2017-2018学年北京市海淀区初三数学二模试卷(含答案)
2017-2018学年九年级数学期末试卷及答案
2017-2018学年第二学期初三年级质量检测数学(2018年2月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。
全卷共计100分。
考试时间为90分钟。
第I 卷(本卷共计36分)一、单项选择题(本部分共12小题,每小题3分,共36分)1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )A.3和8B.3和10C.3和-10D.3和-82.如图所示的工件,其俯视图是( )3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.14.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )A.28B.24C.16D.65.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )第5题 第6题 第7题A.当AC=BD 时,四边形ABCD 是矩形B.当AB=BC 时,四边形ABCD 是菱形C.当AC ⊥BD 时,四边形ABCD 是菱形D.当∠DAB=90°时,四边形ABCD 是正方形6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )A.2:3B.3:2C.4:5D.4:97.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )A.6B.8C.10D.128.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )A.2000(1+x)2=2880B.200(1-x)2=2880C.2000(1+2x)=2880D.2000x 2=28809.二次函数y=x 2-3x+2的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )A.326+B.36+C.310-D.38+11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )第11题 第12题A.10B.12C.24D.1612.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;④BG=2DG ;⑤213+=BGC BEC S S △△:。
北京市海淀区2017年中考二模数学试题及答案
北京市海淀区2017年中考二模数学试题及答案海淀区九年级第二学期期末练数学试卷2017年6月学校:________ 班级:________ 姓名:________ 准考证号:________本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
注意事项:1.在试卷和答题卡上准确填写学校名称、班级和姓名。
2.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
3.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
4.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)1.如图,用圆规比较两条线段A'B'和AB的长短,其中正确的是A。
A'B'。
ABB。
A'B' = ABC。
A'B' < ABD。
不确定2.如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是图略)3.下列计算正确的是A。
2a - 3a = aB。
a3/2 = a6C。
-2a = 32D。
a ÷ a = 14.如图,ABCD中,AD=5,AB=3,∠BAD的平分线AE 交BC于E点,则EC的长为图略)5.共享单车提供了便捷、环保的出行方式。
___同学在___打开某共享单车APP,如图,"-"为___同学的位置,"★"为检索到的共享单车停放点。
为了到达距离最近的共享单车停放点,下列四个区域中,___同学应该前往的是图略)6.在单词happy中随机选择一个字母,选到字母为p的概率是A。
1/5B。
2/5C。
3/5D。
1/47.如图,OA为⊙O的半径,弦BC⊥OA于P点。
若OA=5,AP=2,则弦BC的长为图略)8.在下列函数中,其图象与x轴没有交点的是A。
y = 2xB。
y = -3x + 1C。
y = x2D。
y = 1/x9.如图,在等边三角形三个顶点和中心处的每个"○"中各填有一个式子,使得每条边上的三个式子之和相等,则a/b的值为图略)10.利用量角器可以制作锐角正弦值速查卡。
2017海淀初中数学二模答案(终稿)(1)
海淀九年级第二学期期末练习数学答案2017.6一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.2x ≠12.答案不唯一,例如(0,0)13.1 14.答案不唯一,在10.89.6t -≤≤-范围内即可15.216.乙;乙的平均成绩更高,成绩更稳定.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.原式 =23--------------------------------------------------------------------------4分 =5 --------------------------------------------------------------------------5分18.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②由不等式①,得362x x +-≥, ----------------------------------------------------------------- 1分解得2x ≥; -----------------------------------------------------------------2分由不等式①,得1233x x +>-,------------------------------------------------------------------ 3分解得4x <;-------------------------------------------------------------------4分∴ 原不等式组的解集是24x ≤<.--------------------------------------------------------------- 5分19.连接AC ,则△ABC ≌ △ADC .----------------------------1分证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,,----------------------------4分 ∴△ABC ≌ △ADC .----------------------------5分 20.解:∵关于x 的方程412m xx-=的根是2,∴4124m -=.------------------------------------------------------------------------------1分∴4m =.------------------------------------------------------------------------------2分∴()2428m m --+DCBA()244248=--⨯+ ------------------------------------------------------------------------------ 4分0=.-------------------------------------------------------------------------------- 5分21.解:(1)∵直线3l y mx =-:过点A (2,0),∴023m =-. ------------------------------------------------------------------------------ 1分 ∴32m =. ------------------------------------------------------------------------------ 2分 ∴直线l 的表达式为332y x =-.-----------------------------------------------------3分 (2)n =32-或92.------------------------------------------------------------------------- 5分22.(1)C ; ---------------------------------------------------------------------------------------------- 2分 (2)① B ; ---------------------------------------------------------------------------------------------- 4分 ② 100. ---------------------------------------------------------------------------------------------- 5分 23.(1)证明:∵EF 垂直平分AC ,∴F A =FC ,EA =EC ,----------------------------------------------------------------1分 ∵ AF ∥BC , ∴∠1=∠2. ∵AE =CE , ∴∠2=∠3. ∴ ∠1=∠3. ∵EF ⊥AC ,∴∠ADF =∠ADE =90°.∵ ∠1+∠4=90°,∠3+∠5=90°. ∴∠4=∠5.∴ AF =AE .----------------------------------------------------------------2分 ∴AF =FC =CE =EA .∴四边形AECF 是菱形.----------------------------------------------------------------3分 (2)解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE , ∴四边形ABEF 为平行四边形. ∵AB =10,∴FE =AB =10.-----------------------------------------------------------------------------------4分 ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形----------------------------------------------------------5分54321F E DCB A24.(1)北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计表(单位:万人)北京市2016年研究生、普通高校本专科学生、成人本专科学生招生人数和在校生人数统计图(单位:万人)---------------------------------- 2分(2)35.1;-------------------------------------------------------------------------------------------------- 3分(3)答案不唯一,预估理由与预估结果相符即可.--------------------- 5分25.(1)证明:∵D 为 AC的中点,∴∠CBA =2∠CBE .------------------------------------ 1分 ∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠1+∠CBA =90°. ∴∠1+2∠CBE =90°. ∵AP 是⊙O 的切线,∴∠P AB =∠1+∠P AC =90°.----------------------------- 2分∴∠P AC =2∠CBE .--------------------------------------3分(2)思路:①连接AD ,由D 是 AC的中点,∠2=∠CBE , 由∠ACB =∠P AB =90°,得∠P =∠3=∠4,故AP =AE ; ②由AB 是⊙O 的直径,可得∠ADB =90°;由AP =AE ,得PE =2PD =2m ,∠5=12∠P AC =∠CBE =α-------- 4分③在Rt △P AD 中,由PD =m ,∠5=α,可求P A 的长; ④在Rt △P AB 中,由P A 的长和∠2=α,可求BP 的长; 由BE PB PE =-可求BE 的长;⑤在Rt △BCE 中,由BE 的长和CBE α∠=,可求CE 的长.------------------- 5分A26.(1)答案不唯一,例如6y x=,28y x =-+,2611y x x =-+等;-------------------------------2分 (2)答案不唯一,符合题意即可;-----------------------------------------------------------------4分 (3)所写的性质与图象相符即可.----------------------------------------------------------------- 5分 27.(1)解:∵抛物线()222244y x mx m x m =-+-=--,其对称轴为1x =,∴1m =.∴该抛物线的表达式为223y x x =--.------------------------------------------------- 2分 (2)解:当0y =时,2230x x --=,解得11x =-,23x =,∴抛物线与x 轴的交点为A (1-,0),B (3,0). --------------------------------- 3分 ∴4AB =.当0x =时,3y =-,∴抛物线与y 轴的交点为C (0,3-). ------------------------------------------- 4分 ∵12CD AB =, ∴CD =2.∵CD ∥x 轴,点D 在点C 的左侧,∴点D 的坐标为(2-,3-). --------------------------------------------------5分(3)11t -≤≤.------------------------------------------------------------------------------------ 7分28.