临床研究常用统计方法概述
临床研究中常用统计分析方法及选择
临床研究中常用统计分析方法及选择临床研究是指通过观察和实验等方法,对人类或动物进行疾病诊断、治疗和预防等方面进行研究的过程。
统计分析方法在临床研究中起着至关重要的作用,它能够帮助研究人员从大量的数据中提取有意义的信息,并对实验结果进行科学的解读。
本文将介绍临床研究中常用的统计分析方法及其选择。
一、描述性统计分析描述性统计分析是对数据进行整理、概括和描述的方法,可以包括测量数据的集中趋势、离散程度、分布形态等。
常用的描述性统计方法有平均数、中位数、众数、标准差等。
这些方法能够直观地反映数据的特征,帮助研究人员对数据进行初步了解。
二、推断统计分析推断统计分析是在对数据进行描述性统计分析的基础上,通过样本中的观察结果推断总体的特征。
常用的推断统计方法包括假设检验、置信区间估计、方差分析等。
这些方法能够帮助研究人员对实验结果进行科学的推断,得出统计显著性的结论。
三、生存分析生存分析是研究事件发生时间的统计方法,常用于临床研究中对患者的生存期进行分析。
生存分析方法包括生存函数、生存率、生存曲线、生存时间中位数等。
生存分析能够帮助研究人员了解疾病的进展情况,评估治疗效果。
四、相关性分析相关性分析是研究两个或多个变量之间相关关系的统计方法。
常用的相关性分析方法有皮尔逊相关系数、斯皮尔曼相关系数、判定系数等。
相关性分析能够帮助研究人员了解变量之间的相关强度和方向,揭示变量之间的关联规律。
五、回归分析回归分析是研究因变量与一个或多个自变量之间关系的统计方法。
常用的回归分析方法有线性回归、Logistic回归、多元回归等。
回归分析能够帮助研究人员建立模型,预测变量之间的依赖关系,为临床研究提供科学依据。
在选择统计分析方法时,需要根据研究的目的、数据类型和数据分布等因素进行综合考虑。
一般来说,对于定量数据,可以采用描述性统计分析、推断统计分析和生存分析等方法;对于定性数据,可以采用相关性分析和回归分析等方法。
在具体应用时,还需要注意选择合适的统计软件进行数据分析,例如SPSS、SAS、R等。
临床研究中的统计分析方法与解读
临床研究中的统计分析方法与解读在临床研究领域中,统计分析方法是非常重要的工具,可以帮助研究人员理解和解释数据,从而得出准确的结论。
本文将介绍几种常用的统计分析方法,并探讨其在临床研究中的应用和解读。
一、描述性统计分析描述性统计分析是对数据进行总结和描述的方法。
其中包括测量中心趋势的方法,如均值、中位数和众数,以及测量变异程度的方法,如标准差、方差和范围。
描述性统计分析主要用于对研究样本的基本特征进行描述,例如人口统计学特征、临床特征等。
通过描述性统计分析,我们可以更好地了解研究样本的整体情况。
二、推断统计分析推断统计分析是通过从样本中抽取数据得出总体特征的方法。
该方法基于概率理论,通过对样本数据进行分析来进行总体参数的估计或假设的检验。
常用的推断统计分析方法包括参数估计和假设检验。
参数估计主要用于估计总体参数的值,例如总体均值、总体比例等。
通过计算样本统计量,如样本均值、样本比例,可以对总体参数进行估计,并给出估计的置信区间。
置信区间是对总体参数真实值的范围提供一个估计,例如95%的置信区间表示对总体参数的估计值有95%的概率落在该区间内。
假设检验则用于对研究问题的关键假设进行验证。
在假设检验中,研究人员提出一个原假设和一个备择假设,并通过样本数据来判断原假设是否可以被接受或拒绝。
在进行假设检验时,需要选择一个适当的显著性水平,通常为0.05。
如果计算得到的检验统计量的p值小于显著性水平,我们可以拒绝原假设,认为备择假设更可靠。
