贴片电容选择与命名

合集下载

贴片电容型号命名规则

贴片电容型号命名规则

贴片电容型号命名规则贴片电容是一种常用的电子元件,用于电路中的能量储存和信号处理。

它的型号命名规则是非常重要的,因为它可以帮助人们快速准确地识别和选择合适的贴片电容。

贴片电容的型号通常由几个字母和数字组成。

字母部分表示贴片电容的特性和性能指标,数字部分表示电容的额定值。

接下来,我们将详细介绍一些常见的贴片电容型号命名规则。

1. 电容值:贴片电容的电容值通常用数字表示,单位是法拉(F)。

常见的电容值有pF(皮法拉)、nF(纳法拉)和μF(微法拉)。

例如,型号为100pF的贴片电容表示电容值为100皮法拉。

2. 封装尺寸:贴片电容的封装尺寸通常用字母表示。

常见的封装尺寸有0603、0805和1206,其中数字表示封装的长宽尺寸,单位是英寸。

例如,型号为0603的贴片电容表示封装尺寸为0.06英寸×0.03英寸。

3. 精度等级:贴片电容的精度等级通常用字母表示,表示电容值的精度范围。

常见的精度等级有B、C和D,其中B表示±0.1pF的精度,C表示±0.25pF的精度,D表示±0.5pF的精度。

4. 额定电压:贴片电容的额定电压通常用字母和数字表示。

字母部分表示电压的单位和范围,数字部分表示额定电压的数值。

常见的额定电压单位有V和R,V表示直流电压,R表示交流电压。

例如,型号为10V的贴片电容表示额定直流电压为10V。

5. 温度系数:贴片电容的温度系数通常用字母表示,表示电容值随温度变化的稳定性。

常见的温度系数有N、P和R,其中N表示-55℃至+125℃的温度范围内电容值变化在±10%以内,P表示-25℃至+85℃的温度范围内电容值变化在±10%以内,R表示0℃至+60℃的温度范围内电容值变化在±15%以内。

通过以上的介绍,我们可以看出,贴片电容的型号命名规则是非常规范和清晰的。

通过型号,我们可以快速了解贴片电容的电容值、封装尺寸、精度等级、额定电压和温度系数等信息,以便选择合适的贴片电容应用于电路设计中。

贴片电容命

贴片电容命

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*贴片电容命名规则及方法贴片电容的命名:贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求例风华系列的贴片电容的命名贴片电容的命名:贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。

一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。

例风华系列的贴片电容的命名:0805CG102J500NT0805:是指该贴片电容的尺寸套小,是用英寸来表示的08 表示长度是0.08 英寸、05 表示宽度为0.05 英寸CG :是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF 以下的电容,102 :是指电容容量,前面两位是有效数字、后面的2 表示有多少个零102=10×102 也就是=1000PFJ :是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的500 :是要求电容承受的耐压为50V 同样500 前面两位是有效数字,后面是指有多少个零。

N :是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡T :是指包装方式,T 表示编带包装,B 表示塑料盒散包装贴片电容的颜色,常规见得多的就是比纸板箱浅一点的黄,和青灰色,这在具体的生产过程中会有产生不同差异贴片电容上面没有印字,这是和他的制作工艺有关(贴片电容是经过高温烧结面成,所以没办法在它的表面印字),而贴片电阻是丝印而成(可以印刷标记)。

贴片电容有中高压贴片电容得普通贴片电容,系列电压有6.3V、10V、16V、25V、50V、100V、200V、500V、1000V、2000V、3000V、4000V贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容系列的型号有0201、0402、0603、0805、1206、1210、1812、2010、2225 等。

贴片电容的选择与识别知识

贴片电容的选择与识别知识

贴片电容的选择与识别知识
贴片电容的选择识别:电容是电子设备中大量使用的电子元件之一,广泛应用于隔直,耦合,旁路,滤波,调谐回路,能量转换,控制电路等方面。

主要参数的意义:标称容量以及允许偏差:目前我国采用的固定式标称容量系列是:E24,E12,E6系列。

他们分别使用的允许偏差是+-5% +-10% +-20%。

标准化,系列化在现代电容器的生产中具有不可忽视的意义。

电容的频率特性:随着频率的上升,一般电容器的电容量呈现下降的规律。

电容的额定电压:在最低环境温度和额定环境温度下可连续加在电容器的最高直流或交流电压有效值.电容器的击穿电压:电容器正常漏导的稳定状态被破坏的电压。

电容器的试验电压:该电压用于测试判断那些因缺陷击穿强度明显下降的产品。

电容的型号命名方法:(依据GB2470-81)
第一部分:用字母表示产品的名称C
第二部分:用字母表示产品的介质材料:
A 钽电解
B 聚丙乙烯等非极性薄膜
C 高频陶瓷
D 铝电解
E 其他材料电解G 合金电
解H 纸膜复合I 玻璃铀J 金属化纸介L 聚酯等极性有机薄膜N 铌电解O 玻璃膜Q
漆膜S,T 低频陶瓷V,X云母纸Y 云母Z 纸
注:用B 表示除聚苯乙烯外其他电容时,在B 后再加一字母以分别具体材料。

用L表示聚酯以外其他薄膜电容时,方法通上。

电容器的绝缘电阻:直流电压加在电容上,并产生漏导电流,两者之比称为绝缘电阻. 当电容较小时,主要取决于电容的表面状态,容量〉0.1uf 时,主要取决于介质的性能。

贴片电容命名规则及方法

贴片电容命名规则及方法

贴片电容命名规则及方法贴片电容的命名:贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求例风华系列的贴片电容的命名贴片电容的命名:贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。

一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。

例风华系列的贴片电容的命名:0805CG102J500NT0805:是指该贴片电容的尺寸套小,是用英寸来表示的08 表示长度是0.08 英寸、05 表示宽度为0.05 英寸CG :是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF 以下的电容,102 :是指电容容量,前面两位是有效数字、后面的2 表示有多少个零102=10×102 也就是=1000PFJ :是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的500 :是要求电容承受的耐压为50V 同样500 前面两位是有效数字,后面是指有多少个零。

N :是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡T :是指包装方式,T 表示编带包装,B 表示塑料盒散包装贴片电容的颜色,常规见得多的就是比纸板箱浅一点的黄,和青灰色,这在具体的生产过程中会有产生不同差异贴片电容上面没有印字,这是和他的制作工艺有关(贴片电容是经过高温烧结面成,所以没办法在它的表面印字),而贴片电阻是丝印而成(可以印刷标记)。

贴片电容有中高压贴片电容得普通贴片电容,系列电压有6.3V、10V、16V、25V、50V、100V、200V、500V、1000V、2000V、3000V、4000V贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容系列的型号有0201、0402、0603、0805、1206、1210、1812、2010、22 25 等。

贴片电容概述

贴片电容概述

贴片电容概述贴片电容概述:全称:多层(积层、叠层)片式陶瓷电容器,也称为贴片电容、片容,英文缩写:MLCC。

贴片电容的色彩,惯例见得多的即是比纸板箱浅一点的黄,和青灰色,这在详细的出产进程中会有发作纷歧样差异,COG 质料惯例色彩是黄色,X7R质料惯例以灰色为主。

首要规范规范,按英制规范分为:0201、0402、0603、0805、1206;以及大规范的12十、1808、1812、2220、2225、3012、3035等。