(1)证明:∵AB =AC ,AD 为BC 边上的高,∠BAD =20°, ∴∠BAC =2∠BAD =40°. --------------------------------------1分 ∵CF ⊥AB , ∴∠AFC =90°. ∵E 为AC 中点, ∴EF =EA =12AC .∴∠AFE =∠BAC =40°. ----------------------------------------2分(2)①画出一种即可. ----------------------------------------------------------------------------------3分MPN ECDB AFEAPN ECB A②证明:想法1:连接DE.∵AB=AC,AD为BC边上的高,∴D为BC中点.∵E为AC中点,∴ED∥AB,∴∠1=∠APE.--------------------------------- 4分∵∠ADC=90°,E为AC中点,∴12AE DE CE AC===.同理可证12AE NE CE AC===.∴AE=NE=CE=DE.∴A,N,D,C在以点E为圆心,AC为直径的圆上.-----5分∴∠1=2∠MAD.------------------------------------------ 6分∴∠APE=2∠MAD.------------------------------------------- 7分想法2:设∠MAD=α,∠DAC=β,∵CN⊥AM,∴∠ANC=90°.∵E为AC中点,∴12AE NE AC==.∴∠ANE=∠NAC=∠MAD+∠DAC=α+β.--------------------- 4分∴∠NEC=∠ANE+∠NAC=2α+2β.------------------------ 5分∵AB=AC,AD⊥BC,∴∠BAC=2∠DAC=2β.∴∠APE=∠PEC-∠BAC=2α.--------------------------------- 6分∴∠APE=2∠MAD.--------------------------------------------- 7分想法3:在NE上取点Q,使∠NAQ=2∠MAD,连接AQ,∴∠1=∠2.∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.∴∠BAD-∠1=∠CAD-∠2,即∠3=∠4.----------------------------------------- 4分∴∠3+∠NAQ=∠4+∠NAQ,即∠P AQ=∠EAN.∵CN⊥AM,ED C BAPMN4321QNMPABCDE∴∠ANC =90°. ∵E 为AC 中点, ∴12AE NE AC ==. ∴∠ANE =∠EAN .---------------------------------------------------------------- 5分 ∴∠P AQ =∠ANE . ∵∠AQP =∠AQP ,∴△P AQ ∽△ANQ .---------------------------------------------------------------- 6分 ∴∠APE =∠NAQ =2∠MAD .-------------------------------------------------------- 7分29.(1)①R ,S ;----------------------------------------------------------------------------------------------- 2分 ②(4-,0)或(4,0);------------------------------------------------------------------------ 4分 (2)①由题意,直线3y x =-与x 轴交于C (3,0),与y 轴交于D (0,3-). 点M 在线段CD 上,设其坐标为(x ,y ),则有:0x ≥,0y ≤,且3y x =-.点M 到x 轴的距离为y ,点M 到y 轴的距离为x , 则3x y x y +=-=.∴点M 的同族点N 满足横纵坐标的绝对值之和为3. 即点N 在右图中所示的正方形CDEF 上. ∵点E 的坐标为(3-,0),点N 在直线x n =上,∴33n -≤≤.--------------------------------------------------------------------------------------- 6分 ②m ≤1-或m ≥1.------------------------------------------------------------------------------------ 8分x。
北京市海淀区2018年中考数学二模试题标准答案
海淀区九年级第二学期期末练习数学参考答案及评分标准2018.5一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.23(1)a + 10.6π 11.412.1213.10010018.752.74x x-= 14.4 15.①直径所对的圆周角为直角②线段垂直平分线上的点与这条线段两个端点的距离相等 16.532m ≤≤三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)17.解:原式=414+- 3.18.解:去分母,得63(2)2(2)x x x -+<-. 去括号,得63642x x x --<-. 移项,合并得510x <. 系数化为1,得2x <.不等式的解集在数轴上表示如下:19.证明:∵3AD =,4AE =,5ED =,∴222AD AE ED +=.∴90A ∠=︒. ∴DA AB ⊥. ∵90C ∠=︒. ∴DC BC ⊥.∵BD 平分ABC ∠, ∴DC AD =. ∵3AD =, ∴3CD =.20.(1)证明:依题意,得22[(3)]413(3)m m m ∆=-+-⨯⨯=-.∵2(3)0m -≥, ∴方程总有实数根.(2)解:∵原方程有两个实数根3,m , ∴取4m =,可使原方程的两个根中只有..一个根小于4. 注:只要4m ≥均满足题意. 21.(1)解:∵AB ∥CD , ∴∠ABE =∠EDC . ∵∠BEA =∠DEF , ∴△ABE ∽△FDE . ∴AB BEDF DE=. ∵E 是BD 的中点, ∴BE =DE . ∴AB =DF .∵F 是CD 的中点, ∴CF =FD . ∴CD =2AB .∵∠ABE =∠EDC ,∠AGB =∠CGD , ∴△ABG ∽△CDG . ∴12BG AB GD CD ==. (2)证明:∵AB ∥CF ,AB =CF , ∴四边形ABCF 是平行四边形. ∵CE =BE ,BE =DE , ∴CE =ED . ∵CF =FD , ∴EF 垂直平分CD . ∴∠CF A =90°.∴四边形ABCF 是矩形.EGF ABCD22.解:(1)设点B 的坐标为(x ,y ),由题意得:BF y =,BM x =. ∵矩形OMBF 的面积为3, ∴3xy =. ∵B 在双曲线ky x=上, ∴3k =. (2)∵点B 的横坐标为3,点B 在双曲线上, ∴点B 的坐标为(3,1). 设直线l 的解析式为y ax b =+. ∵直线l 过点(2,2)P ,B (3,1), ∴22,3 1.a b a b +=⎧⎨+=⎩解得1,4.a b =-⎧⎨=⎩∴直线l 的解析式为4y x =-+. ∵直线l 与x 轴交于点C (4,0),∴BC =.(3)增大23.解:(1)60;(2)连接OD ,∵CD AB ⊥,AB 是O 的直径, ∴CM MD =. ∵M 是OA 的中点, ∴AM MO =.又∵AMC DMO ∠=∠, ∴AMC OMD ≅△△. ∴ACM ODM ∠=∠. ∴CA ∥OD . ∵DE CA ⊥, ∴90E ∠=︒.∴18090ODE E ∠=︒-∠=︒. ∴DE OD ⊥.B∴DE 与⊙O 相切. (3)连接CF ,CN , ∵OA CD ⊥于M , ∴M 是CD 中点. ∴NC ND =. ∵45CDF ∠=︒, ∴45NCD NDC ∠=∠=︒. ∴90CND ∠=︒. ∴90CNF ∠=︒.由(1)可知60AOD ∠=︒. ∴1302ACD AOD ∠=∠=︒. 在Rt △CDE 中,90E ∠=︒,30ECD ∠=︒,3DE =, ∴6sin 30DECD ==︒. 在Rt △CND 中,90CND ∠=︒,45CDN ∠=︒,6CD =,∴sin 45CN CD =⋅︒=由(1)知2120CAD OAD ∠=∠=︒, ∴18060CFD CAD ∠=︒-∠=︒.在Rt △CNF 中,90CNF ∠=︒,60CFN ∠=︒,CN =∴tan 60CNFN ==︒24.(1)补充表格:(2)答案不唯一,可参考的答案如下:B甲选手:和乙选手的平均成绩相同,中位数高于乙,打出9环及以上的次数更多,打出7环的次数较少,说明甲选手相比之下发挥更加稳定;乙选手:与甲选手平均成绩相同,打出10环次数和7环次数都比甲多,说明乙射击时起伏更大,但也更容易打出10环的成绩.(2)如图所示:(3)①231w w w <<; ②如上图所示.26.解:(1)1D (-3,3),2D (1,3),3D (-3,-1) (2)不存在.理由如下:假设满足条件的C 点存在,即A ,B ,1D ,2D ,3D 在同一条抛物线上,则线段AB 的垂直平分线2x =-即为这条抛物线的对称轴,而1D ,2D 在直线y n =上,则1D 2D 的中点C 也在抛物线对称轴上,故2m =-,即点C 的坐标为(-2,n ). 由题意得:1D (-4,n ),2D (0,n ),3D (-2,2n -).注意到3D 在抛物线的对称轴上,故3D 为抛物线的顶点. 设抛物线的表达式是()222y a x n =++-.当1x =-时,1y =,代入得1a n =-. 所以()()2122y n x n =-++-.令0x =,得()41232y n n n n =-+-=-=,解得1n =,与1n >矛盾. 所以不存在满足条件的C 点.27.(1)DE DF =;(2)解:连接DE ,DF , ∵△ABC 是等边三角形, ∴60C ∠=︒. ∵DBC α∠=, ∴120BDC α∠=︒-.∵点C 与点F 关于BD 对称,∴120BDF BDC α∠=∠=︒-,DF DC =. ∴1202FDC α∠=︒+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆心,DC 为半径的圆上. ∴1602FEC FDC ∠=∠=︒+α. (3)BG GF FA =+.理由如下: 连接BF ,延长AF ,BD 交于点H , ∵△ABC 是等边三角形,∴60ABC BAC ∠=∠=︒,AB BC CA ==.GFED CBA∵点C 与点F 关于BD 对称, ∴BF BC =,FBD CBD ∠=∠. ∴BF BA =. ∴BAF BFA ∠=∠. 设CBD α∠=, 则602ABF α∠=︒-. ∴60BAF α∠=︒+. ∴FAD α∠=. ∴FAD DBC ∠=∠. 由(2)知60FEC α∠=︒+. ∴60BGE FEC DBC ∠=∠-∠=︒. ∴120FGB ∠=︒,60FGD ∠=︒.四边形AFGB 中,360120AFE FAB ABG FGB ∠=︒-∠-∠-∠=︒. ∴60HFG ∠=︒. ∴△FGH 是等边三角形. ∴FH FG =,60H ∠=︒. ∵CD CE =, ∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△△AHD BGE ≅. ∴BG AH =.∵AH HF FA GF FA =+=+, ∴BG GF FA =+.28.解:(1)函数21y x =-的限减系数是2;(2)若1m >,则10m ->,(1m -,11m -)和(m ,1m)是函数图象上两点,HGFEDCBA11101(1)m m m m -=-<--,与函数的限减系数4k =不符,∴1m ≤. 若102m <<,(1t -,11t -)和(t ,1t)是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---,∵(1)0t t -->,且2211111(1)()()24244t t t m --=--+≤--+<,∴1141t t ->-,与函数的限减系数4k =不符. ∴12m ≥. 若112m ≤≤,(1t -,11t -)和(t ,1t)是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---,∵(1)0t t -->,且2111(1)()244t t t --=--+≤,∴11141(1)t t t t -=≥---,当12t =时,等号成立,故函数的限减系数4k =. ∴m 的取值范围是112m ≤≤. (3)11-n ≤≤.。
2017-2018上学期九年级数学期末试卷
