箱梁桥面板计算
箱梁模板设计计算汇总
箱梁模板设计计算1箱梁侧模以新安江特大桥主桥箱梁为例。
现浇混凝土对模板的侧压力计算:新浇筑的初凝时间按8h,腹板一次浇注高度4.5m,浇注速度1.5m/h,混凝土无缓凝作用的外加剂,设计坍落度16mm。
F=0.22*26*8*1.0*1.15*1.51/2=64.45KN/m2F=26*4.5=117.0KN/m2故F=64.45KN/m2作为模板侧压力的标准值。
q1=64.45*1.2+(1.5+4+4)*1.4=90.64KN/m2(适应计算模板承载能力)q2=64.45*1.2=77.34KN/m2(适应计算模板抗变形能力)1.1侧模面板计算面板为20mm厚木胶板,模板次楞(竖向分配梁)间距为300mm,计算高度1000mm。
面板截面参数:Ix=666670mm4,Wx=66667mm3,Sx=50000mm3,腹板厚1000mm。
按计算简图1(3跨连续梁)计算结果:Mmax=0.82*106N.mm,Vx=16315N,fmax=0.99mm。
由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为 2.48MPa,大于1.35MPa不满足。
由 Mx/Wx得计算得强度应力为4.89MPa,满足。
由fmax/L得挠跨比为1/304,不满足。
按计算简图2(较符合实际)计算结果:Mmax=0.25*106 N.mm,Vx=9064N,fmax=0.12mm。
由 Vx*Sx/(Ix*Tw)得计算得最大剪应力为0.68MPa,满足。
由 Mx/Wx得计算得强度应力为3.82MPa,满足。
由fmax/L得挠跨比为1/1662,满足。
由此可见合理的建立计算模型确实能减少施工投入避免不必要的浪费。
1.2竖向次楞计算次楞荷载为:q3=90.64*103*0.3=27192N/m=27.19N/mm,选用方木100*100mm,截面参数查附表。
水平主楞间距为900mm,按3跨连续梁计算。
按计算简图计算Mmax=2.20*106N.mm,Vx=14683N,fmax=1.92mm,Pmax=26.92*103N。
箱梁桥面板计算
连续梁桥跨径布置为70+100+70 (m),主跨分别在梁端及跨中设横隔板,板厚40cm , 双车道设计,人行道宽1.5m。
桥面铺装层容重23 kN /m3,人行道构件容重24kN/m3,主梁容重25kN /m3。
求:1、悬臂板最小负弯矩及最大剪力;2、中间板跨中最大正弯矩、支点最小负弯矩、支点最大剪力。
解:一、悬臂板内力计算0.2+ 0.4g人二0.2 1 24 = 4.8kN / m g板 1 25 = 7.5kN/mg 铺=0.1 1 23 = 2.3kN / m q「=2.75 1 =2.75kN /m1、悬臂根部最小负弯矩计算 结构自重产生的悬臂根部弯矩:1 5M 支g - -[4.8 1.5 (3-0.75) 2.3 1.5 7.52.5人群荷载产生的悬臂根部弯矩:M 支-2.75 1.5 (3 -0.75) = -9.3kN m汽车荷载产生的悬臂根部弯矩:6 = a 2 2H =0.2 2 0.1 = 0.4m b 1 = b2 ■ 2H = 0.6 ■ 2 0.1 = 0.8m单个车轮作用下板的有效工作宽度:a =印 2b = 0.4 2 (1.5 - 0.1) = 3.2m 1.4m有重叠。
故:a = 3.2 1.4 二 4.6mp 」址=38kN/m ab 1 4.6 0.8M支p内力组合:二―1.3 38 0.8 1 =—39.5kN m基本组合:M ud =1.2 (-42.2) 1.4 (-39.5) 0.8 1.4 (-9.3) = -116.4kN m短期效应组合: M S d=-42.2 0.7 (-39.5)亠1.3 1.0 (-9.3) = -72.8kN m2、悬臂根部最大剪力计算结构自重产生的悬臂根部剪力:Q 支 g =4.8 1.5 2.3 1.5 7.5 2.5 =29.4kN人群荷载产生的悬臂根部剪力:Q 支 r =2.75 1.5 =4.1kN汽车荷载产生的悬臂根部剪力:Q 支p =1.3 38 0.8 =39.5kN内力组合:基本组合:Q ud =1.2 29.4 1.4 39.5 0.8 1.4 4.1 =95.2kN 短期效应组合:Q sd =29.40.7 39.5“1.3 1.04.1=54.8kN、中间桥面板内力计算竺]= -42.2kN m20.5m100l a50m l b =4m2= 50• 2 故按单向板计算内力lb 4把承托面积平摊到桥面板上:0.6 0.2t』0.2 0.23m4g铺=2.3kN /m1、跨中弯矩计算:g板=0.23 1 25 = 5.8kN / m g = 2.3 5.8 二8.1kN /m l = I0 t = 4 0.2 = 4.2m :::10 b =4.35m单个车轮作用下板的有效工作宽度:故:la =印32l」a d34.2 2=0.4 1.8m l = 2.8m3 3= 2.8m 1.4 4.2ma 二a1 t = 0.4 0.2 二0.6m 无重叠P1140P2P3P42a b1 2 0.6 0.8P 140ab1 2 0.8P 1404 0.8=145.8kN / m二87.5kN / m= 43.8kN /mP 140ab1 4.2 0.8=41.7kN / mP5 亠上・=58.3kN/m ab13 0.8P6 二旦=^^"2.5kN/m2ab1 2 1.4 0.8M og 」8.1 4.22=17.9kN m81.4m 有重叠1.3 ./.8■1l = 4.2m145.858.3J2.5hr-87.5 43・8 . 7583ffin 羽4!一■!