容量方案:0.5pF~十0uF,其间,一般认为容量在1uF以上为大容量电容。

额外电压:从4V到4KV(DC),当额外电压在十0V及以上时,即概括为中高压商品。

片式电容的安稳性及容量精度与其选用的介质资料存在对应联络,首要分为三大品种:一、是以COG/NPO为I类介质的高频电容器,其温度系数为plusmn;30ppm/℃,电容量十分安稳,简直不随温度、电压和时间的改动而改动,首要运用于高频电子线路,如振动、计时电路等;其容量精度首要为plusmn;5,以及在容量低于十pF时,可选用B档(plusmn;0.1pF)、C档(plusmn;0.25pF)、D档(plusmn;0.5pF)三种精度。

二、是以X7R为II类介质的中频电容器,其温度系数为plusmn;15,电容量相对安稳,适用于各种旁路、耦合、滤波电路等,其容量精度首要为K档(plusmn;十)。

分外状况下,可供应J档(plusmn;5)精度的商品。

三、是以Y5V为II类介质的低频电容器,其温度系数为:+30~-80,电容量受温度、电压、时间改动较大,一般只适用于各种滤波电路中。

其容量精度首要为Z档(+80~-20),也可挑选plusmn;20精度的商品。

准确挑选一颗片式电容时,除了要供应其规范规范及容量巨细外,还有必要分外留神到电路对这颗片式电容的温度系数、额外电压等参数的恳求。

贴片电容规范命名办法及界说:贴片电容的命名,国内和国外的产家有一此差异但所包括的参数是一样的。

关于贴片电容的好坏,封装,命名的文章整理

关于贴片电容的好坏,封装,命名的文章整理

关于贴片电容的好坏,封装,命名的文章整理一、贴片电容如何判断好坏方法一、一般小贴片电容的阻值为无穷大,阻值异常就更换。

容量变小,万用表无法测量,直接替换。

方法二、安全一点的办法用万用表的二极档一针中剧另一针分别测电容的两端两端响表明短路方法三、小贴片电容短路的话用万用表在线测量就能判断出来,如果是开路的话,因为容量太小,用万用表量不出来,可以用一个电笔接到220v的火线上,将贴片电容的引脚放到电笔的笔帽上,看氖泡是否发光,发光电容是好的,否则断路.a-fs:d\电压,可千万别在板实验,哭都来不及方法四、阻值无穷糟,阻值为零叫声为糟.其他的必须存有一些大的变化吧.方法五、大贴片电容短路的话用万用表在线测量就能够推论出,如果就是开路的话,因为容量太小,用万用表量不出,可以用一个电笔收到220v的火线上,将贴片电容的插槽放在电笔的笔帽上,看看氖泡与否闪烁,闪烁电容就是不好的,否则断路如何判断补偿电容的好坏?1.最佳的办法就是轻易用专用表的电容档展开测试,具体方法参照说明书。

测试时特别必须特别注意的就是必须按不好“确认”键后才可以抬起表棒展开下一个项目的测试。

2.如果没有带专用仪表,也可以用数字万用表进行估测。

将电表放在20v交流档,测试电容枕前后各一根枕木的轨面电压(共3根枕木),由于电容有补偿作用,如果电容枕电压>受电端枕木电压>送电端枕木电压,则电容是好的;如果送端电压>电容枕电压>受端电压;如果3个电压基本相等,则很有可能是电容的塞丁头松动导致接触电阻过大。

3.最简单的办法就是轻易用钳型表中测试电容的电流。

正常情况下,电容电路中的电流为0.5~2a之间,紧邻传送端的电流比紧邻拒绝接受端的电流小。

经常出现的故障就是电容开路,此时电流为0。

如果测试的电流为0.5a或2a左右,最出色再用前面了解的方法展开录入。

二、贴片电容的封装与耐压值贴片电容就是指片式多层陶瓷电容(multilayerceramiccapacitors),缩写mlcc,又叫作独石电容.电容量-温度特性就是采用电介质种类的一个重要依据。

贴片电容命名规则及方法

贴片电容命名规则及方法

贴片电容命名规则及方法贴片电容的命名:贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求例风华系列的贴片电容的命名贴片电容的命名:贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。

一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。

例风华系列的贴片电容的命名:0805CG102J500NT0805:是指该贴片电容的尺寸套小,是用英寸来表示的08 表示长度是0.08 英寸、05 表示宽度为0.05 英寸CG :是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF 以下的电容,102 :是指电容容量,前面两位是有效数字、后面的2 表示有多少个零102=10×102 也就是=1000PFJ :是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的500 :是要求电容承受的耐压为50V 同样500 前面两位是有效数字,后面是指有多少个零。

N :是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡T :是指包装方式,T 表示编带包装,B 表示塑料盒散包装贴片电容的颜色,常规见得多的就是比纸板箱浅一点的黄,和青灰色,这在具体的生产过程中会有产生不同差异贴片电容上面没有印字,这是和他的制作工艺有关(贴片电容是经过高温烧结面成,所以没办法在它的表面印字),而贴片电阻是丝印而成(可以印刷标记)。

贴片电容有中高压贴片电容得普通贴片电容,系列电压有6.3V、10V、16V、25V、50V、100V、200V、500V、1000V、2000V、3000V、4000V贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容系列的型号有0201、0402、0603、0805、1206、1210、1812、2010、22 25 等。

陶瓷贴片电容丶贴片电感丶片式磁珠命名规则与基本知识

陶瓷贴片电容丶贴片电感丶片式磁珠命名规则与基本知识

陶瓷贴片电容、贴片电感.片式磁珠muRuta村田命名规则与基本知识一、村田陶瓷贴片电容知识M名衣示法如卜:片状独们盹瓷电容器GRM 15.3R7K 225KE15D•GRM—农示儀锡电极:卄通貼片期瓷12容•常用的村} 11容就是GRM艸通贴片海瓷电容与GNM卄通贴片搏容:•18——衣示尺寸(长*宽):1.6*0.8mm即内通用尺对衣示是(K*审)1.6*0.8mm (单位为mm:c词阿卜通用尺、J A示是用英寸0603 (单位为inch;,卜J E询常用代码仃03、15、18、21、31、32、42、43、55〕;,II 体的对应值如卜I03-...0.6*0.3mm- (0201)15——1.0*0.5mm~-040218-...1.6*0.8mm- (0603)21-—2.0# 1.25mm——080531一“3.2* 1.6mm—120632-—3.2* 1.5mm一・121042一.5*2.0mm——180843 …45*3・2mm•—181255—5.7 拿5・0mm——2220•8——衣示用度(T:: 0.8mm常用厚度村田代码仃5、6、8、9、B、C、E:'h貝㈱对应值如卜:5-…0.5mm 6-…0.6mm 8-…0.8mm 9-…0.9mm B-…1.25mm C-…1.6mm E -—2.5mm•R7——农示材质:X7R常用材质村t:代码有5C、R6、R7、F5等,R体的对应值如卜:5C--COG/NPO/CHR6——X5RR7——X7RF5・——Y5V5C I仆温度是・55度一+125必温度系敌是0+・30ppm/gR6 I作泪度是・55度一H85度,SH度系数是+-15%:R7 1作温度是・55度一H25度,温度系数好+15%:F5 I作fiU是・30度—85度.温度系数是+22 -82%lOOpfW卜小容fi*L般采比5C材頂,100PF—luf人一般采用R7材质,luf以上一股采用R6材质,櫛S®求不禹的般采用F5材质。