三、生存分析生存分析是用于研究事件发生时间的统计方法。
在临床研究中,生存分析通常用于研究患者的存活时间或疾病进展时间。
常见的生存分析方法包括Kaplan-Meier曲线和Cox比例风险模型。
Kaplan-Meier曲线是一种用于估计生存曲线的非参数方法。
通过对样本数据进行分析,可以得到患者在不同时间点上的生存率,从而评估治疗措施的效果或预测患者的存活时间。
Cox比例风险模型则用于研究多个变量对生存时间的影响。
临床研究中常用统计分析方法及选择
临床研究中常用统计分析方法及选择在临床研究领域中,统计分析方法扮演着至关重要的角色。
通过统计分析方法,我们可以对研究样本进行合理的总结和推断,从而得出准确的结论并支持医学决策的制定。
本文将介绍临床研究中常用的统计分析方法,并探讨如何选择适当的方法。
1. 描述性统计分析描述性统计分析是临床研究的起点,用于对数据的基本特征进行描述和总结。
常用的描述性统计方法包括均值、中位数、标准差、百分比等。
通过这些统计指标,我们可以了解研究样本的集中趋势、离散程度以及样本的特征分布情况。
2. t检验t检验广泛应用于两组样本之间差异的统计推断。
当我们想要比较两组样本均值是否存在显著差异时,可以使用t检验。
t检验根据研究目的的不同,分为独立样本t检验和配对样本t检验。
如果两组样本是相互独立的,则选择独立样本t检验;如果两组样本是配对的或相关的,则选择配对样本t检验。
3. 方差分析(ANOVA)方差分析用于比较多个样本均值之间的差异。
当我们需要比较三个以上样本均值是否存在显著差异时,可以使用方差分析。
方差分析根据研究设计的不同,分为单因素方差分析和多因素方差分析。
单因素方差分析适用于只有一个自变量的情况,而多因素方差分析适用于多个自变量的情况。
4. 相关分析相关分析用于研究两个变量之间的关系强度和方向。
通过计算相关系数,我们可以判断变量之间的线性相关程度。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
如果变量服从正态分布且呈线性关系,可以选择皮尔逊相关系数;如果变量不服从正态分布或呈非线性关系,可以选择斯皮尔曼相关系数。
5. 回归分析回归分析用于研究自变量与因变量之间的关系,并建立预测模型。
根据自变量和因变量的特点,回归分析可以分为线性回归分析和非线性回归分析。
线性回归分析适用于自变量和因变量之间存在线性关系的情况,而非线性回归分析适用于非线性关系。
6. 生存分析生存分析用于研究时间至事件发生(例如患者死亡)之间的关系。
临床研究中常见的统计方法
临床研究中常见的统计方法在临床研究中,统计方法被广泛应用于数据分析和结果解释。
统计方法通过对数据进行收集、整理、分析和解读,可以帮助研究人员得出准确和可靠的结论。
本文将介绍在临床研究中常见的统计方法,包括描述统计、推断统计和生存分析。
一、描述统计描述统计是对收集到的数据进行汇总和描述的过程。
它主要通过计算和呈现基本的统计量来揭示数据的特征和分布情况,常用的统计量包括均值、中位数、众数、标准差、百分位数等。
通过描述统计,研究人员可以对数据的整体情况有一个直观的认识,并从中发现数据的趋势和异常情况。
二、推断统计推断统计是通过从样本中获得的信息来推断总体属性的情况。
它主要使用概率理论和抽样方法来进行推断。
推断统计的核心是假设检验和置信区间的计算。
假设检验用于判断研究结果是否具有统计学上的显著性,置信区间用于估计总体参数。
在临床研究中,推断统计可以帮助研究人员确定治疗效果的可靠性,对比不同组间的差异,评估药物的安全性等。