2017—2018学年度九年级数学期末测试卷一、选择题(本大题共6个小题,每小题3分,共18分). 1.如图所示的几何体的俯视图是( )2.菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补3.矩形的长为x ,宽为y ,面积为8,则y 与x 之间的函数关系式用图象表示大致为( )A .B .C .D .4.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣8x +12=0的两个根,则该三角形的周长是( )A .10 B .14 C .10或14D .不能确定5.如图,取一张长为a ,宽为b 的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a 、b 应满足的条件是( )A .b B .a=2b C .b D .a=4b6.二次函数y =ax 2+bx +c (a ≠0)的图象如上图所示,对称轴是直线x =1,下列结论:①ab <0; ②b 2>4ac ;③3a +c <0;④a +b +2c <0.其中正确的是( )A .①②③④B .②④C .①②④D .①④二、填空题(本大题共6小题,每小题3分,满分18分) 7.方程x 2=2x 的解为 .8.已知两个相似的三角形的面积之比是16:9,那么这两个三角形的周长之比是 .CDBA正面9.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标 志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有 黄羊 只. 10.如下图1,双曲线(0)ky k x=≠上有一点A ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为2,则该双曲线的表达式为 ______ .11.如下图2,在A 时测得某树的影长为4m ,B 时又测得该树的影长为16m ,若两次日照的光线互相垂直,则树的高度为 .12.如下图3,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE CE 的长为 .三、(本大题共5小题,每小题6分,共30分)13.(1)计算:sin 245°+cos30°•tan60°;(2) 如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .14.(1)如图(1),将平行四边形剪一刀,再拼成一个与其面积相等的矩形;(2)如图(2),将菱形剪两刀,再拼成一个与其面积相等的矩形.15.市某中学拟在周一至周五的五天中随机选择2天进行开展安全逃生疏散演练活动,请完成下列问题:(1)周二没有被选择的概率;(2)选择2天恰好为连续两天的概率.16.已知关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0.(1)若该方程有实数根,求a的取值范围.(2)若该方程一个根为﹣1,求方程的另一个根.17.如图,△ABC中,∠C=90°,AC=BC,点D是AB的中点,分别过点D作DE⊥AC,DF⊥BC,垂足分别为点E,F,求证:四边形CEDF是正方形.四、(本大题共3小题,每小题8分,共24分)18.如图,在△ABC中,∠A=30°,cos B=45,ACAB的长.19.某社区鼓励居民到社区阅览室借阅读书,该阅览室在2015年图书借阅总量是7500本,2017年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2015年至2017年的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1350人,预计2018年达到1440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?20.如图(1),太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.如图(2)是该太极揉推器的左视图,立柱AB的长为125cm,支架OC的长为40cm,支点C到立柱顶点B的距离为25cm,支架OC与立柱AB的夹角OCA=120°,转盘的直径DE为60cm,点O是DE的中点,支架OC与转盘直径DE垂直.求转盘最低点E离地面的高度.(结果保留根号)五、(本大题共2小题,每小题9分,共18分).21.如图,已知抛物线y=x2﹣x﹣6,与x轴交于点A和B,点A在点B的左边,与y轴的交点为C.(1)用配方法求该抛物线的顶点坐标;(2)求sin∠OCB的值;(3)若点P(m,m)在该抛物线上,求m的值.(4)直接写出抛物线上一点P的坐标,使得S△PAB=S△ABC。
2017-2018学年北京市海淀区九年级上期中数学试题含答案
第 1 页 共 14 页初三第一学期期中学业水平调研数学2017.11学校班级___________姓名成绩 一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.一元二次方程3610x x --=的二次项系数、一次项系数、常数项分别是 A .3,6,1B .3,6,1-C .3,6-,1D .3,6-,1-2.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为 A .21y x =+ B .21y x =- C .21y x =-+D .21y x =--3.如图,A ,B ,C 是⊙O 上的三个点. 若∠C =35°,则∠AOB 的 大小为 A .35° B .55° C .65° D .70° 4.下列手机手势解锁图案中,是中心对称图形的是A B C D 5.用配方法解方程2420x x -+=,配方正确的是 A .()222x -= B.()222x +=C .()222x -=-D .()226x -=6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重合,那么n 的值可能是A .45B .60C .90D .120第 1 页 共 14 页7.二次函数21y ax bx c =++与一次函数2y mx n =+2ax bx c mx n ++>+的x 的取值范围是A .30x -<<B .3x <-或0x >C .3x <-或1x >D .03x <<8.如图1,动点P 从格点A 出发,在网格平面内运动,设点P 走过的路程为s ,点P 到直线l 的距离为d . 已知d 与s 的关系如图2所示.下列选项中,可能是点P 的运动路线的是A B C D二、填空题(本题共24分,每小题3分)9.点P (1-,2)关于原点的对称点的坐标为________. 10.写出一个图象开口向上,过点(0,0)的二次函数的表达式:________.11.如图,四边形ABCD 内接于⊙O ,E 为CD 的延长线上一点. 若∠B =110°,则∠ADE 的大小为________. 12.抛物线21y x x =--与x 轴的公共点的个数是________. 13.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别 为(0,2),(1-,0),将线段AB 绕点O 顺时针旋转,若点A 的对应点A '的坐标为(2,0),则点B 的对应点B '的 坐标为________.14.已知抛物线22y x x =+经过点1(4)y -,,2(1)y ,,则1y ________2y (填“>”,“=”,或“<”).15.如图,⊙O 的半径OA 与弦BC 交于点D ,若OD =3,AD =2, BD =CD ,则BC 的长为________.lllll。
北京市海淀区2017-2018学年八年级上学期期末考试数学试题(解析版)
海淀区八年级第一学期期末练习数学一、选择题(本大题共30分,每小题3分)1. 低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B. C. D.【答案】A【解析】A是轴对称图形,故符合题意;B不是轴对称图形,故不符合题意;C不是轴对称图形,故不符合题意;D不是轴对称图形,故不符合题意,故选A.2. 下列计算正确的是()A. B. C. D.【答案】B【解析】A. 不是同类项,不能合并,故错误;B. ,正确;C. ,故错误;D.,故错误,故选B.3. 叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A. B. C. D.【答案】C..... ......................0.00005=,故选C.4. 若分式的值等于0,则的值为()A. B. 1 C. D. 2【答案】A【解析】由题意得:a+1=0且a≠0,解得:a=-1,故选A.5. 如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,D,E为对应顶点,下列结论不.一定成立的是()A. AC=CDB. BE=CDC. ∠ADE=∠AEDD. ∠BAE=∠CAD【答案】A【解析】∵△ABD≌△ACE,∴∠ADB=∠AEC,∠BAD=∠CAE,BD=CD,∴180°-∠ADB=180°-∠AEC,∠BAD+∠DAE=∠CAE+∠DAE,BD+DE=CE+DE,即∠ADE=∠AED,∠BAE=∠CAD,BE=CD,故B、C、D选项成立,故不符合题意;无法证明AC=CD,故A符合题意,故选A.6. 等腰三角形的一个角是70°,它的底角的大小为()A. 70°B. 40°C. 70°或40°D. 70°或55°【答案】D【解析】若70°为顶角,则此等腰三角形的底角是(180°-70°)÷2=55°;若70°为底角,则此等腰三角形的底角为70°,综上,此等腰三角形的底角为70°或55°,故选D.7. 已知可以写成一个完全平方式,则可为()A. 4B. 8C. 16D.【答案】C【解析】∵可以写成一个完全平方式,∴x2-8x+a=(x-4)2,又(x-4)2=x2-8x+16,∴a=16,故选C.8. 在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则()A. B. C. D.【答案】D【解析】根据题意可知OP是第二象限坐标轴夹角的平分线,所以a=-b,故选D.9. 若,则的值为()A. 3B. 6C. 9D. 12【答案】C【解析】∵a+b=3,∴a2-b2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3a-3b+6b=3a+3b=3(a+b)=9,故选C.10. 某小区有一块边长为a的正方形场地,规划修建两条宽为b的绿化带.方案一如图甲所示,绿化带面积为;方案二如图乙所示,绿化带面积为.设,下列选项中正确的是()甲乙A. B. C. D.【答案】B【解析】∵S甲=ab+ab-b2=2ab-b2,S乙=ab+ab=2ab,∴=,∵a>b>0,∴,即,故选B.【点睛】本题考查了列代数式表示面积,能正确地识图,准确地表示出所求面积是解题的关键.二、填空题(本大题共24分,每小题3分)11. 如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C为__________.【答案】230°【解析】∵∠A+∠B+∠C+∠D=(4-2)×180°=360°,∠A=90°,∠D=40°,∴∠B+∠C=360°-90°-40°=230°,故答案为:230°.【点睛】本题考查了四边形的内角和,熟记四边形的内角和是360度是解题的关键.12. 点M 关于y轴的对称点的坐标为__________.【答案】(-3,-1)【解析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,点M (3,-1)关于y轴的对称点的坐标为(-3,-1),故答案为:(-3,-1).13. 已知分式满足条件“只含有字母x,且当x=1时无意义”,请写出一个这样的分式:_____.【答案】【解析】由分式满足条件“只含有字母x,且当x=1时无意义”,可知分式的分母中含有因式x-1,所以这样的分式可以是(答案不唯一),故答案为:.14. 已知△ABC中,AB=2,∠C=40°,请你添加一个适当的条件,使△ABC的形状和大小都是确定的.你添加的条件是________________.【答案】∠A=60°(答案不唯一)【解析】已知一边和这条边的对角,要想确定唯一的三角形,可以再添加一个角,根据AAS或ASA即可唯一确定三角形,如添加:∠A=60°,故答案为:答案不唯一,如:∠A=60°.15. 某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点O 处拴一条线绳,线绳的另一端挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,由此得出房梁是水平的(即挂铅锤的线绳与房梁垂直).用到的数学原理是_______________.【答案】“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”【解析】∵△ABC是个等腰三角形,∴AC=BC,∵点O是AB的中点,∴AO=BO,∴OC⊥AB,故答案为:“等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”.16. 如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次的图形变化(轴对称、平移)得到的,写出一种由△ABC得到△DEF的过程:____________.【答案】答案不唯一,如:将△ABC关于y轴对称,再将三角形向上平移3个单位长度【解析】将△ABC关于y轴对称,再将三角形向上平移3个单位长度得到△DEF;或:将△ABC向上平移3个单位长度,再关于y轴对称得到△DEF,故答案为:答案不唯一,如:将△ABC关于y轴对称,再将三角形向上平移3个单位长度得到△DEF.17. 如图,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分线交于O点,过点O作BC的平行线交AB 于M点,交AC于N点,则△AMN的周长为__________.【答案】10【解析】∵BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB,∵MN//BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠ABO=∠MOB,∠ACO=∠NOC,∴MO=MB,ON=NC,∴AM+MN+AN=AM+MO+NO+AN=AB+AC=4+6=10,故答案为:10.18. 已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.【答案】72【解析】由题意得:∠ABC=2∠CBD,2∠BDC+∠ADE=180°,∵AB=AC,∴∠ABC=∠C,∵∠ADE=∠A,∠A+∠ABC+∠C=180°,∴∠BDC=∠C=∠ABC,∵∠CBD+∠C+∠BDC=180°,∴∠CBD=∠A,∴∠ABC=∠C=2∠A,又∠A+∠ABC+∠C=180°,∴∠A=36°,∴∠ABC=72°,故答案为:72.【点睛】本题考查了等腰三角形的性质,三角形内角和定理、折叠的性质等,正确的读图是解题的关键.三、解答题(本大题共17分,第19题8分,第20题4分,第21题5分)19. 计算:(1);(2).【答案】(1)(2)3x-2y【解析】试题分析:(1)先分别计算绝对值、算术平方根、负指数幂、0次幂,然后再按运算顺序进行计算即可;(2)先将被除式因式分解,再将除式利用除法法则进行颠倒,然后再相乘即可.试题解析:(1)原式==;(2)原式===.20. 如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE = CF.【答案】证明见解析【解析】试题分析:由AC=BD,AE∥DF可得AB=DC,∠A=∠D,再根据∠1=∠2利用ASA证明△ABE≌△DCF 即可得.试题解析:∵AC=AB+BC,BD=BC+CD,AC=BD,∴AB=DC,∵AE∥DF,∴∠A=∠D,在△ABE和△DCF中,,∴△ABE≌△DCF,∴BE=CF.21. 解方程:.【答案】x=【解析】试题分析:方程两边乘x(x-2)化为整式方程,解整式方程后进行检验即可得.试题解析:方程两边乘,得,解得,检验:当时,,∴原分式方程的解为.四、解答题(本大题共15分,每小题5分)22. 先化简,再求值:,其中.【答案】15【解析】试题分析:括号内先通分进行加减运算,然后再进行除法运算,最后代入数值进行计算即可.试题解析:原式====,当时,原式=15.23. 如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.【答案】30°【解析】试题分析:连接DE,由A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B可证明得到△CDE 为等边三角形,再利用直角三角形两锐角互余即可得.试题解析:连接DE,∵A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B,∴CD=CE=DE,∴△CDE为等边三角形,∴∠C=60°,∴∠AEC=90°∠C=30°.24. 