贴片电容基础知识

贴片电容基础知识

贴片电容英贴片电容全称:多层(积层,叠层)片式陶瓷电容器,也称为贴片电容,片容。

英文全称:Multi-layerceramiccapacitors。

英文缩写:MLCC。

目录一、基本概述二、尺寸三、命名四、分类五、MLCC电容品牌与选型六、作用七、内部结构八、封装一、基本概述贴片电容(多层片式陶瓷电容器)是目前用量比较大的常用元件,就AVX公司生产的贴片电容来讲有NPO、X7R、Z5U、Y5V等不同的规格,不同的规格有不同的用途。

下面我们仅就常用的NPO、X7R、Z5U和Y5V来介绍一下它们的性能和应用以及采购中应注意的订货事项以引起大家的注意。

不同的公司对于上述不同性能的电容器可能有不同的命名方法。

二、尺寸贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容的系列型号有0402、0603、0805、1206、1210、1808、1812、2010、2225、2512,是英寸表示法,04 表示长度是0.04 英寸,02 表示宽度0.02英寸,其他类同型号尺寸(mm)三、命名1、贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。

一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。

如下华新科(WALSIN)系列的贴片电容的命名:原厂命名料号:0805N102J500CT0805:是指该贴片电容的尺寸套小,是用英寸来表示的08 表示长度是0.08 英寸、05 表示宽度为 0.05 英寸;N:是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF以下的电容;102:是指电容容量,前面两位是有效数字、后面的2 表示有多少个零102=10×102也就是= 1000PF ;J:是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的;500:是要求电容承受的耐压为50V 同样500前面两位是有效数字,后面是指有多少个零;C:是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡 T:是指包装方式;T:表示7"盘装编带包装;2、贴片电容的颜色,常规见得多的就是比纸板箱浅一点的黄和青灰色,这在具体的生产过程中会有产生不同差异,贴片电容上面没有印字,这是和他的制作工艺有关(贴片电容是经过高温烧结面成,所以没办法在它的表面印字),而贴片电阻是丝印而成(可以印刷标记)。

风华贴片电容命名规则

风华贴片电容命名规则

风华贴片电容命名规则风华贴片电容,听名字就觉得很高大上,对吧?它在我们生活中可真是个好帮手。

咱们从最基本的开始聊聊,电容器其实就是一个储存电能的小家伙。

说白了,它就像是个电能的储蓄罐,随时准备为电路里的小伙伴们提供能量。

想象一下,如果没有它,电路里可就得苦了,电能一瞬间就没有了,大家都得愁眉苦脸。

而风华贴片电容,哎呀,那可是电容界的明星。

它的外形小巧,像个可爱的小饼干,贴在电路板上,简直就是个精致的装饰品。

可千万别小看它哦,虽然外表不咋地,但它的实力可是一点都不含糊。

风华贴片电容的命名规则,听起来像是个复杂的科学公式,但其实并没有那么神秘。

名字里一般会有几个字母,字母代表不同的特性。

比如说,“C”就代表电容器,“X”可能表示绝缘材料,简单吧?这些字母就像是电容的身份证,告诉你它的身份和能力。

说到这,我总觉得这就像是给每个电容编个小号,让它们在电路中也能有个“自我介绍”,是不是很有趣?风华贴片电容的容量单位,通常是以“μF”为主,别看这个单位看起来像是个外星人语言,其实它代表的是微法拉,简单来说就是储存电能的能力。

容量越大,储存的电能就越多,就像咱们买了个大储蓄罐,存的钱可多着呢。

这样一来,电路在工作时就能更稳定,省得老出问题,真是省心又省力。

再来聊聊电压,风华贴片电容的名字里通常会提到电压等级。

这个就像是电容的安全线,电压超过了,它就有可能“罢工”。

就好比你在夏天开空调,电压太低,空调可能就不转了。

因此,选择适合电压的电容,是非常重要的,搞得不好可就得重新买,真是麻烦得很。

电容的耐温范围也是命名的一部分。

一般说到“高温”或“低温”,这可不是天气预报哦,而是它能在多高或多低的温度下正常工作。

这个就像你冬天穿羽绒服,夏天穿短袖,得看情况啊。

电容耐热的好,才不容易出问题,使用寿命就更长。

想象一下,家里电器工作了多年,突然来个大修,谁都不乐意,还是稳稳当当地使用最划算。

在电路板设计中,风华贴片电容也是个不可或缺的角色。

国巨贴片电容知识

国巨贴片电容知识

国巨贴片电容知识一、国巨贴片电容的命名:贴片电容的命名所包含的参数有贴片电容的尺寸、容值精度、贴片电容的材质、电压、电容容量、端头材料以及包装要求。

例如:国巨贴片电CC0805JRNPO9BN101容CC:表示国巨电容系列名称——多层陶瓷贴片电容。

国巨电容的系列还有CA(表示排容),CH(表示高频电容)等等。

0805:表示尺寸,长度为0.08英寸,宽度为0.05英寸。

此外,常见的电容尺寸还有0201,0402,0603,1206,1210,1808,1812等。

J:表示电容容量的误差精度为±5%;另外B=±0.1PF,C=±0.25PF,D=±0.5PF,F=±1PF,G=±2PF,K=±10%,M=±20%,Z=-20%~+80%。

R:表示7寸盘纸带包装。

NPO:表示电容材质。

此外,常用的电容材质还有X5R,X7R,Y5V。

9:表示电压为50V。

4=4V, 5=6.3V, 6=10V, 7=16V, 8=25V, 0=100V, A=200V, B=500V, C=1KV, D=2KV, E=3KV等(注意:100V是用数字0表示,不是字母O)B:表示端头材料是镍电极。

N:表示NPO。

101:表示容值,前面两个数字为有效数字,第三个数字表示有几个零。

101=100PF, 102=1000PF, 103=10,000PF……以此类推。

二、英制尺寸与公制尺寸的对应表:TDK贴片电容的参数识别积层贴片陶瓷片式电容器C 2012 X7R 1H 104 K T系列名称体积材料电压容量误差包装0603=0201 CH 0J=6.3V C=0.25 T=卷带1005=0402 COG 1A=10V D=0.5 B=袋装1608=0603 JB 1C=16V J=5%2012=0805 JF 1E=25V K=10%3216=1206 X7R 1H=50V M=20%3225=1210 X5R 2A=100V Z=+80-20%4532=1812 Y5V 2E=250V5650=2220 2J=630V4520=1808 3A=1KV3D=2KV3F=3KV。

村田电容命名规则

村田电容命名规则

村田电容命名规则村田电容型号命名规则muRata村田制作所是电子元器件制造商。

主要制作贴片电容,电感,滤波器等产品,村田制作所的客户分布在PC、手机、汽车电子等领域。

智成电子村田一级代理商详细讲解村田电容型号的命名规则方法。

例如:贴片电容GRM32ER61A107ME20L(1210 X5R 10V 100UF 20%),下面我们把它分解开。

一、GR表示型号:村田贴片电容包含GC,GJ,GM,GQ,GR,KR,LL等二、M表示系列:村田贴片电容包含H,M,A,D,3,J,L三、32表示电容尺寸:村田贴片电容的尺寸包括0201-0402-0603-1206-1210-1812-2220(32是指尺寸长和宽3.2MM*2.5MM,就是我们熟知的1210电容)。