| I'|:0.4■< •0.7 1 0.80.95M op =1.3 [1 (145.8 -87.5) 0.7 0.11758.3 0.8 0.4] =64.1kN m t 201 1- —, , — , —h 一310 一 15.5 4M 中二 0.5 111.2 =55.6kN m M 支二-0.7 111.2 =-77.8kN m2、支点剪力计算:a a 1 -0.41 2 3 4=1.7^:-l = 2.7m 1.4m 33 32l故:ad =4.1m3a 二 0.6m1Q 支 g 8.1 4=16.2kN111 (54.7 -42.7) 0.45 0.638 42.7 0.8 0.575(109.4 - 72.9) 0.8 0.0922272.9 0.8 0.125] =145.6kN内力组合:基本组合:Q ud =1.2 16.2 1.4 145.6 =223.3kN 短期效应组合:Q sd -16.2 0.7 145.6 “1.3 =94.6kN88 0.7 0.175 41.7 0.4 0.95 21(62.5—58.3) 0.8 0.333M 0=1.2 17.9 1.4 64.1 =111.2kN mQ支p=1.3 [ (145.8 -79.5) 0.8 0.933 79.5 0.8 0.9昇「3/JS^ ---------- 1--------I 二 4m145.8___________________ 0“°.8H 5尸5》1”.8加0.350.19.5 54.7 42.7 72.9109.42.9<TI t m 0.50.9。
桥面板计算及预应力筋估算
第3章桥梁纵向分孔及横截面尺寸拟定3.1桥梁纵向分孔3.1.1变截面连续梁桥构造特点连续孔数一般不超过5跨,多于3跨的连续梁桥,除边跨外,其中间各跨一般采用等跨布置,以方便悬臂施工。
多于两跨的连续梁桥,其边跨一般为中跨的0.6~0.8倍左右,当采用箱形截面,边孔跨径其至可减少至中孔的0.5~0.7倍。
有时为了满足城市桥梁或跨线桥的交通要求而需增大中跨跨径时,可将边跨跨径设计成仅为中跨的0.5倍以下,此时,端支点上将出现较大的负反力,故必需在该位置设置能抵抗拉力的支座或压重以消除负反力。
3.1.2本设纵向分孔计本设计纵向分孔设置为:(3×50)预应力混凝土简支T梁+(56+2×86+56)变截面箱型连续梁+(3×40)预应力混凝土简支T梁,全长550米。
变截面连续梁段:边跨56m中跨86m,边跨为中跨的0.651倍符合要求。
3.2桥横截面尺寸拟定本设计横截面尺寸拟定如表3-1,示意图如图3-1。
. -可修编形式顶板厚腹板厚底板厚根部跨中56+2×86+56 连续梁0.651 单箱单室30 30→60 28→60 5.4 2.8表3-1 横截面拟定高跨比梁宽(m) 悬臂厚度(cm)梗腋形式(cm×cm)根部跨中顶底根部端部顶板与腹板腹板与底板1/15.92 1/30.7 14.0 8.0 65 20 120×30 60×30图3-1 横截面尺寸拟定示意图(cm)图5-2 支点截面尺寸示意图3.3箱型截面尺寸的拟定依据拟定依据参考文献:《公路钢筋混凝土及预应力混凝土桥涵设计规》(JTG_D62-2004)。
3.3.1顶板、底板、悬臂板长度拟定箱梁顶板宽度一般接近桥面总宽度,本设计中顶板长度为14m。
顶板两侧悬臂板的长度对活载弯矩数值的影响不大,但恒载及人群荷载弯矩随悬臂长度几乎成平方关系增加,故悬臂板长度一般不大5m,当长度超过3m后,宜布置横向预应力束筋。
桥面板计算
一、中板计算箱梁顶板跨中厚度为,两腹板间板净距为5m,腹板宽度为,箱梁腹板处承托尺寸为×。
1.恒载内力取1m板宽计算将承托面积摊于桥面板上,则计算板厚t’=30+60×20/500=;桥面板每延米自重为:g1=×1×26=m;每延米桥面铺装荷载为:g2=×1×23= N/m;所以:Σg= g1 +g2=+= N/m;(1) 计算恒载弯矩弯矩计算跨径L=min{L0+t, L0+t,}=min{5+,5+}=;故M sg=1/8gL2=1/8××=。
(2) 计算恒载剪力剪力计算跨径L= L0=;故Q sg=1/2gL=1/2××=。
2. 活载内力取1m板宽计算采用城A级车辆荷载,车轮着地宽度为b0×a0=×;平行于板方向的分布宽度:b=b0+2h=+2×=。
当单个车轮作用在跨中桥面板时,垂直板跨径方向的荷载分布宽度为:a= a0+2h+L/3=+2×+3=<2L/3=;取a=,因为a>,且a<,故2、3轮的荷载分布宽度发生重叠。
则a= a0+2h+L/3+d=+2×+3+=<2L/3+d=;取a=。
对4轮,p=100/×=m2;对2、3轮,p=140/×=m2;可得出2、3况最不利。
支承处垂直板跨径方向的荷载分布宽度为:a'= a0+2h+t=+2×+=(1) 计算活载弯矩按L=简支梁计算,根据右图所示的计算图示,可计算出各参数如下:a1=,a2=,a3=,a4=;y1=,y2=;y3=,y4=,y5=;所以有:p1=P/ a1b=m2;同样算得:p2=m2;P3=m2;P4=m2;活载弯矩计算图示根据试算,按上图所示的荷载布置方式所算得的跨中弯矩与结构力学方法计算的跨中最大弯矩值非常接近,故采用这种方法计算,直观明了。
箱梁桥面板车轮荷载分布宽度计算-刘永吉
n1+n3)/2;当为整体板时,l=n2+t
必须小于等于1.4否则属于多个车轮重 叠情况
2h)+d+l/3≥d+2l/3
中处的顶板厚;
t
板厚 支承处 桥面板支 承处及支 承附近处 支承处最终计算的荷载分布宽度 板厚 距支点x处 支承附近处 支承附近处最终计算的荷载分布 宽度 车轮外边缘到腹板外边缘的距离 最终计算荷载分布宽度 悬臂处 说明:
0.25 a=(a1+2h)+t 0.570 0.25 0.5 a=(a1+2h)+t+2x 1.570 0.375 1.79 说明:
