) 010、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( )]5 4, 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( )的极值必定不是的极值点为必定为曲线的驻点, 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000、二、填空题 1、__________________e y82x的凸区间是曲线-=.2、______________ 2 x y x 的极小值点是函数=.3、的凸区间为曲线x 3 e y x+=_____________________ . 4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= . 5、设曲线y =a 23bx x +以点(1,3)为拐点,则数组(a ,b )= . 6、函数1x 3x y 3+-=在区间 [-2,0] 上的最大值为 ,最小值为 . 7、函数 x sin ln y =在 [65, 6 ππ] 上的罗尔中值点ξ= . …8、1 x y +=在区间 [ 1,3 ] 的拉格朗日中值点ξ = _______________. 9、______________ 2 x y x 的极小值点是函数=. 10、______________ 2x y x 的极小值点是函数⋅=。

高等数学练习题 第三章、复变函数的积分 试题库

高等数学练习题 第三章、复变函数的积分  试题库

第三章、复变函数的积分 试题库:第一部分、判断与填空:1、设函数)(z f 在区域D 解析,为C 内D 任一条闭简单曲线,则0)(=⎰C dz z f .2、设函数)(z f 在复平面上解析,若它有界,则必)(z f 为常数。

3、若函数)(z f 在区域D 解析,则积分与路径无关。

4、设1|:|=z C ,则___)1(=-⎰C dz z 。

5、___cos 1=⎰C dz z。

6、若函数)(z f 在单连通区域D 解析,为C 内D 任一条闭简单曲线,则____)(=⎰C dz z f 。

7、___=⎰Cz dz ze 。

8、设C 是以为a 心,r 为半径的圆周,则___)(1=-⎰C n dz a z 。

9、设C 是以为a 心,r 为半径的圆周,则___122=-⎰C dz az 。

10、设函数)(z f 在区域D 解析,则它是任意阶可导的。

第二部分、证明与计算:1、计算积分:⎰-=ii z z I d ||,积分路径为(1)单位圆(1||=z )的左半圆;(2)单位圆的右半圆。

2、计算积分:z z I Ld Re ⎰=, 在这里L 表示单位圆(按反时针方向从1到1取积分)。

3、计算积分:z z I Ld Re ⎰= 在这里L 表示从1z 沿直线段到2z 。

4、设函数)(z f 当)10(||000<<>-r r z z 时是连续的。

令)(r M 表示|)(|z f 在00||r r z z >=-上的最大值,并且假定0)(lim =+∞→r M r 。

试证明0d )(lim =⎰+∞→r K r z z f在这里r K 是圆r z z =-||0。

5、如果函数)(z f 在00||r z z >-内解析,令)(r M 表示|)(|z f 在00||r r z z >=-上的最大值,并且假定 0)(lim =+∞→r M r 那么对任何0r r >,0d )(=⎰r K z z f6、计算积分:⎰=-2||4d 11z z z 。

大学高等数学各章节练习题

大学高等数学各章节练习题

第一章 极限与连续一、填空 1、设11()01x f x x ⎧≤⎪=⎨>⎪⎩ ,则[]()___________.f f x = 2、假设数列{}n x 收敛,则数列{}n x 肯定 。

3、假设0lim ()x x f x A →=,而0lim ()x x g x →不存在,则0lim(()())x x f x g x →+ 。

4、当0→x 时,1132-+ax 与1cos -x 为等价无穷小,则_______=a 5、设函数()f x 在点0x x =处连续,则()f x 在点0x x =处是否连续。

6、设21))((,sin )(x x f x x f -==ϕ,则)(x ϕ的定义域为_________7、如果⎪⎩⎪⎨⎧=≠-+=0,00,12sin )(2x x xe x xf ax 在),(+∞-∞内连续,则__=a8、 曲线22x e x y -=的渐近方程为__________________二、选择9、如果)(),(x g x f 都在0x 点处间断,那么〔 〕〔A 〕)()(x g x f +在0x 点处间断 〔B 〕)()(x g x f -在0x 点处间断 〔C 〕)()(x g x f +在0x 点处连续 〔D 〕)()(x g x f +在0x 点处可能连续。