四、E表示厚度2.5MM,村田贴片电容常用的厚度5=0.5mm 6=0.6mm 8=0.8mm 9=0.9mm B=1.25mm C=1.6mm E=2.5mm五、R6代表材质X5R,村田贴片电容的材质常用材质村田代码有5C,R6,R7,F5等,具体的对应值如下:5C=COG/NPO/CH R6=X5R R7=X7R F5=Y5V5C工作温度是-55度+125度,温度系数是0+-30ppm/度;R6工作温度是-55度+85度,温度系数是+-15%;R7工作温度是-55度+125度,温度系数是+-15%;F5工作温度是-30度+85度。

温度系数是+22,-82%六、1A代表电压10V,村田贴片电容常用电压有0J,1A,1C,1E,1H等,对应值如下:0J=6.3V 1A=10V 1C=16V 1E=25V 1H=50V七、107代表容量100UF八、M代表精度+-20%,常用档位有B、C、D、J、K、M、Z,具体对应值如下:B=+-0.1pFC=+-0.25pF D=+-0.5pF J=+-5% K=+-10% M=+-20% Z=+80,-20%九、E20是村田内部代码,不重要。

贴片电容COG、NPO

贴片电容COG、NPO

贴⽚电容COG、NPO 、X7R、Y5V、X5R介质区别贴⽚电容COG、NPO 、X7R、Y5V、X5R介质区别在我们选择⽆极性电容式,不知道⼤家是否有注意到电容的X5R,X7R,Y5V,COG等等看上去很奇怪的参数,有些摸不着头脑,本⼈特意为此查阅了相关的⽂献,现在翻译出来奉献给⼤家。

这个是按美国电⼯协会(EIA)标准,不同介质材料的MLCC按温度稳定性分成三类:超稳定级(⼯类)的介质材料为COG或NPO;稳定级(II类)的介质材料为X7R;能⽤级(Ⅲ)的介质材料Y5V。

这类参数描述了电容采⽤的电介质材料类别,温度特性以及误差等参数,不同的值也对应着⼀定的电容容量的范围。

具体来说,就是:X7R常⽤于容量为3300pF~0.33uF的电容,这类电容适⽤于滤波,耦合等场合,电介质常数⽐较⼤,当温度从0°C变化为70°C时,电容容量的变化为±15%;Y5P与Y5V常⽤于容量为150pF~2nF的电容,温度范围⽐较宽,随着温度变化,电容容量变化范围为±10%或者+22%/-82%。

对于其他的编码与温度特性的关系,⼤家可以参考表4-1。

例如,X5R的意思就是该电容的正常⼯作温度为-55°C~+85°C,对应的电容容量变化为±15%。

下⾯我们仅就常⽤的NPO、X7R、Z5U和Y5V来介绍⼀下它们的性能和应⽤以及采购中应注意的订货事项以引起⼤家的注意。

不同的公司对于上述不同性能的电容器可能有不同的命名⽅法,这⾥我们引⽤的是AVX公司的命名⽅法,其他公司的产品请参照该公司的产品⼿册。

NPO、X7R、Z5U和Y5V的主要区别是它们的填充介质不同。

在相同的体积下由于填充介质不同所组成的电容器的容量就不同,随之带来的电容器的介质损耗、容量稳定性等也就不同。

所以在使⽤电容器时应根据电容器在电路中作⽤不同来选⽤不同的电容器。

⼀、 NPO电容器NPO是⼀种最常⽤的具有温度补偿特性的单⽚陶瓷电容器。

贴片电容命名规则及方法

贴片电容命名规则及方法

贴片电容命名规则及方法贴片电容的命名:贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求例风华系列的贴片电容的命名贴片电容的命名:贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。

一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。

例风华系列的贴片电容的命名:0805CG102J500NT0805:是指该贴片电容的尺寸套小,是用英寸来表示的08 表示长度是0.08 英寸、05 表示宽度为0.05 英寸CG :是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF 以下的电容,102 :是指电容容量,前面两位是有效数字、后面的2 表示有多少个零102=10×102 也就是=1000PFJ :是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的500 :是要求电容承受的耐压为50V 同样500 前面两位是有效数字,后面是指有多少个零。

N :是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡T :是指包装方式,T 表示编带包装,B 表示塑料盒散包装贴片电容的颜色,常规见得多的就是比纸板箱浅一点的黄,和青灰色,这在具体的生产过程中会有产生不同差异贴片电容上面没有印字,这是和他的制作工艺有关(贴片电容是经过高温烧结面成,所以没办法在它的表面印字),而贴片电阻是丝印而成(可以印刷标记)。

贴片电容有中高压贴片电容得普通贴片电容,系列电压有6.3V、10V、16V、25V、50V、100V、200V、500V、1000V、2000V、3000V、4000V贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容系列的型号有0201、0402、0603、0805、1206、1210、1812、2010、22 25 等。

smd元件封装公制、英制、尺寸[鉴赏]

smd元件封装公制、英制、尺寸[鉴赏]

一、【贴片电容的命名】贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。

一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。

例风华系列的贴片电容的命名:例如:0805 CG 102 J 500 N T含义:0805:是指该贴片电容的尺寸大小,是用英寸来表示的08表示长度是0.08英寸、05表示宽度为0.05英寸CG :是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF以下的电容,102 :是指电容容量,前面两位是有效数字、后面的2表示有多少个零;102=10×100也就是=1000PF,(这里的100即为:2个0).J :是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的500 :是要求电容承受的耐压为50V 同样500前面两位是有效数字,后面是指有多少个零。

N:是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡T :是指包装方式,T表示编带包装,B表示塑料盒散包装✓贴片电容的颜色,常规见得多的就是浅一点的黄色和青灰色,这在具体的生产过程中会有产生不同差异.✓贴片电容上面没有印字,这是和他的制作工艺有关(贴片电容是经过高温烧结面成,所以没办法在它的表面印字),而贴片电阻是丝印而成(可以印刷标记)。

二、【贴片电容的材料划分】贴片电容的材料常规分为三种,NPO,X7R,Y5V;NPO此种材质电性能最稳定,几乎不随温度,电压和时间的变化而变化,适用于低损耗,稳定性要求高的高频电路。

容量精度在5%左右,但选用这种材质只能做容量较小的,常规100PF以下,100PF-1000PF也能生产但价格较高.X7R此种材质比NPO稳定性差,但容量做的比NPO的材料要高,容量精度在10%左右。

Y5V此类介质的电容,其稳定性较差,容量偏差在20%左右,对温度电压较敏感,但这种材质能做到很高的容量,而且价格较低,适用于温度变化不大的电路中。

SMD元件封装公制、英制、尺寸

SMD元件封装公制、英制、尺寸

一、【贴片电容的命名】贴片电容的命名所包含的参数有贴片电容的尺寸、做这种贴片电容用的材质、要求达到的精度、要求的电压、要求的容量、端头的要求以及包装的要求。

一般订购贴片电容需提供的参数要有尺寸的大小、要求的精度、电压的要求、容量值、以及要求的品牌即可。

例风华系列的贴片电容的命名:例如:0805 CG 102 J 500 N T含义:➢0805:是指该贴片电容的尺寸大小,是用英寸来表示的08表示长度是0.08英寸、05表示宽度为0.05英寸➢CG :是表示做这种电容要求用的材质,这个材质一般适合于做小于10000PF以下的电容,➢102 :是指电容容量,前面两位是有效数字、后面的2表示有多少个零;102=10×100也就是=1000PF,(这里的100即为:2个0).➢J :是要求电容的容量值达到的误差精度为5%,介质材料和误差精度是配对的➢500 :是要求电容承受的耐压为50V 同样500前面两位是有效数字,后面是指有多少个零。

