2018年陕西省中考数学试卷(含答案解析版)
2018年陕西省中考数学试卷
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分) 1.- 711的倒数是( )A . 7 11B .- 7 11C . 11 7D .- 11 72.如图,是一个几何体的表面展开图,则该几何体是( ) A .正方体 B .长方体 C .三棱柱 D .四棱锥 3.如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有( ) A .1个 B .2个 C .3个 D .4个4.如图,在矩形ABCD 中,A (1,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为( )A .- 1 2B . 1 2C .-2D .2(第2题图)l 3l 4(第3题图)(第4题图)5.下列计算正确的是( ) A .a a a 4222=∙B .a a 623)(-=-C .a a a 222363=-D . 4)2(22-=-a a6.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( )A .324 B .22 C .328 D .237.若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( ) A .(-2,0) B .(2,0) C .(-6,0) D .(6,0)8.如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是( )A .AB =EF 2B .AB =2EFC . EF AB 3=D .AB=EF 5(第6题图)C (第8题图)D(第9题图)9.如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为( )A .15°B .35°C .25°D .45°10.对于抛物线3)12(2-+-+=a x a x a y ,当x =1时,y >0,则这条抛物线的顶点一定在( ) A .第一象限; B .第二象限 ; C 第三象限. ; D 第四象限. 二、填空题(4分×3=12分)11、比较大小:3_____ 10(填<,>或=).【试题解析】平方法:223910==.12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则ÐAFE 的度数为_____(第12题图)B(第14题图)D13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为_____ 14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E ,F 分别是AB 边上的点,且EF = 12AB ;G ,H 分别是BC 边上的点,且GH = 13BC ;,若12,S S 分别表示EOF 和GOH 的面积,则12,S S 之间的等量关系是_____三、解答题(共11小题,计18分.解答应写出过程) 15.(本题满分5分) 计算:.)25(12)6()3(0π-+-+-⨯-16.(本题满分5分)先化简,再求值:.13)111(2aa a a a a a ++÷+--+17.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DP A ∽△ABM (不写做法保留作图痕迹)(第17题图)18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .(第18题图)AD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:依据以上统计信息,解答下列问题: (1)求得m =_______,n =__________;(2)这次测试成绩的中位数落在_______组; (3)求本次全部测试成绩的平均数.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作○O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .(第23题图)(第22题图)24.(本题满分10分)已知抛物线L :62-+=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C . (1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ’,且L ’与x 轴相交于A ’、B ’两点(点A ’在点B ’的左侧),并与y 轴交于点C ’,要使△A ’B ’C ’和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.25.(本题满分12分) 问题提出(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△AC 的外接圆半径R 的值为_______. 问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值. 问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计)(第25题图)图③图②图①C。
【真题】2018年陕西省中考数学试题含答案(word版)
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是 A .正方体 B .长方体 C .三棱柱 D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有 A .1个 B .2个 C .3个 D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为A.-12 B .12C .-2D .2题图第3题图第4题图5、下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-4 6、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为 A .(-2,0) B .(2,0) C .(-6,0) D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72° 13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x3DB14、点O 是平行四边形A BCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S 1=3S 2第12题图 第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分) 计算:(-3)×(-6)+|2-1|+(5-2π)0 解:原式=32+2-1+1=4 2 16.(本题满分5分)化简:⎝ ⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点.18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,BBCADAD∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m =30,n =19%;(2)这次测试成绩的中位数落在B 组;(3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EADA nD 、15%B 36%C 30%∴∆ABC ∽∆ADE ∴AD AB =DE BC ∴AB +8.5AB =1.51∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x 2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.1-23-2(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13; (2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为5923.(本题满分8分)如图,在Rt △A BC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1)解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB ∴MD =NB .24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积; (2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´ABBA在点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6)∴S △ABC =12AB ·OC =12×5×6=15; (2)将抛物线向左或向右平移时,A ´、B ´两点间的距离不变,始终为5,那么要使△A ´B ´C ´和△ABC 的面积相等,高也只能是6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6;当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6.25.(本题满分12分) 问题提出 (1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为 . 问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图① 图② 图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(2) 25题解图(3) (3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ´、P "连接PP ´、P ´E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ´E +EF +FP "=P ´P ",且P ´、E 、F 、P "在一条直线上,所以P ´P "即为最短距离,其长度取决于P A 的长度25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得P A 最短的点 ∵AB =6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC=3 3 BC 所对的圆心角为60°,∴∆OBC 是等边三角形,∠CBO =60°,BO =BC =3 3 ∴∠ABO =90°,AO =37,PA =37-3 3 ∠P ´AE =∠EAP ,∠P AF =∠F AP ",∴∠P ´AP "=2∠ABC =120°,P ´A =AP ",∴∠AP ´E =∠AP "F =30°∵P ´P "=2P ´A cos ∠AP ´E =3P ´A =321-9 所以PE +EF +FP 的最小值为321-9km .P''BB。
2018年陕西省中考数学试题含答案(PDF版)
22018 年陕西省中考数学试卷(分析)参与解析人员:袁浪,霍高峰,田战宾,王建勇,万兰英,何小龙,祝正堂,薛李,赵健,宋敏,杨新荣,赵振,贺基旭,李优等.一、选择题:(本大题共 10 题,每题 3 分,满分 30 分)(答案为标红选项) 1 7 .-11的倒数是( D)7 .117 .-11 11. 7 11- 72.如图,是一个几何体的表面展开图,则该几何体是( C)A .正方体B .长方体C .三棱柱D .四棱锥 3.如图,若 l 1∥l 2,l 3∥l 4,则图中与∠1 互补的角有( A .1 个 B .2 个 C .3 个 D ) D .4 个4. 如图,在矩形 ABCD 中,A (-2,0),B(0,1).若正比例函数 y =kx 的图像经过点 C ,则 k 的取值为(A )1 .- 21. 2l 3C .-2D .2l 4C (第2题图)(第3题图)(第4题图)(第6题图)(第8题图)5. 下列计算正确的是( B )A . a 2 ∙ a 2 = 2 a 4B . (- a 2)3= - a 6C . 3 a 2 - 6 a 2 = 3 a 2D . (a - 2)2 = a 2 - 46. 如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为 D ,∠ABC 的平分线交 AD 于点 E ,则 AE 的长为(C)A .4 2 3B .2 C .8 23D .3 7. 若直线 l 1 经过点(0,4),l 2 经过(3,2),且 l 1 与 l 2 关于 x 轴对称,则 l 1 与 l 2 的交点坐标为( B )A .(-2,0)B . (2,0)C .(-6,0)D .(6,0)8. 如图,在菱形 ABCD 中,点 E 、F 、G 、H 分别是边 AB 、BC 、CD 和 DA 的中点,连接 EF 、FG 、GH 和 HE .若 EH =2EF ,则下列结论正确的是( D)A .AB = 2EF B .AB =2EFC . AB = 3EFD .AB = 5EF9. 如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作 CD ∥AB ,并与○O 相交于点 D ,连接 BD ,则∠DBC 的大小为(A )A .15°B .35°C .25°D .45°10. 对于抛物线y = a x 2 + (2a -1)x + a - 3 ,当 x =1 时,y >0,则这条抛物线的顶点一定在( C)A .第一象限B .第二象限C 第三象限D 第四象限(第9题图)2 A B CD . A B4二、填空题(4 分×3=12 分)11、比较大小:【参考答案】<<,>或=).【试题解析】平方法:32 =9,10 2=10 .12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F,则AFE 的度数为E【参考答案】72°(第12题图)(第12题答案图)【试题解析】连接AD,正五边形ABCDE 的内角和为(5-2)×180°=540°,则每个内角为540°÷5=108°.△ABC 为等腰三角形,则∠ACB=∠CAB=(180°-108°)÷2=36°.∠ACD=108°-36°=72°.同理可证∠CBE=72°,∠CBE+∠BCD=180°.所以BE∥CD,所以∠AFE =∠ACD=72°13、若一个反比例函数的图像经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为【参考答案】yx【试题解析】由题意得,m m 2m m2 2m ( 1)0 m(m 2) 0m1 0,(舍)m22设反比例函数解析式为y 所以反比例函数解析式为y k(kx4x0) 代入可得k=4114、点O 是平行四边形ABCD 的对称中心,AD>AB,E,F 分别是AB 边上的点,且EF=2 AB;G,1H 分别是BC 边上的点,且GH=3 BC;,若S1 , S2 分别表示EOF 和GOH 的面积,则S1 , S2 之间的等量关系是(第14题图)2 2)1【参考答案】 S 1【试题解析】连接 AC ,BD 交于点 O ,AO =OCS EF 1 AB S 2ABO2S 1三、解答题(共 11 小题,计 18 分.解答应写出过程) 15.(本题满分 5 分)计算: (- 3) ⨯(- 6) + -1 + (5 - 2π ).解:原式= 3 + -1+1= 416.(本题满分 5 分) 化简: (a +1 - a -1 a a +1 ÷ 3a +1 . a 2 + a(a +1)2-a (a -1)a (a +1) 3a +1 a (a +1) a解:原式= (a -1)(a +1) × 3a +1 =(a -1)(a +1 × 3a +1 =a - .17.(本题满分 5 分)如图,已知在正方形 ABCD 中,M 是 BC 边上一定点,连接 AM ,请用尺规作图法,在 AM 上求作一点 P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求.C(第17题图)S 13 S 2 2 2S 1 3S 2 GH 1 BC 3 S BOC 3S 23 S 22 ABO S BOC2 218、(本题满分5 分)如图,AB∥CD,E、F 分别为AB、CD 上的点,且EC∥BF,连接AD,分别与EC、BF 相交与点G、H,若AB=CD,求证:AG=DH.D(第18题图)证明:∵AB∥CD,∴∠A=∠D.又∵CE∥BF,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎧⎪∠A=∠D∵⎨∠AHB=∠DGC⎪⎩AB=CD∴△ABH≌△DCG(AAS),∴AH=DG.又∵AH=AG+GH,DG=DH+GH,∴AG=HD.19.(本题满分7 分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D 四组,绘制了如下统计图表:依据以上统计信息,解答下列问题:(1)求得m=30,n=19%;(2)这次测试成绩的中位数落在B 组;(3)求本次全部测试成绩的平均数.2581+5543+5100+2796解:测试的平均成绩= 200 =80.1AnD15%B36%C30%= 20.(本题满分 7 分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点 A ,在他们所在的岸边选择了点 B ,使得 AB 与河岸垂直,并在 B 点竖起标杆 BC ,再在 AB 的延长线上选择点 D 竖起标杆 DE ,使得点 E 与点 C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得 BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示. 请根据相关测量信息,求河宽 AB .【能力要求】本题考查相似三角形的应用,能将实际问题转化为数学模型 【知识内容】相似三角形的判定及性质【试题解析】题目中△ABC 和△AED 属于 A 型相似,利用题目条件可以直接得到,列出比例式代值求解 即可【参考答案】解:∵CB ⊥AD, ED ⊥AD∴∠CBA=∠EDA=90° ∵∠CAB=∠EAD ∴△ABC ∽△ADE ∴ AB BC AD DE AB ∴AB+8.5 ∴AB=171 1.5 ∴河宽为 17m21.(本题满分 7 分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国, 小明家网店中红枣和小米这两种商品的相关信息如下表:(1) 已知今年前五个月,小明家网店销售上表中规格的红枣和小米共 3000kg ,获得利润 4.2 万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2) 根据之前的销售情况,估计今年 6 月到 10 月这后五个月,小明家网店还能销售上表中规格的红枣和小米共 2000kg ,其中,这种规格的红枣的销售量不低于 600kg .假设这后五个月,销售这种规格的红枣为 x (kg ),销售这种规格的红枣和小米获得的总利润为 y (元),求出 y 与 x 之间的函数关系式,并求出=这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.【能力要求】本题考查一次方程(组)、一次函数的实际应用,将实际问题转化为数学模型,从文字、表格中获取信息【知识内容】列一元一次方程并求解,一次函数的性质【试题解析】(1)设销售红枣 a 袋,根据题意列出方程求解即可(2)根据所列函数关系式判断 y 与 x 的变化关系,并根据 x 的取值范围求出最值【参考答案】解:(1)设前五个月小明家网店销售这种红枣 a 袋,销售小米b 袋⎧a+2b=3000 根据题意得:解之得:⎨ ⎩20a+16b=42000⎧a=1500⎨ ⎩ b=750∴前五个月小明家网店销售这种红枣 1500 袋.2000-x(2)由题知:y=20x+16× 在 y=12x+16000 中∵k=12>0∴y 随 x 增大而增大2=20x+16000-8x=12x+16000 ∴当 x 取最小值时 y 取最小值 ∵x≥600∴当 x=600 时,y 有最小值最小值为 y=12×600+16000=23200 ∴至少获得总利润 23200 元22.