10、设数列n x 与n y 满足lim 0n n n x y →∞=,则以下断言正确的选项是〔 〕〔A 〕假设n x 发散,则n y 必发散。

〔B 〕假设n x 无界,则n y 必有界 〔C 〕假设n x 有界,则n y 必为无穷小〔D 〕假设1nx 为无穷小,则n y 必为无穷小。

11、已知0()lim0x f x x→=,且(0)1f =,那么〔 〕〔A 〕()f x 在0x =处不连续。

〔B 〕()f x 在0x =处连续。

〔C 〕0lim ()x f x →不存在。

〔D 〕0lim ()1x f x →=12、设2()43x xf x x x+=- ,则0lim ()x f x →为〔 〕〔A 〕12 (B)13 (C) 14 (D)不存在13、设2(1)sin ()(1)x xf x x x-=-,那么0x =是函数的〔 〕〔A 〕无穷间断点。

高等数学1 第三章 习题答案

高等数学1 第三章 习题答案

高等数学习题解答(第三章微分中值定理与导数的应用)惠州学院数学系习 题 3.11.验证拉格朗日中值定理对函数()ln f x x =在区间[]1,e 上的正确性。

解:函数()ln f x x =在区间[1,]e 上连续,在区间(1,)e 内可导,故()f x 在[1,]e 上满足拉格朗日中值定理的条件。

又1()f x x'=,解方程()(1)11(),,11f e f f e e ξξ-'==--即得1(1,)e e ξ=-∈。

因此,拉格朗日中值定理对函数()ln f x x =在区间[1,]e 上是正确的。

2.不求函数()(1)(2)(3)(4)f x x x x x =----的导数,说明方程'()0f x =有几个实根,并指出它们所在的区间。

解:函数()[1,2],[2,3],[3,4]f x 分别在区间上连续,(1,2),(2,3),(3,4)在区间上可导, 且(1)(2)(3)(4)0f f f f ====。

由罗尔定理知,至少存在1(1,2),ξ∈2(2,3),ξ∈ 3(3,4),ξ∈使()0 (1,2,3),i f i ξ'==即方程'()0f x =有至少三个实根。

又因方程'()0f x =为三次方程,故它至多有三个实根。

因此,方程'()0f x =有且只有三个实根,分别位于区间(1,2),(2,3),(3,4)内。

3.若方程 10110n n n a x a x a x --+++= 有一个正根0,x 证明:方程12011(1)0n n n a nxa n xa ---+-++= 必有一个小于0x 的正根。

解:取函数()1011nn n f x a x a xa x --=+++ 。

0()[0,]f x x 在上连续,在0(0,)x 内可导,且0(0)()0,f f x ==由罗尔定理知至少存在一点()00,x ξ∈使'()0,f ξ=即方程12011(1)0n n n a nxa n xa ---+-++= 必有一个小于0x 的正根。

