全息光栅的设计与制作
全息光栅制作工艺流程
全息光栅制作工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!全息光栅制作工艺流程一、材料准备阶段在进行全息光栅制作之前,需要准备好所需的材料和工具。
全息光栅的原理及应用
全息光栅的原理及应用全息光栅是一种利用光的干涉和衍射现象制作的光学元件。
它由互相平行且间距规则的激光刻蚀或光敏材料制成的平面条纹组成,能够将光以更为复杂的方式分离、分解或重构。
全息光栅的工作原理基于光的干涉和衍射。
干涉是波的叠加现象,当两个或多个波相遇时,它们会相互干涉形成新的波。
而衍射是光通过物体边缘或孔口时发生的现象,光会绕过物体并呈现出波纹状分布。
全息光栅通过精确的光栅间距和衍射的干涉,能够记录并再现复杂的波前信息。
在光学中,全息光栅可分为振幅全息和相位全息两种类型。
振幅全息使用物体对光的振幅信息进行编码,而相位全息则编码了物体对光的振幅和相位信息。
制作全息光栅的过程通常包括如下几个步骤:首先,需要有一个用于干涉和衍射的光源,常用的光源为激光。
其次,选择合适的光敏材料,并将物体放置在光敏材料的一侧。
将光束分为两路,一路直接照射到光敏材料上,作为参考光。
另一路光束经过物体,形成物体光。
参考光和物体光在光敏材料上发生干涉。
最后,将光敏材料进行显影,即可制作出全息光栅。
全息光栅在许多领域中有广泛的应用。
以下是几个典型的应用领域:1. 全息术:全息术将物体的三维图像记录在全息光栅中,观察者可以通过照明光源观看物体的真实三维图像。
全息术在医学诊断、虚拟现实等领域有着广泛的应用。
2. 全息光存储:全息光存储技术利用全息光栅记录和存储大量的信息。
相比传统的光存储介质,全息光存储具有更大的存储容量和更快的读写速度。
3. 激光干涉测量:全息光栅可以用于激光干涉测量,通过测量光束的干涉图样,可以得到被测物体的形状、表面粗糙度等参数。
4. 光谱仪:全息光栅可以用作光谱仪中的光栅元件,通过衍射光的波长和角度关系,实现对光谱的分析和检测。
5. 显示技术:全息光栅可以用于头盔展示设备、护目镜或汽车仪表盘中的头上显示。
通过光的衍射,可以呈现出立体的图像,增强用户体验。
综上所述,全息光栅是一种能够通过光的干涉和衍射记录和再现复杂光波的光学元件。
全息光栅的制作
全息光栅的制作光栅是一种光学元件,其上有规则地配置着线、缝、槽或光学性质周期性变化的物质。
从广义角度讲,任何一种装置和结构,只要它能给入射光的振幅或相位,或者两者同时加上一个周期性的空间调制,都可以称之为光栅。
换言之,任何一种具有周期性的空间结构或光学性能周期性变化(如透射率、折射率)的衍射屏统称为光栅。
决定光栅性能的基本参数有三个:光栅的周期或空间频率(周期的倒数);槽形(一个周期内的具体结构);光栅的衍射效率。
按照制造光栅的方法来分,光栅可分为刻划光栅、全息光栅。
刻划光栅通常是用精密的刻线机在玻璃或镀有金属膜的玻璃上刻出,它不仅需要昂贵的设备(刻线机),对刻划条件要求很苛刻,而且很费时间,例如刻一块面积2100100mm、空间频率为600~1200/c mm的光栅需要昼夜不停地刻划一个星期。
1948年盖伯(Gabor)发现了全息光学原理,随着六十年代激光技术的发展,出现了用记录激光干涉条纹制作光栅的技术,发展了所谓的全息光栅。
国际上,在1970年就有全息光栅出售(法国Jovin—Yvom公司);西德在1969年制成了边长达1m的全息光栅,用于天文学方面。
我国也有一些单位在研制全息光栅,并有出售。
同刻划光栅比,全息光栅具有很多优点:不存在固有的周期误差,因而不存在罗兰鬼线;杂散光少;光栅的适用范围宽;分辨率高;有效孔径大;生产周期短。