a=(a1+2h)+t x
=(a1+2h)+t+2x
0~(I17-I21)/2];
c
c=(a1+2h)+2(x+0.6/2+h)
的距离;
行于悬臂板跨径方向荷载公布宽度计算
b=b1+2h 0.72
直于悬臂板跨径方向荷载公布宽度计算
0.27 0.5 2.5 0.5 2.77 0.923 1.847 1.243 2.643 1.847
公式说明
车轮着 地与铺 装层参 数值 垂直于悬臂板跨径方向的车辆着地 尺寸 平行于悬臂板跨径方向的车辆着地 尺寸 铺装层厚度 车轮距 板厚 左侧腹板厚 净跨径 右侧腹板厚 桥面板 跨中 计算跨径 单个车轮在板的跨径中部时 多个车轮在板的跨径中部时 a1 b1 h d t n1 n2 n3 当为简支板时:l=n2+(n1+n3)/2;当为整体板#43;2h)+l/3≥2l/3且a必须小于等于1.4否则属于多个车轮重 叠情况 a=(a1+2h)+d+l/3≥d+2l/3
装配式预应力混凝土连续箱梁桥面板计算分析
b1=0.6m ;铺装层厚度 h=0.23m,板厚度 t=0.16m。
平行于板的跨径方向的荷载分布宽度 :b1 = b2 +
2h = 1.06(m)。
车 轮 在 顶 板 的 跨 中 处 时:
a=a1+2h+L/3=1.232m>2/3L=1.145m ;
a=1.232<1.4m( 不需要考虑车轮分布有重叠 )。
剪力 :1.2Vsg + 1.8Vsp = 110.17(kN) ;跨中断面弯矩 :
1.2Mcg + 1.8Mcp = 21.71(kN·m)。
三、截面设计、配筋与承载力验算 1. 基本组合 (1)腹板顶截面
183
JIAN SHE YAN JIU
①截面配筋计算
悬臂板及连续板支点采用相同的抗弯钢筋,故只需按
矩 :M sp = -15.34(kN·m), 支 点 断 面 剪 力 :Vsp =
55.74(kN) ;跨中断面弯矩 :Mcp = 10.96(kN·m)。
2.3 作用效应组合
承载能力极限状态作用效应基本组合如下,支点断面
弯矩 :1.2Msg + 1.8 Msp = -30.83(kN·m) ;支点断面
桥面板可看成 38.9cm 长的悬臂单向板。
连续板恒载效应如下 :
支点断面弯矩为 :Msg = -2.682(kN·m) ;支点断
面剪力为 :Vsg = 8.198(kN) ;跨中断面弯矩为 :Mcg =
1.654(kN·m).
2. 可变作用
桥梁结构局部加载时,汽车荷载采用车辆荷载。后
轮着地宽度 b1 及长度 a1 为 :车轮着地长度 a1=0.2m,
二、连续板荷载效应计算 对于梁肋间的行车道板,由于支承点并非完全固结, 行车道板为支承在一系列弹性支承上的多跨连续板,受力 很复杂。通常采用较简便的近似方法进行计算,弯矩计算 跨径取净跨径加板厚,但不大于支承点中距。
箱梁和板梁支座计算公式
箱梁和板梁支座计算公式在工程结构设计中,箱梁和板梁是常见的结构形式,它们承担着桥梁、建筑等工程中的重要作用。
而支座则是连接结构和地基的重要部分,支座的设计和计算直接关系到结构的安全性和稳定性。
本文将介绍箱梁和板梁支座的计算公式,希望能对工程结构设计人员有所帮助。
一、箱梁支座计算公式。
1. 箱梁支座的承载力计算公式。
箱梁支座的承载力计算公式为:N=Q+P。
其中,N为支座的承载力,Q为箱梁自重,P为箱梁上的荷载。
在实际工程中,箱梁的自重和上部荷载可以通过结构分析计算得出,然后代入上述公式进行计算即可得到支座的承载力。
2. 箱梁支座的位移计算公式。
箱梁支座的位移计算公式为:δ=PL/EA。
其中,δ为支座的位移,P为箱梁上的荷载,L为支座的长度,E为弹性模量,A为支座的有效面积。
支座的位移计算可以通过上述公式进行简单的计算,得出支座在承载荷载下的位移情况。
3. 箱梁支座的刚度计算公式。
箱梁支座的刚度计算公式为:K=EA/L。
其中,K为支座的刚度,E为弹性模量,A为支座的有效面积,L为支座的长度。
支座的刚度计算可以通过上述公式进行简单的计算,得出支座的刚度情况。
二、板梁支座计算公式。
1. 板梁支座的承载力计算公式。
板梁支座的承载力计算公式为:N=Q+P。
其中,N为支座的承载力,Q为板梁自重,P为板梁上的荷载。
与箱梁支座类似,板梁支座的承载力也可以通过结构分析计算得出,然后代入上述公式进行计算即可得到支座的承载力。
2. 板梁支座的位移计算公式。
板梁支座的位移计算公式为:δ=PL/EA。
其中,δ为支座的位移,P为板梁上的荷载,L为支座的长度,E为弹性模量,A为支座的有效面积。
支座的位移计算可以通过上述公式进行简单的计算,得出支座在承载荷载下的位移情况。
3. 板梁支座的刚度计算公式。
板梁支座的刚度计算公式为:K=EA/L。
其中,K为支座的刚度,E为弹性模量,A为支座的有效面积,L为支座的长度。
支座的刚度计算可以通过上述公式进行简单的计算,得出支座的刚度情况。
混凝土曲线箱梁桥面板局部冲击系数计算方法研究
精品文档供您编辑修改使用专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,希望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请根据实际需要进行调整和使用,谢谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、学习资料、课堂资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想学习、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestylematerials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!混凝土曲线箱梁桥面板局部冲击系数计算方法探究混凝土曲线箱梁桥是一种高速公路桥梁的主要类型,其桥面板在运营中会受到各种不同形式的荷载作用,其中一种重要的荷载类型是局部冲击荷载。