(本题满分 7 分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域, 其中标有数字“1”的扇形圆心角为 120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若 指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇 形的内部为止)(1) 转动转盘一次,求转出的数字是-2 的概率;(2) 转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(第22题图)【能力要求】根据实际问题解决一步概率和两步概率问题,利用整体思想转化为等可能问题 【知识内容】等可能事件概率求解及列表法求解概率【试题解析】(1)根据﹣2 所占圆心角计算即可(2)利用整体思想,将问题转化为等可能事件,列出表格(树状图)求解概率【参考答案】解:(1)由题知:“1”“3”所占圆心角为 120°,所以“-2”所占圆心角为 120°∴P (转出“﹣2”)= 120° = 1360° 3 (2)由(1)知,转出“1”,“3”,“﹣2”的可能性相同列表得:1-2 3 -29由表格可知:等可能出现的结果共 9 种,其中积为正数的情况共 5 种 ∴P (积为正数)=5 23.(本题满分 8 分)如图,在Rt △ABC 中,∠ACB =90°,以斜边 AB 上的中线 CD 为直径作○O ,分别与 AC 、BC 相交于点 M 、N .(1) 过点 N 作⊙O 的切线 NE 与 AB 相交于点 E ,求证:NE ⊥AB ;(2) 连接 MD ,求证:MD =NB .(第23题图)解:(1)如图,连接 ON ∵NE 为⊙O 的切线 ∴ON ⊥NE∵D 为 AB 的中点 ∴AD =CD =BD ∴∠DCB =∠B∵OC =ON∴∠DCB =∠ONC ∴∠ONC =∠B ∴NO ∥AB ∴NE ⊥AB(2)如图,连接 ND ∵CD 为⊙O 的直径∴∠DMC =∠DNC =90° 由(1)得 CD =BD ∴CN =BN∵∠ACB =90°∴四边形CM DN 为矩形 ∴MD =CN ∴MD =NB(第23题答案图1)(第23题答案图2)= = 24.(本题满分 10 分)已知抛物线 L : y = x 2 + x - 6 与 x 轴相交于 A 、B 两点(点 A 在点 B 的左侧),并与 y 轴相交于点 C .(1) 求 A 、B 、C 三点的坐标,并求出△ABC 的面积;(2) 将抛物线向左或向右平移,得到抛物线 L’,且 L’与 x 轴相交于 A’、B’两点(点 A’在点 B’的左侧),并与 y 轴交于点 C’,要使△A’B’C’和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式. 解:(1)当 y =0 时,x ²+x -6=0,解得 x 1=-3,x 2=2.∴A (-3,0),B (2,0),C (0,-6),∴S 1 AB ·OC 5×6=15.2 2 (2)y =x ²+x -6=⎛x 1 ⎫225 ⎝ 2 ⎭ - 4 , 设抛物线向右平移 m 个单位,∴y =⎛x 1 m⎫2 25 ⎝ + 2 - ⎭ - 4 , 由平移知 A'B'=AB =5,∴|y C |= 2S A' B'=6,即当 x =0 时,y =±6,解得 m 1=-3,m 2=4,m 3=0(舍),m 4=1.∴当 m =-3 时,y =x ²+7x -6;当 m =4 时,y =x ²-7x -6;当 m =1 时,y =x ²-x -6.25.(本题满分 12 分) 问题提出(1) 如图①,在△ABC 中,∠A =120°,AB =AC =5,则△AC 的外接圆半径 R 的值为.问题探究(2) 如图②,⊙O 的半径为 13,弦 AB =24,M 是 AB 的中点,P 是⊙O 上一动点,求 PM 的最大值. 问题解决(3) 如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BC =60°, BC 所对的圆心角为 60°.新区管委会想在 BC 路边建物资总站点 P ,在 AB 、AC 路边分别建物资分站点 E 、F .也就是,分别在 BC 线段 AB 和 AC 上选取点 P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按 P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路 PE 、EF 和 FP .为了快捷环保和节约成本要使得线段 PE 、EF 、FP 之和最短,试求 PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计)C图①图②图③(第25题图)【试题解析】(1)如图 1,R =AB =5.(2)PM ≤OM +OP =5+13=18.+=2第25题答案图1 第25题答案图2 第25题答案图3第25题答案图4(3)如图3,作点P 关于AB 的对称点R,作点P 关于AC 的对称点S,根据对称性可知,PE=RE,PF =SF,则有PE+EF+FP=RE+EF+FS≥RS,当R、S、E、F 四点共线时,取等号.如图4,连接AR,AS,由对称性可知,AR=AP=AS;和∠RAB=∠PAB,∠SAC=∠PAC,而∠BAC =60°,则有∠RAB+∠PAB+∠SAC+∠PAC=2∠BAC=120°,所以RS=3AR=3AP.如图5,AP≥AO-OP,点P 在OA 上时,取等号.如图6,取AB 的中点D,连接CD,可证△ABC 是直角三角形,∠ACB=90°,则BC=3 3.设BC 所对的圆心为O,△OBC 为等边三角形,所以,OC=BC=3 3.作点O 作OH⊥AC 交AC 和延长线于点H,则有∠OCH=30°,所以OH33,OH9=2 .在Rt△OAH 中,由勾股定理可得,OA=3 7.所以,PE+EF+FP≥RS=3AP≥ (AO-OP)=3 21-9.CCC第25题答案图5 第25题答案图6 第25题答案图7 另外,求OA 长,也可以如图7 构造△OBD≌△BCA,可证出∠ABD=120°,BD=3,而AB=6.解斜三角形ABD 可得AD=3 7.从而OA=3 7.。
陕西省2018年中考数学真题试题(含)
陕西省2018年中考数学真题试题一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A.711B.-711C.117D.-1172、如图,是一个几何体的表面展开图,则该几何体是A.正方体B.长方体C.三棱柱D.四棱锥3、如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A.-12B.12C.-2 D.2第2题图第3题图第4题图5、下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-46、如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A.423B.2 2 C.823D.3 2第6题图第8题图第9题图7、若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A.(-2,0) B.(2,0) C.(-6,0) D.(6,0)8、如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、yC BA O xGH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EFB .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:3<10(填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72°13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S 1=3S 2第12题图第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)0解:原式=32+2-1+1=4 2 16.(本题满分5分) 化简:⎝⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点. 18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG ∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m=30,n =19%;(2)这次测试成绩的中位数落在B 组; (3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADE ∴AD AB =DEBC ∴AB +8.5AB =1.51组别 分数/分 频数 各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100D 90<x ≤100m2796A nD、15%B 36%C 30%∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值,最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13; (2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下表所示: 第一次 第二次 1-2 3 1 (1,1) (1,-2) (1,3) -2 (-2,1) (-2,-2) (-2,3) 3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1) 解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB∴MD =NB .24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´在点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6) ∴S △ABC =12AB ·OC =12×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC的面积相等,高也只能是6设A(a,0),则B(a+5,0),y=(x-a)(x-a-5),当x=0时,y=a2+5a当C点在x轴上方时,y=a2+5a=6,a=1或a=-6,此时y=x2-7x-6或y=x2+7x-6;当C点在x轴下方时,y=a2+5a=-6,a=-2或a=-3,此时y=x2-x-6或y=x2+x-6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.25.(本题满分12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM 的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC =60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在BC线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③解:(1)R=AB=AC=5;(2)如25题解图(2)所示,连接MO并延长交⊙O于N,连接OP显然,MP≤OM+OP=OM+ON=MN,ON=13,OM=132-122=5,MN=18∴PM的最大值为18;25题解图(2) 25题解图(3)(3)假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P"即为最短距离,其长度取决于PA的长度25题解图(4)作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3 3 BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3 3∴∠ABO=90°,AO=37,PA=37-3 3∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E =∠AP"F=30°∵P´P"=2P´A cos∠AP´E=3P´A=321-9所以PE+EF+FP的最小值为321-9km.。
2018年陕西中考数学试卷(含解析)
2018年陕西省初中毕业、升学考试数学(B卷)(满分120分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018陕西,1,3分)711-的倒数是()A.711B.711-C.117D.117-【答案】D【解析】根据互为倒数两数的乘积等于1,可得711-的倒数是117-,故选择D.【知识点】有理数,倒数2.(2018陕西,2,3分)如图是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥【答案】C【解析】由上正两个底面为等腰直角三角形,侧面是两个正方形,一个矩形可得该几何体为三棱柱.【知识点】几何体的展开图3.(2018陕西,3,3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【答案】D【解析】如图所示:∵l3∥l4,234567∴∠2=∠1,∵l1∥l2,∴∠3=∠2.∴∠3=∠2=∠1∵∠2的邻补角有两个∠4和∠5,∠3的邻补角有两个∠6和∠7,∴图中与∠1互补的角有∠4,∠5,∠6,∠7共4个,故选择D.【知识点】平行线的性质,互补的定义4.(2018陕西,4,3分)如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.12-B.12C.-2 D.2【答案】A【解析】由A(-2,0),B(0,1)可得C(-2,1).把点C代入y=kx,得:-2k=1,12k=-,故选择A.【知识点】正比例函数,图形与坐标5.(2018陕西,5,3分)下列计算正确的是()A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-4【答案】B【解析】∵a2·a2=a4,∴选项A错误;选项B正确;∵3a2-6a2=-3a2,∴选项C错误;∵(a-2)2=a2-4a+4,∴选项D错误;故选择B.【知识点】整式的运算,同底数幂的乘法,幂的乘方,合并同类项,完全平方公式6.(2018陕西,6,3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为()A.423B.22C.823D.32【答案】C【解析】∵BE平分∠ABD,∠ABC=60°,∴∠ABE=∠EBD=30°,∵AD⊥BC,∴∠BDA=90°.∴DE=12 BE.∵∠BAD=90°-60°=30°.∴∠BAD=∠ABE=30°.∴AE=BE=2DE∴AE=23 AD.在Rt△ACD中,sinC=AD AC,AD=ACsinC=28422⨯=.∴AE=2842233⨯=,故选择C.【知识点】解直角三角形7.(2018陕西,7,3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(-2,0)B.(2,0)C.(-6,0)D.(6,0)【答案】B【解析】设直线l1解析式为y1=kx+4,∵l1与l2关于x轴对称,∴直线l2的解析式为y2=-kx-4,∵l2经过点(3,2),∴-3k-4=2.∴k=-2.∴两条直线的解析式分别为y1=-2x+4,y2=2x-4联立方程组,解得:x=2,y=0.∴交点坐标为(2,0),故选择B.【知识点】一次函数8.(2018陕西,8,3分)如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是()A.AB=2EF B.AB=2EF C.AB=3EF D.AB=5EF【答案】D【思路分析】连接AC、BD交于点O.利用中位线性质和菱形的性质证明EF=AO,EH=BO,结合菱形的对角线互相垂直,用勾股定理求线段AB与AO的关系,即得出AB与EF的关系.【解题过程】连接AC、BD交于点O.∵E,F分别为AB、BC的中点,∴EF=12 AC.∵四边形ABCD为菱形,∴AO=12AC,AC⊥BD.∴EF=AO.同理:EH=BO.∵EH=2EF.∴BO=2AO.在Rt△ABO中,设AO=x,则BO=2x.∴AB=22(2)55x x x+==AO.∴AB=5EF,故选择D.【知识点】菱形的性质,中位线的性质,勾股定理9.(2018陕西,9,3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°【答案】A【思路分析】先求出∠ABC和∠A的度数,然后根据圆周角和平行线的性质求出∠ABD的度数,即可求出∠DBC 的度数.【解题过程】∵AB=AC,∴∠ABC=∠ACB=65°.∴∠A=180°-65°×2=50°.∴∠D=∠A=50°.∵CD∥AB,∴∠ABD=∠D=50°.∴∠DBC=∠ABC-∠ABD=65°-50°=15°.故选择A.【知识点】圆的基本性质,等腰三角形的性质,平行线的性质10.(2018陕西,10,3分)对于抛物线2(21)3y ax a x a=+-+-,当x=1时,y>0,则这条抛物线的顶点一O定在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【思路分析】根据题目给出的条件求出a 的取值范围,把抛物线的顶点坐标用含字母a 的代数式表示出来,得出顶点横纵坐标的符号,即可判断所在象限.【解题过程】∵抛物线2(21)3y ax a x a =+-+-,当x =1时,y >0,∴2130a a a +-+->.解得:a >1. ∵2122b a a a --=-, 2244(3)(21)81444ac b a a a a a a a------== 抛物线顶点坐标为:(212a a --,814a a --) ∵a >1,∴2102a a --<,8104a a--<. ∴该抛物线的顶点一定在第三象限.故选择C .【知识点】二次函数的图象和性质二、填空题:本大题共4小题,每小题3分,共12分.不需写出解答过程,请把最后结果填在题中横线上.11.(2018陕西,11,3分)比较大小:310(填“>”、“<”或“=”).【答案】<【解析】∵32=9,2(10)10=. 而9<10.∴3<10.【知识点】实数的大小比较12.(2018陕西,12,3分)如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为 .【答案】72°【解析】∵五边形内角和为(5-2)·180°=540°.∴∠ABC =∠BAE =540°÷5=108°.∵AB =BC ,∴∠BAC =∠ACB =180108362︒-︒=︒.同理:∠ABE =36°.∴∠AFE =∠BAC +∠ABE =36°+36°=72°.【知识点】正多边形,等腰三角形13.(2018陕西,13,3分)若一个反比例函数的图象经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为 .【答案】4y x= 【思路分析】根据反比例函数xy =k ,列出关于m 的方程,求出m 的值即可求出k 的值. 【解题过程】设反比例函数解析式为k y x =,则xy =k . 则22(1)m m k =⋅-=解得:m 1=0(舍去),m 2=-2.∴k =(-2)2=4.∴这个反比例函数的表达式为4y x =. 【知识点】反比例函数14.(2018陕西,14,3分)如图,点O 是□ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF =12AB ;G 、H 是BC 边上的点,且GH =13BC .若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 .