高等数学:高数第三章自测题答案

高等数学:高数第三章自测题答案

第三章单元自测题答案一、填空题:1.满足,2=ξ; 2. 满足,3415=ξ; 3. 3; 4. 1-=a ,4-=b . 二、选择题:1. B ;2.A ;3.C ;4.A ;5.B .三、计算下列各题: 1.解 ∞→x lim 1lim 1lim 11lim )1(0011==-=-=-→→∞→u u u u x x x e ue xe e x . 2.解 2000)1ln(lim )1ln()1ln(lim )1)1ln(1(lim xx x x x x x x x x x x +-=++-=-+→→→21)1(2lim 2111lim 00=+=+-=→→x x x x x x x . 3.解 设21)(cos x x y =,取对数有2cos ln ln xx y = 因为212tan lim cos ln lim 020-=-=→→x x x x x x ,所以21cos ln 01022lim )(cos lim -→→==e e x x xx x x . 四、应用题:1.解 函数的定义域为),(+∞-∞,因为 x x x e x x e x xe y ----=-=')24(2422,令0='y ,解得2,021==x x .当,0,0<'<y x 当,0,20>'<<y x 当,0,2<'>y x因此,]2,0[为单调增加区间,]0,(-∞)和),2[+∞为单调减少区间.2.解 函数的定义域为),(+∞-∞,因为2222)1(22,12x x y x x y +-=''+=', 令0=''y ,解得1,121=-=x x .当,0,1<''-<y x 时当11<<-x 时,0>''y ,当0,1<''>y x 时,故曲线的凹区间为]1,1[-,凸区间为]1,(--∞和),1[+∞.拐点为)2ln ,1(-,)2ln ,1(.3.解 )5,0(2,2,01232∈=±==-='x x x y 解得, 70)5(,5)0(,11)2(==-=f f f ,故,70max =f 11min -=f .4.解 ,26,232b ax y bx ax y +=''+='由已知得0)2(=''y ,即6,0212b a b a -==+. 又)5,2(为曲线23bx ax y +=上的点,因此有815,42653=+⋅-=b b b .于是16581561-=⋅-=a . 5.解 由已知得x y 2=,且72=xyh ,于是有236xh =, 长方体带盖箱子的表面积)362362(2)(2)(222x x x x x yh xh xy x S S ⋅+⋅+=++== )0(,21642>+=x x x 因为22168)(x x x S -=',令0)(='x S ,解得唯一驻点3=x , 由问题实际意义知,当长3=x m 时,箱子的用料最省,此时宽m y 6=,高m h 4=.五、证明题:1.证明 令x x f ln )(=,显然)(x f 在],[b a 上满足拉格朗日中值定理条件,于是有 ))(()()(a b f a f b f -'=-ξ,)(b a <<ξ,即 ξa b a b a b -==-ln ln ln ,)(b a <<ξ, 因为b a <<<ξ0,所以aa b a b b a b -<-<-ξ,因此aa b a b b a b -<<-ln . 2.证明 令221)1ln()(x x x x f +-+=,则)(x f 在],0[x 上连续,且xx x x x f +=+-+='1111)(2, 当0>x 时,0)(>'x f ,所以)(x f 在),0[+∞上单调增加,又0)0(=f , 从而,当0>x 时有)0()(f x f >,即当0>x 时,221)1ln(x x x ->+. 3.证明 令1)(5-+=x x x f ,则)(x f 在区间]2,0[上连续,且0122)2(,01)0(5>-+=<-=f f ,由零点定理知方程015=-+x x 在区间)2,0(内有一正根.又在),(+∞-∞内,,015)(4>+='x x f 故)(x f 在),(+∞-∞上单调增加, 因此正根唯一,即方程015=-+x x 只有一个正根.。

高等数学第三章试题库

高等数学第三章试题库

第三章试题库一、选择题。

1.若)(u f 可导,且)(x e f y =,则有=dy ()A.()x f e dx' B.()x xf e de ' C.()x x f e de '⎡⎤⎣⎦D.()x x f e e dx '⎡⎤⎣⎦2.当n →+∞,55,ln ,ln ,5n n n 趋于无穷大速度最快的是()A.5n B.5ln n C.ln D.5n3.当n →+∞,55,ln ,ln ,5n n n 趋于无穷大速度最慢的是()A.5ln n B.5ln n C.ln D.5n4.设()(1)(2)(), f x x x x n =--- 则()=0f x '在开区间(2,)n 有()个零点A.1n - B.1n - C.2n - D.n5.设()(1)(2)(), x x x f x e e e n n Z +=---∈ 则(0)=f '()A.1(1)(1)!n n --- B.(1)(1)!n n -- C.1(1)!n n -- D.(1)!n n -6.设()(1)(2)(), f x x x x n n Z +=---∈ 则(1)=f '()A.1(1)(1)!n n --- B.(1)(1)!n n -- C.1(1)!n n -- D.(1)!n n -7.设()(1)(2)(10), f x x x x =--- 则(1)=f '()A.9!- B.0C.9!D.10!8.设2()ln(1)f x x =+,则该函数在(0,)+∞内的图象为()A.递增的凹弧B.递减的凹弧C.递增的凸弧D.递减的凸弧9.设()ln(1)f x x x =+-,则该函数在(1,0)-内的图象为()A.递增的凹弧B.递减的凹弧C.递增的凸弧D.递减的凸弧10.设()x f x e x =-,则该函数在(1,0)-内的图象为()A.递增的凹弧B.递减的凹弧C.递增的凸弧D.递减的凸弧11.设函数()f x 在[,]a b 上连续,且在(,)a b 内()0f x ''>,则在(,)a b 内等式()()()f b f a f b aξ-'=-成立的ξ()A.存在B.不存在C.惟一D.不能断定存在12.曲线53(1)5y x =-+()A.有极值点1x =,但无拐点B.有拐点(1,5),但无极值点C.有极值点1x =,有拐点(1,5)D.既无极值点,又无拐点13.下列函数中,在区间[1,1]-上满足罗尔定理条件的是().A.2ln(1)y x =-B.21y x =-C.||x y e =D.sin y arc x =14.若函数)(x f y =在点0x 处取得极大值,则必有().A.0()0f x '= B.0()0f x '<C.0()0f x '=且0()0f x ''< D.0()0f x '=或0()f x '不存在15.若在区间),(b a 内有()0,f x '>()0,f x ''<则曲线弧)(x f y =为().A.递增的凸弧B.递增的凹弧C.递减的凸弧D.递减的凹弧16.下列函数中在区间]3,0[上不满足拉格朗日定理条件的是().A.221x x ++ B.cos(1)x + C.22(1)x x - D.ln(1)x +17.若)(x f 在a x =处取得极值,则()。