波形钢腹板箱梁桥面板横向内力计算的框架分析法
S p .2 2 e t 01
d i1 . 9 9 ji n 10 — 5 5 2 1 .5 0 6 o :0 3 6 /.s . 0 1 0 0 .0 2 0 . 2 s
波 形钢 腹 板 箱 梁桥 面 板 横 向 内力计 算 的框 架 分 析 法
赵 品 叶见 曙
( 南 大 学 交 通 学 院 , 京 2 09 ) 东 南 10 6
it r lf r e: d so i n e f c :ln a tfne s rto n e na o c it r o fe t i e r sif s ai t
波形 钢腹 板箱 梁 的混凝 土顶 板 与两 侧 波 形 钢
对 桥面板 受力 的影 响 . 在箱 梁 中顶板 作 为箱梁 整体 的一部 分 , 车辆 荷载作 用下 其 内力 会受 到箱 梁 的 在 畸变 、 转变 形等 的影 响 ; 波形 钢 腹 板 箱 梁 的抗 扭 且 扭及纵 横 向抗弯 刚 度相 比混 凝 土 箱梁 有 不 同程 度 的降低 … , 桥 面板 横 向 内力 与 混 凝 土 箱 梁 必 然 其 有所 差异 . 从波形 钢腹 板箱 梁这 种结 构形式 受力 特
摘要 :基 于框 架 分析 法 的基 本原理 , 结合 波 形钢腹 板箱 梁 的结构特 点和 力 学特 性 , 立 了适 用 于 建 其桥 面板 横 向内力 的计 算模 型. 该计 算模 型 能够反 映横 向框 架作 用 和箱 梁 畸 变效 应 对桥 面 板横 向 内力 的影 响. 过 与相关 室 内模 型试 验数据 和有 限元 分析结 果 的对 比可知 , 架 分析 法计 算值 通 框 与有 限元结果 、 试验 值 吻合 , 差 均在 1% 以 内, 证 了此计 算模 型 的正 确 性. 采用 上 述 模 型 误 0 验 并 分 析 了钢腹 板线 刚度 变化对 桥面板 横 向 内力 的影 响 , 结果 表 明在 波 形钢 腹 板 箱 梁截 面 上 的腹 板 间距确 定 的条件 下 , 波形钢腹 板 与混凝 土顶板 的线 刚度 比是 影响桥 面板横 向 内力 的重 要 因素. 关 键词 :波形钢 腹板 箱梁 ; 框架分 析 法 ; 面板 ; 向 内力 ; 桥 横 畸变 效应 ; 刚度 比 线
第6讲 简支梁计算 第一部分桥面板计算
3. 桥面板计算中何时需要考虑多个车轮作用?(横向 和纵向问题);
4.桥面板内力计算中实际结构简化为力学计算模式时存 在哪些误差?
5.桥面板计算的主要步骤
桥梁工程
2016-03
40
第四次作业,请于3月26日前提交
根据以下桥例基本资料,进行该桥行车道板设计内力 计算:
1. 桥梁跨径及桥宽:标准跨径40m (墩中心距离),主梁全长 39.96m;计算跨径39.00m; 桥面净空:14m+2×1. 75m=17. 5m。
-1 μ p
l
0
-
b
1
4a 4
140 2
0.82
-1.3
0.71 -
4 3.24
4
-14.18kN m
作用于每米宽板条上的剪力为:
3.内力组合
Q Ap 1 μ p
140 2 1.3
28.09kN
4a
4 3.24
(1)承载能力极限状态内力组合计算
Mud 1.2M Ag 1.4M Ac 1.2(1.35)1.4(14.18)21.47kN m
桥梁工程
2016-03
32
第三章 第一节 桥面板的计算
2.汽车车辆荷载产生的内力
将汽车荷载后轮作用于铰缝轴线上,
后轴作用力为P=140kN,轮压分布宽
度如图所示。车辆荷载后轮着地长
度为a2=0.20m,宽度为b2=0.60m,则
a a 2H 0.20 20.11 0.42m
1
2
b b 2H 0.60 20.11 0.82m
(c)荷载靠近板的支承处
= + 2 ≤ (8)
*注意:算得有效分布宽度 不能大于板的全宽
桥面板计算及预应力筋估算(学习建筑)
第3章 桥梁纵向分孔及横截面尺寸拟定3.1桥梁纵向分孔3.1.1变截面连续梁桥构造特点连续孔数一般不超过5跨,多于3跨的连续梁桥,除边跨外,其中间各跨一般采用等跨布置,以方便悬臂施工。
多于两跨的连续梁桥,其边跨一般为中跨的0.6~0.8倍左右,当采用箱形截面,边孔跨径其至可减少至中孔的0.5~0.7倍。
有时为了满足城市桥梁或跨线桥的交通要求而需增大中跨跨径时,可将边跨跨径设计成仅为中跨的0.5倍以下,此时,端支点上将出现较大的负反力,故必需在该位置设置能抵抗拉力的支座或压重以消除负反力。
3.1.2本设纵向分孔计本设计纵向分孔设置为:(3×50)预应力混凝土简支T 梁+(56+2×86+56)变截面箱型连续梁+(3×40)预应力混凝土简支T 梁,全长550米。
变截面连续梁段:边跨56m 中跨86m,边跨为中跨的0.651倍符合要求。
3.2桥横截面尺寸拟定本设计横截面尺寸拟定如表3-1,示意图如图3-1。
表3-1 横截面拟定跨径布置(m) 结构 边中跨比 截面(cm ) 梁高(m )形式 顶板厚 腹板厚 底板厚 根部 跨中 56+2×86+56连续梁0.651单箱单室3030→60 28→605.42.8高跨比梁宽(m) 悬臂厚度(cm )梗腋形式(cm ×cm )根部跨中顶底 根部 端部顶板与腹板 腹板与底板 1/15.92 1/30.714.0 8.06520120×3060×30图3-1 横截面尺寸拟定示意图(cm)图5-2 支点截面尺寸示意图3.3箱型截面尺寸的拟定依据拟定依据参考文献:《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG_D62-2004)。