列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.【答案】每套《水浒传》连环画的价格为120元【解析】试题分析:设每套《水浒传》连环画的价格为x元,则每套《三国演义》连环画的价格为(x+60)元,根据等量关系“用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍”列方程进行求解即可得.试题解析:设每套《水浒传》连环画的价格为元,则每套《三国演义》连环画的价格为元,由题意,得,解得,经检验,是原方程的解,且符合题意,答:每套《水浒传》连环画的价格为120元.【点睛】本题考查了分式方程的应用,找到题中的等量关系是解题的关键,注意解完方程后要进行检验.五、解答题(本大题共14分,第25、26题各7分)25. 阅读材料小明遇到这样一个问题:求计算所得多项式的一次项系数.小明想通过计算所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找所得多项式中的一次项系数.通过观察发现:也就是说,只需用中的一次项系数1乘以中的常数项3,再用中的常数项2乘以中的一次项系数2,两个积相加,即可得到一次项系数.延续上面的方法,求计算所得多项式的一次项系数.可以先用的一次项系数1,的常数项3,的常数项4,相乘得到12;再用的一次项系数2,的常数项2,的常数项4,相乘得到16;然后用的一次项系数3,的常数项2,的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算所得多项式的一次项系数为.(2)计算所得多项式的一次项系数为.(3)若计算所得多项式的一次项系数为0,则=_________.(4)若是的一个因式,则的值为.【答案】(1)7(2)-7(3)-3(4)-15【解析】试题分析:(1)用2x+1中的一次项系数2乘以3x+2中的常数项2得4,用2x+1中的常数项1乘以3x+2中的一次项系数3得3,4+3=7即为积中一次项的系数;(2)用x+1中的一次项系数1,3x+2中的常数项2,4x-3中的常数项-3相乘得-6,用x+1中的常数项1,3x+2中的一次项系数3,4x-3中的常数项-3相乘得-9,用x+1中的常数项1,3x+2中的常数项2,4x-3中的一次项系数4相乘得8,-6-9+8=-7即为积中一次项系数;(3)用每一个因式中的一次项系数与另两个因式中的常数项相乘,再把所得的积相加,列方程、解方程即可得;(4)设可以分成()(x2+kx+2),根据小明的算法则有k-3=0,a=-3k+2+1,b=-3×2+k,解方程即可得.试题解析:(1)2×2+1×3=7,故答案为:7;(2)1×2×(-3)+3×1×(-3)+4×1×2=-7,故答案为:-7;(3)由题意得:1×a×(-1)+(-3)×1×(-1)+2×1×a=0,解得:a=-3,故答案为:-3;(4)设可以分成()(x2+kx+2),则有k-3=0,a=-3k+2+1,b=-3×2+k,解得:k=3,a=-6,b=-3,所以2a+b=-15,故答案为:-15.b=3-6=-326. 如图,CN是等边△的外角内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若,求的大小(用含的式子表示);(3)用等式表示线段,与之间的数量关系,并证明.【答案】(1)图形见解析(2)∠BDC=60°-α(3)PB=PC+2PE【解析】试题分析:(1)按题意补全图形即可;(2)由点A与点D关于CN对称可得CA=CD,再由∠ACN=α得到∠ACD=2α,由等边△ABC可推得∠BCD=∠ACB+∠ACD=60°+2α,从而可得;(3)PB=PC+2PE.在PB上截取PF使PF=PC,连接CF,通过推导可证明△BFC≌△DPC,再利用全等三角形的对应边相等即可得.试题解析:(1)如图所示;(2)∵点A与点D关于CN对称,∴CN是AD的垂直平分线,∴CA=CD,∵,∴∠ACD=2,∵等边△ABC,∴CA=CB=CD,∠ACB=60°,∴∠BCD=∠ACB+∠ACD=60°+,∴∠BDC=∠DBC=(180°∠BCD)=60°;(3)结论:PB=PC+2PE.本题证法不唯一,如:在PB上截取PF使PF=PC,连接CF.∵CA=CD,∠ACD=∴∠CDA=∠CAD=90°.∵∠BDC=60°,∴∠PDE=∠CDA∠BDC=30°∴PD=2PE.∵∠CPF=∠DPE=90°∠PDE=60°.∴△CPF是等边三角形.∴∠CPF=∠CFP=60°.∴∠BFC=∠DPC=120°.∴在△BFC和△DPC中,,∴△BFC≌△DPC.∴BF=PD=2PE.∴PB= PF+BF=PC+2PE.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27. 对于0,1以及真分数p,q,r,若p<q<r,我们称q为p和r的中间分数.为了帮助我们找中间分数,制作了下表:两个不等的正分数有无数多个中间分数.例如:上表中第③行中的3个分数、、,有,所以为和的一个中间分数,在表中还可以找到和的中间分数,,,.把这个表一直写下去,可以找到和更多的中间分数.(1)按上表的排列规律,完成下面的填空:①上表中括号内应填的数为;②如果把上面的表一直写下去,那么表中第一个出现的和的中间分数是;(2)写出分数和(a、b、c、d均为正整数,,)的一个..中间分数(用含a、b、c、d的式子表示),并证明;(3)若与(m、n、s、t均为正整数)都是和的中间分数,则的最小值为.【答案】(1)①;②(2)证明见解析(3)1504【解析】试题分析:(1)①观察每一行的规律可得括号位于第⑦行,按表格中的规律可知是;②观察表格可知第一个出现的和的中间分数在第⑧行,是;(2)答案不唯一,根据表格中观察到的,可以为,通过推导证明即可得;(3)根据排列可知和的中间分数有,,,等,由此可得.试题解析:(1)①观察每一行的规律可得括号位于第⑦行,按分子的排序可知是,②观察表格可知第一个出现的和的中间分数在第⑧行,是,故答案为:①;②.(2)本题结论不唯一,证法不唯一,如:结论:.∵a、b、c、d均为正整数,,,∴,.∴.(3)根据排列可知和的中间分数有,,,等,由此可得mn的最小值为1504,故答案为:1504.【点睛】本题考查了规律性问题,第(1)问题相对来说比较容易,后面两问需要通过分析发现其中存在的关系,然后用来解题,比较抽象,需要有一定的想象力.。
2017-2018学年北京市海淀区高二(下)期中数学试卷(文科)
2017-2018学年北京市海淀区高二(下)期中数学试卷(文科)一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列复数中,与z=1+i的乘积为实数的是()A.1﹣i B.﹣i C.i D.1+i2.(4分)已知函数f(x)=sinx+e x,则下面各式中正确的是()A.f′(x)=cosx+e x B.f′(x)=﹣cosx+e x C.f′(x)=﹣e x co sx D.f′(x)=﹣e x sinx 3.(4分)函数f(x)=x,g(x)=x2在[0,1]的平均变化率分别记为m1,m2,则下面结论正确的是()A.m1=m2B.m1>m2C.m2>m1D.m1,m2的大小无法确定4.(4分)用反证法证命题“若果平面α∥平面β,且直线l与平面α相交,那么直线l与平面β相交”时,提出的假设应该是()A.假设直线l∥平面βB.假设直线l平面与β有公共点C.假设直线l与平面β不相交D.假设直线l在平面β内5.(4分)有A,B,C,D,E这5名同学围成一圈,从A起按逆时针方向依次循环报数,规定:A第一次报的数为2,B第一次报的数为3.此后,后一个人所报的数总是前两个人所报的数的乘积的个位数字,如此继续下去.则A第10次报的数应该为()A.2 B.4 C.6 D.86.(4分)已知曲线:①y2=x②x2+y2=1③y=x3④x2﹣y2=1.上述四条曲线中,满足:“若曲线与直线有且仅有一个公共点,则他们必相切”的曲线条数是()A.1 B.2 C.3 D.47.(4分)函数的部分图象可能是()A.B.C.D.8.(4分)函数f(x)=x3+ax2﹣ax,g(x)=f′(x),其中a为常数,则下面结论中错误的是()A.当函数g(x)只有一个零点时,函数f(x)也只有一个零点B.当函数f(x)有两个不同的极值点时,g(x)一定有两个不同的零点C.∃a∈R,使得函数g(x)的零点也是函数f(x)的零点D.∃a∈R,使得函数f(x)的极值点也是g(x)的极值点二、填空题:本大题共7小题,每小题4分,共24分.把答案填在题中横线上.9.(4分)复数在复平面上对应的点位于第象限,且|z|=.10.(4分)曲线y=f(x)在点(1,f(1))处的切线与2x﹣y+1=0平行,则f′(1)=.11.(4分)函数f(x)=kx﹣e x在[0,1]上单调,则k的取值范围是.12.(4分)不等式x>lnx+1的解集为.13.(4分)计算sin230°+sin290°+sin2150°=,sin260°+sin2120°+sin2180°=,请你根据上面的计算结果,猜想sin2α+sin2(α+60°)+sin2(α+120°)=.14.函数f(x)=e x(x2+ax+a)在区间(0,1)上存在极值,则a的取值范围是15.(4分)已知函数和点P(1,0),过点P作曲线y=f(x)的两条切线PM,PN,切点分别为M,N,则直线MN的斜率等于.三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 16.(12分)如图,曲边三角形中,线段OP是直线y=2x的一部分,曲线段PQ是抛物线y=﹣x2+4的一部分.矩形ABCD的顶点分别在线段OP,曲线段PQ和y轴上.设点A(x,y),记矩形ABCD的面积为f(x).(Ⅰ)求函数f(x)的解析式并指明定义域;(Ⅱ)求函数f(x)的最大值.17.(10分)在各项均为正数的数列{a n}中,a1=a且.(Ⅰ)当a3=2时,求a1的值;≤a n.(Ⅱ)求证:当n≥2时,a n+1解:(Ⅰ)(Ⅱ)某同学用分析法证明此问,证明过程如下,请你在横线上填上合适的内容.证明:要证n≥2时,a n≤a n+1﹣a n,只需证a n+1只需证≤0只需证只需证a n≥,根据均值定理,所以原命题成立.18.(12分)已知曲线f(x)=x3在点(1,f(1))处的切线为l,其中x0≠0.(Ⅰ)求直线l的方程;(Ⅱ)求证:直线l和曲线f(x)一定有两个不同的公共点.19.(10分)已知函数f(x)=x2﹣2alnx,其中常数a≠0.(Ⅰ)求f(x)的单调区间;(Ⅱ)如果函数f(x)没有零点,求实数a的取值范围.。
三角函数中的恒等变换应用-高中数学知识点讲解(含答案)
三角函数中的恒等变换应用(北京习题集)(教师版)一.选择题(共6小题)1.(2017秋•东城区期末)若)3cos ,(,)x x x ϕϕππ+=-∈-,则ϕ等于( ) A .3π-B .3πC .56π D .56π-2.(2019•石景山区一模)已知函数()sin f x a x x =-的一条对称轴为6x π=-,12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性,则12||x x +的最小值为( ) A .6πB .3π C .23π D .43π 3.(2018•海淀区二模)关于函数()sin cos f x x x x =-,下列说法错误的是( ) A .()f x 是奇函数 B .0不是()f x 的极值点C .()f x 在(,)22ππ-上有且仅有3个零点D .()f x 的值域是R4.(2017春•西城区期末)函数()f x x x =-在区间[0,]π上的最大、最小值分别为( )A .π,0B .2π- C .,14ππ- D .0,14π-5.(2017春•海淀区校级期中)已知函数21()(2cos 1)sin 2cos42f x x x x =-+,若(2πα∈,)π且()f α=α的值是( ) A .58πB .1116πC .916π D .78π6.(2015秋•丰台区期末)函数()sin 22f x x x =+在区间[0,]π上的零点之和是( ) A .23πB .712π C .76π D .43π 二.填空题(共5小题)7.(2018春•丰台区期末)已知函数2()cos cos f x x x x =+,则()f x 的最小正周期为 ;最大值为 . 8.(2017•海淀区校级三模)已知函数()sin()cos (0)6f x x x πωωω=+->,若函数()f x 的图象关于直线2x π=对称,且在区间[,]44ππ-上是单调函数,则ω的最大值是9.(2017•朝阳区二模)若平面向量(cos ,sin )a θθ=,(1,1)b =-,且a b ⊥,则sin 2θ的值是 . 10.(2016•北京模拟)已知函数(tan )sin 2cos2f ααα=+,则函数()f x 的值域为 .11.(2016春•海淀区校级期末)函数2()sin()cos 62xf x x π=++的振幅为 ,最小正周期为 .三.解答题(共4小题)12.(2015春•延庆县期末)(Ⅰ)证明:sin 1cos 1cos sin αααα-=+. (Ⅱ)已知圆的方程是222x y r +=,则经过圆上一点0(M x ,0)y 的切线方程为200x x y y r +=,类比上述性质,试写出椭圆22221x y a b+=类似的性质.13.(2014•海淀区校级模拟)由倍角公式2cos22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.对于cos3x ,我们有 cos3cos(2)x x x =+ cos2cos sin2sin x x x x =-2(2cos 1)cos 2(sin cos )sin x x x x x =-- 322cos cos 2(1cos )cos x x x x =--- 34cos 3cos x x =-可见cos3x 可以表示为cos x 的三次多项式.一般地,存在一个n 次多项式()n P t ,使得cos (cos )n nx P x =,这些多项式()n P t 称为切比雪夫多项式.()I 求证:3sin33sin 4sin x x x =-;()II 请求出4()P t ,即用一个cos x 的四次多项式来表示cos4x ; ()III 利用结论3cos34cos 3cos x x x =-,求出sin18︒的值.14.(2009秋•通州区期末)求证:2tan (1cos2)1cos2θθθ+=-.15.(20092tan α=.三角函数中的恒等变换应用(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2017秋•东城区期末)若)3cos ,(,)x x x ϕϕππ+=-∈-,则ϕ等于( ) A .3π-B .3πC .56π D .56π-【分析】由题意利用两角和的正弦公式可得cos ϕ和sin ϕ的值,从而求得ϕ的值. 【解答】解:23sin()3cos xx x ϕ+-,cos sin 3cos x x xx ϕϕ∴+=-,∴3ϕϕ⎧=⎪=⎨=-⎪⎩即1cos 2sin ϕϕ⎧=⎪⎪⎨⎪=⎪⎩(,)ϕππ∈-,3πϕ∴=-, 故选:A.