【答案】2S 1=3S 2(1232S S =,2123S S =均正确) 【思路分析】连接AC 、BD .根据等底等高的三角形面积相等,得到S △AOB =S △BOC .再利用△OEF 与△AOB 同高,从而得出S 1与△AOB 面积的关系,同理可得S 2与△BOC 面积的关系,即可得出S 1与S 2之间的等量关系.【解题过程】连接AC 、BD .∵四边形ABCD 为平行四边形,∴AO =OC .∴S △AOB =S △BOC .∵EF =12AB ,∴S 1=12S △AOB . ∴S △AOB =2S 1 ∵GH =13BC , ∴S 2=13S △BOC . ∴S △BOC =3S 2.∴2S 1=3S 2.【知识点】平行四边形三、解答题(本大题共11小题,满分78分,解答应写出文字说明、证明过程或演算步骤)15.(2018陕西,15,5分)计算:0(3)(6)|21|(52)π-⨯-+-+-【思路分析】根据二次根据的乘法、绝对值的意义以及零指数幂的意计算每一项,然后再求和即可. 【解题过程】解:0(3)(6)|21|(52)π-⨯-+-+-18211=+-+322=+42=【知识点】二次根式的运算,绝对值,零指数幂16.(2018陕西,16,5分)化简:2131()11a a a a a a a++-÷-++ 【思路分析】先把括号里面的两个分式通分进行加减运算,然后把除法变为乘法再约分化简即可.【解题过程】解:2131()11a a a a a a a++-÷-++ 22(1)(1)[](1)(1)(1)(1)31a a a a a a a a a a +-+=-⋅-+-++ 2221(1)(1)(1)31a a a a a a a a a ++-++=⋅-++ 31(1)(1)(1)31a a a a a a ++=⋅-++ 1a a =- 【知识点】分式的运算17.(2018陕西,17,5分)如图,已知:在正方形ABCD 中,M 是BC 边上一定点,连接AM .请用尺规作图法,在AM 上求作一点P ,使△DP A ∽△ABM .(不写作法,保留作图痕迹)【思路分析】过点D作线段AM的垂线,垂足为点P,则点P即为所求的点.【解题过程】如图所示,AM与DG的交点即为满足条件的点P.作法如下(题目不要求写作法,以下步骤可省略):①以点D为圆心,以任意长为半径画弧交AM于E、F两点,②分别以E、F为圆心,以大于12EF为半径画弧,两弧交于点G,③作直线DG交AM于点P,则点P即为所求点.【知识点】尺规作图18.(2018陕西,18,5分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H.若AB=CD,求证:AG=DH.【思路分析】要证AG=DH,需转化为证明AH=DG较简单,即证明△ABH≌△DCG,结合两组平行线利用AAS 即可完成证明过程.【解题过程】证明:∵AB∥CD,∴∠A=∠D.∵EC∥BF,∴∠CGD=∠AHB.∵AB=CD,∴△ABH≌△DCG∴AH=DG.∴AH-GH=DG-GH.即AG=DH.【知识点】全等三角形的判定和性质,平行线的性质19.(2018陕西,19,7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:依据以上统计信息,解答下列问题:(1)求得m= ,n= ;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.【思路分析】(1)由B组或C组的数据求出调查的总人数,减去A、B、C的人数即为m(或者乘以D组的百分比);用A组的频数除以总人数即可得出n的值;(2)总人数为200,故需找出第100个和第101个数据所在的小组即可求出中位数所在的小组;(3)通过各组总分计算出总成绩,除以总人数即为平均成绩.【解题过程】(1)m=30,n=19%由B组频数为72,所占百分比为36%可得:72÷36%=200200-(38+72+60)=30∴m=30∵38100%19% 200⨯=.∴n=19%(2)B共调查了200名同学,其中A组有38名,B组72名,所以第100和第101名同学的分数都在B组,所以这次测试成绩的中位数落在B组.(3)258155435100279680.1200x+++==.所以本次全部测试成绩的平均数为80.1分.【知识点】统计图表,扇形统计图,平均数,中位数20.(2018陕西,20,7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【思路分析】要求河宽AB 的长,显然只需要证明△ABC ∽△ADE 即可,注意把AD 表示成AB 与BD 的和即可用比例关系求出AB .【解题过程】∵CB ⊥AD ,ED ⊥AD ,∴∠ABC =∠ADE =90°,∵∠CAB =∠EAD ,∴△ABC ∽△ADE . ∴BC AB ED AD= ∵BC =1 m ,DE =1.5 m ,BD =8.5 m ,∴AD =AB +8.5∴11.58.5AB AB =+. 解得:AB =17.∴河宽AB 的长为17 m .【知识点】相似三角形的应用21.(2018陕西,21,7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000 kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣有多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000 kg ,其中,这种规格的红枣的销售量不低于600 kg . 假设这后五个月,销售这种规格的红枣为x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.【思路分析】(1)设前五个月小明家网店销售这种规格的红枣有a 袋,小米有b 袋,根据数量和利润列方程组求解;(2)先分别表示出红枣和小米的袋数,然后根据“每袋的利润×袋数”列函数关系式,再根据函数的增减性求至少能获得的总利润.【解题过程】解:(1)设前五个月小明家网店销售这种规格的红枣有a 袋,小米有b 袋, 根据题意,得: 23000(6040)(5438)42000a b a b +=⎧⎨-+-=⎩解得:1500750a b =⎧⎨=⎩∴这前五个月小明家网店销售这种规格的红枣有1500袋. (2)20006040)(5438)2xy x -=-+-⋅( =12x +16000 (x ≥600) ∵k =12>0,∴y 随x 的增大而增大.∴当x =600时,获得最少利润,至少为:12×600+16000=23200(元). 即函数关系式为y =12x +16000,后五个月至少获得总利润为23200元. 【知识点】二元一次方程组的应用,一次函数的应用 22.(2018陕西,22,7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止). (1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【思路分析】(1)分别求出标号为“1”、“-2”和“3”三个扇形圆心角的度数即可求出概率;(2)三个数字出现机会均等,故可直接列表把所有结果列出,找出其中积为正数的情况,再求概率. 【解题过程】(1)∵标有数字“1”的扇形圆心角为120°, ∴标有数字“3”的扇形圆心角也为120°.∴标有数字“-2”的两个扇形圆心角为之和也为120°. ∴转动转盘一次转出的数字是-2的概率为13. (2)根据题意列表如下:1 -23 1 1 -2 3 -2 -24 -6 33-69由表格可知,共有9种结果,其中积为正数的有5种,∴两次转出的数字之积为正数的概率P =59. 【知识点】概率计算 23.(2018陕西,23,8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .2积 1(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.【思路分析】(1)连接ON,分别利用等边对等角,证明∠ONC=∠B,从而得到ON∥DB,结合NE为切线即可证明;(2)连接ND,可证明MD是△ABC的中位线,从而得到MD=12BC=NB,也可证明四边形MDNC为矩形.【解题过程】(1)连接ON.∵CD为Rt△ABC斜边上的中线,∴CD=12AB=BD.∴∠DCB=∠B.∵OC=ON,∴∠ONC=∠DCB.∴∠ONC=∠B.∴ON∥DB.∵NE是⊙O的切线,∴ON⊥NE.∴NE⊥AB.(2)连接ND.∵CD为⊙O直径,∴∠CND=∠CMD=90°∵CD=BD=AD,∴BN=12BC,CM=AM.∴DM是△ABC的中位线∴DM =12BC . ∴MD =NB .【知识点】切线的性质,直角三角形的性质,三角形的中位线 24.(2018陕西,24,10分)已知抛物线L : y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求△ABC 的面积;(2)将抛物线L 向左或向右平移,得到抛物线L ′,则L ′与x 轴相交于A ′、B ′两点(点A ′在点B ′的左侧),并与y轴相交于点C ′,要使△A ′B ′C ′和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式. 【思路分析】(1)分别求出△ABC 的底和高,即可求出面积;(2)根据△A ′B ′C ′和△ABC 的面积相等而它们的底相等,故只需高相等即可,又知抛物线左右平移时,顶点纵坐标不变,故可设抛物线解析式进行解答. 【解题过程】解:(1)令y =0,得x 2+x -6=0,解得:x 1=-3,x 2=2. ∵点A 在点B 的左侧, ∴A (-3,0),B (2,0). ∵当x =0时,y =-6, ∴C (0,-6)∴AB =|2-(-3)|=5 ∴S △ABC =156152⨯⨯=. (2)方法1:由题意,得A ′B ′=AB =5,要使S △A ′B ′C ′=S △ABC ,只要抛物线L ′与y 轴交点为C ′(0,-6)或C ′(0,6)即可. 设所求抛物线L ′:y =x 2+mx +6,y =x 2+nx -6. 又知抛物线L ′与抛物线L 的顶点纵坐标相同,∴22424144m ---=,22424144n ----= 解之,得:m =±7,n =±1(n =1舍去)抛物线L ′的函数表达式为: y =x 2+7x +6,y =x 2-7x +6 或y =x 2-x -6. 方法2:y =x 2+x -62125()24x =+-. 设平移后的抛物线解析式为:225()4y x h =+-根据题意可知A ′B ′=AB ,要使△A ′B ′C ′和△ABC 的面积相等只需高相等即可,故平移后的抛物线应过点(0,-6)或点(0,6).①若过点(0,-6),则22564h -=-,解得:112h =(舍去),212h =-. 故此时满足条件的抛物线解析式为:22125()624y x x x =--=--. ②若过点(0,6),则22564h -=,解得:172h =,272h =-. 故此时满足条件的抛物线解析式为:22725()7624y x x x =+-=++或22725()7624y x x x =--=++. 综上所述,满足条件的抛物线的函数表达式为:y =x 2-x -6,y =x 2+7x +6或y =x 2-7x +6.【知识点】二次函数,二次函数的平移,分类讨论思想25.(2018陕西,25,12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、»BC是某新区的三条规划路,其中,AB=6km,AC=3km,∠BAC=60°,»BC所对的圆心角为60°.新区管委会想在»BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F,也就是,分别在»BC、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F →P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本,要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)【思路分析】(1)找出△BAC外接圆的圆心,连接OA、OB、OC,证明△OAB和△OAC是等边三角形即可;(2)连接MO,并延长与⊙O相交于点P′,连接OA,OP,显然当点P运动到P′时,PM取得最大值,利用勾股定理可得;(3)要使PE+EF+FP的和取最小值,需转化为“将军饮马”问题,即做点P关于AB和AC的对称点,由于点P也是动点,故结合(2)的结论可知点P在直线AO与»BC的交点时PE+EF+FP取最小值,根据题目给出的数据进行计算即可.【解题过程】(1)5如图所示:设△ABC外接圆的圆心为O,连接OA、OB、OC.则OA=OB=OC∵AB=AC∴△OAB≌△OAC∴∠OAB=∠OAC=12∠BAC=60°.∴△OAB和△OAC都是等边三角形.∴半径R=AB=AC=5.(2)如图,连接MO ,并延长与⊙O 相交于点P ′,连接OA ,OP .∵M 是弦AB 的中点, ∴OM ⊥AB ,AM =12AB =12. 在Rt △AOM 中,OM =225AO AM -=.∵PM ≤OM +OP =OM +OP ′=MP ′=18, ∴当点P 运动到P ′时,PM 取得最大值18.(3)如图,P ′为»BC上任意一点,分别作点P ′关于直线AB 、AC 的对称点P ′1 、P ′2,连接P ′1 P ′2,分别与AB 、AC 相交于点E ′、F ′,连接P ′E ′,P ′F ′,∴△P ′E ′F ′的周长= P ′1E ′+E ′F ′+P ′2F ′= P ′1 P ′2, 对于点P ′及分别在AB 、AC 上的任意点E 、F , 有△P ′EF 的周长≥△P ′E ′F ′的周长= P ′1 P ′2的长. 连接A P ′1 ,AP ′,AP ′2,则A P ′1=AP ′= AP ′2,∠P ′1AB =∠P ′AB ,∠P ′2AC =∠P ′AC , ∴∠P ′1A P ′2=2∠BAC =120°,P ′1 P ′2=3A P ′1=3A P ′.∴要使P ′1 P ′2最短,只要AP ′最短.设O 为»BC所在圆的圆心,连接OB 、OC 、OP ′、OA ,且OA 与»BC 相交于点P , 则A P ′+P ′O ≥AO .∴A P ′≥A P .连接BC ,易证,△ACB 为直角三角形,且∠ABC =30°,∠ACB =90°. ∴BC =AC ·tan60°=33. ∵∠BOC =60°,OB =OC ,∴BO =BC =33,∠OBC =60°,∠ABO =∠ABC +∠OBC =90°. 在Rt △ABO 中,AO =22226(33)37AB BO +=+=.∴3AP =3(AO -OP )=3(3733)3219-=-. ∴P ′1 P ′2的最小值为33219AP =-. ∴PE +EF +FP 的最小值为(3219-)km .【知识点】等腰三角形,三角形的外接圆,垂径定理,勾股定理,几何最值问题。
陕西省2018年中考数学试题(含答案).docx
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是 A .正方体 B .长方体 C .三棱柱 D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有 A .1个 B .2个 C .3个 D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为 A.-12 B .12C .-2D .2第2题图第3题图第4题图5、下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-4 6、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为 A .(-2,0) B .(2,0) C .(-6,0) D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为 A .15° B .35° C .25° D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在 A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72°3B13、若一个反比例函数的图像经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为y=4x14、点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF=12AB;G、H 分别是BC边上的点,且GH=13BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是2S1=3S2第12题图第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)0解:原式=32+2-1+1=4 216.(本题满分5分)化简:⎝⎛⎭⎪⎫a+1a-1-aa+1÷3a+1a2+a解:原式=3a+1(a+1)(a-1)×a(a+1)3a+1=aa-117.(本题满分5分)如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)解:如图,P即为所求点.18、(本题满分5分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.证明:∵AB∥CD,∴∠A=∠D∵CE∥BF,∴∠AHB=∠DGC在∆ABH和∆DCG中,BBCA DAD∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG∵AH =AG +GH ,DG =DH +GH ,∴AG =HD 19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:(第19题图)依据以上统计信息,解答下列问题: (1)求得m =30,n =19%;(2)这次测试成绩的中位数落在B 组; (3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADE ∴AD AB =DE BC∴AB +8.5AB =1.51∴AB =17,即河宽为17米.A nD 、15%B 36%C 30%21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.22.(本题满分7分) 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13;(2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下表所示:1-23-2由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为5923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1)解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB ∴MD =NB .24.(本题满分10分) 已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C . (1)求A 、B 、C 三点的坐标,并求出△ABC 的面积; (2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´在点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6)∴S △ABC =12AB ·OC =12×5×6=15; (2)将抛物线向左或向右平移时,A ´、B ´两点间的距离不变,始终为5,那么要使△A ´B ´C ´和△ABC 的面积相等,高也只能是6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6; 当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6. 25.(本题满分12分) 问题提出ABB(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为. 问题探究 (2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值. 问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(2) 25题解图(3)(3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ´、P "连接PP ´、P ´E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ´E +EF +FP "=P ´P ",且P ´、E 、F 、P "在一条直线上,所以P ´P "即为最短距离,其长度取决于P A 的长度25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得P A 最短的点∵AB =6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC=3 3BP''BBBC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3 3∴∠ABO=90°,AO=37,PA=37-3 3∠P´AE=∠EAP,∠P AF=∠F AP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E=∠AP"F=30°∵P´P"=2P´A cos∠AP´E=3P´A=321-9所以PE+EF+FP的最小值为321-9km.。