3.3.1顶板、底板、悬臂板长度拟定箱梁顶板宽度一般接近桥面总宽度,本设计中顶板长度为14m。
顶板两侧悬臂板的长度对活载弯矩数值的影响不大,但恒载及人群荷载弯矩随悬臂长度几乎成平方关系增加,故悬臂板长度一般不大5m,当长度超过3m后,宜布置横向预应力束筋。
箱梁桥面板计算范文
箱梁桥面板计算范文首先,计算箱梁桥面板的设计荷载是非常重要的。
根据桥梁所在的位置和用途不同,设计荷载可以分为静荷载和动荷载。
静荷载主要包括自重荷载、道路荷载和人行荷载,动荷载主要包括车辆荷载、列车荷载等。
根据规范和实际情况,确定各个荷载的大小和作用位置。
然后,需要计算箱梁桥面板的强度。
首先需要考虑桥面板的自重,根据材料的密度和桥面板的几何尺寸,计算出桥面板的自重。
然后需要考虑其他荷载作用下的弯矩和剪力,根据荷载的作用位置和大小,计算出桥面板的最大弯矩和剪力。
根据材料的强度、截面形状等参数,计算出桥面板的截面尺寸和抗弯、抗剪能力。
在计算桥面板的强度时,还需要考虑梁的变形。
梁的变形对桥面板的水平和竖向平整度有很大影响,所以需要计算桥面板在荷载作用下的变形,并确定变形控制的要求。
根据规范和实际情况,确定桥面板的变形限值,然后根据荷载的作用位置和大小,计算出变形值,与限制值进行对比,确保桥面板变形符合要求。
另外,还需要考虑桥面板的疲劳性能。
桥梁是长期受力的结构,所以需要考虑桥面板在长期荷载作用下的疲劳性能。
根据规范和实际情况,确定设计年限和疲劳系数,然后根据荷载的作用位置和大小,计算出疲劳应力范围,并与疲劳极限比较,判断桥面板的疲劳寿命是否满足要求。
最后,还需要考虑桥面板的施工和维修问题。
桥面板是直接承载道路和行人的部分,所以在施工和维修时需要考虑人员的安全和交通的便利。
在桥面板的设计中需要考虑施工和维修的通道,确保施工和维修工作的顺利进行。
以上是对箱梁桥面板计算的一些基本内容,设计和计算桥面板是一个复杂的工作,需要考虑到很多因素。
只有合理设计和计算,才能确保桥面板的安全性和稳定性。
箱梁桥面板计算
连续梁桥跨径布置为70+100+70(m ),主跨分别在梁端及跨中设横隔板,板厚40cm ,双车道设计,人行道宽1.5m 。
桥面铺装层容重233/m kN ,人行道构件容重243/m kN ,主梁容重253/m kN 。
求:1、悬臂板最小负弯矩及最大剪力;2、中间板跨中最大正弯矩、支点最小负弯矩、支点最大剪力。
解:一、悬臂板内力计算m kN g /8.42412.0=⨯⨯=人 m kN g /5.725124.02.0=⨯⨯+=板 m kN g /3.22311.0=⨯⨯=铺 m kN q r /75.2175.2=⨯=1、悬臂根部最小负弯矩计算 结构自重产生的悬臂根部弯矩:m kN M g ⋅-=⨯⨯+⨯⨯+-⨯⨯-=2.42]25.25.25.725.15.13.2)75.03(5.18.4[支 人群荷载产生的悬臂根部弯矩:m kN M r ⋅-=-⨯⨯-=3.9)75.03(5.175.2支汽车荷载产生的悬臂根部弯矩:m H a a 4.01.022.0221=⨯+=+= m H b b 8.01.026.0221=⨯+=+=单个车轮作用下板的有效工作宽度:m m b a a 4.12.3)1.05.1(24.02>=-⨯+='+= 有重叠。
单位(cm )故:m a 6.44.12.3=+=m kN ab P p /388.06.41401=⨯==m kN M p ⋅-=⨯⨯⨯-=5.3918.0383.1支内力组合:基本组合:m kN M ud ⋅-=-⨯⨯+-⨯+-⨯=4.116)3.9(4.18.0)5.39(4.1)2.42(2.1 短期效应组合:m kN M sd ⋅-=-⨯+÷-⨯+-=8.72)3.9(0.13.1)5.39(7.02.42 2、悬臂根部最大剪力计算结构自重产生的悬臂根部剪力:kN Q g 4.295.25.75.13.25.18.4=⨯+⨯+⨯=支人群荷载产生的悬臂根部剪力:kN Q r 1.45.175.2=⨯=支汽车荷载产生的悬臂根部剪力:kN Q p 5.398.0383.1=⨯⨯=支内力组合:基本组合:kN Q ud 2.951.44.18.05.394.14.292.1=⨯⨯+⨯+⨯= 短期效应组合:kN Q sd 8.541.40.13.15.397.04.29=⨯+÷⨯+= 二、中间桥面板内力计算m l a 502100==m l b 4= 2450>=b a l l 故按单向板计算内力 把承托面积平摊到桥面板上:m t 23.042.06.02.0=⨯+=' m kN g /3.2=铺 m kN g /8.525123.0=⨯⨯=板 m kN g /1.88.53.2=+=1、跨中弯矩计算:m b l m t l l 35.42.42.0400=+<=+=+=单个车轮作用下板的有效工作宽度:m m l m l a a 4.18.2328.132.44.031>=<=+=+= 有重叠 故:m m d la 2.44.18.232=+=+=m t a a 6.02.04.0=+=+=' 无重叠m kN b a P p /8.1458.06.02140211=⨯⨯='=m kN ab P p /5.878.0214012=⨯==m kN ab P p /8.438.0414013=⨯==m kN ab P p /7.418.02.414014=⨯==m kN ab P p /3.588.0314015=⨯==m kN ab P p /5.628.04.12140216=⨯⨯==m kN M og ⋅=⨯⨯=9.172.41.8812mkN M op ⋅=⨯⨯+⨯⨯-⨯+⨯⨯⨯+⨯⨯+⨯⨯-⨯⨯=1.64]4.08.03.58333.08.0)3.585.62(21295.04.07.41175.07.088117.07.0)5.878.145(21[3.1m kN M ⋅=⨯+⨯=2.1111.644.19.172.10415.15131020<==h t m kN M ⋅=⨯=6.552.1115.0中 m kN M ⋅=⨯=8.77-2.1117.0-支2、支点剪力计算:m m l m l a a 4.17.2327.1344.031>=<=+=+= 故:m d la 1.432=+= m a 6.0='kN Q g 2.1641.821=⨯⨯=支1.8 1.80.61.70.71.20.4 24 4.23 1.4 0.60.6kNQ p 6.145]125.08.09.72092.08.0)9.724.109(21575.08.07.42638.045.0)7.427.54(219.08.05.79933.08.0)5.798.145(21[3.1=⨯⨯+⨯⨯-⨯+⨯⨯+⨯⨯-⨯+⨯⨯+⨯⨯-⨯⨯=支 内力组合:基本组合:kN Q ud 3.2236.1454.12.162.1=⨯+⨯= 短期效应组合:kN Q sd 6.943.16.1457.02.16=÷⨯+=0.8 0.80.8 1.75 0.8 0.50.112.2 4.13.22.40.60.6 0.90.8 0.6380.5 0.450.933 1.750.350.8 10.10.5750.1250.092。
混凝土桥面板的计算
混凝土桥面板的计算--kg
纵向单向板
纵向单向板的布置:边主梁间距达 到31.2m,纵向每隔3m设置一道 横梁,吊杆间距15m;混凝土纵向 单向板,桥面两个体系受力: 1)参与钢结构吊杆间距为跨度的 受弯第一体系; 2)横梁间距为跨度的车轮荷载第 二体系
混凝土桥面板的计算--kg
纵向单向板
混凝土桥面板的计算--kg
混凝土桥面板的计算--kg
混凝土检算—纵向单向板 总体计算结果,第一系统桥面板最大拉应力为2.18Mpa,对应钢筋应力为: σss1=2.18*1000*200/2/2534.3=104.1Mpa。 运营状态裂缝计算考虑第一系统钢筋应力。
第一系统钢筋应力对应裂缝宽度为0.093mm,第二系统钢筋应力对应裂缝宽度为 0.07mm,合计为0.163mm。桥址所在场地属于I类环境地区,裂缝限制为0.2mm, 裂缝检算符合要求 同时考虑局部轮载(第二系统)和全桥整体计算(第一系统)荷载作用,则在全桥 桥面板上缘的最大压应力为:7.0+3.45=10.45Mpa<19.25Mpa,满足规范要求,桥 面板下缘最大压应力为:5.5+2.43=7.93Mpa<19.25Mpa,满足规范要求。
混凝土桥面板的计算--kg
桥面板活载计算 4)垂直于跨径钢箱的荷载分布宽度 85预应力规范
新规范中计算支撑附近桥面板荷载分布 宽度均采用跨中较薄顶板厚度,不考虑 承托,但是计算完结构受力后,应该用 真实的板厚验算桥面板各个构件的强度、 裂缝等内容。
•纵向单向板
混凝土桥面板的计算--kg
顶板的厚度
•大跨度箱梁断面,箱室宽度应该 增大一点减小悬臂长度
混凝土桥面板的计算--kg
断面中箱室的布置
桥面板计算(增加配重计算完整最终版)2015.1.30(1)
宁夏永宁黄河桥公路大桥桥面板计算书2013-11-14工程名称: 宁夏永宁黄河公路大桥施工图设计桥面板计算一、概况与基本数据1.1概况宁夏永宁黄河桥公路大桥宽度36.5 m。
桥面铺装采用10cm厚沥青混凝土,30cm桥面板,护栏采用钢防撞护栏。
1.2技术规范《公路工程技术标准》JTG B01-2003;《公路斜拉桥设计细则》JTG/T D65-01-2004;《公路桥涵设计通用规范》JTG D60-2004;《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004。
1.3重要性系数结构重要性系数为1.1。
2.计算相关参数2.1 材料和荷载①主要材料混凝土:主梁采用C55高性能混凝土,弹性模量E=3.60x104MPa,容重γ=26.0KN/m3;HRB400普通钢筋:弹性模量E=2.0x105MPa,fsd=300MPa;桥面铺装:沥青混凝土容重γ=24.0KN/m3;铁砂混凝土容重:γ=35.0KN/m3②计算荷载恒载作用:结构自重;桥面铺装;护栏自重活载作用:公路-Ⅰ级二、主梁桥面板计算(箱梁内翼缘)跨中横隔板的间距是l a=6.0m,梁肋板间距为l b=16.4m,根据JTG D62-2004中4.1.1条的规定,l b/l a=16.4/6.0=2.73>2,故桥面板可按跨径为l a的单向板进行计算。
(尺寸如下图)2.1荷载标准值计算(1)横载内力计算(以纵向1m板条进行计算)①每延米板上的恒载g沥青混凝土面层g 1 : 0.1⨯1.0⨯24=2.4(kN/m ) 桥面板自重g 2 :0.3⨯1.0⨯26=7.8(kN/m )护栏自重g 3 :3.74⨯6⨯2/6/5.87⨯1.0=1.28(kN/m ) 合计g :11.48(kN/m ) ②每延米板上的恒载内力先计算简支板的跨中和支点剪力,根据JTG D62-2004中4.1.2条,横隔板间的计算跨径按下列规定采用。
桥面板计算
桥面板计算一、中板计算箱梁顶板跨中厚度为,两腹板间板净距为5m,腹板宽度为,箱梁腹板处承托尺寸为×0.2m。
1.恒载内力取1m板宽计算将承托面积摊于桥面板上,则计算板厚t’;桥面板每延米自重为:g1;每延米桥面铺装荷载为:g2=0.1×1×23=2.3k N/m;所以:Σg= g1 +g2=8.424+2.3=10.724 N/m;(1) 计算恒载弯矩弯矩计算跨径L=min{L0+t, L0+t,}=min;故M sg=1/8gL22。
