第一讲 一笔画问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲一笔画问题
小朋友们,你们能把下面的图形一笔画出来吗?
如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。
典型例题
例【1】下面这些图形,哪个能一笔画?哪个不能一笔画?
(1)(2)(3)(4)
分析图(1)一笔画出,可以从图中任意一点开始画该图,画到同一点结束。
经过尝试后,可以发现图(2)不能一笔画出。
图(3)不是连通的,显然也不能一笔画出。图(4)也可以一笔画出,且从任何一点出发都可以。
通过观察,我们可以发现一个几何图形中和一点相连通的线的条
数不同。由一点发出有偶数条线,那么这个点叫做偶点。相应的,由一点出发有奇数条数,则这个点叫做奇点。
再看图(1)、(4),其中每一点都是偶点,都可以一笔画,且可以从任意一点画起。而图(2)有4个奇点,2个偶点,不能一笔画成。
这样我们发现,一个图形能否一笔画和这个图形奇点,偶点的个数有某种联系,到底存在什么样的关系呢,我们再看一个例题。
例【2】下面各图能否一笔画成?
(1)(2)(3)
分析图(1)从任意一点出都可以一笔画成,因为它的每一个点都是与两条线相连的偶点。
关于图(2),经过反复试验,也可找到画法:由A B C A D C。图中B、D为偶点,A、C为奇点,即图中有两个奇点,两个偶点。要想一笔画,需从奇点出发,回到奇点。
经过尝试,图(3)无法一笔画成,而图中有4个奇点,5个偶点。
解图(1)、(2
这样我们可以发现能否一笔画和奇点、偶点的数目有着紧密的关系。
如果图形只有偶点,可以以任意一点为起点,一笔画出。如果只有两个奇点,也可以一笔画出,但必须从奇点出发,由另一点结束。
如果图形的奇点个数超过两个,则图形不能一笔画出。
例【3】
分析 图(1
)有两个奇点,两个偶点,可以一笔画,须由A 开始或由B 开始到B 结束或到A 结束。
图(2)有10
个奇点,大于2,不能一笔画成。
图(3)有4个奇点,1个偶点,因此也不能一笔画成。
解 图(1)的画法见下图。
例【4】 下图中,图(1)至少要画几笔才能画成?
D
(1)
分析 图(1)有4个奇点,所以不能一笔画出。如果把它分成几个部分,而每个部分是一笔画图形,则我们就可以用最少的几笔画出这个图形。按照这样的要求,每个部分最多含有两个奇点,可以采用再两个奇点之间增加一条或者去掉一条线的方法,该奇点就变成偶点。经观察,图(1)可以切分成图(A )、(B )两个图形。这两部分都可以一笔画出,所以图(1)至少用两笔画出。
解 将图(1)分成图(A )、(B ),则图(A )可由一笔画成,图(B )由一笔画成,所以图(1)至少要两笔画完。
小结 能否一笔画成,关键在于判别奇点、偶点的
个数。
一、 只有偶点,可以一笔画,并且可以以任意一点作为起点。
二、 只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起
点和终点。
三、 奇点超过两个,则不能一笔画。对于一些比较复杂的路线问题,
可以先转化为简单的几何图形,然后根据判定是否能一笔画的O A B D (1) A O B C D
(A ) B C (B )
方法进行解答。