三、生存分析生存分析广泛应用于临床研究中的生存数据分析,用于评估疾病和治疗对患者生存时间的影响。
生存分析的核心是生存曲线和风险比(hazard ratio)的计算。
通过生存曲线,研究人员可以了解不同组别患者的生存率以及生存时间的差异;而风险比可以衡量不同因素对患者生存的相对风险。
生存分析在临床试验和观察研究中具有重要的意义,可以帮助医生和研究人员更好地了解疾病进展、预测患者生存时间以及评估治疗效果。
四、其他常见统计方法除了上述三种常见的统计方法外,临床研究中还存在其他一些常用的统计方法。
例如,线性回归分析、方差分析、多元分析、非参数检验、序列分析等。
这些方法可以根据研究的具体问题和数据类型进行选择和应用,以得到更准确和丰富的研究结果。
总结:临床研究中的统计方法在数据分析和结果解释中起到了重要的作用。
描述统计帮助研究人员了解数据的基本特征和趋势;推断统计可以判断研究结果的统计学显著性和可靠性;生存分析用于评估疾病治疗对患者生存时间的影响。
临床试验数据分析的常用统计方法
临床试验数据分析的常用统计方法在医学领域,临床试验是评估新药物、治疗方法或医疗器械安全性和有效性的重要手段。
而临床试验数据的分析则是评估试验结果的关键环节。
为了确保数据的可靠性和科学性,临床试验数据分析常常采用一系列统计方法,下面将介绍其中的几种常用方法。
1. 描述统计分析描述统计分析是对试验数据进行总结和描述的方法。
它包括计算均值、标准差、中位数、百分位数等指标,以及绘制直方图、箱线图等图形。
通过描述统计分析,我们可以了解试验样本的分布情况、集中趋势和离散程度,为后续的推断统计分析提供基础。
2. 参数估计参数估计是根据样本数据对总体参数进行估计的方法。
在临床试验中,常常需要估计的参数包括治疗效果、副作用发生率等。
参数估计的常用方法有点估计和区间估计。
点估计是通过样本数据计算出一个数值作为总体参数的估计值,例如计算出的相对风险(RR)为0.85。
而区间估计则是给出一个范围,例如计算出的相对风险的95%可信区间为0.75-0.95。
区间估计可以提供更多的信息,例如置信水平和可信区间的宽度,帮助我们评估估计结果的可靠性。
3. 假设检验假设检验是通过对样本数据进行统计推断,判断总体参数是否符合某个假设的方法。
在临床试验中,常常需要判断新治疗方法是否显著优于对照组,或者某个变量是否与治疗效果相关。
假设检验的过程包括建立原假设和备择假设、选择适当的检验方法、计算检验统计量和确定显著性水平等。
常用的假设检验方法有t检验、卡方检验、方差分析等。
假设检验的结果通常以p值表示,p值越小,拒绝原假设的依据越充分。
4. 生存分析生存分析是研究事件发生时间和事件发生率的统计方法。
在临床试验中,常常需要评估患者的生存时间和治疗对生存的影响。
生存分析的常用方法有生存曲线分析和Cox比例风险模型。
生存曲线分析可以绘制出患者生存率随时间变化的曲线,比较不同组别之间的生存差异。
而Cox比例风险模型可以估计不同因素对生存的影响,并计算出相应的风险比值。
临床研究的统计方法
临床研究的统计方法引言:临床研究是评估医疗干预措施效果的重要方法,而统计方法在临床研究中起着至关重要的作用。
本文将介绍临床研究中常用的统计方法,包括样本量计算、数据分析方法和结果解释等,旨在帮助研究人员正确运用统计学方法进行临床研究。
一、样本量计算在进行临床研究前,样本量的计算是必不可少的。
通过样本量计算,研究人员可以确定所需的研究对象数量,以确保研究结果的准确性和可靠性。
样本量计算的关键因素包括研究目的、预期效应大小、显著性水平和统计功效等。
根据这些因素,可以使用不同的统计方法进行样本量计算,如t检验、方差分析、生存分析等。