(2) 计算恒载剪力剪力计算跨径L= L0=5.0m;故Q sg=1/2gL=1/2×10.724×5.0=。
2. 活载内力取1m板宽计算采用城A级车辆荷载,车轮着地宽度为b0×a0;平行于板方向的分布宽度:b=b0+2h。
当单个车轮作用在跨中桥面板时,垂直板跨径方向的荷载分布宽度为:a= a0+2h+L/3;取a=,因为a,且a,故2、3轮的荷载分布宽度发生重叠。
则a= a0+2h+L/3+d=;取a。
对4轮,p2;对2、3轮,p2;可得出2、3况最不利。
支承处垂直板跨径方向的荷载分布宽度为:a'= a0+2h+t(1) 计算活载弯矩按简支梁计算,根据右图所示的计算图示,可计算出各参数如下:a1=,a2,a3,a4;y1,y2;y3,y4,y5;所以有:p1=P/ a1b2;同样算得:p22;P32;P42;活载弯矩计算图示根据试算,按上图所示的荷载布置方式所算得的跨中弯矩与结构力学方法计算的跨中最大弯矩值非常接近,故采用这种方法计算,直观明了。
运用图乘法计算各个轮载下的跨中弯矩值:M sp1=∫p x bay dx =2A 1y 1=2×36.97×0.4×1.225=36.231kN.mM sp2=∫p x bay dx =A 2y 2+A 3y 3=41.18×0.8×0.675+12×(65.30−41.18)×0.8×0.608=28.103kN.mM sp3=∫p x b ay dx =A 4y 5+A 5y 5=53.85×0.8×0.425+12×(106.06−53.85)×0.8×0.358=25.785kN.m 按简支梁计算活载跨中弯矩为:ΣM sp = M sp1+M sp2+M sp3(2) 计算活载剪力按L 简支梁计算,根据右图所示的计算图示,可计算出各参数如下:a1=5,a 2,a 3=,a 4=;y1=,y 294,y 3=0.920;y 4=0.947,y 5=0.259,y 600; 所以有:p 1=P/ a 1b =4kN/m 2;同样算得:p 2=6kN/m 2;P 3=kN/m 2;P 4=kN/m 2; Q sp1=∫p x bay dx =A 1y 1+A 22=36.97×0.8×0.66+12×0.692×(49.75−36.97)×0.694=22.589kNQ sp2=∫p x bay dx =Ay 3+A 4y 4=66.04×0.8×0.92+1/2×(166.67−66.04)×0.8×0.947=86.724kNQ sp3=∫p x bay dx =A 5y 5+A 6y 6=36.97×0.8×0.3+12×(53.85−36.97)×0.592×0.259=10.167kN按简支梁计算活载跨中弯矩为: 活载剪力计算图示 ΣQ sp = Q sp1+Q sp2+Q sp3=++=kN3.内力组合(1). 按承载能力极限能力状态内力基本组合:取冲击系数,则M0=γ0 (sgsp)=1.1×[1.2×37.665+1.4×]=2Q0=γ0 (sgsp)= 1.1×[]=2 kN取桥面板跨中弯矩和支点弯矩为:M中= M支0=0.7×2=1桥面板支点剪力为:Q中=Q0=249.642 kN(2). 按正常使用极限能力状态内力短期效应组合:M0=M sgsp取桥面板跨中弯矩和支点弯矩为:M中s= M支0(3). 按正常使用极限能力状态内力长期效应组合:M0=M sgsp取桥面板跨中弯矩和支点弯矩为:M中l= M支04. 桥面板配筋验算桥面板上下层均配置直径为20mm,间距为100mm的HRB400钢筋,每米宽度内按10根计算,A s=2545mm2,按单筋截面对桥面板进行强度验算。
钢箱梁计算总结汇总2022
一、钢箱梁的计算流程及主要计算内容1.第一体系应力(梁体系):钢箱梁沿纵向整体受力,其受力特性为连续梁特性,跨中正弯矩最大,支座负弯矩最大。
因此利用桥梁建立纵向单梁模型,计算箱梁上下缘的最大拉应力及最大压应力。
本体系主要采用迈达斯建立纵向模型,计算强度,稳定,挠度,疲劳。
CDN计算有效宽度是K=4。
温度梯度采用英国400规范输入。
2.第二体系应力(桥面体系):钢桥面板作为桥面系直接承受车轮荷载作用,因此由纵肋和顶板组成结构系,把桥面上的荷载传递到横隔板上。
针对这一体系,把横隔板间的单根纵肋及一定宽度的桥面板作为整体(工字型截面),将横隔板作为支撑,计算其在外荷载作用下的应力,宽度采用纵肋间距计算的有效宽度,一般取横隔板间距作为计算跨径(一般间距1.5m或2.0m)。
一般取4-5跨作为计算模型,按连续梁计算出顶板的拉、压应力然后与第一体系计算出顶板的拉、压应力叠加。
单根纵肋计算出来的底板应力,为纵肋所受的力。
单根纵梁计算时活荷载加载方式:《参考五缘湾桥计算》。
汽车荷载:采用城-A级车辆荷载,钢桥面板局部受力分析时可不考虑桥面铺装层对车轮分布宽度的扩散作用,单个前轮横桥向着地宽度为0.25m,纵桥向着地宽度0.25m;单个中后轮横桥向着地宽度为0.6m,纵桥向着地宽度0.25m。
为方便计算,将车轮分布荷载简化为集中荷载计算。
纵肋的车轮分布荷载横向分配近似按杠杆法计算,单根纵肋分配到的轮重如下表所示:以4轴为例着地面积为600mm,单根纵肋上顶板宽307mm,分配轴重为:100/0.6*0.307=51.17KN表4-15单根纵肋分配到的轮重汇总表第二体系计算时采用车辆加载(冲击系数0.4),不计自重,底板没有第二体系,主要是因为底板没有直接荷载。
为什么要考虑第二体系?第一体系没有考虑横隔板对顶板(主要是车轮作用)的影响,忽略了顶板纵肋将力流引导到横隔板的这个流向,因此需要额外计算顶板加劲肋被隔板支撑的第二体系。
箱梁桥的计算方法及处理流程详解