由于全息光栅的上述特点使得它在生产和技术中得到了广泛的应用,它不仅适合于高分辨的得发射、吸收和喇曼光谱分析,在光信息处理中得到广泛的应用,而且已用于激光器件中作为波长选择元件,在集成光学和光通信方面作为光耦合元件将有着极大的应用潜力。
一、实验目的1.验证双光束干涉的基本原理,进一步理解双光束干涉的基本理论;2.学习马赫—泽德干涉仪的光路布置原则和调节方法;3.掌握制作正弦型全息光栅的原理和方法;二、实验原理1. 光的干涉原理当两束相干的平面波以一定的角度相遇时,在他们相遇的区域内便会产生干涉,其干涉图样在某一平面内是一系列平行等距的干涉条纹,其强度分布则是按余弦规律而变化,即干涉图样的强度分布是121212I =I I 2cos()A A ϕϕ++- (1)式中的211I A =、222I A =,1A 、2A 是两列平面波的振幅,1ϕ、2ϕ是对应的空间相位函数。
全息光栅的制作(B纸张_非常完整_BJTU物理设计性实验分析方案)
杨氏双缝干涉是分波面干涉的典型实验装置。由于每条狭缝不可避免有一定的宽度,于是双缝干涉与单缝衍射总是相伴而生的。杨氏双缝干涉法利用光束通过两条缝的0级衍射光在全息干板上进行相干叠加,从而制得全息光栅。
光路如图3所示。双缝间距b,全息干板与双缝的距离D。实验要求每条缝的缝宽较小,使光束通过两条缝的0级衍射条纹较宽,在全息干板可以有较大范围的重叠,从而制得较大面积的全息光栅。同时,所得光栅的光栅常数易于控制,只需改变全息干板与双缝之间的距离D或改变缝间距b即可,因为 。
[1]刘香茹, 巩晓阳, 郝世明, 李立本.“分波面法”制作全息光栅的两种新光路[J].中国科教创新导刊,2008(5>.
[2]刘香茄,陈庆东,李立本. 全息光栅制作光路的比较研究[J]. 大学物理实验, 2008(21>.
[3] 朱庆芳, 岳筱稗. 全息光栅的实验制作与研究[J]. 新乡帅范高等专科学校学报, 2004.
一般在光学稳定的平玻璃坯件上涂上一层给定型厚度的光致抗蚀剂或其他光敏材料的涂层,由激光器发生两束相干光束,使其在涂层上产生一系列均匀的干涉条纹,光敏物质被感光,然后用特种溶剂溶蚀掉被感光部分,即在蚀层上获得干涉条纹的全息像,所制得为透射式衍射光栅。如在玻璃坯背面镀一层铝反射膜,可制成反射式衍射光栅。
2)不要正对着激光束观察,以免损坏眼睛;
3)曝光时间要掌握好,曝光面切勿放反了;
4)由于有多组同学一起实验,处理干片的时候切勿将干片混淆;
5)在处理干片时注意避免光源<手机等)。
六数据与处理
1.测定所制光栅的光栅常数
将所制得的全息光栅置于激光器前,测量所成零级明条纹与一级明条纹的间距 与屏到光栅的距离 。根据干涉加强条件 ,其中 ,且夹角 较小,可以求得光栅常数 。再由 算出每毫M光栅常数。
全息光栅的设计制作
全息光栅的设计制作光栅是重要的分光元件之一, 由于它的分辨率优于棱镜, 因而许多光学仪器中都采用光栅代替棱镜作为分光的主要元件, 如单色仪、光谱仪、摄谱仪等。
此外, 光栅在现代光学中的应用日趋广泛, 如光通信中用作光耦合器、光互连中用作互连元件、激光器用作选频元件、光信息处理用作编码器、调制器、滤波器等等。
全息光栅制作技术是20世纪60年代随着全息技术的发展而出现的, 因其具有传统刻划光栅所不具备的一些优点而受到人们的重视。
目前, 全息光栅在某些方面已经取代刻划光栅, 在光栅家族中占有了一席之地。
[实验目的]1.掌握用全息方法制作光栅的基本原理;2.掌握全息实验光路的基本调节方法和一维光栅的制作技巧;3.了解全息光栅的基本特性和测试方法;4.初步了解全息记录介质—卤化银乳胶的特性和干板的处理方法。
[实验仪器]全息防震平台(2m ×1.5m ), He-Ne 激光器, 反射镜(若干), 分束镜, 针孔滤波器, 干板架, 全息干板。