陕西省2018年中考数学试卷
16.(本题满分 分)
先化简,再求值: (
a 1 a 3a 1 ) 2 . a 1 a 1 a a
17.(本题满分 5 分) 如图,已知在正方形 ABCD 中,M 是 BC 边上一定点,连接 AM,请用尺规作图法,在 AM 上求作一点 P,使 得△DPA∽△ABM(不写做法保留作图痕迹)
1 BC; , 若 S1 , S 2 分别表示 EOF 和 GOH 的面积, 则 S1 , S 2 之间的等量关系是_____ 3
三、解答题(共 11 小题,计 18 分.解答应写出过程) 15.(本题满分 5 分) 计算: ( 3 ) ( 6 )
2 1 (5 2 ) 0 .
(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共 3000kg,获得利润 4.2 万元,求这前五个 月小明家网店销售这种规格的红枣多少袋; (2)根据之前的销售情况,估计今年 6 月到 10 月这后五个月,小明家网店还能销售上表中规格的红枣和小米共 2000kg,其中,这种规格的红枣的销售量不低于 600kg.假设这后五个月,销售这种规格的红枣味 x(kg),销售 这种规格的红枣和小米获得的总利润为 y(元),求出 y 与 x 之间的函数关系式,并求出这后五个月,小明家网店 销售这种规格的红枣和小米至少获得总利润多少元.
组别 A B C D
分数/分 60<x≤70 70<x≤80 80<x≤90 90<x≤100
频数 38 72 60 m
各组总分/分 2581 5543 5100 2796
(第 19 题图)
依据以上统计信息,解答下列问题: (1)求得 m=_______,n=__________; (2)这次测试成绩的中位数落在_______组; (3)求本次全部测试成绩的平均数.
(完整word版)2018陕西省中考数学试卷(附答案解析版)
2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3.00分)(2018•陕西)﹣的倒数是()A.B.C.D.2.(3.00分)(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是( )A.正方体B.长方体C.三棱柱D.四棱锥3.(3。
00分)(2018•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有( )A.1个B.2个C.3个D.4个4.(3.00分)(2018•陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx 的图象经过点C,则k的值为()A.B.C.﹣2 D.25.(3。
00分)(2018•陕西)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2D.(a﹣2)2=a2﹣46.(3。
00分)(2018•陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.B.2C.D.37.(3。
00分)(2018•陕西)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为( )A.(﹣2,0) B.(2,0)C.(﹣6,0) D.(6,0)8.(3.00分)(2018•陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA 的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3.00分)(2018•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°10.(3。
陕西省2018年中考数学试题(解析版)
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1. -的倒数是A. B. - C. D. -【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2. 如图,是一个几何体的表面展开图,则该几何体是A. 正方体B. 长方体C. 三棱柱D. 四棱锥【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。
【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,故选C【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键.3. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数.【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4. 如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A. -B.C. -2D. 2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k. 【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.5. 下列计算正确的是A. a2·a2=2a4B. (-a2)3=-a6C. 3a2-6a2=3a2D. (a-2)2=a2-4【答案】B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.6. 如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A. B. 2 C. D. 3【答案】C【解析】【分析】由已知可知△ADC是等腰直角三角形,根据斜边AC=8可得AD=4,在Rt△ABD中,由∠B=60°,可得BD==,再由BE平分∠ABC,可得∠EBD=30°,从而可求得DE长,再根据AE=AD-DE即可【详解】∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=8,∴AD=4,在Rt△ABD中,∠B=60°,∴BD===,∵BE平分∠ABC,∴∠EBD=30°,∴DE=BD•tan30°==,∴AE=AD-DE=,故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.7. 若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A. (-2,0)B. (2,0)C. (-6,0)D. (6,0)【答案】B【解析】【分析】根据l1与l2关于x轴对称,可知l2必经过(0,-4),l1必经过点(3,-2),然后根据待定系数法分别求出l1、l2的解析式后,再联立解方程组即可得.【详解】由题意可知l1经过点(3,-2),(0,4),设l1的解析式为y=kx+b,则有,解得,所以l1的解析式为y=-2x+4,由题意可知由题意可知l2经过点(3,2),(0,-4),设l1的解析式为y=mx+n,则有,解得,所以l2的解析式为y=2x-4,联立,解得:,所以交点坐标为(2,0),故选B.【点睛】本题考查了两直线相交或平行问题,关于x轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键.8. 如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是A. AB=EFB. AB=2EFC. AB=EFD. AB=EF【答案】D【解析】【分析】连接AC、BD交于点O,由菱形的性质可得OA=AC,OB=BD,AC⊥BD,由中位线定理可得EH=BD,EF=AC,根据EH=2EF,可得OA=EF,OB=2EF,在Rt△AOB中,根据勾股定理即可求得AB=EF,由此即可得到答案.【详解】连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH=BD,EF=AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB==EF,故选D.【点睛】本题考查了菱形的性质、三角形中位线定理、勾股定理等,正确添加辅助线是解决问题的关键.9. 如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为A. 15°B. 35°C. 25°D. 45°【答案】A【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.10. 对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先由题意得到关于a的不等式,解不等式求出a的取值范围,然后再确定抛物线的顶点坐标的取值范围,据此即可得出答案.【详解】由题意得:a+(2a-1)+a-3>0,解得:a>1,∴2a-1>0,∴<0,,∴抛物线的顶点在第三象限,故选C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键.二、填空题:(本大题共4题,每题3分,满分12分)11. 比较大小:3_________(填<,>或=).【答案】<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.12. 如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为________【答案】72°【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键13. 若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m 的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为:y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.14. 点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF=AB;G、H分别是BC边上的点,且GH=BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是______________【答案】2S1=3S2【解析】【分析】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,根据点O是平行四边形ABCD 的对称中心以及平行四边形的面积公式可得AB•ON=BC•OM,再根据S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,则可得到答案.【详解】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,∵点O是平行四边形ABCD的对称中心,∴S平行四边形ABCD=AB•2ON, S平行四边形ABCD=BC•2OM,∴AB•ON=BC•OM,∵S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,∴S1=AB•ON,S2=BC•OM,∴2S1=3S2,故答案为:2S1=3S2.【点睛】本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面积是解题的关键.三、解答题(共11小题,计78分.解答应写出过程)15. 计算:(-)×(-)+|-1|+(5-2π)0【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.【详解】(-)×(-)+|-1|+(5-2π)0=3+-1+1=4.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.16. 化简:【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可得.【详解】===.【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的顺序是解题的关键.17. 如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DP A∽△ABM(不写做法保留作图痕迹)【答案】作图见解析.【解析】【分析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.18. 如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【详解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在∆ABH和∆DCG中,,∴∆ABH≌∆DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19. 对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=,n=;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.【答案】(1)30;19%;(2)B;(3)80.1分.【解析】【分析】(1)根据B组的频数以及频率可求得样本容量,然后用样本容量乘以D组的百分比可求得m的值,用A的频数除以样本容量即可求得n的值;(2)根据中位数的定义进行解答即可得解;(3)根据平均数的定义进行求解即可得.【详解】(1)72÷36%=200,m=200×15%=30,n==19%,故答案为:30,19%;(2)一共有200个数据,从小到大排序后中位数是第100个、第101个数据的平均数,观察可知中位数落在B组,故答案为:B;(3)本次全部测试的平均成绩==80.1分.【点睛】本题考查了频数分布表,扇形统计图,中位数,平均数等知识,熟练掌握相关的概念是解题的关键.20. 周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【答案】河宽为17米.【解析】【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴∆ABC∽∆ADE,∴,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.21. 经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.【答案】(1)前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【解析】【分析】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据等量关系:①销售红枣和小米共3000kg,②获得利润4.2万元,列方程组进行求解即可得;(2)根据总利润=红枣的利润+小米的利润,可得y与x间的函数关系式,根据一次函数的性质即可得答案.【详解】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据题意得:,解得:,答:前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)根据题意得:y=(60-40)x+(54-38)×=12x+16000,∵k=12>0,∴y随x的增大而增大,∵x≥600,∴当x=600时,y取得最小值,最小值为y=12×600+16000=23200,∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,弄清题意,找出各个量之间的关系是解题的关键.22. 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【答案】(1);(2).【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23. 如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)如图,连接ON,根据直角三角形斜边中线等于斜边的一半可得AD=CD=DB,从而可得∠DCB=∠DBC,再由∠DCB=∠ONC,可推导得出ON∥AB,再结合NE是⊙O的切线,ON//AB,继而可得到结论;(2)如图,由(1)可知ON∥AB,继而可得N为BC中点,根据圆周角定理可知∠CMD=90°,继而可得MD∥CB,再由D是AB的中点,根据得到MD=NB.【详解】(1)如图,连接ON,∵CD是Rt△ABC斜边AB上的中线,∴AD=CD=DB,∴∠DCB=∠DBC,又∵OC=ON,∴∠DCB=∠ONC,∴∠ONC=∠DBC,∴ON∥AB,∵NE是⊙O的切线,ON是⊙O的半径,∴∠ONE=90°,∴∠NEB=90°,即NE⊥AB;(2)如图所示,由(1)可知ON∥AB,∵OC=OD,∴∴CN=NB=CB,又∵CD是⊙O的直径,∴∠CMD=90°,∵∠ACB=90°,∴∠CMD+∠ACB=180°,∴MD//BC,又∵D是AB的中点,∴MD=CB,∴MD=NB.【点睛】本题考查了切线的性质、三角形中位线、圆周角定理等,正确添加辅助线、熟练应用相关知识是解题的关键.24. 已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求出△ABC的面积;(2)将抛物线向左或向右平移,得到抛物线L´,且L´与x轴相交于A´、B´两点(点A´在点B´的左侧),并与y轴交于点C´,要使△A´B´C´和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.【答案】(1)A(-3,0),B(2,0),C(0,6);15;(2)y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【解析】【分析】(1)在抛物线解析式中分别令x=0、y=0即可求得抛物线与坐标轴的交点坐标,然后根据三角形面积公式即可求得三角形的面积;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC 的面积相等,高也只能是6,分点C´在x轴上方与x轴下方两种情况分别讨论即可得.