高等数学第三章综合测试题

高等数学第三章综合测试题

第三章 综合测试题A 卷一、填空题(每小题4分,共20分)1、函数ln(1)y x =+在[0,1]上满足拉格朗日定理的ξ= 。

2、函数321()393f x x x x =-+在闭区间[0,4]上的最大值点为x = . 3、函数4y x x=+的单调减少区间是 .4、若函数()f x 在x a =二阶可导,则0()()()lim h f a h f a f a h h→+-'-= .5、曲线32x y x =+的铅直渐近线为 .二、选择题(每小题4分,共20分)1、下列函数在[1,1]-上满足罗尔定理条件的是 [ ](A) xy e = (B ) ln y x = (C) 21y x =- (D ) 211y x=- 2、曲线3(1)y x =-的拐点是 [ ] (A )(1,8)- (B)(1,0) (C ) (0,1)- (D ) (2,1)3、已知函数()(1)(2)(3)(4)f x x x x x =----,则()0f x '=的实根个数为 [ ] (A ) 一个 (B ) 两个 (C) 三个 (D ) 四个4、设函数()f x 在(,)a b 内可导,则在(,)a b 内()0f x '>是函数()f x 在(,)a b 内单调增的[ ](A) 必要非充分条件 (B) 充分非必要条件 (C) 充要条件 (D ) 无关条件5、如果00()0,()0f x f x '''=>,则 [ ](A )0()f x 是函数()f x 的极大值 (B ) 0()f x 是函数()f x 的极小值 (C) 0()f x 不是函数()f x 的极值 (D) 不能判定0()f x 是否为函数()f x 的极值三、解答题1、(7分)计算011lim()1xx x e →--.2、(7分)计算0lim x x +→。

3、(7分)计算10sin lim()x x x x →。

同济六版高数上册第三章典型例题.ppt

同济六版高数上册第三章典型例题.ppt

单减去间 最大值 最小值
(2, ),(0,1)
4 3

极大值
4
3
极小值
1
渐近线
y=0
拐点

x5
lim x5 0,
x0 3(1 cos x) x0 3 1 x2
2
原式 e0 1.
三、设f 0 g0, f 0 g0,当x 0时,f x gx, 证明:当x 0时,f x gx.
设F(x) f x gx, 则F(x) f x gx,
则F( x) f x gx 0 ( x 0),
(2) 求 f x ;
(3) 讨论 f x 在x 0 处的连续性.
(1) x 0时, f x gx cos x 连续,
x x 0时,
lim f x lim gx cos x lim gx sin x g0 f (0) a,
x0
x0
x
x0
1
a g0时, f ( x)为连续函数.
(2)
lim cos 2x lim
x0
x0
2 x2
1 2
在利用罗必达法则 求极限时,应定要 注意:
1、先提出确定ห้องสมุดไป่ตู้ 极限。
2、和等价无穷小 结合使用。
2. lim n2arctan a arctan a
n
n
n1
对f
(
x)
arctan
x在
n
a
1
,
a n
上应用拉格朗日中值定理, 有
arctan
a n
又f (2e) 2e(ln 2e 1) 0,
及 lim f ( x) lim2e ln x x , 或f 1 2e 1 0,