[实验原理]一. 全息光栅制作原理由光的干涉原理可知, 两束平行的相干光干涉, 干涉场是一组明暗相间的等间隔的平面族, 其周期由两束平行光的夹角和光波波长所确定。
若将全息记录干板置于该干涉场中, 则干板上记录到的干涉条纹将呈等间隔的平行直线条纹, 这就是全息光栅。
设两束平行光与光轴的夹角分别为θ1和θ2, 光波波长为λ, 显然, 干板记录的全息光栅的透射率应该呈余弦函数分布, 称为余弦光栅。
⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫ ⎝⎛++===⎪⎪⎭⎫ ⎝⎛+=+===---x U x U e e U UU U I e e U U U U e U U e U U x j x j x j x j x j x j λθθπλθθπλθθπλθθπλθπλθπλθπλθπ212202120sin sin 2sin sin 220*2sin 2sin2021sin 202sin 201sin sin cos 4sin sin 2cos 122;;;21212121由干涉原理可知, 全息光栅常数d 由下式确定:πλθθπ=-d 21sin sin ;LD d f ≈--==21210sin sin ;sin sin 1θθλθθ ;;0λλDL d L D f ==或f 0是光栅空间频率, 表征了光栅线密度特性, 其单位通常用“lp/mm ” (lp 表示“线对”, 指一条亮纹和一条暗纹构成的一个“线对”, 对应光栅的一个周期)。
全息光栅原理
全息光栅是一种利用光的干涉原理来记录和再现三维图像的技术。
它的原理可以简要概括如下:
1.干涉:干涉是指两束或多束光波相互叠加时产生的干涉现象。
当两束光波相遇时,它们
会发生干涉,形成交替的明暗条纹。
2.全息记录:全息光栅的制作过程中,首先需要使用一束称为"参考光"的光源,将它分为
两部分:一部分直接照射到感光介质上,另一部分照射到被记录物体上并反射回来。
这两束光波在感光介质上相遇并发生干涉,形成干涉条纹。
3.干涉图案记录:感光介质(例如光敏胶片或光敏材料)会记录下干涉条纹的空间分布情
况。
这样,被记录物体的全部信息都以干涉图案的形式嵌入到感光介质中。
4.再现:再现全息图时,使用与记录时相同的参考光照射到已记录的感光介质上。
感光介
质会根据记录时的干涉图案,将光波重新散射出来。
5.三维图像形成:当再现光波与参考光波相遇时,它们会发生干涉,形成与被记录物体完
全相同的波前。
由于干涉是基于波的相位信息,因此再现的光波能够准确地重建出被记录物体的三维图像,包括深度、形状和颜色等细节。
通过全息光栅技术,可以实现真实感十足的三维图像再现,其应用领域包括全息显示、光学存储、光学显微镜等。
全息光栅的设计与制作
全息光栅的设计与制作全息光学元件(HOE)是指采用全息方法(包括计算全息方法)制作,可以完成准直、聚焦、分束、成像、光束偏转、光束扫描等功能的元件。
在完成上述功能时,它不是基于光的反射和折射规律,而是基于光的衍射和干涉,所以全息光学元件也称为衍射元件。
常用的全息光学元件包括全息透镜、全息光栅和全息空间滤波器等。
全息光栅是一种重要的分光元件。
作为光谱分光元件,与传统的刻划光栅相比,具有以下优点:光谱中无鬼线、杂散光少、分辨率高、有效孔径大、生产效率高、价格便宜等,已广泛应用于各种光栅光谱仪中,供科研、教学、产品开发之用。
作为光束分束器件,在集成光学和光通信中用作光束分束器、光互连器、耦合器和偏转器等。
在光信处理中,可作为滤波器用于图像相减、边缘增强等。
本实验主要进行平面全息光栅的设计和制作实验。