【详解】(1)当y=0时,x2+x-6=0,解得x1=-3,x2=2,当x=0时,y=-6,∴A(-3,0),B(2,0),C(0,6),∴S△ABC=AB·OC=×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC的面积相等,高也只能是6,设A(a,0),则B(a+5,0),y=(x-a)(x-a-5),当x=0时,y=a2+5a,当C´点在x轴上方时,y=a2+5a=6,a=1或a=-6,此时y=x2-7x-6或y=x2+7x-6;当C´点在x轴下方时,y=a2+5a=-6,a=-2或a=-3,此时y=x2-x-6或y=x2+x-6(与原抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【点睛】本题考查了抛物线与坐标轴的交点、抛物线的平移等知识,熟知抛物线沿x轴左右平移时,抛物线与x轴两个交点间的距离不变是解(2)小题的关键.25. 问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③【答案】(1)5;(2)18;(3)(3-9)km.【解析】【分析】(1)如图(1),设外接圆的圆心为O,连接OA, OB,根据已知条件可得△AOB 是等边三角形,由此即可得半径;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MN即为MP的最大值,根据垂径定理求得OM的长即可求得MN的最大值;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP",则P´P"即为最短距离,其长度取决于PA的长度,根据题意正确画出图形,得到点P的位置,根据等边三角形、勾股定理等进行求解即可得PE+EF+FP的最小值.【详解】(1)如图(1),设外接圆的圆心为O,连接OA, OB,∵O是等腰三角形ABC的外心,AB=AC,∴∠BAO=∠OAC=∠BAC==60°,∵OA=OB,∴△AOB是等边三角形,∴OB=AB=5,故答案为:5;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MP≤OM+OP=OM+ON=MN,ON=13,OM==5,MN=18,∴PM的最大值为18;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P"即为最短距离,其长度取决于PA的长度,如图(4),作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点,∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3,BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3,∴∠ABO=90°,AO=3,PA=3-3,∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E=∠AP"F=30°,∵P´P"=2P´Acos∠AP´E=P´A=3-9,所以PE+EF+FP的最小值为3-9km.【点睛】本题考查了圆的综合题,涉及到垂径定理、最短路径问题等,正确添加辅助线、灵活应用相关知识是解题的关键.。
陕西省2018年中考数学试卷及答案解析(word版)
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1.-的倒数是A. B.- C. D.-【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2.如图,是一个几何体的表面展开图,则该几何体是A.正方体B.长方体C.三棱柱D.四棱锥【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。
【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,故选C【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键.3.如图,若l 1∥l2,l 3∥l4,则图中与∠1互补的角有A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠ 1 互补的角的个数 .【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A.-B.C.-2D. 2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.A. a ・= 2aB. (- a )=- aC. 3a -6a = 3aD. ( a -2)=a -4【详解】 A. a ・a = a ,故 A 选项错误;B. (- a )=- a ,正确;C. 3a - 6a = -3a ,故 C 选项错误;D. (a - 2)= a - 4a+4,故 D 选项错误, ,, 【详解】∵ A(- 2,0), B(0, 1),∴ OA=2, OB=1, ∵四边形 OACB 是矩形, ∴ BC=OA=2,AC=OB=1,∵点 C 在第二象限,∴ C 点坐标为( -2, 1), ∵正比例函数 ∴ -2k=1, ∴ k=-, 故选 A.y =kx 的图像经过点C ,【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点 解题的关键 .5.下列计算正确的是C 的坐标是a2 362 2 22 2【答案】 B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得 2 2 42 3 6 2 2 2 2 2 故选 B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算.的运算法则是解题的关键.6.如图,在△ABC 中,AC = 8,∠ ABC = 60°∠ C = 45° AD ⊥ BC ,垂足为 D ,∠ABC 的平分线交 AD 于点E ,则 AE 的长为° A.B. 2C.D. 3【答案】 C【解析】【分析】由已知可知 △ADC 是等腰直角三角形,根据斜边 AC=8可得 AD=4,在 Rt △ABD 中,由∠ B=60°,可得 BD==,再由 BE 平分∠ ABC ,可得∠ EBD=30°,从而可求得 DE 长,再根据AE=AD-DE 即可 【详解】∵ AD ⊥ BC ,∴△ ADC 是直角三角形, ∵∠ C=45°, ∴∠ DAC=45, ∴ AD=DC , ∵ AC=8,∴ AD=4,在 Rt △ABD 中,∠ B=60°,∴ BD===,∵ BE 平分∠ ABC ,∴∠ EBD=30°, ∴ DE=BD?tan30°= ∴ AE=AD-DE= 故选 C.=,,【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键7.若直线 l 1经过点 (0,4),l 2经过 (3, 2),且 l 1与 l 2关于 x 轴对称,则 l 1与 l 2的交点坐标为.A. (- 2,0)B. (2, 0)C. (- 6,0)D. (6, 0)【答案】 B【解析】【分析】根据 l 1与 l 2关于 x 轴对称,可知l 2必经过 (0, -4), l 1必经过点 (3, -2),然后根据待定系数法分别求出 l 1、 l 2的解析式后,再联立解方程组即可得.【详解】由题意可知l 1经过点 (3,-2),( 0, 4),设 l 1的解析式为 y=kx+b ,则有,解得,所以 l 1的解析式为 y=-2x+4,由题意可知由题意可知l2经过点(3,2),(0,-4),设l 1的解析式为y=mx+n,则有,解得,所以l 2的解析式为y=2x-4,联立所以交点坐标为(故选B. ,解得:2,0),,【点睛】本题考查了两直线相交或平行问题,关于x轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键.8.如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是A. AB=EFB. AB=2EFC. AB=EFD. AB=EF【答案】D【解析】【分析】连接AC、BD交于点O,由菱形的性质可得OA= AC,OB= BD,AC⊥BD,由中位线定理可得EH= BD,EF= AC,根据EH=2EF,可得OA=EF,OB=2EF,在Rt△AOB中,根据勾股定理即可求得AB= EF,由此即可得到答案.【详解】连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA= AC,OB= BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH= BD,EF= AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB=故选D.= EF,10.对于抛物线 y =ax + (2a - 1)x + a -3,当 x =1时, y > 0,则这条抛物线的顶点一定在 , °° - 【点睛】本题考查了菱形的性质、三角形中位线定理、勾股定理等,正确添加辅助线是解决问题 的关键 .9.如图,△ABC 是⊙ O 的内接三角形, AB =AC ,∠ BCA = 65°作 CD ∥AB ,并与O 相交于点 D ,连接 BD , 则∠ DBC 的大小为A. 15°B. 35°C. 25°D. 45° 【答案】 A【详解】∵ AB=AC ,∴∠ ABC=∠ ACB=65°,∴∠ A=180°-∠ ABC-∠ ACB=50°,∵ DC//AB ,∴∠ ACD=∠ A=50°, 又∵∠ D=∠ A=50°,∴∠ DBC=180 -∠ D -∠BCD=180 -50°( 65°+50°) =15°, 故选 A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容 是解题的关键 .2A.第一象限B.第二象限C.第三象限D.第四象限【答案】 C【详解】∵ 3 =9, 9<10,) ) 【解析】【分析】先由题意得到关于 标的取值范围,据此即可得出答案.a 的不等式,解不等式求出 a 的取值范围,然后再确定抛物线的顶点坐【详解】由题意得: ∴ 2a-1>0,a+(2a-1)+a-3>0,解得: a>1,∴<0,,∴抛物线的顶点在第三象限, 故选 C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键二、填空题:(本大题共 4题,每题 3分,满分 12分).11.比较大小:3_________ 【答案】 <(填 <, >或= ).【解析】【分析】根据实数大小比较的方法进行比较即可得答案 2.∴ 3<,故答案为: <.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.12.如图,在正五边形 ABCDE 中, AC 与 BE 相交于点 F ,则 【答案】 72°AFE 的度数为 ________【解析】【分析】首先根据正五边形的性质得到AB=BC=AE ,∠ABC=∠ BAE=108°,然后利用三角形内角和定理得∠ BAC=∠ BCA=∠ ABE=∠ AEB=( 180°-108°÷2=36°,最后利用三角形的外角的性质得到 ∠ AFE=∠ BAC+∠ ABE=72°. 【详解】∵五边形ABCDE 为正五边形,∴ AB=BC=AE ,∠ABC=∠ BAE=108°,∴∠ BAC=∠ BCA=∠ ABE=∠AEB=(180°-108°÷2=36°, ∴∠ AFE=∠BAC+∠ABE=72°, 故答案为: 72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键13.若一个反比例函数的图象经过点A(m , m)和 B(2m ,- 1),则这个反比例函数的表达式为______由题意得: m =2m ×(-1),【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于的值,再由待定系数法即可求得反比例函数的解析式-19.y=,【详解】设反比例函数解析式为2解得: m=-2或 m=0(不符题意,舍去), 所以点 A ( -2, -2),点 B (-4, 1), 所以 k=4,y=,所以反比例函数解析式为: 故答案为: y= .m 的方程,解方程即可求得m【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数 解题的关键 .k 是14.点 O 是平行四边形ABCD 的对称中心, AD > AB ,E 、 F 分别是 AB 边上的点,且 EF = AB ; G 、 H 分别是 BC 边上的点,且 GH = BC ;若 S 1,S 2分别表示 ? EOF 和 ? GOH 的面积,则 S 1,S 2之间的等量关系是 ______________ 【答案】 2S 1= 3S 2【解析】【分析】过点 O 分别作 OM ⊥ BC ,垂足为 M ,作 ON ⊥AB ,垂足为 N ,根据点 O 是平行四边形ABCD的对称中心以及平行四边形的面积公式可得AB?ON=BC?OM ,再根据S 1= EF?ON ,S 2= GH?OM , EF = AB , GH = BC ,则可得到答案 . 【详解】过点O 分别作 OM ⊥ BC ,垂足为 M ,作 ON ⊥ AB ,垂足为 N ,∵点 O 是平行四边形ABCD 的对称中心,∴ S 平行四边形ABCD =AB?2ON, S 平行四边形ABCD=BC?2OM ,∴ AB?ON=BC?OM ,∵ S 1= EF?ON , S 2= GH?OM , EF = AB ,GH = BC , ∴ S 1= AB?ON , S 2= BC?OM ,∴ 2S 1= 3S 2,- 1|+ (5- 2π)( - 1|+ (5- 2π)故答案为: 2S 1= 3S 2.【点睛】本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面 积是解题的关键 .三、解答题(共 11小题,计 78分.解答应写出过程)15.计算: (-)×-)+|【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、 序进行计算即可 .0次幂的计算,然后再按运算顺【详解】 (-= 3 = 4)×(- +.)+ |- 1+ 1【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键16.化简: 【答案】.【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可得 【详解】= =.=.【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的顺序是解题的关键.17.如图,已知在正方形ABCD 中, M 是 BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ ABM (不写做法保留作图痕迹)【答案】作图见解析.【解析】【分析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点 .【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.18.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【解析】【分析】利用AAS先证明?ABH≌?DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG=DH+GH即可证得AG=HD.【详解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在?ABH和?DCG中,,∴?ABH≌?DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19.对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学 们设计了“垃圾分类知识及投放情况 布情况,他们将全部测试成绩分成”问卷,并在本校随机抽取若干名同学进行了问卷测试.A 、B 、C 、D 四组,绘制了如下统计图表:根据测试成绩分“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得 m =, n =;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.【答案】(1) 30; 19%;( 2) B ;( 3) 80.1分 .【解析】【分析】( 1)根据 B 组的频数以及频率可求得样本容量,然后用样本容量乘以D 组的百分比可求得m 的值,用 A 的频数除以样本容量即可求得n 的值;( 2)根据中位数的定义进行解答即可得解; ( 3)根据平均数的定义进行求解即可得【详解】(1) 72÷36%=200, m=200× 15%=30, n=故答案为: 30, 19%;.=19%,( 2)一共有 200个数据,从小到大排序后中位数是第 中位数落在 B 组, 故答案为: B ;( 3)本次全部测试的平均成绩=100个、第 101个数据的平均数,观察可知=80.1分.【点睛】本题考查了频数分布表,扇形统计图,中位数,平均数等知识,熟练掌握相关的概念是解题的关键 .20.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【答案】河宽为17米.【解析】【分析】由题意先证明?ABC∽?ADE,再根据相似三角形的对应边成比例即可求得AB的长 .【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴?ABC∽?ADE,∴,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.21.经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品规格成本(元/袋)售价(元/袋)红枣1kg/袋4060小米2kg/袋3854根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共求这前五个月小明家网店销售这种规格的红枣多少袋;3000kg,获得利润4.2万元,(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000 kg,其中,这种规格的红枣的销售量不低于枣味x(kg),销售这种规格的红枣和小米获得的总利润为600kg.假设这后五个月,销售这种规格的红y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.【答案】(1)前五个月小明家网店销售这种规格的红枣店销售这种规格的红枣和小米至少获得总利润23200元.1500袋,销售小米750袋;(2)小明家网【解析】【分析】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据等量关系:①销售红枣和小米共3000kg,②获得利润4.2万元,列方程组进行求解即可得;(2)根据总利润=红枣的利润+小米的利润,可得即可得答案 .y与x间的函数关系式,根据一次函数的性质【详解】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据题意得:,解得:,答:前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)根据题意得:y=(60-40)x+(54-38)×∵k=12>0,∴y随x的增大而增大,∵x≥600,∴当x=600时,y取得最小值,最小值为y=12×600+16000=23200,∴小明家网店销售这种规格的红枣和小米至少获得总利润=12x+16000,23200元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,弄清题意,找出各个量之间的关”” 和所、” 系是解题的关键 .22.如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“ 1的”扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转 出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘, 直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【答案】(1);( 2) .【解析】【分析】(1)根据题意可求得 2个“- 2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;( 2)由题意可得转出“1、“3、“- 2”的概率相同,然后列表得到所有可能的情况,再找出符合条 件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”“3”占的扇形圆心角为120°,所以 2个“- 2”所占的扇形圆心角为360°- 2×120°= 120°, ∴转动转盘一次,求转出的数字是-2的概率为=;( 2)由( 1)可知,该转盘转出第一次第1二次 “1”“3、“- 2”的概率相同,均为- 2,所有可能性如下表所示:31 -2 3(1, 1)(- 2, 1)(3, 1)(1,- 2)(-2,- 2)(3,- 2)(1, 3)(- 2, 3)(3, 3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为., 【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23.如图,在Rt ABC 中,∠ ACB = 90°以斜边 AB 上的中线 CD 为直径作⊙ O ,分别与 AC 、BC 相交于 点 M 、 N .(1)过点 N 作⊙ O 的切线 NE 与 AB 相交于点 E ,求证: NE ⊥AB ; (2)连接 MD ,求证: MD = NB .【答案】(1)证明见解析;( 2)证明见解析 .【解析】【分析】(1)如图,连接 ON ,根据直角三角形斜边中线等于斜边的一半可得AD = CD =DB ,从而可得∠ DCB =∠ DBC ,再由∠ DCB =∠ ONC ,可推导得出 ON ∥ AB ,再结合 NE 是⊙ O 的切线,ON//AB , 继而可得到结论;( 2)如图,由( 1)可知 ON ∥AB ,继而可得 N 为 BC 中点,根据圆周角定理可知∠CMD = 90°,继而可得 MD ∥ CB ,再由 D 是 AB 的中点,根据得到【详解】(1)如图,连接 ON ,∵ CD 是 Rt △ABC 斜边 AB 上的中线, ∴ AD = CD =DB , ∴∠ DCB =∠ DBC ,又∵ OC=ON ,∴∠ DCB =∠ ONC , ∴∠ ONC =∠ DBC , ∴ ON ∥ AB ,∵ NE 是⊙ O 的切线, ON 是⊙ O 的半径, ∴∠ ONE = 90°,∴∠ NEB =90°,即 NE ⊥ AB ;( 2)如图所示,由( 1)可知 ON ∥ AB , ∵ OC = OD ,∴∴ CN = NB = CB ,MD =NB .。