➢N:是指端头材料,现在一般的端头都是指三层电极(银/铜层)、镍、锡➢T :是指包装方式,T表示编带包装,B表示塑料盒散包装二、【贴片电容的材料划分】贴片电容的材料常规分为三种,NPO,X7R,Y5V;NPO此种材质电性能最稳定,几乎不随温度,电压和时间的变化而变化,适用于低损耗,稳定性要求高的高频电路。

容量精度在5%左右,但选用这种材质只能做容量较小的,常规100PF以下,100PF-1000PF也能生产但价格较高.X7R此种材质比NPO稳定性差,但容量做的比NPO的材料要高,容量精度在10%左右。

Y5V此类介质的电容,其稳定性较差,容量偏差在20%左右,对温度电压较敏感,但这种材质能做到很高的容量,而且价格较低,适用于温度变化不大的电路中。

三、【SMD电阻、电容、电感的误差表示方法】第一种,相对误差,以电容量标称值的偏差百分数表示,即:字母 D P F R G U误差±0.5% ±0.625% ±1%±1.25% ±2% ±3.5% 字母J K M S Z四、【SMD元件封装公制、英制、尺寸】贴片电容的尺寸表示法有两种,一种是英寸为单位来表示,一种是以毫米为单位来表示,贴片电容系列的型号有0201、0402、0603、0805、1206、1210、1812、2010、2225等。

贴片命名方法

贴片命名方法

特性·体积小,重量轻;·适应再流焊与波峰焊;·电性能稳定,可靠性高;·装配成本低,并与自动装贴设备匹配;·机械强度高、高频特性优越。

产品代号型号电阻温度系数阻值电阻值误差包装方式RC 片状电阻器代号型号代号T.C.R表示方式阻值代号误差值代号包装方式02 0402 K ≤±100PPM/℃E-24前两位表示有效数字,第三位表示零的个数F ±1%T 编带包装03 0603 L ≤±250PPM/℃G ±2%05 0805 U ≤±400PPM/℃E-96前三位表示有效数字,第四位表示零的个数J ±5%B 塑料盒散包装06 1206 M ≤±500PPM/℃0 跨接电阻示例RC05K103J备注小数点用R表示例如: E-24: 1RO=1.0Ω 103=10KΩE-96: 1003=100KΩ ;跨接电阻采用"000"表示电容的型号命名:1)各国电容器的型号命名很不统一,国产电容器的命名由四部分组成:第一部分:用字母表示名称,电容器为C。

第二部分:用字母表示材料。

第三部分:用数字表示分类。

第四部分:用数字表示序号。

2)电容的标志方法:(1)直标法:用字母和数字把型号、规格直接标在外壳上。

(2)文字符号法:用数字、文字符号有规律的组合来表示容量。

文字符号表示其电容量的单位:P、N、u、m、F等。

和电阻的表示方法相同。

标称允许偏差也和电阻的表示方法相同。

小于10p F的电容,其允许偏差用字母代替:B——±0.1p F,C——±0.2p F,D——±0.5p F,F——±1p F。

(3)色标法:和电阻的表示方法相同,单位一般为p F。

小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示:颜色黑棕红橙黄绿蓝紫灰耐压4V 6.3V10V16V25V32V40V50V63V(4)进口电容器的标志方法:进口电容器一般有6项组成。

贴片电容命名规则

贴片电容命名规则

贴片电容命名规则电容的型号命名:1)各国电容器的型号命名很不统一,国产电容器的命名由四部分组成:第一部分:用字母表示名称,电容器为C。

第二部分:用字母表示材料。

第三部分:用数字表示分类。

第四部分:用数字表示序号。

2)电容的标志方法:(1)直标法:用字母和数字把型号、规格直接标在外壳上。

(2)文字符号法:用数字、文字符号有规律的组合来表示容量。

文字符号表示其电容量的单位:P、N、u、m、F等。

和电阻的表示方法相同。

标称允许偏差也和电阻的表示方法相同。

小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF。

(3)色标法:和电阻的表示方法相同,单位一般为pF。

小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示:颜色黑棕红橙黄绿蓝紫灰耐压4V 6.3V 10V 16V 25V 32V 40V 50V 63V(4)进口电容器的标志方法:进口电容器一般有6项组成。

第一项:用字母表示类别:第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系。

第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示:序号字母颜色温度系数允许偏差字母颜色温度系数允许偏差1 A 金+100 R 黄-2202 B 灰+30 S 绿-3303 C 黑0 T 蓝-4704 G ±30 U 紫-7505 H 棕-30 ±60 V -10006 J ±120 W -15007 K ±250 X -22008 L 红-80 ±500 Y -33009 M ±1000 Z -470010 N ±2500 SL +350~-100011 P 橙-150 YN -800~-5800备注:温度系数的单位10e -6/℃;允许偏差是% 。

陶瓷贴片电容、贴片电感、片式磁珠命名规则与基本知识

陶瓷贴片电容、贴片电感、片式磁珠命名规则与基本知识

陶瓷贴片电容陶瓷贴片电容、、贴片电感贴片电感、、片式磁珠 muRuta 村田命名规则与基本知识一、村田陶瓷贴片电容知识品名表示法如下: 片状独石陶瓷电容器GRM 18 8 R7 1C 225 K E15 D GRM——表示镀锡电极:普通贴片陶瓷电容常用的村田电容就是GRM 普通贴片陶瓷电容与GNM 普通贴片排容。