高一数学上册第三章同步练习训练:函数与方程

高一数学上册第三章同步练习训练:函数与方程

高一数学上册第三章同步练习训练:函数与方程
高一数学上册第三章同步练习训练:函数与方程数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。

以下是查字典数学网为大家整理的高一数学上册第三章同步练习训练,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

函数与方程
一.考纲要求:
1.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数。

2.根据具体函数的图象,能够用二分法求相应方程的近似解。

二.高考趋势:
1.函数与方程中的零点及二分法是新增内容,高考中必将有所考察。

2.以难度较低的选择题,填空题为主,考察函数的图象及根的存在性问题。

三.知识回顾:
1.函数零点的概念,函数与方程根的关系:
(1)对于函数,我们把使的实数称为函数的零点,实质上函数的零点就是函数的图象与轴的公共点的横坐标。

(2)函数的零点可以看成是函数与图象交点的横坐标。

(3)函数的定义域是个单调区间的并集,则函数至多有个零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(上)第三章练习题
一.填空题 1.()ln(21)-f x x x =+的增区间是
2.
1()sin sin 33f x a x x =+在3
x π
=处取极值,则a =
3.曲线
2
2
x y e
-
= 在区间 是凸的
4.点(1,2)是32y ax bx =+的拐点,则a = ,b =
5.曲线
ln(1)
2
x y x -=
-的水平渐近线是 ,垂直渐近线是
6.曲线2
3
33x t y t t
⎧=⎪⎨=-⎪⎩在对应于1t =的点处的曲率K =
二.单项选择题 7.函数
()(1)(2)(3)f x x x x =---,则方程有()0f x '=有【 】
A .一个实根 B. 二个实根 C. 三个实根 D. 无实根 8. 极限2
cos5lim
cos3x x
x
π

=【 】
A .
53 B. 1 C. 1- D. 53
- 9. 当0x →时,2(1)x
e ax bx -++是比2x 高阶无穷小,则【 】
A .1
2a
=
,1b = B. 1a =,1b = C. 1
2
a =-,1
b = D. 1a =-,2b =-
10.若2
()()
lim
1()x a
f x f a x a →-=--,, 则x a =处【 】
A .()f x 导数存在且()0f a '≠ B. ()f x 取极大值 C .()f x 取极小值 D. ()f a '不存在
11.
()f x 在x a =某邻域内有三阶连续导数,且()()0f a f a '''==,()0f a '''≠,则【 】
A .x
a =是()f x 的极小值点 B. x
a =是()f x 的极大值点
C. (())a f a 是曲线()y f x =的拐点
D. x a =不是()f x 的极值点,(())a f a 不是曲线()y f x =的拐点
12.
()f x 在[,]a b 上连续,在(,)a b 内具有二阶导数,且()0f x '>,()0f x ''>,
则曲线
()y f x =在[,]a b 上【 】
A .上升且为凸的 B. 上升且为凹的 C. 下降且为凸的 D. 下降且为凹的
三.求下列极限
13.302lim x x x e e x
x
-→-- 14. 2ln(1)lim ln x x x →+∞+ 15.2
1lim 1sin x x
x x →∞