陕西省2018年中考数学试题(含答案)-精选
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是A .正方体B .长方体C .三棱柱D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有A .1个B .2个C .3个D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为A .-12B .12C.-2 D.2 第2题图第3题图第4题图5、下列计算正确的是A .a 2·a 2=2a4B .(-a 2)3=-a 6C .3a 2-6a 2=3a2D .(a -2)2=a 2-46、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为A .(-2,0)B .(2,0)C .(-6,0)D .(6,0)8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EFB .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(本大题共4题,每题3分,满分12分)1l 4l 3l2l 1EDBACGHEFDA CBDOABCyCBAO x11、比较大小:3<10(填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72°13、若一个反比例函数的图像经过点A (m,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示?EOF 和?GOH 的面积,则S1,S 2之间的等量关系是2S 1=3S 2第12题图第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)解:原式=32+2-1+1=4 216.(本题满分5分)化简:a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点.18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .FAEDC BS2S 1ODBCAE FG HBCADMHGAFBCDE证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在?ABH 和?DCG 中,∵∠A =∠D∠AHB =∠DGC AB =CD∴?ABH ≌?DCG (AAS ),∴AH =DG ∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题:(1)求得m =30,n =19%;(2)这次测试成绩的中位数落在B 组;(3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD ,∴∠CBA =∠EDA =90°∵∠CAB =∠EAD ∴?ABC ∽?ADEA n D 、15%B 36%C 30%组别分数/分频数各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100 D90<x ≤100m2796∴ADAB=DEBC∴AB+8.5AB=1.51∴AB=17,即河宽为17米.21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)40 38售价(元/袋)60 54根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据题意列方程得:a+2b=3000,(60-40)a+(54-38)b=42000,解得:a=1500,b=750 ∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋(2)根据题意得:y=(60-40)x+(54-38)×2000-x2=12x+16000y随x的增大而增大,∵x≥600,∴当x=600时,y取得最小值,最小值为y=12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13;1-23-2(2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下表所示:第一次第二次1 -23 1 (1,1) (1,-2) (1,3) -2 (-2,1) (-2,-2) (-2,3) 3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为5923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ;(2)连接MD ,求证:MD =NB .23题图 23题解图(1)解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB∴MD =NB .24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ′,且L ′与x 轴相交于A ′、B ′两点(点A ′在点B ′的左侧),并与y 轴交于点C ′,要使△A ′B ′C ′和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6)ENMOD ABCENMOD BAC∴S △ABC =12AB ·OC=12×5×6=15;(2)将抛物线向左或向右平移时,A ′、B ′两点间的距离不变,始终为5,那么要使△A ′B ′C ′和△ABC的面积相等,高也只能是 6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6;当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6.25.(本题满分12分)问题提出(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为.问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP 显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18∴PM 的最大值为18;25题解图(2) 25题解图(3)(3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ′、P "连接PP ′、P ′E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ′E +EF +FP "=P ′P ",且P ′、E 、F 、P "在一条直线上,所以P ′P "即为最短距离,其长度取决于PA 的长度CBABAMO PBACNBAMOPFEP''P'BACP25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得PA 最短的点∵AB =6km ,AC =3km ,∠BAC =60°,∴?ABC 是直角三角形,∠ABC =30°,BC =3 3BC 所对的圆心角为60°,∴?OBC 是等边三角形,∠CBO =60°,BO =BC =3 3∴∠ABO =90°,AO =37,PA =37-3 3∠P ′AE =∠EAP ,∠PAF =∠FAP ",∴∠P ′AP "=2∠ABC =120°,P ′A =AP ",∴∠AP ′E =∠AP "F =30°∵P ′P "=2P ′A cos ∠AP ′E =3P ′A =321-9所以PE +EF +FP 的最小值为321-9km .FEP''P'POBAC。
2018年陕西省中考数学试题含答案
第 12 题图
Байду номын сангаас
第 14 题图
解:如图,P即为所求点.
18、(本题满分5分) 如图,AB∥CD,E、F分别为AB、 CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB= CD,求证:AG=DH.
证明:∵AB∥CD,∴∠A=∠D ∵CE∥BF,∴∠AHB=∠DGC 在∆ABH和∆DCG中, ∠A=∠D ∠AHB=∠DGC ∵ AB=CD ∴∆ABH≌∆DCG(AAS),∴AH=DG ∵AH=AG+GH,DG=DH+GH,∴AG=HD 19.(本题满分7分) 对垃圾进行分类投放, 能有效提高对垃圾的处理和再利用减少污染, 保护环境.为了了解同学们对垃圾分 类知识的了解程度增强同学们的环保意识, 普及垃圾分类及投放的相关知识. 某校数学兴趣小组的同学们设计 了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情 况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表: “垃圾分类知识及投放情况”问卷测试成绩统计表
3
3
第6题图第8题图第9题图 7、若直线 l1 经过点(0,4),l2 经过(3,2),且 l1 与l2 关于 x 轴对称,则 l1 与l2 的交点坐标为 A.(-2,0) B.(2,0) C.(-6,0) D.(6,0) 8、如图,在菱形 ABCD 中,点 E、F、G、H 分别是边 AB、BC、CD 和DA 的中点,连接 EF、FG、GH 和 HE.若 EH=2EF,则下列结论正确的是 A.AB= 2EF B.AB=2EF C.AB= 3EF D.AB= 5EF 9、如图,△ABC 是⊙O 的内接三角形,AB=AC,∠BCA=65°,作 CD∥AB,并与○O 相交于点 D,连接 BD,则∠DBC 的大小为 A.15° B.35° C.25° D.45° 2 10、对于抛物线 y=ax +(2a-1)x+a-3,当x=1 时,y>0,则这条抛物线的顶点一定在 A.第一象限 B.第二象限 C.第三象限 D.第四象限
2018年陕西省中考数学试题含答案word版
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A .711B .-711C .117D .-1172、如图,是一个几何体的表面展开图,则该几何体是 A .正方体 B .长方体 C .三棱柱 D .四棱锥3、如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有 A .1个 B .2个 C .3个 D .4个4、如图,在矩形ABCD 中,A (-2,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为A .-12B .12C .-2D .2第2题图第3题图第4题图5、下列计算正确的是 A .a 2·a 2=2a 4 B .(-a 2)3=-a 6 C .3a 2-6a 2=3a 2 D .(a -2)2=a 2-46、如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为A .423B .2 2C .823D .3 2第6题图第8题图第9题图7、若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为 A .(-2,0) B .(2,0) C .(-6,0) D .(6,0) 8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是A .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:3<10(填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72° 13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x1l 4l 3l 2l 1EDBACGHEFDA CBDOABCO x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S 1=3S 2第12题图 第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分) 计算:(-3)×(-6)+|2-1|+(5-2π)0 解:原式=32+2-1+1=4 2 16.(本题满分5分)化简:⎝ ⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点.18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,BBCADAD∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG (AAS ),∴AH =DG∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m=30,n =19%;(2)这次测试成绩的中位数落在B 组;(3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD组别 分数/分 频数 各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100D 90<x ≤100m2796、15%∴∆ABC ∽∆ADE ∴AD AB =DE BC∴AB +8.5AB = 1.51∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特商品 红枣 小米 规格 1kg /袋 2kg /袋 成本(元/袋) 40 38 售价(元/袋)6054根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x 2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.1-23-2(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13; (2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1)解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB ∴MD =NB .24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´在ABB点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6)∴S △ABC =12AB ·OC =12×5×6=15; (2)将抛物线向左或向右平移时,A ´、B ´两点间的距离不变,始终为5,那么要使△A ´B ´C ´和△ABC 的面积相等,高也只能是6设A (a ,0),则B (a +5,0),y =(x -a )(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6;当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6.25.(本题满分12分) 问题提出 (1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△ABC 的外接圆半径R 的值为 . 问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB的中点,P 是⊙O 上一动点,求PM 的最大值.问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BAC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图① 图② 图③解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(3) (3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P ´、P "连接PP ´、P ´E ,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P ´E +EF +FP "=P ´P ",且P ´、E 、F 、P "在一条直线上,所以P ´P "即为最短距离,其长度取决于P A 的长度25题解图(4)作出弧BC 的圆心O ,连接AO ,与弧BC 交于P ,P 点即为使得P A 最短的点∵AB =6km ,AC =3km ,∠BAC =60°,∴∆ABC 是直角三角形,∠ABC =30°,BC =3 3 BC 所对的圆心角为60°,∴∆OBC 是等边三角形,∠CBO =60°,BO =BC =3 3 ∴∠ABO =90°,AO =37,PA =37-3 3∠P ´AE =∠EAP ,∠P AF =∠F AP ",∴∠P ´AP "=2∠ABC =120°,P ´A =AP ",∴∠AP ´E =∠AP "F =30°∵P ´P "=2P ´A cos ∠AP ´E =3P ´A =321-9 所以PE +EF +FP 的最小值为321-9km .P''BB。
2018年陕西省中考数学试卷-答案
故选:B.