【点评】本题主要考查两角和的正弦公式的应用,属于基础题.2.(2019•石景山区一模)已知函数()sin f x a x x =-的一条对称轴为6x π=-,12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性,则12||x x +的最小值为( ) A .6πB .3π C .23π D .43π 【分析】利用辅助角公式化简,对称轴为6x π=-,12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性,可得1x 与2x ,关于对称中心对称,即可求解12||xx +的最小值;【解答】解:函数()sin )f x a xx x θ=-=+,其中tan θ= 函数()f x的一条对称轴为6x π=-,可得1()62f a π-=--=解得:2a =. 3πθ∴=-对称中心对称横坐标3x k ππ-=,可得3x k ππ=+,k Z ∈.又12()()0f x f x +=,且函数()f x 在1(x ,2)x 上具有单调性. 12||2||3x x k π∴+=+当0k =时,可得122||3x x π+= 故选:C .【点评】本题考查了正弦函数的最值和单调性的综合应用.属于中档题. 3.(2018•海淀区二模)关于函数()sin cos f x x x x =-,下列说法错误的是( ) A .()f x 是奇函数 B .0不是()f x 的极值点C .()f x 在(,)22ππ-上有且仅有3个零点D .()f x 的值域是R【分析】根据三角函数的性质和导函数,依次判断各选项即可.【解答】解:对于A :由()sin()cos()()f x x x x f x -=-+-=-,()f x ∴是奇函数,A 对;对于B ,()sin cos f x x x x =-,()cos cos sin sin f x x x x x x x '=--=-,当0x =时,()0f x =,()0f x '=,0不是()f x 的极值点.B 对.对于:()sin cos C f x x x x =-,()cos cos sin sin f x x x x x x x '=-+=,可得在(2π-,0)上单调递减.(0,)2π上单调递增.(0)f 可得最小值,(0)0f =,所以,()f x 在(,)22ππ-上不是3个零点.C 不对;对于D :当x 无限大或无线小时,可得()f x 的值域为R ,D 对. 故选:C .【点评】本题主要考查三角函数的图象和性质,导函数的应用,属于基础题.4.(2017春•西城区期末)函数()f x x x =-在区间[0,]π上的最大、最小值分别为( )A .π,0B .2π- C .,14ππ- D .0,14π-【分析】对函数()f x 求导数,利用导数判断()f x 的单调性,并求()f x 在区间[0,]π上的最大、最小值.【解答】解:函数()f x x x =,()1f x x ∴'=;令()0f x '=,解得cos x , 又[0x ∈,]π,4x π∴=;[0x ∴∈,)4π时,()0f x '<,()f x 单调递减;(4x π∈,]π时,()0f x '>,()f x 单调递增;且()14444f ππππ==-,(0)0f =,()f ππ=;∴函数()f x 在区间[0,]π上的最大、最小值分别为π和14π-.故选:C .【点评】本题考查了利用导数求函数在闭区间上的最值问题,是中档题.5.(2017春•海淀区校级期中)已知函数21()(2cos 1)sin 2cos42f x x x x =-+,若(2πα∈,)π且()f α=α的值是( ) A .58πB .1116πC .916π D .78π【分析】利用二倍角公式和和角公式化简()f x ,根据()f α=α的表达式即可得出α的值.【解答】解:111()cos2sin 2cos4sin 4cos4)2224f x x x x x x x π=+=++,())242f παα∴=+=4242k ππαπ∴+=+,即162k ππα=+,k Z ∈. (2πα∈,)π,916216πππα∴=+=. 故选:C .【点评】本题考查了三角恒等变换,正弦函数的图象与性质,属于中档题.6.(2015秋•丰台区期末)函数()sin 22f x x x =+在区间[0,]π上的零点之和是( ) A .23πB .712π C .76π D .43π 【分析】由()0f x =结合正切函数的性质求出函数的零点即可得到结论.【解答】解:由()sin 220f x x x ==得sin 2x x =,即tan 2x = 即23x k ππ=-,即26k x ππ=-, 0x π,∴当1k =时,3x π=,当2k =时,56x π=, 则函数()f x 的零点之和为57366πππ+=, 故选:C .【点评】本题主要考查函数零点的求解和应用,根据正切函数的性质求出x 的值是解决本题的关键. 二.填空题(共5小题)7.(2018春•丰台区期末)已知函数2()cos cos f x x x x =+,则()f x 的最小正周期为 π ;最大值为 . 【分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性求得函数()f x 的最小正周期.再根据正弦函数值域求最大值.【解答】解:函数2111()cos cos 2cos2sin(2)2262f x x x x x x x π=+=++=++. 故函数()f x 的最小正周期为T π=. 当2262x k πππ+=+时,函数()f x 取得最大值为32. 故答案为:3,2π.【点评】本题主要考查三角恒等变换,正弦函数的周期性,函数sin()y A x ωϕ=+的图象变换规律,正弦函数的定义域和值域,属于中档题.8.(2017•海淀区校级三模)已知函数()sin()cos (0)6f x x x πωωω=+->,若函数()f x 的图象关于直线2x π=对称,且在区间[,]44ππ-上是单调函数,则ω的最大值是 43【分析】利用和与差和辅助角公式化简,根据直线2x π=对称,且在区间[,]44ππ-上是单调函数可得1()244T ππ--,建立不等式关系,求解即可.【解答】解:函数()sin()cos (0)6f x x x πωωω=+->,1cos 2x x ωω=- sin()6x πω=-函数()f x 的图象关于直线2x π=对称, 即262k πππωπ-=+,k Z ∈,1123k ω∴=+,又()f x 在区间[,]44ππ-上是单调函数,∴1()244T ππ--, 则T π.即2ω.∴24622462k k πππωππππωπ⎧---⎪⎪⎨⎪-+⎪⎩解得:483883k k ωω⎧-⎪⎪⎨⎪+⎪⎩∴403ω< 可得ω的最大值为:43. 故答案为:43【点评】本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键. 9.(2017•朝阳区二模)若平面向量(cos ,sin )a θθ=,(1,1)b =-,且a b ⊥,则sin 2θ的值是 1 .【分析】利用向量垂直,就是数量积为0,求出cos sin 0θθ-=,两边平方,利用同角三角函数基本关系式,二倍角的正弦函数公式可求sin 2θ的值. 【解答】解:因为a b ⊥, 所以0a b =, 即:cos sin 0θθ-=,两边平方可得:22cos 2sin cos sin 0θθθθ-+=, 可得:1sin20θ-=,解得:sin21θ=. 故答案为:1.【点评】本题考查数量积判断两个平面向量的垂直关系,考查计算能力,逻辑思维能力,是基础题. 10.(2016•北京模拟)已知函数(tan )sin 2cos2f ααα=+,则函数()f x 的值域为 [ . 【分析】由三角恒等变换化简()f x ,然后转化为关于x 的方程. 【解答】解:22(tan )sin 2cos22sin cos cos sin f ααααααα=+=+-2222222sin cos cos sin 2tan 1tan cos sin 1tan ααααααααα+-+-==++, ∴2221()1x x f x x +-=+,2(1)210y x x y ∴+-+-=,当110,2y x +==-,即1y =-成立; 当10y +≠时,△2(2)4(1)(1)0y y =--+-,可得2y,且10y +≠,综上所述,可得函数的值域为[.【点评】本题考查三角恒等变换以及换元,转化思想.11.(2016春•海淀区校级期末)函数2()sin()cos 62xf x x π=++的振幅为,最小正周期为 . 【分析】将函数利用二倍角公式和辅助角公式进行化简,结合三角函数的图象和性质即可得出答案.【解答】解:2()sin()cos 62xf x x π=++,11sin coscos sincos 6622x x x ππ=+++111cos cos 222x x x =+++1cos 2x x =++1)2x ϕ=++,其中tan ϕ=∴,最小正周期222||1T πππω===;,2π. 【点评】本题考查了利用二倍角公式和辅助角公式进行三角函数的能力和三角函数的图象和性质的运用.属于基础题三.解答题(共4小题)12.(2015春•延庆县期末)(Ⅰ)证明:sin 1cos 1cos sin αααα-=+. (Ⅱ)已知圆的方程是222x y r +=,则经过圆上一点0(M x ,0)y 的切线方程为200x x y y r +=,类比上述性质,试写出椭圆22221x y a b+=类似的性质.【分析】(Ⅰ)运用分析法进行证明;(Ⅱ)经过圆上一点0(M x ,0)y 的切线方程就是将圆的方程中的一个x 与y 分别用0(M x ,0)y 的横坐标与纵坐标替换.由此类比得到. 【解答】(Ⅰ)证明:欲证sin 1cos 1cos sin αααα-=+, 只需证2sin (1cos )(1cos )ααα=-+, 即证22sin 1cos αα=-,上式显然成立,故原等式成立.5⋯分(Ⅱ)解:圆的性质中,经过圆上一点0(M x ,0)y 的切线方程就是将圆的方程中的一个x 与y 分别用0(M x ,0)y 的横坐标与纵坐标替换.故可得椭圆22221x y a b +=类似的性质为:过椭圆22221x y a b+=一点0(P x ,0)y 的切线方程为00221x x y ya b+=.10⋯分. 【点评】本题考查了三角函数恒等式的证明以及类比推理.13.(2014•海淀区校级模拟)由倍角公式2cos22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.对于cos3x ,我们有 cos3cos(2)x x x =+ cos2cos sin2sin x x x x =-2(2cos 1)cos 2(sin cos )sin x x x x x =-- 322cos cos 2(1cos )cos x x x x =--- 34cos 3cos x x =-可见cos3x 可以表示为cos x 的三次多项式.一般地,存在一个n 次多项式()n P t ,使得cos (cos )n nx P x =,这些多项式()n P t 称为切比雪夫多项式.()I 求证:3sin33sin 4sin x x x =-;()II 请求出4()P t ,即用一个cos x 的四次多项式来表示cos4x ; ()III 利用结论3cos34cos 3cos x x x =-,求出sin18︒的值.【分析】()I 利用诱导公式可得33sin3cos(3)cos[3(3)]22x x x ππ=--=--,把已知的条件代入可证得结论成立. ()II 两次使用二倍角公式,即可求得结果.()III 利用sin36cos54︒=︒,可得32sin18cos184cos 183cos18︒︒=︒-︒,解方程求出2sin18︒的值.【解答】解:()I 证明:33sin3cos(3)cos[3()][4cos ()3cos()]2222x x x x x ππππ=--=--=---- 33(4sin 3sin )3sin 4sin x x x x =--=-,故等式成立.22242()cos4cos(22)2cos 212(2cos 1)12(4cos 4cos 1)1II x x x x x x ==-=--=-+- 428cos 8cos 1x x =-+.()sin36cos54III ︒=︒,32sin18cos184cos 183cos18∴︒︒=︒-︒,24sin 182sin1810∴︒+︒-=,∴sin18︒=. 【点评】本题考查二倍角公式、诱导公式的应用,正确选择公式是解题的关键. 14.(2009秋•通州区期末)求证:2tan (1cos2)1cos2θθθ+=-.【分析】原式的左边括号外边利用同角三角函数间的基本关系把tan θ化为sin cos θθ,括号里边利用二倍角的余弦函数公式化简,合并后约分即可得到结果;原式的右边利用二倍角的余弦函数公式化简,合并后得到结果,由左边=右边得证.【解答】证明:等式左边2tan (1cos 2)θθ=+222sin (12cos 1)cos θθθ=+- 222sin 2cos cos θθθ= 22sin θ=,等式右边221cos21(12sin )2sin θθθ=-=--=,∴左边=右边,故原式成立.【点评】此题考查了三角函数恒等式的证明,用到的知识有同角三角函数间的基本关系,以及二倍角的余弦函数公式,熟练掌握三角函数的恒等变换公式是证明的关键.15.(20092tan α=.【分析】先把1sin 1sin αα+-分子分母同时乘以1sin α+,整理求得22(1sin )cos αα+,进而根据α所在的象限求得1sin cos αα+=1sin cos αα-= 2tan α=.【解答】解:1sin 1sin αα+-2(1sin )(1sin )(1sin )ααα+=-+ (1sin )a =+^2/[1(sin )a -^2] 22(1sin )cos αα+=因为A 是第四象限的角 所以cos 0> 又因为sin 1α<- 所以1sin 0a +>1sin cos αα+1sin cos αα-=第11页(共11页)1sin 1sin sin 2cos cos cos αααααα+-=-= 2tan α=原式得证.【点评】本题主要考查了三角函数恒等式的证明及同角三角函数基本关系的应用.。
2018年海淀区初三数学二模试题(附答案)