18——表示尺寸(长*宽):1.6*0.8mm国内通用尺寸表示是(长*宽)1.6*0.8mm (单位为mm )。

国际上通用尺寸表示是用英寸0603(单位为inch ),村田的常用代码有03、15、18、21、31、32、42、43、55等,具体的对应值如下:03----0.6*0.3mm----0201 15----1.0*0.5mm----0402 18----1.6*0.8mm----0603 21----2.0*1.25mm----0805 31----3.2*1.6mm----1206 32----3.2*1.5mm----1210 42----4.5*2.0mm----1808 43----4.5*3.2mm----1812 55----5.7*5.0mm----22208 —— 表示厚度(T ):0.8mm 常用厚度村田代码有5、6、8、9、B 、C 、E 等,具体的对应值如下:5----0.5mm 6----0.6mm 8----0.8mm 9----0.9mm B----1.25mm C----1.6mm E ----2.5mmR7 ——表示材质:X7R常用材质村田代码有5C 、R6、R7、F5等,具体的对应值如下: 5C----COG/NPO/CH R6----X5R R7----X7R F5-----Y5V5C 工作温度是-55度—+125度,温度系数是0+-30ppm/度; R6工作温度是-55度—+85度,温度系数是+-15%; R7工作温度是-55度—+125度,温度系数是+-15%; F5工作温度是-30度—+85度,温度系数是+22 -82%100pf 以下小容值的一般采用5C 材质,100PF—1uf 的一般采用R7材质,1uf 以上一般采用R6材质,精度要求不高的一般采用F5材质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cat.No.C03E-4• This PDF catalog is downloaded from the website of Murata Manufacturing co., ltd. Therefore, it’s specifications are subject to change or our products in it may be discontinued without advance notice. Please check with oursales representatives or product engineers before ordering.• This PDF catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.!Note C03E.pdf 10.5.20for EU RoHS Compliant• All the products in this catalog comply with EU RoHS.• EU RoHS is "the European Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment".• For more details, please refer to our website 'Murata's Approach for EU RoHS' (/info/rohs.html).123245681014192223273334353839414546505153612351s Features1. The GCM series meet AEC-Q200 requirements.2. Higher resistance of solder-leaching due to the Ni-barriered termination, applicable for reflow-soldering, and flow-soldering (GCM18/21/31 type only).3. The operating temperature range of R7/C7/5C series: -55 to 125 degree C.4. A wide selection of sizes is available, from miniature LxWxT:0.6x0.3x0.3mm to LxWxT: 3.2x2.5x2.5mm.5. The GCM series is available in paper or embossed tape and reel packaging for automatic placement.6. The GCM series is lead free product.s ApplicationsAutomotive electronic equipment (Power-train, safety equipment)The figure indicates typical specification.4The part numbering code is shown in ( ) and Unit is shown in [ ]. < >: EIA [inch] Code61The part numbering code is shown in ( ) and Unit is shown in [ ]. < >: EIA [inch] Code71581Temperature Compensating TypeThe part numbering code is shown in ( ) and Unit is shown in [ ]. < >: EIA [inch] CodePackaging Code in Part Number is a code shows STD 180mm Reel Taping.q Product ID w Series e Dimension (L g W)r Dimension (T)t Temperature Characteristics y Rated Voltageu Capacitance i Capacitance Tolerance o Individual Specification Code !0P ackage(Part Number)wGCqM e03r 3t5C y1Eu1R0iC oD03!0D1Temperature Compensating Type1High Dielectric Constant TypeThe part numbering code is shown in ( ) and Unit is shown in [ ]. < >: EIA [inch] CodePackaging Code in Part Number is a code shows STD 180mm Reel Taping.q Product ID w Series e Dimension (L g W)r Dimension (T)t Temperature Characteristics y Rated Voltageu Capacitance i Capacitance Tolerance o Individual Specification Code !0P ackage(Part Number)wGCqM e03r 3tR7y1Eu101iK oA03!0D1High Dielectric Constant TypeThe part numbering code is shown in ( ) and Unit is shown in [ ]. < >: EIA [inch] Code1High Dielectric Constant TypeThe part numbering code is shown in ( ) and Unit is shown in [ ]. < >: EIA [inch] CodePackaging Code in Part Number is a code shows STD 180mm Reel Taping.q Product ID w Series e Dimension (L g W)r Dimension (T)t Temperature Characteristics y Rated Voltageu Capacitance i Capacitance Tolerance o Individual Specification Code !0P ackage(Part Number)wGCqM e21r 6tR7y2Au682iK oA37!0D1High Dielectric Constant TypeThe part numbering code is shown in ( ) and Unit is shown in [ ]. < >: EIA [inch] CodeContinued on the following page.*1: The figure indicates typical specification. Please refer to individual specifications.1Continued on the following page.*1: The figure indicates typical specification. Please refer to individual specifications.*2: Some of the parts are applicable in rated voltage x 150%. Please refer to individual specifications.Continued on the following page.*1: The figure indicates typical specification. Please refer to individual specifications.Continued on the following page.*1: The figure indicates typical specification. Please refer to individual specifications.*1: The figure indicates typical specification. Please refer to individual specifications.Note 1: Nominal values denote the temperature coefficient within a range of 25°C to 125°C (for 5C).11) There are parts number without bulk case.Tape Carrier Packaging1. Dimensions of Reel2. Dimensions of Paper Tape3. Dimensions of Embossed Tape4. Taping Method(1)Tapes for capacitors are wound clockwise. Thesprocket holes are to the right as the tape is pulledtoward the user.(2)Part of the leader and part of the empty tape shouldbe attached to the end of the tape as follows.(3)The top tape and base tape are not attached at theend of the tape for a minimum of 5 pitches.(4)Missing capacitors number within 0.1% of the numberper reel or 1 pc, whichever is greater, and are notcontinuous.(5)The top tape and bottom tape should not protrudebeyond the edges of the tape and should not coversprocket holes.(6)Cumulative tolerance of sprocket holes, 10 pitches:±0.3mm.(7)Peeling off force: 0.1 to 0.6N* in the direction shownbelow.*GCM03: 0.05 to 0.5NDimensions of Bulk Case PackagingThe bulk case uses antistatic materials. Please contact Murata for details.1. The performance of chip monolithic ceramic capacitorsmay be affected by the storage conditions.1-1. Store capacitors in the following conditions:Temperature of +5°C to +40°C and a RelativeHumidity of 20% to 70%.(1) Sunlight, dust, rapid temperature changes,corrosive gas atmosphere or high temperatureand humidity conditions during storage may affectthe solderability and the packaging performance.Please use product within six months of receipt.(2) Please confirm solderability before using aftersix months. Store the capacitors without openingthe original bag. Even if the storage period isshort, do not exceed the specified atmosphericconditions.1-2. Corrosive gas can react with the termination (external) electrodes or lead wires of capacitors, and result in poor solderability. Do not store thecapacitors in an atmosphere consisting of corrosivegas (e.g., hydrogen sulfide, sulfur dioxide, chlorine,ammonia gas, etc.).1-3. Due to moisture condensation caused by rapid humidity changes, or the photochemical changecaused by direct sunlight on the terminal electrodesand/or the resin/epoxy coatings, the solderability and electrical performance may deteriorate. Do not store capacitors under direct sunlight or in high humidityconditions.s Storage and Operation condition 1s Rating1. Temperature Dependent Characteristics2. Measurement of Capacitance1. The electrical characteristics of the capacitor can change with temperature.1-1. For capacitors having larger temperaturedependency, the capacitance may change with temperature changes.The following actions are recommended in order to insure suitable capacitance values.(1) Select a suitable capacitance for the operatingtemperature range.(2) The capacitance may change within the ratedtemperature.When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider thecharacteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actualappliances at the intended environment and operating conditions.1. Measure capacitance with the voltage and the frequency specified in the product specifications.1-1. The output voltage of the measuring equipment maydecrease when capacitance is high occasionally.Please confirm whether a prescribed measured voltage is impressed to the capacitor.1-2. The capacitance values of high dielectric constanttype capacitors change depending on the AC voltage applied. Please consider the AC voltagecharacteristics when selecting a capacitor to be used in a AC circuit.Continued on the following page.-20-15-10-505101520-75-50-25255075100C a p a c i t a n c e C h a n g e (%)Temperature (°C)Typical Temperature Characteristics Char. R6(X5R)C a p a c i t a n c e C h a n g e (%)Temperature (°C)Typical Temperature Characteristics Char. F5(Y5V)Typical Temperature Characteristics Char. R7(X7R)-20-15-10-505101520-75-50-25255075100125150C a p a c i t a n c e C h a n g e (%)Temperature (°C)-100-80-60-40-2002040-50-2525507510013. Applied Voltage4. Applied Voltage and Self-heating Temperature1. Do not apply a voltage to the capacitor that exceeds the rated voltage as called-out in the specifications.1-1. Applied voltage between the terminals of a capacitorshall be less than or equal to the rated voltage.(1) When AC voltage is superimposed on DC voltage,the zero-to-peak voltage shall not exceed the rated DC voltage.When AC voltage or pulse voltage is applied, the peak-to-peak voltage shall not exceed the rated DC voltage.