纳米材料的研究进展及其应用.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米材料的研究进展及其应用
姓名:李若木
学号:115104000462
学院:电光院
1、纳米材料
1.1纳米材料的概念
纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1〜100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。
1.2纳米材料的发展
自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段:
第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。
第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。
第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。
2、纳米材料:石墨烯
2.1石墨烯的概念
石墨烯(Graphene )是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈盖姆和康斯坦丁诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。
石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前
自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。
石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。
另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。
石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m • K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2V • s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Q • cm,比铜或银更低,为目前世上电阻率最小的材料。
作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。
2.2石墨烯的制备方法
机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。这种方法操作简单,得到的石墨烯通常保持着完整的晶体结构,但是得到的片层小,生产效率低。
氧化还原法是通过将石墨氧化,增大石墨层之间的间距,再通过物理方法将其分离,最后通过化学法还原,得到石墨烯的方法。这种方法操作简单,产量高,但是产品质量较低。
SiC外延法是通过在超高真空的高温环境下,使硅原子升华脱离材料,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。这种方法可以获得高质量的石墨烯,但是这种方法对设备要求较高。
化学气相沉积法(CVD)是目前最有可能实现工业化制备高质量、大面积石墨烯的方法。这种方法制备的石墨烯具有面积大和质量高的特点,但现阶段成本较高,工艺条件还需进一步完善。
2.3石墨烯的性质
1电子效应
石墨烯一经发现,研究热潮接踵而至。在石墨烯领域,研究最深的是石墨烯
的电性质。原因应该是石墨烯无与伦比的高电子迁移率。最先分离出石墨烯,来
自曼彻斯特的小组测量了他们分离出的单层石墨烯分子的电子迁移率,发现电荷
在石墨烯中的迁移速率达到10000cm2/vs,这个测量结果还是在未除去杂质与衬
底,保持室温的条件下进行。相比之下,现代晶体管的主要材料硅的电子迁移率不过1400 cm2vs。当然,这个数据记录并没有保持多久,在2008年,由Geim 和他同事领导的小组声称电子在石墨烯中迁移速率可以到达前所未有的
200000 cm2vs。而不久之后,来自哥伦比亚大学的Kirill Bolotin将这个数值提高到250000 cm2vs,超过硅100倍以上。石墨烯在电子迁移率上另一个优异性质是它的迁移率大小几乎不随温度变化而变化。电子迁移率之所以受温度影响,是
因为电子在传递过程中受晶体晶格震动的散射作用,导致电子迁移率降低,而晶
格震动的强度与温度成正比。即温度越高,电子迁移率越低。然而石墨烯的晶格震动对电子散射很少,几乎不受温度变化影响,马里兰大学的研究人员在50K 和500K之间测量了单层石墨烯的电子迁移率,发现无论温度如何变化,电子迁移率大约都是15000 cm2vs。
石墨烯的超强导电性与它特殊的量子隧道效应有关。量子隧道效应允许相对论的粒子有一定概率穿越比自身能量高的势垒。而在石墨烯中,量子隧道效应被
发挥到极致,科学家们在石墨烯晶体上施加一个电压(相当于一个势垒),然后测定石墨烯的电导率。一般认为,增加了额外的势垒,部分电子不能越过势垒,使得电导率下降。但事实并非如此,所有的粒子都发生了量子隧道效应,通过率达100%。这是石墨烯极高载流速率的来源。
与光子类似,石墨烯中的电子没有静止质量。二者另外一个相似之处是它们的速度与动能无关,均为常数。没有静止质量也导致石墨烯中的电子行为符合相对论化的狄拉克电子方程,而薛定谔方程对其则不适用。石墨烯还呈现出量子霍尔效应,并且与众不同的是,石墨烯的量子霍尔效应能在室温下被观测到。
2.非电子效应
除了特殊的电子效应,石墨烯的非电子效应也同样值得关注。石墨烯的导热能力出众,达到了5000W/(m • k),是金刚石的五倍。而在石墨烯发现以前,金刚石是已知自然界中热导率最高的。同时石墨烯还是现在世界上已知的最为坚固的材料,在石墨烯样品微粒开始碎裂前,其每100纳米距离上可承受的最大压力达到约2.9微牛。这一结果相当于,施加55牛顿的压力才能使1米长的石墨烯
断裂。除了强度高,石墨烯还同时展现出高柔韧性与脆性这两个相互矛盾的性质,