2018年海淀区初三数学二模试题(附答案)海淀区九年级第二学期期末练习数学 2018.5 学校姓名成绩考生须知 1.本试卷共8页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、班级和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.若代数式有意义,则实数的取值范围是 A . B. C. D. 2.如图,圆的弦,,,中最短的是 A . B. C. D.3.2018年4月18日,被誉为“中国天眼”的FAST望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将用科学记数法表示应为 A. B. C. D. 4.下列图形能折叠成三棱柱的是 C D 5.如图,直线经过点,,°,°,则等于6.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱高为.已知,冬至时北京的正午日光入射角约为°,则立柱根部与圭表的冬至线的距离(即的长)约为7.实数在数轴上的对应点的位置如图所示,若,则下列结论中一定成立的是8.“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中四位同学的单词记忆效率与复习的单词个数的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是二、填空题(本题共16分,每小题2分) 9.分解因式:. 10.如图,是⊙ 的直径,是⊙ 上一点,,,则图中阴影部分的面积为. 11.如果,那么代数式的值是. 12.如图,四边形与四边形是以为位似中心的位似图形,满足,,,分别是,,的中点,则. 13.2017年全球超级计算机500强名单公布,中国超级计算机“神威•太湖之光”和“天河二号”携手夺得前两名.已知“神威•太湖之光”的浮点运算速度是“天河二号”的2.74倍.这两种超级计算机分别进行100亿亿次浮点运算,“神威•太湖之光”的运算时间比“天河二号”少18.75秒,求这两种超级计算机的浮点运算速度.设“天河二号”的浮点运算速度为亿亿次/秒,依题意,可列方程为.14.袋子中有20个除颜色外完全相同的小球. 在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后放回,将球摇匀. 重复上述过程150次后,共摸到红球30次,由此可以估计口袋中的红球个数是__________.15.下面是“作以已知线段为斜边的等腰直角三角形”的尺规作图过程.已知:线段.求作:以为斜边的一个等腰直角三角形.作法:如图,(1)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点;(2)作直线,交于点;(3)以为圆心,的长为半径作圆,交直线于点;(4)连接,.则即为所求作的三角形.请回答:在上面的作图过程中,① 是直角三角形的依据是;② 是等腰三角形的依据是.16.在平面直角坐标系中,点绕坐标原点顺时针旋转后,恰好落在右图中阴影区域(包括边界)内,则的取值范围是 .三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:.18.解不等式,并把解集在数轴上表示出来.19.如图,四边形中,°,平分,,为上一点,,,求的长.20.关于的一元二次方程 . (1)求证:方程总有实数根;(2)请给出一个的值,使方程的两个根中只有一个根小于 .21.如图,在四边形中,,交于,是的中点,连接并延长,交于点,恰好是的中点. (1)求的值;(2)若,求证:四边形是矩形.22.已知直线过点,且与函数的图象相交于两点,与轴、轴分别交于点,如图所示,四边形均为矩形,且矩形的面积为 . (1)求的值;(2)当点的横坐标为时,求直线的解析式及线段的长;(3)如图是小芳同学对线段的长度关系的思考示意图. 记点的横坐标为,已知当时,线段的长随的增大而减小,请你参考小芳的示意图判断:当时,线段的长随的增大而 . (填“增大”、“减小”或“不变”)23.如图,是的直径,是的中点,弦于点,过点作交的延长线于点 . (1)连接,则 = ;(2)求证:与相切;(3)点在上,,交于点 .若,求的长.24.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.(1)根据折线图把下列表格补充完整;运动员平均数中位数众数甲 8.5 9 乙 8.5(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:收费项目收费标准 3公里以内收费 13元基本单价 2.3元/公里…… …… 备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。
北京市2018年中考数学试题(含答案)
2018年北京市高级中等学校招生考试数学试卷姓名 准考证号 考场号 座位号一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。
1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为(A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。
已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为 (A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯ (D )26105.2m ⨯ 5. 若正多边形的一个外角是o60,则该正多边形的内角和为(A )o360 (B )o540 (C )o720 (D )o9006. 如果32=-b a ,那么代数式b a ab a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为(A )3 (B )32 (C )33 (D )34 7. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。
下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A )10m (B )15m (C )20m (D )22.5m8. 上图是老北京城一些地点的分布示意图。
在图中,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。
人教版2017~2018学年度初三第一学期期末考试数学试题附详细答案
E D CBA2017-2018学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E , 若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为 A . y =21x 2+ 2x + 1 B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有 A. 2个 B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个D. 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满16. 点是 17.18.如图:在Rt△ABC中,∠C=90°,BC=8,∠B=60°, 解直角三角形.19.已知反比例函数x 1k y -=图象的两个分支分别位于第一、第三象限.(1)求k的取值范围;(2)取一个你认为符合条件的K值,写出反比例函数的表达式,并求出当x=﹣6时反比例函数y的值;20.已知圆内接正三角形边心距为2cm,求它的边长.24.密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cm AB BC ==,.某一时刻,动点M 从A 点 出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问:(1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.()28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的“闭函数”.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的“闭函数”.(1)反比例函数y =x 2016是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的表达式(用含 m ,n 的代数式表示).图 3一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;---------------------5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分B21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △PAD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
2017-2018学年人教版九年级(上册)期中数学试卷及答案
2017-2018学年人教版九年级(上册)期中数学试卷及答案2017-2018学年九年级(上册)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程x^2-2(3x-2)+(x+1)=0的一般形式是()A。
x^2-5x+5=0B。
x^2+5x-5=0C。
x^2+5x+5=0D。
x^2+5=02.目前我国建立了比较完善的经济困难学生资助体系。
某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A。
438(1+x)^2=389B。
389(1+x)^2=438C。
389(1+2x)^2=438D。
438(1+2x)^2=3893.观察下列图案,既是中心对称图形又是轴对称图形的是()A。
B。
C。
D。
4.把二次函数y=-x^2-x+3用配方法化成y=a(x-h)^2+k的形式时,应为()A。
y=-(x-2)^2+2B。
y=-(x-2)^2+4C。
y=-(x+2)^2+4D。
y=-(x+2)^2+35.二次函数y=ax^2+bx+c(a≠0)的图像如图所示,下列结论正确的是()A。
a<0___<0C。
当-12D。
-2<c<06.对抛物线:y=-x^2+2x-3而言,下列结论正确的是()A。
与x轴有两个交点B。
开口向上C。
与y轴的交点坐标是(0,-3)D。
顶点坐标是(1,-2)7.以3和-1为两根的一元二次方程是()A。
x^2+2x-3=0B。
x^2+2x+3=0C。
x^2-2x-3=0D。
x^2-2x+3=08.在同一坐标系内,一次函数y=ax+b与二次函数y=ax^2+8x+b的图像可能是()A。
B。
C。
D。
9.将抛物线y=3x^2向左平移2个单位,再向下平移1个单位,所得抛物线为()A。
y=3(x-2)^2-1B。
y=3(x-2)^2+1C。
y=3(x+2)^2-1D。
1.2017-2018学年北京市海淀区初三二模数学试题1
B海淀区九年级数学第二学期期末练习2019.06一、选择题(本题共16分,每小题2分). 1.27-的立方根是A .3-B .3C .3±D2.如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠BOD =80°,则∠BOM 等于 A .140°B .120°C .100°D .80°3.科学家在海底下约4.8公里深处的沙岩中,发现了一种世界上最小的神秘生物,它们的最小身长只有0.000 000 02米,甚至比已知的最小细菌还要小.将0.000 000 02用科学记数法表示为A .-7210⨯B .-8210⨯C .-9210⨯D .-10210⨯4.实数a ,b 在数轴上的对应点的位置如图所示,若a c b -<<,则实数c 的值可能是xba–1–2–3123456A .12-B .0C .1 D.725.图1是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒu gǒng ).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图2是其中一个组成部件的三视图,则这个部件是6.已知a b >,则下列不等式一定成立的是A .55a b ->-B .55ac bc >C .55a b -<+ D.55a b +>-7.下面的统计图反映了2013-2018年中国城镇居民人均可支配收入与人均消费支出的情况.(数据来源:国家统计局)根据统计图提供的信息,下列推断不合理...的是 A .2013-2018年,我国城镇居民人均可支配收入和人均消费支出均逐年增加 B .2013-2018年,我国城镇居民人均可支配收入平均每年增长超过2400元 C .从2015年起,我国城镇居民人均消费支出超过20000元D .2018年我国城镇居民人均消费支出占人均可支配收入的百分比超过70%8.如图,小宇计划在甲、乙、丙、丁四个小区中挑选一个小区租住,附近有东西向的交通主干道a 和南北向的交通主干道b ,若他希望租住的小区到主干道a 和主干道b 的直线距离之和最小,则下图中符合他要求的小区是A .甲B .乙C .丙D .丁二、 填空题(本题共16分,每小题2分) 9.当_______x =时,代数式2x x-的值为0. 10.如图,在△ABC 中,∠BAC =90°,D 为BC 中点,若AD =52,AC =3,则AB 的长为 . 11.如图,在⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC .若∠A =60°,∠ABC =20°,则∠C 的度数为 . 12.如果4m n =+,那么代数式2+m n mnn m m n ⎛⎫-⋅⎪⎝⎭的值是___________. 13.如图,在△ABC 中,P ,Q 分别为AB ,AC 的中点.若1APQ S =△,则PBCQ S 四边形=______.DCBAQ P CBA(第10题图) (第11题图)(第13题) 14.某学习小组做抛掷一枚纪念币的实验,整理同学们获得的实验数据,如下表.下面有三个推断:①在用频率估计概率时,用实验5000次时的频率0.3494一定比用实验4000次时的频率0.3500更准确;②如果再次做此实验,仍按上表抛掷的次数统计数据,那么在数据表中,“正面向上”的频率有更大的可能仍会在0.35附近摆动;③通过上述实验的结果,可以推断这枚纪念币有很大的可能性不是质地均匀的.其中正确的是___________.15.按《航空障碍灯(MH/T6012-1999)》的要求,为保障飞机夜间飞行的安全,在高度为45米至105米的建筑上必须安装中光强航空障碍灯(Aviation Obstruction light).中光强航空障碍灯是以规律性的固定模式闪光.在下图中你可以看到某一种中光强航空障碍灯的闪光模式,灯的亮暗呈规律性交替变化,那么在一个连续的10秒内,该航空障碍灯处于亮的状态的时间总和最长可达___________秒./秒16.右图是在浦东陆家嘴明代陆深古墓中发掘出来的宝玉——明白玉幻方.其背面有方框四行十六格,为四阶幻方(从1到16,一共十六个数目,它们的纵列、横行与两条对角线上4个数相加之和均为34).小明探究后发现,这个四阶幻方中的数满足下面规律:在四阶幻方中,当数a,b,c,d有如图1的位置关系时,均有a+b=c+d=17.如图2,已知此幻方中的一些数,则x的值为___________.三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:4cos45(1)2︒+-.18.