二、数据收集与整理在临床研究中,数据的收集和整理是决定后续数据分析的基础。
研究人员需要根据研究设计和目的,选择合适的数据收集方式和工具,并保证数据的准确性和完整性。
数据的整理包括数据清洗、缺失值处理和数据转换等步骤,以确保数据的可靠性和一致性。
三、数据分析方法在临床研究中,常用的数据分析方法包括描述性统计分析和推断性统计分析。
描述性统计分析主要用于对数据进行总结和描述,包括计数、比例、均值、中位数和标准差等指标。
推断性统计分析则用于从样本数据中推断总体参数,并进行假设检验和置信区间估计等。
常用的推断性统计方法包括t检验、方差分析、相关分析和回归分析等。
四、结果解释在临床研究中,结果解释是研究人员向读者和医学界传达研究发现的重要环节。
结果解释应该准确、清晰地描述研究结果,并进行合理的解释和推断。
在结果解释中,研究人员需要注意避免歧义和错误信息的出现,尽量使用丰富的词汇和科学的表达方式,以确保研究结果的可信度和可行性。
五、其他注意事项在进行临床研究中,还需要注意一些其他的统计方法和问题。
例如,多重比较问题是指在进行多个统计假设检验时,由于多次比较而产生的统计显著性水平的调整问题。
研究人员需要采取相应的方法进行调整,以避免错误的结论和推断。
此外,数据的可视化分析也是临床研究中常用的方法,通过绘制图表和图形,可以更直观地展示数据的分布和关系。
临床研究资料常用统计分析方法
临床研究资料常用统计分析方法临床研究资料常用统计分析方法介绍临床研究是评估新药、治疗方法和医疗技术的重要手段。
在临床研究过程中,统计分析起着至关重要的作用。
本文档将介绍常用的临床研究资料统计分析方法,以帮助研究人员更好地分析和解释数据。
一、描述统计学分析方法1、平均数:计算样本或总体的平均值,用于描述数据的集中趋势。
2、中位数:计算样本或总体的中间值,用于描述数据的中间位置。
3、众数:计算样本或总体中出现频率最高的值,用于描述数据的峰值。
4、标准差:计算样本或总体的变异程度,用于描述数据的离散程度。
5、百分比和百分位数:计算样本或总体的某个特定百分比位置的值,用于描述数据的分布情况。
二、推断统计学分析方法1、假设检验:检验样本或总体是否存在差异或相关性。
\t- t检验:比较两组样本均值之间的差异。
\t- 方差分析:比较多组样本均值之间的差异。
\t- 相关分析:检验两个变量之间的相关性。
2、置信区间:计算样本或总体参数的区间估计,用于描述参数的不确定性范围。
3、非参数检验:基于排序和秩次的方法,不依赖于数据的分布情况。
\t- Mann-Whitney U检验:比较两组样本的中位数之间的差异。
\t- Wilcoxon符号秩检验:比较配对样本的中位数之间的差异。
\t- Kruskal-Wallis检验:比较多组样本的中位数之间的差异。
三、回归分析方法1、线性回归分析:建立自变量和因变量之间的线性关系,并估计回归系数。
2、逻辑回归分析:建立自变量与因变量之间的逻辑关系,并计算概率和几率比。
3、生存分析:用于分析生存时间数据,包括生存曲线、生存率、危险比等指标。
四、多变量分析方法1、方差分析(ANOVA):用于比较多个自变量对因变量的影响。
2、多元线性回归分析:建立多个自变量和一个因变量之间的线性关系,并估计回归系数。
3、因子分析:用于探索多个变量之间的共性和相关性。
五、生存分析方法1、Kaplan-Meier曲线:用于描述生存率随时间的变化。
临床研究资料常用统计分析方法
临床研究资料常用统计分析方法近年来,随着医学研究的发展,临床试验在医学领域中扮演着至关重要的角色。