(2) Abnormal voltages (surge voltage, staticelectricity, pulse voltage, etc.) shall not exceed the rated DC voltage.1. When the capacitor is used in a high-frequency voltage, pulse voltage, application, be sure to take into account self-heating may be caused by resistant factors of the capacitor.1-1. The load should be contained to the level such thatwhen measuring at atmospheric temperature of 25°C, the product's self-heating remains below 20°C and surface temperature of the capacitor in the actual circuit remains within the maximum operating temperature.1-2. Influence of overvoltageOvervoltage that is applied to the capacitor may result in an electrical short circuit caused by the breakdown of the internal dielectric layers .The time duration until breakdown depends on the applied voltage and the ambient temperature.Continued on the following page.5. DC Voltage and AC Voltage Characteristic1. The capacitance value of a high dielectric constant type capacitor changes depending on the DC voltage applied.Please consider the DC voltage characteristics when a capacitor is selected for use in a DC circuit.1-1. The capacitance of ceramic capacitors may changesharply depending on the applied voltage. (See figure)Please confirm the following in order to secure the capacitance.(1) Whether the capacitance change caused by theapplied voltage is within the range allowed or not. (2) In the DC voltage characteristics, the rate ofcapacitance change becomes larger as voltage increases. Even if the applied voltage is below the rated voltage. When a high dielectric constant type capacitor is in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., please carefully consider the characteristics of these capacitors, such as their aging, voltage, and temperature characteristics. And check capacitors using your actualappliances at the intended environment and operating conditions.2. The capacitance values of high dielectric constant type capacitors change depending on the AC voltage applied.Please consider the AC voltage characteristics when selecting a capacitor to be used in a AC circuit.-60-50-40-30-20-1001020300.00.51.01.52.02.5AC Voltage (Vr.m.s.)6. Capacitance Aging1. The high dielectric constant type capacitors have the characteristic in which the capacitance value decreases with passage of time.When you use a high dielectric constant type capacitors in a circuit that needs a tight (narrow) capacitance tolerance. Example: a time constant circuit., pleasecarefully consider the characteristics of these capacitors, such as their aging, voltage, and temperaturecharacteristics. And check capacitors using your actual appliances at the intended environment and operating conditions.-100-80-60-40-2002001234567DC Voltage (VDC)[DC Voltage Characteristics][AC Voltage Characteristics]C a p a c i t a n c e C h a n g e (%)C a p a c i t a n c e C h a n g e (%)7. Vibration and Shock1. The capacitors mechanical actress (vibration and shock)shall be specified for the use environment.Please confirm the kind of vibration and/or shock, itscondition, and any generation of resonance.Please mount the capacitor so as not to generateresonance, and do not allow any impact on the terminals.2. Mechanical shock due to falling may cause damage or acrack in the dielectric material of the capacitor.Do not use a fallen capacitor because the quality and reliability may be deteriorated.3. When printed circuit boards are piled up or handled, thecorners of another printed circuit board should not beallowed to hit the capacitor in order to avoid a crack or other damage to the capacitor.s Soldering and Mounting 1. Confirm the best mounting position and direction that minimizes the stress imposed on the capacitor during flexing or bending the printed circuit board.1-1. Choose a mounting position that minimizes thestress imposed on the chip during flexing or bending of the board.1. Mounting Position2. Information before Mounting1. Do not re-use capacitors that were removed from the equipment.2. Confirm capacitance characteristics under actual applied voltage.3. Confirm the mechanical stress under actual process and equipment use.4. Confirm the rated capacitance, rated voltage and other electrical characteristics before assembly.5. Prior to use, confirm the Solderability for the capacitors that were in long-term storage.6. Prior to measuring capacitance, carry out a heattreatment for capacitors that were in long-term storage.7. The use of Sn-Zn based solder will deteriorate the reliability of the MLCC.Please contact our sales representative or productengineers on the use of Sn-Zn based solder in advance.Continued on the following page.3. Maintenance of the Mounting (pick and place) Machine1. Make sure that the following excessive forces are not applied to the capacitors.1-1. In mounting the capacitors on the printed circuitboard, any bending force against them shall be kept to a minimum to prevent them from any bending damage or cracking. Please take into account the following precautions and recommendations for use in your process.(1) Adjust the lowest position of the pickup nozzle soas not to bend the printed circuit board.(2) Adjust the nozzle pressure within a static load of1N to 3N during mounting.2. Dirt particles and dust accumulated between the suction nozzle and the cylinder inner wall prevent the nozzle from moving smoothly. This imposes greater force upon the chip during mounting, causing cracked chips. Also the locating claw, when worn out, imposes uneven forces on the chip when positioning, causing cracked chips. The suction nozzle and the locating claw must be maintained, checked and replaced periodically.14-1. Reflow Soldering1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causesdeformation inside the components. In order to prevent mechanical damage to the components, preheating is required for both the components and the PCB board.Preheating conditions are shown in table 1. It is required to keep the temperature differential between the solder and the components surface (∆T) as small as possible.2. Solderability of Tin plating termination chips might be deteriorated when a low temperature soldering profile where the peak solder temperature is below the melting point of Tin is used. Please confirm the Solderability of Tin plated termination chips before use.3. When components are immersed in solvent after mounting, be sure to maintain the temperature difference (∆T)between the component and the solvent within the range shown in the table 1.Inverting the PCBMake sure not to impose any abnormal mechanical shocks to the PCB.Continued on the following page.Pb-Sn Solder: Sn-37PbLead Free Solder: Sn-3.0Ag-0.5Cu4. Optimum Solder Amount for Reflow Soldering4-1. Overly thick application of solder paste results in aexcessive solder fillet height.This makes the chip more susceptible to mechanical and thermal stress on the board and may cause the chips to crack.4-2. Too little solder paste results in a lack of adhesivestrength on the outer electrode, which may result in chips breaking loose from the PCB.4-3. Make sure the solder has been applied smoothly tothe end surface to a height of 0.2mm* min.5. Optimum Solder Amount for Flow Soldering5-1. The top of the solder fillet should be lower than thethickness of components. If the solder amount is excessive, the risk of cracking is higher during board bending or any other stressful condition.Pb-Sn Solder: Sn-37PbLead Free Solder: Sn-3.0Ag-0.5Cu4-2. Flow Soldering1. When sudden heat is applied to the components, the mechanical strength of the components will decrease because a sudden temperature change causesdeformation inside the components. In order to prevent mechanical damage in the components, preheating should be required for both of the components and the PCB board.Preheating conditions are shown in table 2. It is required to keep temperature differential between the solder and the components surface (∆T) as small as possible.2. Excessively long soldering time or high solderingtemperature can result in leaching of the outer electrodes, causing poor adhesion or a reduction in capacitance value due to loss of contact between electrodes and end termination.3. When components are immersed in solvent aftermounting, be sure to maintain the temperature difference (∆T) between the component and solvent within the range shown in the table 2.4. Do not apply flow soldering to chips not listed in table 2.4-3. Correction with a Soldering Iron1. When sudden heat is applied to the components when using a soldering iron, the mechanical strength of the components will decrease because the extremetemperature change can cause deformations inside the components. In order to prevent mechanical damage to the components, preheating is required for both thecomponents and the PCB board. Preheating conditions, (The "Temperature of the Soldering Iron Tip", "Preheating Temperature", "Temperature Differential" between the iron tip and the components and the PCB), should be