一、实验目的1、掌握制作正弦型和矩形全息光栅的原理和方法2、掌握制作复合型光栅的原理和方法,观察摩尔条纹3、测试光栅常数二、主要仪器与设备He-Ne激光器、分束镜、反射镜、透镜、全息干板、显影液、定影液、吹风机、干板夹、底座等三、实验原理全息光栅的制作原理:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。
采用不同的波面形状可得到不同用途的全息光栅,采用不同的处理过程可得到不同类型或不同用途的全息光栅(如,正余弦光栅、矩形光栅、平面光栅和体光栅)。
1、全息光栅的记录光路记录全息光栅的光路有多种,图1、图2及图3都可以用于产生相干平行,通过选择透镜的直径和摆放光束,图3两束平行光之间的夹角决定于ADB位置来调节夹角。
常采用图1光路,由激光器发出的激光经分束镜BS后被分为两束,一束经反射镜M1反射、透镜L1和L2扩束准直后,直接射向全息干板H: 另一束经反射镜M2反射、透镜L3和L4扩束准直后,也射向全息干板H。
图中,S和A分别为电子快门和光强衰减器,电子快门与曝光定时器相连,用于控制曝光时间。
全息平面光栅的制作及其参数测定
全息平面光栅的制作及其参数测定一、 实验目的1. 掌握空间频率较低的全息平面光栅的制作方法。
2.学会在全息台上光学元件的共轴调节技术、扩束与准直的基本方法,熟练地获得和检验平行光。
3. 用几何光学和物理光学方法测定全息光栅的光栅常数。
二、 仪器及用具光学平台(全息台),He---Ne 激光器,定时器,快门,50%分束镜,平面镜,全息干板,像屏,底片夹,透镜,显定影用具,读数显微镜等。
三、 实验原理全息光栅是用全息照相的方法制作的一种分光元件。
与用普通方法制作的刻划光栅和复制光栅相比,全息光栅没有周期性误差,杂散光少,分辨率和衍射效率高,制作的环境条件要求较低,因而其应用越来越广泛。
两列同频率的相干平面光波以一定夹角相交时,在两光束重叠区域将产生干涉现象。
如图1(a )所示,在z=0的xy 平面(该平面垂直于纸面)上将接收到一组平行于y 轴的明暗相间的直条纹,其光强分布和条纹间距分别为 )]sin (sin 2cos 1[2210θθλπ-+=x I I (1))(21cos )(21sin 21sin sin 212121θθθθθθλ-+=-=d (2)式中:1θ、2θ分别为两束相干光与(x y )平面的法线夹角,θθθ=+21为两束光的会聚角。
当两束光对称入射即221θθθ==时,有(a) (b)图12sin 2λ=d (3)令ν为干涉条纹的空间频率,则λθν)2sin(21==d (4) 如果在0=z 处平行于xy 平面放置一块全息干板H (图1 b ),则经曝光、显影、定影等处理后,即可获得一张全息光栅。
当空间频率ν比较小时,称之为低频全息光栅。
四、 实验光路本实验采用马赫—曾特尔干涉仪光路,如图2所示。
它主要是有两块50%的分束器1BS 、2BS 和两块全反射镜1M 、2M 组成。
四个反射面互相平行,中心图2 光路构成一个平行四边形。
扩束镜C 和准直透镜L 共焦以后产生平行光,平行光射到1BS 上分成两束,这两束光经1M 、2M 反射后在2BS 上相遇发生干涉,在2BS 后面的观察屏P 上可观察到干涉条纹。
全息光栅的制作(实验报告)
全息光栅的制作一.【实验目的】1、了解全息光栅的原理;2、复习用马赫-曾德干涉仪搭光路并拍照;3、学习对全息光栅的后处理。
二.【主要仪器及设备】1.光学防震平台一个,支架、支杆及底座若干,旋转平台一个,带三维调节架及φ15 ~25μm针孔的针孔滤波器组合两套。
2.扩束透镜(20~40 倍显微物镜)两个,已知焦距的透镜一个,反射镜若干,分束器一个,光束衰减器两套。
3. 20mW He-Ne 激光器一台。
4.天津I 型全息干板,显影、定影设备和材料。
5.电子快门和曝光定时器一套。