1 / 17
【考点】矩形的性质,平面直角坐标系中点的坐标,正比例函数的性质 5.【答案】C 【解析】解:A、 a2 a2 a4 ,此选项错误;B、 (a 2)2 a2 4a 4 ,此选项错误;C、 (a2 )3 a6 ,此选 项正确;D、 3a2 6a2 3a2 ,此选项错误;故选:B. 【考点】整式的运算 6.【答案】D 【解析】解:∵ AD BC , ∴ ADC ADB 90 . 在 Rt△ADC 中, AC 8 , C 45 , ∴ AD CD , ∴ AD 2 AC 4 2 .
2 ∵ 600≤x≤2 000 , 当 x 600 时,y 有最小值,最小值为 23 200 元. 答:这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润 23 200 元. 【解析】解:(1)设这前五个月小明家网店销售这种规格的红枣 x 袋. 由题意: 20x 3 000 x 16 42 000 ,
∴ BEC BFC , BE CF ,
∴ AEG DFH ,
∵ AB CD ,
∴ AE DF ,
在 △AEG 和 △DFH 中,
A D
∵
AE
DF
,
AEC DFH
∴ △AEG≌△DFH(ASA) ,
∴ AG DH .
【解析】证明:∵ AB∥CD 、 EC∥BF ,
∴四边形 BFCE 是平行四边形, A D ,
∵ DP AM ,
∴ APD ABM 90 ,
∵ BAM PAD 90 , PAD ADP 90 ,
∴ BAM ADP ,
∴ △DPA∽△ABM .
【考点】尺规作图——作线段的垂线,相似三角形的判定
18.【答案】证明:∵ AB∥CD 、 EC∥BF ,
陕西省2018年中考数学试卷
2018年陕西省中考数学试卷一、选择题:(本大题共10题,每题3分,满分30分)1.- 7 11的倒数是( )A . 7 11B .- 7 11C . 11 7D .- 11 72.如图,是一个几何体的表面展开图,则该几何体是( ) A .正方体 B .长方体 C .三棱柱 D .四棱锥 3.如图,若l 1∥l 2,l 3∥l 4,则图中与∠1互补的角有( ) A .1个 B .2个 C .3个 D .4个4.如图,在矩形ABCD 中,A (1,0),B(0,1).若正比例函数y =kx 的图像经过点C ,则k 的取值为( )A .- 1 2B . 1 2C .-2D .2(第2题图)l 3l 4(第3题图)(第4题图)5.下列计算正确的是( )A .a a a 4222=∙B .a a 623)(-=-C .a a a 222363=-D . 4)2(22-=-a a6.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( )A .324 B .22 C .328 D .23 7.若直线l 1经过点(0,4),l 2经过(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( ) A .(-2,0) B .(2,0) C .(-6,0) D .(6,0)8.如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是( )A .AB =EF 2 B .AB =2EFC . EF AB 3=D .AB=EF 5(第6题图)C (第8题图)D(第9题图)9.如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为( )A .15°B .35°C .25°D .45°10.对于抛物线3)12(2-+-+=a x a x a y ,当x =1时,y >0,则这条抛物线的顶点一定在( )A .第一象限;B .第二象限 ;C 第三象限. ;D 第四象限.二、填空题(4分×3=12分)11、比较大小:3_____ 10(填<,>或=).【试题解析】平方法:223910==.12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则ÐAFE 的度数为_____(第12题图)B(第14题图)13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为_____14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E ,F 分别是AB 边上的点,且EF = 12AB ;G ,H 分别是BC 边上的点,且GH = 13BC ;,若12,S S 分别表示EOF 和GOH 的面积,则12,S S 之间的等量关系是_____三、解答题(共11小题,计18分.解答应写出过程) 15.(本题满分5分)计算:.)25(12)6()3(0π-+-+-⨯-16.(本题满分5分)先化简,再求值:.13)111(2aa a a a a a ++÷+--+17.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)(第17题图)18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .(第18题图)AD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:依据以上统计信息,解答下列问题: (1)求得m =_______,n =__________;(2)这次测试成绩的中位数落在_______组; (3)求本次全部测试成绩的平均数.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示. 请根据相关测量信息,求河宽AB .21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(第22题图)(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作○O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .(第23题图)24.(本题满分10分)已知抛物线L :62-+=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C . (1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ’,且L ’与x 轴相交于A ’、B ’两点(点A ’在点B ’的左侧),并与y 轴交于点C ’,要使△A ’B ’C ’和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.25.(本题满分12分) 问题提出(1)如图①,在△ABC 中,∠A =120°,AB =AC =5,则△AC 的外接圆半径R 的值为_______. 问题探究(2)如图②,⊙O 的半径为13,弦AB =24,M 是AB 的中点,P 是⊙O 上一动点,求PM 的最大值. 问题解决(3)如图③所示,AB 、AC 、BC 是某新区的三条规划路其中,AB =6km ,AC =3km ,∠BC =60°,BC 所对的圆心角为60°.新区管委会想在BC 路边建物资总站点P ,在AB 、AC 路边分别建物资分站点E 、F .也就是,分别在BC 线段AB 和AC 上选取点P 、E 、F .由于总站工作人员每天要将物资在各物资站点间按P →E →F →P 的路径进行运输,因此,要在各物资站点之间规划道路PE 、EF 和FP .为了快捷环保和节约成本要使得线段PE 、EF 、FP 之和最短,试求PE +EF +FP 的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计)(第25题图)图③图②图①C。
陕西省2018年中考数学试题及答案
陕西省2018年中考数学试题及答案(试卷满分120分,考试时间120分钟)一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A.711B.-711C.117D.-1172、如图,是一个几何体的表面展开图,则该几何体是A.正方体B.长方体C.三棱柱D.四棱锥3、如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A.-12B.12C.-2 D.2第2题图第3题图第4题图5、下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-46、如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A.423B.2 2 C.823D.3 2第6题图第8题图第9题图7、若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A.(-2,0) B.(2,0) C.(-6,0) D.(6,0)yC BA O x8、如图,在菱形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、GH 和HE .若EH =2EF ,则下列结论正确的是 A .AB =2EFB .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA=65°,作CD∥AB,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为 A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在 A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(本大题共4题,每题3分,满分12分) 11、比较大小:3 ____10(填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为____________13、若一个反比例函数的图像经过点A(m ,m)和B(2m ,-1),则这个反比例函数的表达式为______________14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是______________.第12题图第14题图三、解答题(共11小题,计78分.解答应写出过程) 15.(本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)016.(本题满分5分)化简:⎝⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a17.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA∽△ABM(不写做法保留作图痕迹)18、(本题满分5分)如图,AB∥CD,E 、F 分别为AB 、CD 上的点,且EC∥BF,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m = ,n = ; (2)这次测试成绩的中位数落在 组; (3)求本次全部测试成绩的平均数. 20.(本题满分7分)组别 分数/分 频数 各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100D 90<x ≤100m2796A nD、15%B 36%C 30%周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)40 38售价(元/袋)60 54根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(本题满分8分)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.23题图24.(本题满分10分)已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求出△ABC的面积;(2)将抛物线向左或向右平移,得到抛物线L´,且L´与x轴相交于A´、B´两点(点A´在点B´的左侧),并与y轴交于点C´,要使△A´B´C´和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.25.(本题满分12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在BC线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③参考答案一、选择题:(本大题共10题,每题3分,满分30分) 1.D 2.C 3.D 4.A 5.B 6.C 7.B 8.D 9.A 10.C 二、填空题:(本大题共4题,每题3分,满分12分)11.< 12.72° 13.y =4x14.2S 1=3S 2三、解答题(共11小题,计78分.解答应写出过程)15.解:原式=32+2-1+1=4 216.解:原式=3a +1(a +1)(a -1)×a(a +1)3a +1=aa -117.解:如图,P 即为所求点.18.证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD∴∆ABH ≌∆DCG(AAS),∴AH =DG ∵AH =AG +GH ,DG =DH +GH ,∴AG =HD 19.(1) 30, 19%; (2) B ;(3)测试的平均成绩=2581+5543+5100+2796200=80.1.20.解:∵CB ⊥AD ,ED ⊥AD ,∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADE ∴AD AB =DE BC∴AB +8.5AB =1.51∴AB =17,即河宽为17米.21.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x 2=12x +16000y 随x 的增大而增大,∵x≥600,∴当x =600时,y 取得最小值, 最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.22.解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13;(2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB , O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB∴MD =NB .24.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6∴A(-3,0),B(2,0),C(0,6) ∴S △ABC =12AB ·OC =12×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A ´B´C´和△ABC 的面积相等,高也只能是6设A(a ,0),则B(a +5,0),y =(x -a)(x -a -5),当x =0时,y =a 2+5a当C 点在x 轴上方时,y =a 2+5a =6,a =1或a =-6,此时y =x 2-7x -6或y =x 2+7x -6; 当C 点在x 轴下方时,y =a 2+5a =-6,a =-2或a =-3,此时y =x 2-x -6或y =x 2+x -6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y =x 2-7x -6,y =x 2+7x -6,y =x 2-x -6. 25.解:(1)R =AB =AC =5;(2)如25题解图(2)所示,连接MO 并延长交⊙O 于N ,连接OP显然,MP ≤OM +OP =OM +ON =MN ,ON =13,OM =132-122=5,MN =18 ∴PM 的最大值为18;25题解图(2) 25题解图(3)(3)假设P 点即为所求点,分别作出点P 关于AB 、AC 的对称点P´、P "连接PP´、P´E,PE ,P "F ,PF ,PP "由对称性可知PE +EF +FP =P´E+EF +FP "=P´P",且P´、E 、F 、P "在一条直线上,所以P´P"即为最短距离,其长度取决于PA 的长度1 3 -225题解图(4)作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3 3BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3 3∴∠ABO=90°,AO=37,PA=37-3 3∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E=∠AP"F=30°∵P´P"=2P´Acos∠AP´E=3P´A=321-9所以PE+EF+FP的最小值为321-9km.。
二零一八年陕西省中考之数学真题附答案解析
二零一八年陕西省中考之数学真题附答案解析一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3分)﹣的倒数是()A. B. C. D.2.(3分)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个 B.2个 C.3个 D.4个4.(3分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx 的图象经过点C,则k的值为()A.B. C.﹣2 D.25.(3分)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2 D.(a﹣2)2=a2﹣4 6.(3分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A. B.2 C. D.37.(3分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0) D.(6,0)8.(3分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°10.(3分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3分)比较大小:3 (填“>”、“<”或“=”).12.(3分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3分)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。
2018年陕西省中考数学试卷