箱梁桥的计算方法及处理流程详解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!箱梁桥的计算方法及处理流程详解箱梁桥,作为一种常见的桥梁结构形式,以其独特的受力性能和空间优势在现代桥梁工程中广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续梁桥跨径布置为70+100+70(m ),主跨分别在梁端及跨中设横隔板,板厚40cm ,双车道设计,人行道宽1.5m 。
桥面铺装层容重233
/m kN ,人行道构件容重243
/m kN ,主梁容重253
/m kN 。
求:
1、悬臂板最小负弯矩及最大剪力;
2、中间板跨中最大正弯矩、支点最小负弯矩、支点最大剪力。
解:
一、悬臂板内力计算
m kN g /8.42412.0=⨯⨯=人 m kN g /5.72512
4
.02.0=⨯⨯+=
板 m kN g /3.22311.0=⨯⨯=铺 m kN q r /75.2175.2=⨯=
1、悬臂根部最小负弯矩计算 结构自重产生的悬臂根部弯矩:
m kN M g ⋅-=⨯⨯+⨯
⨯+-⨯⨯-=2.42]2
5
.25.25.725.15.13.2)75.03(5.18.4[支 人群荷载产生的悬臂根部弯矩:
m kN M r ⋅-=-⨯⨯-=3.9)75.03(5.175.2支
汽车荷载产生的悬臂根部弯矩:
m H a a 4.01.022.0221=⨯+=+= m H b b 8.01.026.0221=⨯+=+=
单个车轮作用下板的有效工作宽度:
m m b a a 4.12.3)1.05.1(24.02>=-⨯+='+= 有重叠。
单位(cm )
故:m a 6.44.12.3=+=
m kN ab P p /388
.06.41401=⨯==
m kN M p ⋅-=⨯⨯⨯-=5.3918.0383.1支
内力组合:
基本组合:m kN M ud ⋅-=-⨯⨯+-⨯+-⨯=4.116)3.9(4.18.0)5.39(4.1)2.42(2.1 短期效应组合:m kN M sd ⋅-=-⨯+÷-⨯+-=8.72)3.9(0.13.1)5.39(7.02.42 2、悬臂根部最大剪力计算
结构自重产生的悬臂根部剪力:
kN Q g 4.295.25.75.13.25.18.4=⨯+⨯+⨯=支
人群荷载产生的悬臂根部剪力:
kN Q r 1.45.175.2=⨯=支
汽车荷载产生的悬臂根部剪力:
kN Q p 5.398.0383.1=⨯⨯=支
内力组合:
基本组合:kN Q ud 2.951.44.18.05.394.14.292.1=⨯⨯+⨯+⨯= 短期效应组合:kN Q sd 8.541.40.13.15.397.04.29=⨯+÷⨯+= 二、中间桥面板内力计算
m l a 502
100
==
m l b 4= 2450>=
b a l l 故按单向板计算内力 把承托面积平摊到桥面板上:
m t 23.04
2
.06.02.0=⨯+
=' m kN g /3.2=铺 m kN g /8.525123.0=⨯⨯=板 m kN g /1.88.53.2=+=
1、跨中弯矩计算:
m b l m t l l 35.42.42.0400=+<=+=+=
单个车轮作用下板的有效工作宽度:
m m l m l a a 4.18.23
28.132.44.031>=<=+=+
= 有重叠 故:m m d l
a 2.44.18.23
2=+=+=
m t a a 6.02.04.0=+=+=' 无重叠
m kN b a P p /8.1458.06.02140
211=⨯⨯='=
m kN ab P p /5.878
.0214012=⨯==
m kN ab P p /8.438
.0414013=⨯==
m kN ab P p /7.418
.02.414014=⨯==
m kN ab P p /3.588
.0314015=⨯==
m kN ab P p /5.628
.04.12140
216=⨯⨯==
m kN M og ⋅=⨯⨯=9.172.41.88
1
2
m
kN M op ⋅=⨯⨯+⨯⨯-⨯+⨯⨯⨯+⨯⨯+
⨯⨯-⨯⨯=1.64]4.08.03.58333.08.0)3.585.62(2
1
295.04.07.41175.07.088117.07.0)5.878.145(2
1
[3.1m kN M ⋅=⨯+⨯=2.1111.644.19.172.10
4
15.15131020<==h t m kN M ⋅=⨯=6.552.1115.0中 m kN M ⋅=⨯=8.77-2.1117.0-支
2、支点剪力计算:
m m l m l a a 4.17.232
7.1344.031>=<=+=+
= 故:m d l
a 1.43
2=+= m a 6.0='
kN Q g 2.1641.821
=⨯⨯=支
1.8 1.8
0.6
1.7
0.7
1.2
0.4 2
4 4.2
3 1.
4 0.6
0.6
kN
Q p 6.145]125.08.09.72092.08.0)9.724.109(21
575.08.07.42638.045.0)7.427.54(219.08.05.79933.08.0)5.798.145(2
1
[3.1=⨯⨯+⨯⨯-⨯+⨯⨯+⨯⨯-⨯+
⨯⨯+⨯⨯-⨯⨯=支 内力组合:
基本组合:kN Q ud 3.2236.1454.12.162.1=⨯+⨯= 短期效应组合:kN Q sd 6.943.16.1457.02.16=÷⨯+=
0.8 0.8
0.8 1.75 0.8 0.5
0.1
1
2.2 4.1
3.2
2.4
0.6
0.6 0.9
0.8 0.638
0.5 0.45
0.933 1.75
0.35
0.8 1
0.1
0.575
0.125
0.092。