三.【实验原理】全息光栅的制作原理是:两束具有特定波面形状的光束干涉,在记录平面上形成亮暗相间的干涉条纹,用全息记录介质记录干涉条纹,经处理得到全息光栅。
采用不同的波面形状可得到不同用途的全息光栅,采用不同的全息记录介质和处理过程可得到不同类型或不同用途的全息光栅(如正余弦光栅、矩形光栅、平面光栅和体光栅)。
当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。
采用线性曝光可以得到正弦振幅型全息光栅。
从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅。
有多种光路可以制作全息光栅。
其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。
我们常采用马赫-曾德干涉仪光路。
(一)马赫-曾德干涉仪法(1)光栅制作原理与光栅频率的控制用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片, 如图1所示,当波长为λ的两束平行光以夹角θ交迭时, 在其干涉场中放置一块全息干版H , 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。
相邻干涉条纹之间的距离即为光栅的空间周期d(实验中常称为光栅常数) 。
图1相干光干涉形成光栅的示意图图2 全息光栅制作实验光路图马赫-曾德干涉仪光路测全息光栅。
大物实验报告 全息光栅的制作 满分作品 抄的时候请稍作改动
潘杨昊11223016机电机电1111郑小秋2012.09.17全息光栅的制作一、实验任务设计并制作全息光栅,并测出其光栅常数,要求所制作的光栅不少于每毫米100条。
二、实验要求1、设计三种以上制作全息光栅的方法,并进行比较。
2、设计制作全息光栅的完整步骤(包括拍摄和冲洗中的参数及注意事项),拍摄出全息光栅。
3、给出所制作的全息光栅的光栅常数值,进行不确定度计算、误差分析并做实验小结。
实验提示:1 、了解光栅和全息的基本知识。
2 、所提出的制作方法中应包含马赫-曾德干涉法。
3 、熟悉实验室环境、光学元件和实验步骤,试摆光路,进行调解,并达到可以拍摄光栅的水平。
思考问题:1、什么是光栅常数和光栅方程?2、怎样根据所要求的光栅常数设计光路?三、实验的基本物理原理1、光栅产生的原理光栅也称衍射光栅,是利用多缝衍射原理使光发生色散(分解为光谱)的光学元件。
它是一块刻有大量平行等宽、等距狭缝(刻线)的平面玻璃或金属片。
光栅的狭缝数量很大,一般每毫米几十至几千条。
单色平行光通过光栅每个缝的衍射和各缝间的干涉,形成暗条纹很宽、明条纹很细的图样,这些锐细而明亮的条纹称作谱线。
谱线的位置随波长而异,当复色光通过光栅后,不同波长的谱线在不同的位置出现而形成光谱。
光通过光栅形成光谱是单缝衍射和多缝干涉的共同结果(如图1)。
图12、测量光栅常数的方法:用测量显微镜测量;用分光计,根据光栅方程d·sin =k 来测量;用衍射法测量。
激光通过光栅衍射,在较远的屏上,测出零级和一级衍射光斑的间距△x及屏到光栅的距离L,则光栅常数d= L/△x。
四、实验的具体方案及比较1、洛埃镜改进法:基本物理原理:洛埃镜的特点是一部分直射光和另一部分反射镜的反射光进行干涉,如原始光束是平行光,则可增加一全反镜,同样可做到一部分直射光和一部分镜面反射光进行干涉,从而制作全息光栅。
优点:这种方法省去了制造双缝的步骤。
缺点:光源必须十分靠近平面镜。
指导学生设计制作全息光栅的技术参数研究
指导学生设计制作全息光栅的技术参数研究本文对制作全息光栅的有关技术进行了较为深入地研究,并提供了解决此问题的几个颇具参考价值的技术参数,使其能从技术上很好的解决普通学生在设计制作全息光栅时所遇难题,从而使普通学生设计并独立制作低成本全息光栅成为了可能。