为了得出准确和有说服力的结论,统计分析方法在临床研究中起着不可或缺的作用。
本文将介绍一些常用的临床研究资料统计分析方法,以帮助读者更好地理解和运用这些方法。
1. 描述性统计分析法描述性统计分析法是研究者在进行临床研究时常用的一种方法。
它通过计算平均数、标准差、中位数、最大最小值等指标来描述研究数据的基本特征。
例如,在一项针对药物治疗效果的临床试验中,研究者通常会计算出药物治疗组和对照组疗效指标的平均数和标准差,以比较两组之间的差异。
2. 生存分析法生存分析法是研究生存时间和事件发生率的一种统计方法。
在临床实践中,生存分析法常用于评估治疗干预对患者生存时间的影响,尤其是在肿瘤治疗领域中广泛应用。
生存分析方法包括卡普兰-迈尔(Kaplan-Meier)生存曲线和考克斯比例风险模型等。
3. T检验和方差分析T检验和方差分析是常用的比较两个或多个样本平均值之间是否有统计学差异的方法。
T检验适用于两个样本的比较,而方差分析则适用于三个或更多个样本的比较。
这些方法都依赖于计算样本的均值和方差,并通过分析差异的大小和显著性水平来判断组间是否存在差异。
4. 相关性分析相关性分析是研究两个或多个变量之间关系的方法。
在临床研究中,研究者常常需要探索变量之间的相关性,以了解潜在的因果关系或者预测未来事件的可能性。
常用的相关性分析方法包括皮尔逊相关系数、斯皮尔曼等级相关系数和判定系数等。
5. 多元回归分析多元回归分析是一种可以同时考虑多个自变量对因变量影响的统计方法。
在临床研究中,多元回归分析常用于探究多个因素对某一指标结果的影响,如预测疾病发展风险的影响因素。
这种方法可以消除单个变量的干扰,提高模型的预测准确性。
综上所述,临床研究中常用的统计分析方法涵盖了描述性统计分析法、生存分析法、T检验和方差分析、相关性分析以及多元回归分析等。
临床科研中常用的统计分析方法
临床科研中常用的统计分析方法在临床科研中,统计分析是一种必要的方法,用于从收集到的数据中提取信息、得出结论,并为临床决策提供依据。
下面将介绍一些在临床科研中常用的统计分析方法。
一、描述性统计分析描述性统计分析是对数据进行总结和概括的一种方法。
常用的描述性统计分析方法包括:测量指标、频数分布和绘图。
1. 测量指标常见的测量指标有:均值、中位数和众数。
均值是数据的平均数,中位数是将数据按顺序排列后位于中间的数,众数是出现频次最高的数。
2. 频数分布频数分布是将数据按照不同取值的频次进行分类统计。
可以使用直方图、柱状图或饼图展示频数分布情况,直观地观察数据的分布情况。
二、推断统计分析推断统计分析是基于从样本中得到的统计量对总体进行推断的一种方法。
常用的推断统计分析方法包括:假设检验和置信区间估计。
1. 假设检验假设检验是通过对样本数据进行分析来推断总体参数的方法。
常见的假设检验方法包括:t检验、方差分析、卡方检验等。
举例来说,当我们想要比较两组样本均值是否存在显著差异时,可以使用t检验,通过计算样本均值和标准误差的比值来进行假设检验。
2. 置信区间估计置信区间估计是对总体参数范围的估计。
通过计算样本统计量和标准误差,可以得出总体参数的一个范围估计。
例如,我们可以使用置信区间估计来估计某药物的治疗效果区间,从而更准确地评估其临床应用的价值。
三、回归分析回归分析是研究自变量和因变量之间关系的一种统计分析方法。
通过建立数学模型来预测和解释变量之间的关系。
常见的回归分析方法包括:线性回归、逻辑回归、多元回归等。
这些方法可以通过计算自变量和因变量之间的回归系数来衡量二者之间的关系。
例如,在临床研究中,我们可以使用回归分析来探索吸烟对肺癌发病率的影响,通过回归系数来研究二者之间的相关性。