⎫- ⎪⎝

16. 11lim 1ln x x x x →⎛⎫- ⎪-⎝
⎭ 17.()
1
21cos 0lim 1x x
x x e -→+ 18.
1
ln lim tan 2x
x arc x π→+∞⎛⎫- ⎪⎝⎭
四.解答下列各题 19.设
()f x 在[0,]π上连续,在(0,)π内可导,证明在(0,)π内至少存在一点ξ,
使()()cot f f ξξξ'=-
20.设
()f x 在[,]a b 上连续,在(,)a b 内具有二阶导数, 且()()0f a f b ==,()0f c >
(a c b <<),证明:至少存在一点(,)a b ξ∈ 使()0f ξ''<
21.证明:当1x ≥时,2
2arctan arcsin 1x
x x
π+=+ 22.已知a b e >>,证明 :b
a a
b <
23.
()f x 在[0,)+∞上连续 且(0)0f =, ()f x '在(0,)+∞内单调增加,
求证:
()
f x x
在(0,)+∞内单调增加 24.已知函数
32()26187f x x x x =-+++
(1)求函数()f x 的单调区间与极值
(2)曲线
()y f x =图形凹凸区间与拐点
25.(1)0x
>时,证明:ln(1)x x +<
(2)01q <<,2ln(1)ln(1)ln(1)n n x q q q =++++
++,证明:lim n n x →∞
存在
26.设
2()n n f x x x x =++
+ (2,3,)n =
(1)证明:方程
()1n f x =在(0,)+∞内有惟一的实根n x
(2) 证明:lim n n x →∞
存在,并求lim n n x →∞
27. 在抛物线
21y x =- (01x <≤)找一点M ,过点M 作该抛物线的切线, 使切线
与两坐标轴围成的三角形的面积最小 28.设3
333x
xy y -+=确定y 是x 的隐函数,求()y y x =的驻点并判别是否为极值点
参考答案与提示
一. 1. 11
(]22
-
, 2. 2a = 3. [1,1]- 4. 1,3a b =-= 5. 0,1y x == 6. 1
6
二. 7. B 8. D 9. A 10. B 11. C 12. B 三. 13.
13 14. 2 15. 16 16. 12
17. 2e 18. 1e - 四. 19. 提示:设()()sin F x f x x = 应用Rollee 定理
20. 提示:()f x 分别在[,]a c [,]c b 上应用Lagrange 中值定理,得12a c b ξξ<<<<
()f x '在12[,]ξξ用Lagrange 中值定理
21. 提示:令2
2()arctan arcsin 1x
f x x x =++,证明在(1,)+∞内()0f x '=
22.提示:令
ln ()x
f x x =
,判别()f x 在[,)e +∞上单调性 23. 提示:令()()f x F x x =, 求导得2
()()
()x f x f x F x x
'-'= 由Lagrange 中值定理得,
()(0)()(0)f x f f x ξ'-=- 0x ξ<<

()()f x x f ξ'= 代入()F x '表达式, 再由()f x '单调性 得证
24.(1) 函数()f x 在(,1]-∞- 和[3,)+∞单调减少 , 在[1,3]-上单调增加
(1)3f -=- 是()f x 极小值, (3)61f = 是()f x 的极大值
(2)曲线()y f x =的凹区间是(,1]-∞,凸区间是[1,)+∞ ,拐点(1,29)
25. (1) 利用单调性证明 (2)利用(1)和极限存在准则Ⅱ 26. (1)令()
()1n n F x f x =-利用单调性和零点定理
(2) 由(1)得 01n x <<

11()()n n n f x f x x ++=+得 1
1()0n n n n F x x ++=> 根据零点定理
知方程
1()1n f x +=在(0,)n x 内有根,从而1n n x x +<
{}n x 单调减少有下界,利用极限存在准则Ⅱ,lim n n x →∞
存在
记lim n
n x a →∞
=存在 且01a ≤<,由1
2
1n n
x x x x x x
+-++
+=
- (1)x ≠
方程化为
111n x x x +-=- 由n x 为方程的根得1
11n n n n
x x x +-=- 注:1
lim 0n n
n x +→∞= 两边取极限得
11a a =- 解之得a =1
2
27. 设点M 的坐标为2(,1)t
t -,写出点M 的切线方程,求得在两坐标轴上的截距
求出三角形面积表达式
311
(2)4A t t t =++ 01
t <≤

A 的最值 , 得点2
,)33
M 为所求的点 28.隐函数方程求导得 22y x y y x -'=- , 222222
(2)(2)
()x y x y y x xy y y y x '--+-+''=-
令0dy dx = 得2
0y x -= 与方程联立2
3
3
033
y x x xy y ⎧-=⎪⎨-+=⎪
⎩ 得驻点1x =- 和x = 又
(
1)10y ''-=>,10y ''=-<
由极值第二充分条件 得1x =-为极小值点, x
=。

相关文档
最新文档