标签:技术参数;清晰度;曝光量;全息光栅全息光栅也称全息图,是物光和参考光在干板平面上的干涉分布,经曝光、洗像后形成的立体光栅“像”。
在激光(或白光)的照射下,沿某一方向可以看到“全息物”。
要制做一张非常好的全息光栅干板,并不是一件容易的事情,但要制做一张教学意义上的全息光栅干板却并非难事。
只要参照一定的技术指导,按步、规范操作,就一定有较好的收获。
以下是我们的分析、论证和解决的途径。
一、目前普遍存在的教学现状由于技术上的诸多原因,从以往的教学情况及兄弟院校的教学经历来看,其做法往往是,教师从反复、多次,甚至是大量的实验中,摸索出一套相对固定的光路(光学仪器均以摆好,位置固定)和相对固定的曝光时间等组成的固定作业程序,学生基本上不可能动手改变,必须完全按照程序机械作业,只有少数教师或研究生才有机会在做相关论题时,在实验教师的有关技术指导下,按自己的设计研究……。
这种现状不利于广大本(专)科学生的创造性思维地培养和潜能的发挥,但也是不得已而为之。
二、制约学生动手参与“设计”实验的主要因素1、技术原因(1)“成像”最佳时间点的迁移。
我们知道,在全息光栅干板的制作过程中,有3个时间因素直接影响其制作效果,即瀑光时间t1、显影时间t2及定影时间t3。
可以假设,一张好的“相片”,其清晰度φ应与三者有一定的函数关系,即φ=φ(ε,t2,t3) (1)式中ε=I·t1为曝光量,I为物光和参考光在干板平面上的干涉光强分布。
在学生制作过程中,当遇到“成像范围”△ε(在曝光过度与曝光不足两区域所能观测到的最低清晰度间所对应的曝光量范围)较窄的系统条件时,上述时间的误差或过失均会造成“成像”的失败,由于操作是在全黑的暗室中进行,所以失误和误差在所难免,因而其失败的几率大幅增加。
实验1-全息光栅制作技术
全息摄影实验指导材料实验一 全息光栅拍摄技术[实验目的]1、了解用全息干涉法制作光栅的基本原理;2、掌握全息实验光路以及光学元器件的基本调节方法;3、观察全息光栅的衍射现象,加深了解光的衍射规律;4、初步掌握卤化银乳胶干板的化学处理方法。
[实验仪器]全息防震平台(2m×1.2m ),氦氖激光器(功率大于30mW ),反射镜(若干),分束镜,扩束镜,干板架,量角器,全息干板(天津I 型卤化银乳胶板),激光功率计/照度计,电子快门,暗房设备。
[实验原理]光栅是重要的分光元件之一,由于它的分辨率优于棱镜,因而许多光学仪器中都采用光栅代替棱镜作为分光的主要元件,如单色仪、光谱仪、摄谱仪等。
此外,光栅在现代光学中的应用日趋广泛,如光通信中用作光耦合器、光互连中用作互连元件、激光器用作选频元件、光信息处理用作编码器、调制器、滤波器等等。
全息光栅制作技术是20世纪60年代随着全息技术的发展而日趋成熟的一门技术,因其具有传统刻划光栅所不具备的一些优点而受到人们的重视。
目前,全息光栅在某些方面已经取代刻划光栅,在光栅家族中占有了一席之地。
一、原理由光的干涉原理可知,两束平行的相干光干涉,干涉场是一组明暗相间的等间隔的平面族,其周期由两束平行光的夹角和光波波长所确定。
若将全息记录干板置于该干涉场中,则干板上记录到的干涉条纹将呈等间隔的平行直线条纹,这就是全息光栅。
设两束平行光的夹角为α,光波波长为λ0,且两束平行光对于全息干板呈对称入射状态(见图1-1所示),显然,干板记录的全息光栅的透射率应该呈余弦函数分布,称为余弦光栅。
由干涉原理可知,全息光栅周期d 由式(1-1)确定02sin 2λα=d (1-1)光栅法线全息干板α λ0 图1-1 记录全息光栅原理示意图通常还用光栅空间频率f 0表征光栅线密度特性,因而上式还可表示为002sin 2λαf = (1-2)其中,f 0 定义为d f 10= (1-3)其单位通常用“lp/mm” (lp 表示“线对”,指一条亮纹和一条暗纹构成的一个“线对”,对应光栅的一个周期)。