四、生存分析生存分析是一种用于分析时间到达某事件发生的概率的统计方法。
它适用于研究事件的发生时间和影响因素。
常见的生存分析方法包括:Kaplan-Meier估计、Cox比例风险模型等。
临床研究数据分析的6种常用方法
临床研究数据分析的6种常用方法临床研究数据分析是医学领域的一项重要工作,它能够提供有效的统计学依据来支持临床决策,帮助医生和研究人员更好地理解和利用临床数据。
在临床研究中,有许多常用的数据分析方法,本文将介绍其中的6种。
1. 描述性统计分析描述性统计分析是最常见的数据分析方法之一,它可以用来总结和描述研究数据的基本特征。
例如,可以通过计算平均值、中位数、标准差和百分位数等指标来描述病人的年龄、性别、疾病严重程度等基本信息。
描述性统计分析可以帮助研究人员更好地理解研究样本的分布情况,为后续的数据分析提供参考。
2. 相关性分析相关性分析用于研究两个或多个变量之间的相关关系。
通过计算相关系数,可以判断变量之间的线性相关程度和相关方向。
例如,在研究一种药物的有效性时,可以分析药物的剂量与患者的临床症状之间的相关性,从而确定合适的剂量范围。
相关性分析是临床研究中常用的统计方法之一,能够帮助研究人员发现变量之间的内在联系。
3. 分类与回归分析分类与回归分析是用于预测或解释一个或多个自变量对因变量的影响程度。
分类分析适用于研究因变量的类别分布,比如预测患者是否患有某种疾病。
回归分析则适用于研究因变量的连续分布,比如预测药物剂量与治疗效果的关系。
分类与回归分析可以为临床医生提供依据,辅助临床决策。
4. 生存分析生存分析是研究事件发生时间的统计方法。
在临床研究中,生存分析常用于分析疾病的生存时间、复发时间等。
通过构建生存曲线和计算风险比,可以评估不同因素对生存时间的影响。
生存分析能够帮助医生和研究人员更好地评估治疗效果、预测疾病的进展以及制定个体化治疗方案。
5. 方差分析方差分析是一种用于比较多个样本均值之间差异的方法。
在临床研究中,方差分析常用于比较不同治疗组或不同疾病组之间的平均差异。
通过方差分析,可以判断不同因素对研究结果的影响大小,并进行有效的组间比较。
方差分析是一种较为常用的多组比较方法,能够提供客观的统计结论。
临床研究中常用统计分析方法及选择
临床研究中常用统计分析方法及选择临床研究是评估医学干预措施效果的重要方法,而统计分析则是临床研究中不可或缺的一环。
有效的统计分析方法可以帮助研究者解读数据,得出可靠的结论,从而为临床实践提供科学依据。
本文将介绍临床研究中常用的统计分析方法及选择。
1. 描述性统计分析描述性统计分析是对研究数据进行总结和描述的方法,其主要手段是计算各种统计量,如均值、中位数、标准差等。
通过描述性统计分析,我们可以直观地了解数据的集中趋势、离散程度等特征。
在临床研究中,描述性统计分析通常是作为开始的步骤,用于了解研究对象的基本情况。
2. 推论统计分析推论统计分析是根据样本数据得出总体参数估计和假设检验的统计方法。
常用的推论统计分析方法包括参数检验和非参数检验。
参数检验是基于总体参数的假设进行的,其目的是判断样本数据是否支持或反驳某一总体参数假设。
参数检验中最常用的方法是t检验和方差分析。
t检验适用于比较两组均值是否存在差异,方差分析则用于比较多个组的均值差异。
在临床研究中,参数检验常用于分析治疗组与对照组之间的差异。
非参数检验是在不对总体参数假设进行前提的情况下进行的统计方法,其目的是根据样本数据推断总体的分布特征。
在非参数检验中,最常用的方法有Wilcoxon秩和检验、Mann-Whitney U检验和Kruskal-Wallis检验。