2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3.00分)﹣的倒数是()A.B.C.D.2.(3.00分)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3.00分)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个4.(3.00分)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.B.C.﹣2 D.25.(3.00分)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2D.(a﹣2)2=a2﹣46.(3.00分)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为()A.B.2 C.D.37.(3.00分)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)8.(3.00分)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF9.(3.00分)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O 相交于点D,连接BD,则∠DBC的大小为()A.15° B.35° C.25° D.45°10.(3.00分)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(共4小题,每小题3分,计12分)11.(3.00分)比较大小:3 (填“>”、“<”或“=”).12.(3.00分)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3.00分)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3.00分)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年陕西省中考数学试卷(含答案解析版)2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3.00分)(2018•陕西)﹣711的倒数是()A.711B.−711C.117D.−1172.(3.00分)(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥3.(3.00分)(2018•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个4.(3.00分)(2018•陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.−12 B.12C.﹣2 D.25.(3.00分)(2018•陕西)下列计算正确的是()A .a 2•a 2=2a 4B .(﹣a 2)3=﹣a 6C .3a 2﹣6a 2=3a 2D .(a ﹣2)2=a 2﹣46.(3.00分)(2018•陕西)如图,在△ABC 中,AC=8,∠ABC=60°,∠C=45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( )A .43√2B .2√2C .83√2 D .3√27.(3.00分)(2018•陕西)若直线l 1经过点(0,4),l 2经过点(3,2),且l 1与l 2关于x 轴对称,则l 1与l 2的交点坐标为( )A .(﹣2,0)B .(2,0)C .(﹣6,0)D .(6,0)8.(3.00分)(2018•陕西)如图,在菱形ABCD 中.点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,连接EF 、FG 、CH 和HE .若EH=2EF ,则下列结论正确的是( )A .AB=√2EFB .AB=2EFC .AB=√3EFD .AB=√5EF9.(3.00分)(2018•陕西)如图,△ABC 是⊙O 的内接三角形,AB=AC ,∠BCA=65°,作CD ∥AB ,并与⊙O 相交于点D ,连接BD ,则∠DBC 的大小为( )A .15°B .35°C .25°D .45°10.(3.00分)(2018•陕西)对于抛物线y=ax 2+(2a ﹣1)x+a ﹣3,当x=1时,y >0,则这条抛物线的顶点一定在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(共4小题,每小题3分,计12分)11.(3.00分)(2018•陕西)比较大小:3 √10(填“>”、“<”或“=”).12.(3.00分)(2018•陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.13.(3.00分)(2018•陕西)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.14.(3.00分)(2018•陕西)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=12AB;G、H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是.三、解答题(共11小题,计78分。
解答应写出过程)15.(5.00分)(2018•陕西)计算:(﹣√3)×(﹣√6)+|√2﹣1|+(5﹣2π)016.(5.00分)(2018•陕西)化简:(a+1a−1﹣aa+1)÷3a+1a+a.17.(5.00分)(2018•陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)18.(5.00分)(2018•陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC ∥BF,连接AD,分别与EC、BF相交于点G,H,若AB=CD,求证:AG=DH.19.(7.00分)(2018•陕西)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表组别分数/分频数各组总分/分A60<x≤70382581B70<x≤80725543C80<x≤90605100D90<x≤100m2796依据以上统计信息解答下列问题:(1)求得m= ,n= ;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.20.(7.00分)(2018•陕西)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.21.(7.00分)(2018•陕西)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国.小明家网店中红枣和小米这两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣为x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.22.(7.00分)(2018•陕西)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(8.00分)(2018•陕西)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.24.(10.00分)(2018•陕西)已知抛物线L:y=x2+x﹣6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L′,且L′与x轴相交于A'、B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A'B′C′和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.25.(12.00分)(2018•陕西)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决̂是某新区的三条规划路,其中AB=6km,AC=3km,(3)如图③所示,AB、AC、BĈ所对的圆心角为60°,新区管委会想在BĈ路边建物资总站点P,∠BAC=60°,BĈ、线段AB和AC上在AB,AC路边分别建物资分站点E、F,也就是,分别在BC选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)2018年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分。
每小题只有一个选项是符合题意的)1.(3.00分)(2018•陕西)﹣711的倒数是()A.711B.−711C.117D.−117【考点】17:倒数.【专题】1 :常规题型.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:﹣711的倒数是﹣117,故选:D.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)(2018•陕西)如图,是一个几何体的表面展开图,则该几何体是()A.正方体B.长方体C.三棱柱D.四棱锥【考点】I6:几何体的展开图.【专题】28 :操作型.【分析】由展开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【解答】解:由图得,这个几何体为三棱柱.故选:C.【点评】考查了几何体的展开图,有两个底面的为柱体,有一个底面的为椎体.3.(3.00分)(2018•陕西)如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【考点】IL:余角和补角;JA:平行线的性质.【专题】1 :常规题型.【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.【点评】此题主要考查了平行线的性质,注意不要漏角是解题关键.4.(3.00分)(2018•陕西)如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.−12 B.12C.﹣2 D.2【考点】F8:一次函数图象上点的坐标特征;LB:矩形的性质.【专题】1 :常规题型;533:一次函数及其应用.【分析】根据矩形的性质得出点C的坐标,再将点C坐标代入解析式求解可得.【解答】解:∵A(﹣2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(﹣2,1),将点C(﹣2,1)代入y=kx,得:1=﹣2k,解得:k=﹣1 2,故选:A.【点评】本题主要考查一次函数图象上点的坐标特征,解题的关键是掌握矩形的性质和待定系数法求函数解析式.5.(3.00分)(2018•陕西)下列计算正确的是()A.a2•a2=2a4B.(﹣a2)3=﹣a6C.3a2﹣6a2=3a2D.(a﹣2)2=a2﹣4【考点】35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方;4C:完全平方公式.【专题】11 :计算题;512:整式.【分析】根据同底数幂相乘、幂的乘方、合并同类项法则及完全平方公式逐一计算可得.【解答】解:A、a2•a2=a4,此选项错误;B、(﹣a2)3=﹣a6,此选项正确;C 、3a 2﹣6a 2=﹣3a 2,此选项错误;D 、(a ﹣2)2=a 2﹣4a+4,此选项错误;故选:B .【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂相乘、幂的乘方、合并同类项法则及完全平方公式.6.(3.00分)(2018•陕西)如图,在△ABC 中,AC=8,∠ABC=60°,∠C=45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( )A .43√2B .2√2C .83√2 D .3√2【考点】IJ :角平分线的定义;KO :含30度角的直角三角形;KQ :勾股定理.【专题】55E :解直角三角形及其应用.【分析】在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD ﹣DE 即可求出AE 的长度.【解答】解:∵AD ⊥BC ,∴∠ADC=∠ADB=90°.在Rt △ADC 中,AC=8,∠C=45°,∴AD=CD ,∴AD=√22AC=4√2.在Rt △ADB 中,AD=4√2,∠ABD=60°,∴BD=√33AD=4√63. ∵BE 平分∠ABC ,∴∠EBD=30°.在Rt△EBD中,BD=4√63,∠EBD=30°,∴DE=√33BD=4√23,∴AE=AD﹣DE=8√2 3.故选:C.【点评】本题考查了解直角三角形、含30度角的直角三角形、等腰直角三角形以及特殊角的三角函数,通过解直角三角形求出AD、DE的长度是解题的关键.7.(3.00分)(2018•陕西)若直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为()A.(﹣2,0)B.(2,0)C.(﹣6,0)D.(6,0)【考点】F9:一次函数图象与几何变换.【专题】1 :常规题型.【分析】根据对称的性质得出两个点关于x轴对称的对称点,再根据待定系数法确定函数关系式,求出一次函数与x轴的交点即可.【解答】解:∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴两直线相交于x轴上,∵直线l1经过点(0,4),l2经过点(3,2),且l1与l2关于x轴对称,∴直线l1经过点(3,﹣2),l2经过点(0,﹣4),把(0,4)和(3,﹣2)代入直线l1经过的解析式y=kx+b,则{b=43k+4=−2,解得:{k=−2 b=4,故直线l1经过的解析式为:y=﹣2x+4,可得l1与l2的交点坐标为l1与l2与x轴的交点,解得:x=2,即l1与l2的交点坐标为(2,0).故选:B.【点评】此题主要考查了待定系数法求一次函数解析式以及坐标与图形的性质,正确得出l1与l2的交点坐标为l1与l2与x轴的交点是解题关键.8.(3.00分)(2018•陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、CH和HE.若EH=2EF,则下列结论正确的是()A.AB=√2EF B.AB=2EF C.AB=√3EF D.AB=√5EF【考点】L8:菱形的性质;LN:中点四边形.【专题】17 :推理填空题.【分析】连接AC、BD交于O,根据菱形的性质得到AC⊥BD,OA=OC,OB=OD,根据三角形中位线定理、矩形的判定定理得到四边形EFGH是矩形,根据勾股定理计算即可.【解答】解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EF=12AC,EF∥AC,EH=12BD,EH∥BD,∴四边形EFGH是矩形,∵EH=2EF,∴OB=2OA,∴AB=√OB2+OA2=√5OA,∴AB=√5EF,故选:D.【点评】本题考查的是中点四边形,掌握菱形的性质、三角形中位线定理是解题的关键.9.(3.00分)(2018•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°【考点】M5:圆周角定理.【专题】1 :常规题型;559:圆的有关概念及性质.【分析】根据等腰三角形性质知∠CBA=∠BCA=65°,∠A=50°,由平行线的性质及圆周角定理得∠ABD=∠ACD=∠A=50°,从而得出答案.【解答】解:∵AB=AC、∠BCA=65°,∴∠CBA=∠BCA=65°,∠A=50°,∵CD∥AB,∴∠ACD=∠A=50°,又∵∠ABD=∠ACD=50°,∴∠DBC=∠CBA﹣∠ABD=15°,故选:A.【点评】本题主要考查圆周角定理,解题的关键是掌握等腰三角形的性质、圆周角定理、平行线的性质.10.(3.00分)(2018•陕西)对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y >0,则这条抛物线的顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】H3:二次函数的性质;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】把x=1代入解析式,根据y>0,得出关于a的不等式,得出a的取值范围后,利用二次函数的性质解答即可.【解答】解:把x=1,y>0代入解析式可得:a+2a﹣1+a﹣3>0,解得:a>1,所以可得:﹣b2a=−2a−12a<0,4ac−b24a=4a(a−3)−(2a−1)24a=−8a−14a<0,所以这条抛物线的顶点一定在第三象限,故选:C.【点评】此题考查抛物线与x轴的交点,关键是得出a的取值范围,利用二次函数的性质解答.二、填空题(共4小题,每小题3分,计12分)11.(3.00分)(2018•陕西)比较大小:3 <√10(填“>”、“<”或“=”).【考点】2A:实数大小比较.【分析】首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.【解答】解:32=9,(√10)2=10,∴3<√10.【点评】此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.12.(3.00分)(2018•陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE 的度数为 72° .【考点】L3:多边形内角与外角;MM :正多边形和圆.【专题】552:三角形.【分析】根据五边形的内角和公式求出∠EAB ,根据等腰三角形的性质,三角形外角的性质计算即可.【解答】解:∵五边形ABCDE 是正五边形, ∴∠EAB=∠ABC=(5−2)×180°5=108°,∵BA=BC ,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.【点评】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键13.(3.00分)(2018•陕西)若一个反比例函数的图象经过点A (m ,m )和B (2m ,﹣1),则这个反比例函数的表达式为 y =4x .【考点】G6:反比例函数图象上点的坐标特征;G7:待定系数法求反比例函数解析式.【专题】534:反比例函数及其应用.【分析】设反比例函数的表达式为y=kx,依据反比例函数的图象经过点A (m ,m )和B (2m ,﹣1),即可得到k 的值,进而得出反比例函数的表达式为y =4x .【解答】解:设反比例函数的表达式为y=kx,∵反比例函数的图象经过点A (m ,m )和B (2m ,﹣1),∴k=m 2=﹣2m ,解得m 1=﹣2,m 2=0(舍去), ∴k=4,∴反比例函数的表达式为y =4x .故答案为:y =4x .【点评】本题主要考查了待定系数法求反比例函数解析式,解题时注意:反比例函数图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .14.(3.00分)(2018•陕西)如图,点O 是▱ABCD 的对称中心,AD >AB ,E 、F 是AB 边上的点,且EF=12AB ;G 、H 是BC 边上的点,且GH=13BC ,若S 1,S 2分别表示△EOF 和△GOH 的面积,则S 1与S 2之间的等量关系是 S 1S 2=32.【考点】L5:平行四边形的性质;R4:中心对称.【专题】1 :常规题型.【分析】根据同高的两个三角形面积之比等于底边之比得出S 1S △AOB =EF AB =12,S 2S △BOC =GH BC =13,再由点O 是▱ABCD 的对称中心,根据平行四边形的性质可得S △AOB =S △BOC =14S ▱ABCD ,从而得出S 1与S 2之间的等量关系.【解答】解:∵S 1S △AOB =EF AB =12,S 2S △BOC =GH BC =13,∴S 1=12S △AOB ,S 2=13S △BOC .∵点O 是▱ABCD 的对称中心,∴S △AOB =S △BOC =14S ▱ABCD ,∴S 1S 2=1213=32.即S1与S2之间的等量关系是S1S2=32.故答案为S1S2=32.【点评】本题考查了中心对称,三角形的面积,平行四边形的性质,根据同高的两个三角形面积之比等于底边之比得出S1S△AOB=EFAB=12,S2S△BOC=GHBC=13是解题的关键.三、解答题(共11小题,计78分。