全息光栅的设计与制作
现代光学系列实验--全息光栅的设计与制作
p f0" = 2lλ
θ He-Ne 激 光 器
p
H
l
全息光栅衍射花样及空间频率检测
2007年4月1日 9
现代光学系列实验--全息光栅的设计与制作
2.复合全息光栅的制作: 搭建实验光路,采用两次曝光,第一次曝光记 录光栅条纹的空间频率 仍 定为 f0=100 线 / mm。 然 后 , 调 节安装 干板 架 的 二 维 大 镜座 的方 位 角 微 调 旋钮,使全息干板水平旋转一个角度ϕ之后,再进 行第二次曝 光。 本 实验要求第二次曝光记录的光 栅空间频率为f0'=98线/mm。 两 次曝 光的全息 底片经 显影、 定 影、 漂 白等处 理后即制得复合光栅。 最 后 是 测量 复合光栅的 莫尔 条纹的空间频率, 并与设计值作比较。
2007年4月1日 1
现代光学系列实验--全息光栅的设计与制作
1. 掌握制作正弦型和矩形全息光栅的原理和方 法。 2. 掌握制作复合光栅的原理和方法,观察莫尔 条纹。 3. 通过实验,制作一个低频全息光栅和一个复 合光栅,并观察和分析实验结果。
2007年4月1日
2
现代光学系列实验--全息光栅的设计与制作
现代光学系列实验--全息光栅的设计与制作
王仕璠 教授 刘 艺 副教授
2007年4月1日
0
现代光学系列实验--全息光栅的设计与制作
全息光栅是一种重要的分光元件。它与传统的 刻痕光栅比较,具有光谱中无鬼线、杂散光少、分 辨率高、有效孔径大、生产效率高、价格便宜等优 点。现在,全息光栅已广泛用于光谱仪器、θ调制技 术、集成光学中作光束分束器、耦合器和偏转器等。 在光信息处理中,它既可作为调制器用于图像相减、 边缘增强、消模糊处理等,又可作为编码器,对黑 白图片实现假彩色编码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代光学系列实验--全息光栅的设计与制作
1. 为什么使用全息干板记录两平行激光束的 干涉 条纹, 只要 是 正确 曝 光 、显影得当, 则所得 到 的光栅为 正弦型,即其 振幅透过 率按 余弦分 布 ? 2. 莫尔条纹是如何形成的?一定要用两块实 际的光栅重叠在一起才能够产生莫尔条纹吗?
2007年4月1日
Ⅰ
ϕ
N ϕ
θ
H
Ⅱ
6
现代光学系列实验--全息光栅的设计与制作
ϕ
当 干板转动 一小角度ϕ时, 对应干涉条纹的空间周期变为
H s ϕ
d d1 1 f 0 ' = ' = cos ϕ = f 0 cos ϕ d d 莫尔条纹的空间频率 ∆f 0 = f 0 '− f 0 = f 0 (1 − cos ϕ )
4
故:
2007年4月1日
现代光学系列实验--全息光栅的设计与制作
复合光栅是指在同一 张 全息 干板上拍摄 两 个 栅 线彼此平行但空间频率不同的光栅。若第一次曝光 拍摄空间频率为f0的光栅,然后保持光栅栅线方向, 仅改变光栅的空间频率,在同一张全息干板上进行 第二次曝光,拍摄空间频率为f0‘的光栅。照明时, 复合光栅将出现莫尔条纹,其空间频率 fm 是 f0和 f0' 的差频,即
f m = ∆f 0 = f 0 − f 0 '
上述制得的即为复合光栅。
2007年4月1日 5
现代光学系列实验--全息光栅的设计与制作
拍摄 复合光栅的光路可 如 图 所 示。为改变 第二次 曝 光时的光栅空间频率, 只须 改变两束准直光之间 的夹角 θ 。改变 θ 角的方 法 有两种,一种是 使 图中的 M1和M2作适当等量的平移 ( 反向 或 相向 ) ;另 一种 方 法 是 沿水平 方 向旋转干 板 H, 以改变 θ ,从而改变 d(或f0)。