非参数检验通常适用于数据不满足正态分布或样本量较小的情况。
3. 生存分析生存分析是研究事件发生时间的统计方法,其主要应用于临床研究中评估治疗效果、预测疾病进展等方面。
生存分析的核心是生存函数和生存曲线的估计,常用的生存分析方法包括Kaplan-Meier法和Cox 比例风险模型。
Kaplan-Meier法是一种用于估计生存概率的非参数方法,适用于单个事件发生时间的研究。
该方法可以根据观察到的数据计算出生存曲线,了解不同因素对生存时间的影响。
Cox比例风险模型是一种常见的生存分析方法,可用于评估多个危险因素对生存时间的影响。
临床研究资料常用统计分析方法
临床研究资料常用统计分析方法统计分析是临床研究中不可或缺的部分,它通过收集和整理研究数据,对数据进行加工处理和解释,以达到对研究问题进行评估和推断的目的。
本文将介绍一些常用的临床研究资料统计分析方法,包括描述性统计分析、推断统计分析和相关性分析。
一、描述性统计分析描述性统计分析是对研究数据进行整理、描述和总结的方法,通过计算和展示数据的中心趋势、离散程度、分布和关联性,以对数据进行初步的解释和理解。
1. 中心趋势的描述中心趋势是描述一组数据集中值的指标,常用的计算方法有平均值、中位数和众数。
平均值是数据的算术平均数,通常用来衡量数据的集中程度。
中位数是将数据按照大小排序后,处于中间位置的数值,它对异常值不敏感,常用来描述有偏态分布的数据。
众数是数据中出现频率最高的数值,可以用来描述数据的集中情况。
2. 离散程度的描述离散程度描述了数据集的分散程度,常用的计算方法有标准差、方差和范围。
标准差是数据偏离平均值的平均距离,它可以衡量数据的波动性。
方差是标准差的平方,它表示数据的离散程度。
范围是最大值减去最小值,它描述了数据的变异范围。
3. 分布的描述分布描述了数据在某一区间内出现的频率或概率分布情况。
常用的方法有频数分布表、频率分布直方图、正态分布曲线等。
频数分布表用来列出每个数值所对应的频数或频率,直方图展示了数据的频数分布情况,正态分布曲线则是用来描述数据服从正态分布的情况。
二、推断统计分析推断统计分析是通过对样本数据进行统计推断,来对总体数据进行估计、推断和判断的方法。
1. 参数估计参数估计是通过样本数据来估计总体参数的方法,常用的方法有点估计和区间估计。
点估计是根据样本数据计算出的参数值作为总体参数的估计值,区间估计是根据样本数据计算出的参数范围作为总体参数的估计范围。
2. 假设检验假设检验是通过对样本数据进行假设检验,来对总体参数进行推断和判断的方法。
它包括设定原假设和备择假设,计算检验统计量和P 值,从而判断原假设是否成立。
临床研究方法概述
临床研究方法概述临床研究是指以人类或动物为对象,系统地收集、整理和分析有关疾病预防、诊断、治疗和康复的数据的一种科学研究方法。
本文将概述临床研究的方法和步骤,以及常用的设计和数据分析方法。
一、临床研究方法1.观察性研究方法观察性研究是指研究者观察和记录相关数据,而不直接介入研究对象的干预。
观察性研究方法主要包括横断面研究、病例对照研究和队列研究。
- 横断面研究:通过收集同一时间点上的数据,了解疾病在人群中的分布情况。
- 病例对照研究:通过比较已患病者与无病对照者之间的差异,分析疾病的危险因素。
- 队列研究:追踪一组人群,在一段时间内观察其疾病发生的情况,分析可能影响疾病发展的因素。
2.实验性研究方法实验性研究是指研究者通过人工设定干预措施,观察和比较不同干预条件下的结果。
实验研究方法主要包括随机对照试验和前瞻性研究。