解不等式组:()48211032x xxx-<-⎧⎪⎨+>⎪⎩,.图1 图219.下面是小宇设计的“作已知直角三角形的中位线”的尺规作图过程.已知:在△ABC 中,∠C =90°.求作:△ABC 的中位线DE ,使点D 在AB 上,点E 在AC 上. 作法:如图,① 分别以A ,C 为圆心,大于12AC 长为半径画弧,两弧交于P ,Q ② 作直线PQ ,与AB 交于点D ,与AC 交于点E . 所以线段DE 就是所求作的中位线. 根据小宇设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明.证明:连接P A ,PC ,QA ,QC , DC ,∵ P A =PC ,QA =_________,∴ PQ 是AC 的垂直平分线(________)(填推理的依据). ∴ E 为AC 中点,AD =DC . ∴ ∠DAC =∠DCA ,又在Rt △ABC 中,有∠BAC +∠ABC =90°,∠DCA +∠DCB =90°. ∴ ∠ABC =∠DCB (________)(填推理的依据). ∴ DB =DC . ∴ AD =BD =DC . ∴ D 为AB 中点.∴ DE 是△ABC 的中位线.20.关于x 的一元二次方程22(21)10x k x k --+-=,其中0k <. (1)求证:方程有两个不相等的实数根; (2)当1k =-时,求该方程的根.21.如图,在□ABCD 中,∠BAD 的角平分线交BC 于点E ,交DC 的延长线于点F ,连接DE . (1)求证:DA =DF ;(2)若∠ADE =∠CDE =30°,DE = 求□ABCD 的面积.22.如图,AB 是⊙O 的直径,P A ,PC 与⊙O 分别相切于点A ,C ,连接AC ,BC ,OP ,AC 与OP 相交于点D . (1)求证:90B CPO ∠+∠=︒; (2)连结BP ,若AC =125,sin ∠CPO =35,求BP 的长.23.如图,在平面直角坐标系xOy 中,直线y x b =+与x 轴、y 轴分别交于点A ,B ,与双曲线2y x=的交点为M ,N .(1)当点M 的横坐标为1时,求b 的值;(2)若3MN AB ≤,结合函数图象,直接写出b 的取值范围.24.有这样一个问题:探究函数2118y x x=-的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数2118y x x=-的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数2118y x x=-的自变量x 的取值范围是 ;(2)如图,在平面直角坐标系xOy 中,完成以下作图步骤:①画出函数214y x =和2y x=-的图象;②在x 轴上取一点P ,过点P 作x 轴的垂线l ,分别交函数214y x =和2y x=-的图象于点M ,N ,记线段MN 的中点为G ;③在x 轴正半轴上多次改变点P 的位置,用②的方法得到相应的点G ,把这些点用平滑的曲线连接起来,得到函数2118y x x=-在y 轴右侧的图象.继续在x 轴负半轴上多次改变点P 的位置,重复上述操作得到该函数在y 轴左侧的图象.(3)结合函数2118y x x=-的图象, 发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为 (保留小数点后一位); ②该函数还具有的性质为:_________________(一条即可).25.某学校共有六个年级,每个年级10个班,每个班约40名同学.该校食堂共有10个窗口,中午所有同学都在食堂用餐.经了解,该校同学年龄分布在12岁(含12岁)到18岁(含18岁)之间,平均年龄约为15岁.小天、小东和小云三位同学,为了解全校同学对食堂各窗口餐食的喜爱情况,各自进行了抽样调查,并记录了相应同学的年龄,每人调查了60名同学,将收集到的数据进行了整理.小天从初一年级每个班随机抽取6名同学进行调查,绘制统计图表如下:小东从全校每个班随机抽取1名同学进行调查,绘制统计图表如下:小云在食堂门口,对用餐后的同学采取每隔10人抽取1人进行调查,绘制统计图表如下:根据以上材料回答问题:(1)写出图2中m的值,并补全图2;(2)小天、小东和小云三人中,哪个同学抽样调查的数据能较好地反映出该校同学对各窗口餐食的喜爱情况,并简要说明其余同学调查的不足之处;(3)为使每个同学在中午尽量吃到自己喜爱的餐食,学校餐食管理部门应为______窗口尽量多的分配工作人员,理由为_________________________________ __.26.在平面直角坐标系xOy 中,抛物线C :223y ax ax =-+与直线l :y kx b =+交于A ,B 两点,且点A 在y轴上,点B 在x 轴的正半轴上. (1)求点A 的坐标;(2)若1a =-,求直线l 的解析式; (3)若31k -<<-,求a 的取值范围.27.已知C 为线段AB 中点,ACM α∠=.Q 为线段BC 上一动点(不与点B 重合),点P 在射线CM 上,连接P A ,PQ ,记BQ kCP =. (1)若60α=︒,1k =,①如图1,当Q 为BC 中点时, 求PAC ∠的度数; ②直接写出P A 、PQ 的数量关系;(2)如图2,当45α=︒时.探究是否存在常数k ,使得②中的结论仍成立?若存在,写出k 的值并证明;若不存在,请说明理由.图1 图228.对于平面直角坐标系xOy 中的两个图形M 和N ,给出如下定义:若在图形M 上存在一点A ,图形N 上存在两点B ,C ,使得△ABC 是以BC 为斜边且BC =2的等腰直角三角形,则称图形M 与图形N 具有关系()M N ,φ.(1)若图形X 为一个点,图形Y 为直线y x =,图形X 与图形Y 具有关系()X Y ,φ,则点1(0P ,2(11)P ,,3(22)P -,中可以是图形X 的是_____;(2)已知点()20P ,,点()02Q ,,记线段PQ 为图形X . ①当图形Y 为直线y x =时,判断图形X 与图形Y 是否既具有关系()X Y ,φ又具有关系()Y X ,φ,如果是,请分别求出图形X 与图形Y 中所有点A 的坐标;如果不是,请说明理由;②当图形Y 为以(0)T t ,T 时,若图形X 与图形X 具有关系()X Y ,φ,求t 的取值范围.。
【全国区级联考】北京海淀区2017-2018学年七年级第二学期期中调研数学试题
【全国区级联考】北京海淀区2017-2018学年七年级第二学期期中调研数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 的相反数是()A.B.C.D.2. 如图,∠1的同位角是()A.∠2B.∠3C.∠4D.∠53. 下列图形中,不能通过其中一个四边形平移得到的是( )A.B.C.D.4. 如图,点B,C,E三点共线,且BA∥CD,则下面说法正确的是()A.∠2=∠B B.∠1=∠BC.∠3=∠B D.∠3=∠A5. 估算的值是在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6. 如图,将线段AB平移得到线段CD,点A(,4)的对应点为C(4,7),则点B(4,1)的对应点D的坐标为()A.(2,1)B.(2,3)C.(1,3)D.(1,2)7. 若实数a,b满足,那么的值是()A.B.C.D.8. 在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为( )A.(3,-1) B.(-3,1) C.(1,-3) D.(-1,3)9. 如图,已知平行线a,b,一个直角三角板的直角顶点在直线a上,另一个顶点在直线b上,若,则的大小为()A.B.C.D.10. 如图的网格线是由边长为1的小正方形格子组成的, 小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形,小明研究发现,内部含有3个格点的四边形的面积与该四边形边上的格点数有某种关系,请你观察图中的4个格点四边形.设内部含有3个格点的四边形的面积为S,其各边上格点的个数之和为m,则S与m的关系为()A.B.C.D.二、填空题11. 4的算术平方根是_____.12. 若点P(+6,3)在轴上,则点P的坐标为___________.13. 若一个二元一次方程组的解是请写出一个符合此要求的二元一次方程组_____________.14. ____.(填“>”、“<”或“=”)15. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A是135°,则第二次的拐角∠B是________,根据是________________.16. 如果方程组的解是方程的一个解,则的值为____________.17. 如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为4,则图中阴影部分的面积是________.18. 初三年级261位学生参加期末考试,某班35位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图1和图2所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,总成绩名次靠前的学生是_________;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是_____三、解答题19. 计算:.20. 解下列方程组:21. 如图,已知AD∥BC,.求证BE∥DF.22. 如图,已知CO⊥AB于点O,∠AOD=5∠DOB,求∠COD的度数.23. 一个数值转换器,如图所示:(1)当输入的x为16时.输出的y值是;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;(3)若输出的y是,请写出两个满足要求的x值:.24. 作图题:如图,直线AB,CD相交于点O,点P为射线OC上异于O的一个点.(1)请用你手中的数学工具画出∠AOC的平分线OE;(2)过点P画出(1)中所得射线OE的垂线PM(垂足为点M),并交直线AB 于点N;(3)请直接写出上述所得图形中的一对相等线段.25. 如图,已知,,,.AB与DE平行吗?为什么?26. 对于平面直角坐标系xOy中的点P(x,y),若点Q的坐标为(x+ay,ax+y)(其中a为常数,且a≠0),则称Q是点P的“a系联动点”.例如:点P(1,2)的“3系联动点”Q的坐标为(7,5).(1)点(3,0)的“2系联动点”的坐标为;若点P的“系联动点”的坐标是(,0),则点P的坐标为;(2)若点P(x,y)的“a系联动点”与“系联动点”均关于x轴对称,则点P分布在,请证明这个结论;(3)在(2)的条件下,点P不与原点重合,点P的“a系联动点”为点Q,且PQ的长度为OP长度的3倍,求a的值.27. 在直角坐标系中,点O为坐标原点,A(1,1),B(1,3),将线段AB平移到直线AB的右边得到线段CD(点C与点A对应,点D与点B对应),点D的坐标为(m,n),且m>1.(1)如图1,当点C坐标为(2,0)时,请直接写出三角形BCD的面积:;(2)如图2,点E是线段CD延长线上的点,∠BDE的平分线DF交射线AB于点A.求证;(3)如图3,线段CD运动的过程中,在(2)的条件下,n=4.①当时,在直线AB上点P,满足三角形PBC的面积等于三角形CDF的面积,请直接写出点P的坐标:;②在x轴上的点Q,满足三角形QBC的面积等于三角形CDF的面积的2倍,请直接写出点Q的坐标:.(用含m的式子表示).。
2017–2018学年度第一学期期末初三数学模拟试卷二(含答案)
= .故选 B.
二、填空题 (每小题 2 分,共 20 分) 11.x ≤2;12.5;13.8;14.3π;15.解:函数与 x 轴的另一交点的坐标是:(-3,0),
则一元二次方程的根是:x1=1,x=-3.故答案是:x1=1,x2=-3.;16.解:设 A 点坐标
为(0,a),(a>0),则 x2=a,解得 x= ,∴点 B( ,a), =a,则 x= ,
DE
AB=
.
17.现定义运算“★”,对于任意实数 a、b,都有 a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,
若 x★2=6,则实数 x 的值是
.
版权所有@蔡老师数学
- 2 - / 12
18.如图,AB 是⊙O 的弦,AB=4,点 C 是⊙O 上的一个动点,且∠ACB=45°.若点 M,N 分 别是 AB,BC 的中点,则 MN 长的最大值是 .
(2)设点 D 是线段 AB 上的动点,过点 D 作 y 轴的平行线交抛物线于点 E,求线段 DE
长度的最大值.
y
版权所有@蔡老师数学
CO B
Ax
- 4 - / 12
„„„„„„„„„„„„„„„„„„„„„„„装„„„„„订„„„„„线„„„„„„„„„„„„„„„„„„„„„„
.
学号
26.(8 分)如图,AP 是∠MAN 的平分线,B 是射线 AN 上的一点,以 AB 为直径作⊙O 交
19.解:原式=(4 3- 3)× 6…………………………………………………………2 分
=3 3× 6……………………………………………………………………4 分