现代光学系列实验--全息光栅的设计与制作
王仕璠 教授 刘 艺 副教授
2007年4月1日
0
现代光学系列实验--全息光栅的设计与制作
全息光栅是一种重要的分光元件。它与传统的 刻痕光栅比较,具有光谱中无鬼线、杂散光少、分 辨率高、有效孔径大、生产效率高、价格便宜等优 点。现在,全息光栅已广泛用于光谱仪器、θ调制技 术、集成光学中作光束分束器、耦合器和偏转器等。 在光信息处理中,它既可作为调制器用于图像相减、 边缘增强、消模糊处理等,又可作为编码器,对黑 白图片实现假彩色编码。
2007年4月1日
11
现代光学系列实验--全息光栅的设计与制作
He-Ne 激光器 (40mW 左右) 1 台 电子快门 扩束镜 分束镜 反射镜 1个 2个 1个 2个
准直镜 白屏 米尺(公用) 全息干板
2个 1个 1把 若干小块
可水平旋转的干板支架 1 个
2007年4月1日
12
现代光学系列实验--全息光栅的设计与制作
2007年4月1日 1
现代光学系列实验--全息光栅的设计与制作
1. 掌握制作正弦型和矩形全息光栅的原理和方 法。 2. 掌握制作复合光栅的原理和方法,观察莫尔 条纹。 3. 通过实验,制作一个低频全息光栅和一个复 合光栅,并观察和分析实验结果。
2007年4月1日
2
现代光学系列实验--全息光栅的设计与制作
2007年4月1日 8
现代光学系列实验--全息光栅的设计与制作
p f0" = 2lλ
θ He-Ne 激 光 器
p
H
l
全息光栅衍射花样及空间频率检测
2007年4月1日 9
现代光学系列实验--全息光栅的设计与制作
2.复合全息光栅的制作: 搭建实验光路,采用两次曝光,第一次曝光记 录光栅条纹的空间频率 仍 定为 f0=100 线 / mm。 然 后 , 调 节安装 干板 架 的 二 维 大 镜座 的方 位 角 微 调 旋钮,使全息干板水平旋转一个角度ϕ之后,再进 行第二次曝 光。 本 实验要求第二次曝光记录的光 栅空间频率为f0'=98线/mm。 两 次曝 光的全息 底片经 显影、 定 影、 漂 白等处 理后即制得复合光栅。 最 后 是 测量 复合光栅的 莫尔 条纹的空间频率, 并与设计值作比较。
2007年4月1日
7
现代光学系列实验--全息光栅的设计与制作
1.低频全息光栅的制作: ①光路参数估算 首先按图3-1-1所示实验光路,根据所要求制作 的全息光栅的空间频率f0(=100线/mm),由公式估 算出两光束之间的夹角θ和相应的光路参数l、D。 ②光路的布置和调整 ③曝光和显影、定影处理 ④观察实验结果 用细 激光束直 接照射 光栅,在其 后 的 白屏上观 察衍射图样,计算光栅的实际空间频率。
如图表示记录全息光栅的一种光路。光栅常数或 空间频率由下式决定
θ 2d sin = λ 2
式中 d 称为光栅常数,其倒数即为光栅的空间频率 f0=1/d。θ 是两束准直光之间的夹角, λ 为激光波长。
M1 L1 L2
B.S 电子 快门 2D l
θ
He-Ne 激光器
H M2 L3 L4
2007年4月1日
3
现代光学系列实验--全息光栅的设计与制作
改变两束光之间夹角 θ 的值便可控制光栅条纹密 度(即d的大小)。根据光栅方程,当θ值减小时, d值将增大,从而f0将减小。可以估算出,在低频光 栅的情况下,θ值是很小的,此时有:
d = λ /θ
又:
θ θ D tg ≈ = 2 2 l 1 2D f0 = = d lλ
1. 王仕璠,信息光学理论与应用,第5章,北京: 北京邮电大学出版社,2004.3 2. 王绿苹主编,光全息和信息处理实验,重庆: 重庆大学出版社,1991, P39~45
2007年4月1日
13