within the conditions of table 3. It is required to keep the temperature differential between the soldering iron and the component surfaces (∆T) as small as possible.2. After soldering, do not allow the component/PCB to rapidly cool down.3. The operating time for the re-working should be as short as possible. When re-working time is too long, it may cause solder leaching, and that will cause a reduction in the adhesive strength of the terminations.4. Optimum Solder amount when re-working with a Soldering lron4-1. In case of sizes smaller than 0603, (GCM03/15/18),the top of the solder fillet should be lower than 2/3's of the thickness of the component or 0.5mm whichever is smaller. In case of 0805 and larger sizes, (GCM21/31/32), the top of the solder fillet should be lower than 2/3's of the thickness of the component. If the solder amount is excessive, the risk of cracking is higher during board bending or under any other stressful condition.4-2. A soldering iron with a tip of ø3mm or smaller shouldbe used. It is also necessary to keep the soldering iron from touching the components during the re-work.4-3. Solder wire with ø0.5mm or smaller is required forsoldering.4-4. Leaded Component Insertion1. If the PCB is flexed when leaded components (such as transformers and ICs) are being mounted, chips may crack and solder joints may break.Before mounting leaded components, support the PCB using backup pins or special jigs to prevent warping.5. WashingExcessive ultrasonic oscillation during cleaning can cause the PCBs to resonate, resulting in cracked chips or broken solder joints. Take note not to vibrate PCBs.*Applicable for both Pb-Sn and Lead Free Solder.Pb-Sn Solder: Sn-37PbLead Free Solder: Sn-3.0Ag-0.5CuContinued on the following page.6. Electrical Test on Printed Circuit Board1. Confirm position of the support pin or specific jig, when inspecting the electrical performance of a capacitor after mounting on the printed circuit board.1-1. Avoid bending printed circuit board by the pressureof a test pin, etc.The thrusting force of the test probe can flex the PCB, resulting in cracked chips or open solder joints.Provide support pins on the back side of the PCB to prevent warping or flexing.1-2. Avoid vibration of the board by shock when a test pincontacts a printed circuit board.7. Printed Circuit Board Cropping1. After mounting a capacitor on a printed circuit board, do not apply any stress to the capacitor that is caused by bending or twisting the board.1-1. In cropping the board, the stress as shown right maycause the capacitor to crack.Try not to apply this type of stress to a capacitor.2. Check of the cropping method for the printed circuit board in advance.2-1. Printed circuit board cropping shall be carried out byusing a jig or an apparatus to prevent the mechanical stress which can occur to the board.(1) Example of a suitable jigRecommended example: the board should be pushed as close to the near the cropping jig as possible and from the back side of board in order to minimize the compressive stress applied to capacitor.Not recommended example* when the board is pushed at a point far from the cropping jig and from the front side of board as below, thecapacitor may form a crack caused by the tensile stress applied to capacitor.(2) Example of a suitable machinemachine is shown as follows. Along the lines with the V-grooves on printed circuit board, the topand bottom blades are aligned to one anotherwhen cropping the board.The misalignment of the position between top andbottom blades may cause the capacitor to crack.1. Under Operation of Equipment1-1. Do not touch a capacitor directly with bare hands during operation in order to avoid the danger of aelectric shock.1-2. Do not allow the terminals of a capacitor to come in contact with any conductive objects (short-circuit).Do not expose a capacitor to a conductive liquid,inducing any acid or alkali solutions.1-3. Confirm the environment in which the equipment will operation is under the specified conditions.Do not use the equipment under the followingenvironment.(1) Being spattered with water or oil.(2) Being exposed to direct sunlight.(3) Being exposed to Ozone, ultraviolet rays orradiation.(4) Being exposed to toxic gas (e.g., hydrogen sulfide,sulfur dioxide, chlorine, ammonia gas, etc.)(5) Any vibrations or mechanical shocks exceedingthe specified limits.(6) Moisture condensing environments.1-4. Use damp proof countermeasures if using under any conditions that can cause condensation.2. Others2-1. In an Emergency(1) If the equipment should generate smoke, fire orsmell, immediately turn off or unplug theequipment.If the equipment is not turned off or unplugged,the hazards may be worsened by supplyingcontinuous power.(2) In this type of situation, do not allow face andhands to come in contact with the capacitor orburns may be caused by the capacitors hightemperature.2-2. Disposal of WasteWhen capacitors are disposed, they must be burned or buried by the industrial waste vender with theappropriate licenses.2-3. Circuit DesignGRM, GCM, GMA/D, LLL/A/M, ERB, GQM, GJM,GNM Series capacitors in this catalog are not safety certified products.2-4. RemarksFailure to follow the cautions may result, worst case, in a short circuit and smoking when the product isused.The above notices are for standard applications and conditions. Contact us when the products are used in special mounting conditions.Select optimum conditions for operation as theydetermine the reliability of the product after assembly.The data herein are given in typical values, notguaranteed ratings.s Others11. Operating Temperature1. The operating temperature limit depends on thecapacitor.1-1. Do not apply temperatures exceeding the upper operating temperature.It is necessary to select a capacitor with a suitablerated temperature which will cover the operatingtemperature range.Also it is necessary to consider the temperaturedistribution in equipment and the seasonaltemperature variable factor.1-2. Consider the self-heating of the capacitorThe surface temperature of the capacitor shall bethe upper operating temperature or less whenincluding the self-heating factors.2. Atmosphere Surroundings (gaseous and liquid)1. Restriction on the operating environment of capacitors.1-1. The capacitor, when used in the above, unsuitable, operating environments may deteriorate due tothe corrosion of the terminations and thepenetration of moisture into the capacitor.1-2. The same phenomenon as the above may occur when the electrodes or terminals of the capacitorare subject to moisture condensation.1-3. The deterioration of characteristics and insulation resistance due to the oxidization or corrosion ofterminal electrodes may result in breakdown whenthe capacitor is exposed to corrosive or volatilegases or solvents for long periods of time.3. Piezo-electric Phenomenon1. When using high dielectric constant type capacitors inAC or pulse circuits, the capacitor itself vibrates atspecific frequencies and noise may be generated.Moreover, when the mechanical vibration or shock isadded to capacitor, noise may occur.s Rating 11s Soldering and Mounting1. PCB Design1. Notice for Pattern Forms1-1. Unlike leaded components, chip components aresusceptible to flexing stresses since they aremounted directly on the substrate.They are also more sensitive to mechanical andthermal stresses than leaded components.Excess solder fillet height can multiply these stressesand cause chip cracking. When designing substrates,take land patterns and dimensions into considerationto eliminate the possibility of excess solder filletheight.1-2. It is possible for the chip to crack by the expansionand shrinkage of a metal board. Please contact us ifyou want to use our ceramic capacitors on a metalboard such as Aluminum.(in mm)Continued on the following page.2. Land Dimensions2-1. Chip capacitor can be cracked due to the stress ofPCB bending / etc if the land area is larger than needed and has an excess amount of solder.Please refer to the land dimensions in table 1 for flow soldering, table 2 for reflow soldering.Please confirm the suitable land dimension by evaluating of the actual SET / PCB.2. Adhesive Application1. Thin or insufficient adhesive can cause the chips to loosen or become disconnected during flow soldering.The amount of adhesive must be more than dimension c, shown in the drawing at right, to obtain the correct bonding strength.The chip's electrode thickness and land thickness must also be taken into consideration.2. Low viscosity adhesive can cause chips to slip after mounting. The adhesive must have a viscosity of 5000Pa • s (500ps) min. (at 25°C).*Nominal Value3. Adhesive Curing1. Insufficient curing of the adhesive can cause chips todisconnect during flow soldering and causes deterioration in the insulation resistance between the outer electrodes due to moisture absorption.Control curing temperature and time in order to prevent insufficient hardening.。

相关文档
最新文档