= 9 2 ……………………………………………………………………6 分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区九年级第二学期期末练习数 学 2018.5学校 姓名 成绩一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个... 1.若代数式31x -有意义,则实数x 的取值范围是 A .1x > B.1x ≥ C.1x ≠ D.0x ≠2.如图,圆O 的弦GH ,EF ,CD ,AB 中最短的是 A . GH B. EF C. CD D. AB3.2018年4月18日,被誉为“中国天眼”的FAST 望远镜首次发现的毫秒脉冲星得到国际认证.新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为A. -25.1910⨯B. -35.1910⨯C. -551910⨯D. -651910⨯E D4.下列图形能折叠成三棱柱...的是ABC D5.如图,直线DE 经过点A ,DE BC ∥,=45B ∠°,1=65∠°,则2∠等于A .60°B .65°C .70°D .75°6.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC 高为a .已知,冬至时北京的正午日光入射角ABC ∠约为26.5°,则立柱根部与圭表的冬至线的距离(即BC 的长)约为A .sin 26.5a ︒B .tan 26.5a︒C .cos26.5a ︒D .cos 26.5a︒7.实数,,a b c 在数轴上的对应点的位置如图所示,若a b >,则下列结论中一定成立的是A.0b c +> B .2a c +<- C. 1ba< D. 0abc ≥8.“单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复立夏立秋春分秋分立春立冬夏至线冬至线日光南(午)EDC A21习的单词个数的比值.右图描述了某次单词复习中,,,M N S T 四位同学的单词记忆效率y 与复习的单词个数x 的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是A .MB .NC .SD .T二、填空题(本题共16分,每小题2分) 9. 分解因式:2363a a ++= .10.如图,AB 是⊙O 的直径,C 是⊙O 上一点,6OA =,30B ∠=︒,则图中阴影部分的面积为 .11.如果3m n =,那么代数式n m mm n n m⎛⎫-⋅ ⎪-⎝⎭的值是 .12.如图,四边形ABCD 与四边形1111A B C D 是以O 为位似中心的位似图形,满足11=OA A A ,E F ,,1E ,1F 分别是AD BC ,,11A D ,11B C 的中点,则11=E F EF.13.2017年全球超级计算机500强名单公布,中国超级计算机“神威·太湖之光”和“天河二号”携手夺得前两名.已知“神威·太湖之光”的浮点运算速度是“天河二号”的2.74倍.这两种超级计算机分别进行100亿亿次浮点运算,“神威·太湖之光”的运算时间比“天河二号”少18.75秒,求这两种超级计算机的浮点运算速度.设“天河二号”的浮点运算速度为x 亿亿次/秒,依题意,可列方程为 .14.袋子中有20个除颜色外完全相同的小球. 在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后放回,将球摇匀. 重复上述过程150次后,共摸到红球30次,由此可以估计口袋中的红球个数是__________. .BAOQB请回答:在上面的作图过程中,①ABC △是直角三角形的依据是 ;②ABC △是等腰三角形的依据是 .16.在平面直角坐标系xOy 中,点(2,)A m -绕坐标原点O 顺时针旋转90︒后,恰好落在右图中阴影区域(包括边界)内,则m 的取值范围是 .三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分) 解答应写出文字说明、演算步骤或证明过程.17214sin 452)()2-︒+-.18.解不等式2223x xx +--<,并把解集在数轴上表示出来.19.如图,四边形ABCD 中,90C ∠=°,BD 平分ABC ∠,3AD =,E 为AB 上一点, 4AE =,5ED =,求CD 的长.E DCBA20.关于x 的一元二次方程2(3)30x m x m -++=. (1)求证:方程总有实数根;(2)请给出一个m 的值,使方程的两个根中只有..一个根小于4.21.如图,在四边形ABCD 中,AB CD P , BD 交AC 于G ,E 是BD 的中点,连接AE 并延长,交CD 于点F ,F 恰好是CD 的中点.EGF ABCD(1)求BGGD的值; (2)若CE EB =,求证:四边形ABCF 是矩形.22.已知直线l 过点(2,2)P ,且与函数(0)ky x x=>的图象相交于,A B 两点,与x 轴、y 轴分别交于点,C D ,如图所示,四边形,ONAE OFBM 均为矩形,且矩形OFBM 的面积为3. (1)求k 的值;(2)当点B 的横坐标为3时,求直线l 的解析式及线段BC 的长; (3)如图是小芳同学对线段,AD BC 的长度关系的思考示意图.记点B 的横坐标为s ,已知当23s <<时,线段BC 的长随s 的增大而减小,请你参考小芳的示意图判断:当3s ≥时,线段BC 的长随s 的增大而 . (填“增大”、“减小”或“不变”)23.如图,AB 是O e 的直径,M 是OA 的中点,弦CD AB ⊥于点M ,过点D 作DE CA ⊥交CA 的延长线于点E .(1)连接AD ,则OAD ∠= ︒ ;(2)求证:DE与Oe相切;(3)点F在»BC上,45CDF∠=︒,DF交AB于点N.若3DE=,求FN的长.24.如图是甲、乙两名射击运动员的10次射击测试成绩的折线统计图.(1)根据折线图把下列表格补充完整;运动员平均数中位数众数甲8.5 9乙8.5(2)根据上述图表运用所学统计知识对甲、乙两名运动员的射击水平进行评价并说明理由.25.小明对某市出租汽车的计费问题进行研究,他搜集了一些资料,部分信息如下:收费项目收费标准ONMFDCA备注:出租车计价段里程精确到500米;出租汽车收费结算以元为单位,元以下四舍五入。
小明首先简化模型,从简单情形开始研究:①只考虑白天正常行驶(无低速和等候);②行驶路程3公里以上时,计价器每500米计价1次,且每1公里中前500米计价1.2元,后500米计价1.1元.下面是小明的探究过程,请补充完整:记一次运营出租车行驶的里程数为x (单位:公里),相应的实付车费为y (单位:元). (1)下表是y 随x 的变化情况(2)在平面直角坐标系xOy 中,画出当0 5.5x <<时y 随x 变化的函数图象;(3)一次运营行驶x 公里(0x >)的平均单价记为w (单位:元/公里),其中yw x=. ①当3,3.4x =和3.5时,平均单价依次为123,,w w w ,则123,,w w w 的大小关系是____________;(用“<”连接) ②若一次运营行驶x 公里的平均单价w 不大于行驶任意s (s x ≤)公里的平均单价s w ,则称这次行驶的里程数为幸运里程数.请在上图中x 轴上表示出34:(不包括端点)之间的幸运里程数x 的取值范围.26.在平面直角坐标系xOy 中,已知点(3,1)A -,(1,1)B -,(,)C m n ,其中1n >,以点,,A B C 为顶点的平行四边形有三个,记第四个顶点分别为123,,D D D ,如图所示.(1)若1,3m n =-=,则点123,,D D D 的坐标分别是( ),( ),( );(2)是否存在点C,使得点123,,,,A B D D D在同一条抛物线上?若存在,求出点C的坐标;若不存在,说明理由.微信扫码查看周老师详细图解27.如图,在等边ABC△中,,D E分别是边,AC BC上的点,且CD CE=,30DBC∠<︒,点C与点F关于BD对称,连接,AF FE,FE交BD于G.(1)连接,DE DF,则,DE DF之间的数量关系OyxD3D1D2BACGFEDCBA是 ;(2)若DBC α∠=,求FEC ∠的大小; (用α的式子表示) (3)用等式表示线段,BG GF 和FA 之间的数量关系,并证明.28.对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-. (1)写出函数21y x =-的限减系数;(2)0m >,已知1y x=(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围. (3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.海淀区九年级第二学期期末练习数学参考答案及评分标准 2018.5一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.23(1)a + 10.6π 11.4 12.1213.10010018.752.74x x-= 14.4 15.①直径所对的圆周角为直角②线段垂直平分线上的点与这条线段两个端点的距离相等 16.532m ≤≤三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)17. 解:原式=414+-3. 18. 解:去分母,得 63(2)2(2)x x x -+<-. 去括号,得 63642x x x --<-. 移项,合并得 510x <. 系数化为1,得 2x <. 不等式的解集在数轴上表示如下:19. 证明:∵3AD =,4AE =,5ED =,∴222AD AE ED +=. ∴90A ∠=︒. ∴DA AB ⊥. ∵90C ∠=︒.∴DC BC ⊥. ∵BD 平分ABC ∠,∴DC AD =. ∵3AD =,∴3CD =.20.(1)证明:依题意,得22[(3)]413(3)m m m ∆=-+-⨯⨯=-.∵2(3)0m -≥,∴方程总有实数根.(2) 解:∵原方程有两个实数根3,m , ∴取4m =,可使原方程的两个根中只有..一个根小于4. 注:只要4m ≥均满足题意. 21.(1)解:∵ AB ∥CD , ∴ ∠ABE =∠EDC . ∵ ∠BEA =∠DEF , ∴ △ABE ∽△FDE . ∴AB BEDF DE=. ∵ E 是BD 的中点, ∴ BE =DE .∴ AB =DF . ∵ F 是CD 的中点, ∴ CF =FD . ∴ CD =2AB .∵ ∠ABE =∠EDC ,∠AGB =∠CGD , ∴ △ABG ∽△CDG . ∴12BG AB GD CD ==. (2)证明:∵ AB ∥CF ,AB =CF ,∴ 四边形ABCF 是平行四边形. ∵ CE =BE ,BE =DE , ∴ CE =ED . ∵ CF =FD ,∴ EF 垂直平分CD . ∴ ∠CF A =90°.∴ 四边形ABCF 是矩形. 22.解:(1)设点B 的坐标为(x ,y ),由题意得:BF y =,BM x =. ∵ 矩形OMBF 的面积为3,∴ 3xy =. ∵ B 在双曲线ky x=上, ∴ 3k =.EGF ABCD(2)∵ 点B 的横坐标为3,点B 在双曲线上, ∴ 点B 的坐标为(3,1). 设直线l 的解析式为y ax b =+. ∵ 直线l 过点(2,2)P ,B (3,1), ∴ 22,3 1.a b a b +=⎧⎨+=⎩ 解得1,4.a b =-⎧⎨=⎩∴ 直线l 的解析式为4y x =-+. ∵ 直线l 与x 轴交于点C (4,0),∴BC =.(3) 增大23.解:(1) 60 ;(2)连接OD ,∵CD AB ⊥,AB 是O e 的直径,∴CM MD =. ∵M 是OA 的中点, ∴AM MO =.又∵AMC DMO ∠=∠, ∴AMC OMD ≅△△. ∴ACM ODM ∠=∠. ∴CA ∥OD . ∵DE CA ⊥, ∴90E ∠=︒.∴18090ODE E ∠=︒-∠=︒. ∴DE OD ⊥.∴DE 与⊙O 相切. (3)连接CF ,CN , ∵OA CD ⊥于M , ∴M 是CD 中点. ∴NC ND =. ∵45CDF ∠=︒,BB∴45NCD NDC ∠=∠=︒. ∴90CND ∠=︒. ∴90CNF ∠=︒.由(1)可知60AOD ∠=︒.∴1302ACD AOD ∠=∠=︒.在Rt △CDE 中,90E ∠=︒,30ECD ∠=︒,3DE =, ∴6sin 30DECD ==︒. 在Rt △CND 中,90CND ∠=︒,45CDN ∠=︒,6CD =,∴sin 45CN CD =⋅︒= 由(1)知2120CAD OAD ∠=∠=︒, ∴18060CFD CAD ∠=︒-∠=︒.在Rt △CNF 中,90CNF ∠=︒,60CFN ∠=︒,CN =∴tan 60CNFN ==︒24.(1)补充表格:(2)答案不唯一,可参考的答案如下:甲选手:和乙选手的平均成绩相同,中位数高于乙,打出9环及以上的次数更多,打出7环的次数较少,说明甲选手相比之下发挥更加稳定;乙选手:与甲选手平均成绩相同,打出10环次数和7环次数都比甲多,说明乙射击时起伏更大,但也更容易打出10环的成绩.25.(1)行驶里程数x 0 0<x <3.53.5≤x <44≤x <4.54.5≤x <55≤x <5.5… 实付车费y1314151718…(2)如图所示:(3)①231w w w << ; ②如上图所示.26.解:(1)1D (-3,3),2D (1,3),3D (-3,-1) (2)不存在. 理由如下:假设满足条件的C 点存在,即A ,B ,1D ,2D ,3D 在同一条抛物线上,则线段AB 的垂直平分线2x =-即为这条抛物线的对称轴,而1D ,2D 在直线y n =上,则1D 2D 的中点C 也在抛物线对称轴上,故2m =-,即点C 的坐标为(-2,n ).由题意得:1D (-4,n ),2D (0,n ),3D (-2,2n -). 注意到3D 在抛物线的对称轴上,故3D 为抛物线的顶点. 设抛物线的表达式是()222y a x n =++-.当1x =-时,1y =,代入得1a n =-. 所以()()2122y n x n =-++-. 令0x =,得()41232y n n n n =-+-=-=,解得1n =,与1n >矛盾.所以 不存在满足条件的C 点.27.(1)DE DF =;(2)解:连接DE ,DF , ∵△ABC 是等边三角形, ∴60C ∠=︒. ∵DBC α∠=, ∴120BDC α∠=︒-.∵点C 与点F 关于BD 对称,∴120BDF BDC α∠=∠=︒-,DF DC =. ∴1202FDC α∠=︒+. 由(1)知DE DF =.∴F ,E ,C 在以D 为圆心,DC 为半径的圆上.∴1602FEC FDC ∠=∠=︒+α.(3)BG GF FA =+.理由如下: 连接BF ,延长AF ,BD 交于点H , ∵△ABC 是等边三角形,∴60ABC BAC ∠=∠=︒,AB BC CA ==. ∵点C 与点F 关于BD 对称, ∴BF BC =,FBD CBD ∠=∠. ∴BF BA =. ∴BAF BFA ∠=∠.GFEDCBA设CBD α∠=, 则602ABF α∠=︒-. ∴60BAF α∠=︒+. ∴FAD α∠=.∴FAD DBC ∠=∠. 由(2)知60FEC α∠=︒+. ∴60BGE FEC DBC ∠=∠-∠=︒. ∴120FGB ∠=︒,60FGD ∠=︒.四边形AFGB 中,360120AFE FAB ABG FGB ∠=︒-∠-∠-∠=︒. ∴60HFG ∠=︒.∴△FGH 是等边三角形. ∴FH FG =,60H ∠=︒. ∵CD CE =, ∴DA EB =.在△AHD 与△BGE 中,,,.AHD BGE HAD GBE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△△AHD BGE ≅. ∴BG AH =.∵AH HF FA GF FA =+=+,∴BG GF FA =+.28.解:(1)函数21y x =-的限减系数是2;(2)若1m >,则10m ->,(1m -,11m -)和(m ,1m )是函数图象上两点,11101(1)m m m m -=-<--,与函数的限减系数4k =不符,∴1m ≤. 若102m <<,(1t -,11t -)和(t ,1t )是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---, HGFEDCBA∵(1)0t t -->,且2211111(1)()()24244t t t m --=--+≤--+<,∴1141t t ->-,与函数的限减系数4k =不符. ∴12m ≥. 若112m ≤≤,(1t -,11t -)和(t ,1t )是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---, ∵(1)0t t -->,且2111(1)()244t t t --=--+≤,∴11141(1)t t t t -=≥---,当12t =时,等号成立,故函数的限减系数4k =. ∴m 的取值范围是112m ≤≤. (3)11-n ≤≤.。