- 随机对照试验:通过将参与者随机分配到干预组和对照组,比较两组之间的结果来评估干预措施的效果。
- 前瞻性研究:在研究开始之前确定研究目标和计划,详细记录研究过程并进行分析。
二、临床研究步骤1.确定研究问题和目标在开始研究之前,需要明确研究问题和目标。
研究问题应该具有科学性和实践价值,能够解决临床实践中的问题。
2.制定研究设计和方案根据研究问题和目标,制定适当的研究设计和方案。
研究设计应该合理,具备可行性和科学性。
3.招募研究对象并进行数据收集进行研究之前,需要招募符合研究要求的研究对象。
然后,根据研究设计,采集相关的数据和信息。
4.数据分析和解读完成数据收集之后,需要对数据进行分析和解读。
常用的数据分析方法包括描述性统计、生存分析和多元分析等。
5.撰写研究报告和论文在完成数据分析和解读后,需要撰写研究报告和论文,将研究结果和结论进行总结和交流。
三、常用的设计和数据分析方法1.随机对照试验设计随机对照试验是一种在严格控制干预条件下比较不同干预措施效果的设计。
常见的随机对照试验包括平行设计和交叉设计。
临床研究中的统计分析方法
临床研究中的统计分析方法临床研究是医学领域中至关重要的一项工作,通过对医学问题进行深入研究和分析,为改善患者的健康状况和治疗效果提供科学依据。
而统计分析方法作为临床研究的重要工具之一,被广泛应用于数据分析、实验设计、效应估计、假设检验等方面。
本文将就临床研究中常见的统计分析方法进行介绍和探讨。
一、描述性统计分析方法描述性统计分析方法是临床研究中最基础、最常用的方法之一,其主要目的是根据收集到的研究数据,对样本的基本特征和分布进行描述和总结。
描述性统计方法一般包括测量指标的计算(如均值、中位数、标准差等)和图表展示(如直方图、饼图等),以便研究者更好地理解研究数据的分布情况和变异程度。
二、推断统计分析方法推断统计分析方法是临床研究中用于对总体进行估计和推断的一类方法。
通过从样本中获取的数据,研究者可以推断出整个总体的特征和参数。
在推断统计分析中,常见的方法包括假设检验、置信区间估计和回归分析等。
1. 假设检验假设检验是一种常用的推断统计分析方法,用于判断样本数据和假设之间是否存在显著差异。
在假设检验中,研究者首先提出原假设(H0)和备择假设(H1),然后根据样本数据计算出适当的统计量,并与相应的临界值进行比较,从而得出关于原假设的统计结论。
2. 置信区间估计置信区间估计是用来对总体参数进行估计的一种方法。
与假设检验不同的是,置信区间估计提供的是一个范围,以概率的形式来表示参数的估计范围。
研究者通过计算样本数据得到一个区间范围,该区间内包含了总体参数的真实值的概率,从而对总体参数进行估计。
3. 回归分析回归分析是用于研究自变量与因变量之间关系的一种统计分析方法。
在临床研究中,回归分析常被用于探究与某种疾病或治疗效果相关的因素。
利用回归分析方法,研究者可以建立数学模型,描述自变量与因变量之间的定量关系,并通过回归系数的估计和显著性检验来判断因变量在自变量的作用下的变化情况。
三、生存分析方法生存分析方法是一类专门用于研究患者生存时间和生存率的统计方法。
临床试验中常见的统计分析方法与解读技巧
临床试验中常见的统计分析方法与解读技巧在医学领域,临床试验是评估新药、新疗法或新治疗方案的有效性和安全性的重要手段。
然而,仅仅通过试验结果的直观观察并不能得出准确的结论,这时就需要借助统计学的方法来进行数据分析和解读。
本文将介绍一些临床试验中常见的统计分析方法和解读技巧,以便读者能更加全面地理解试验结果。
一、描述性统计分析描述性统计分析是临床试验数据分析的第一步,它主要用于总结和描述数据的特征,包括测量指标的中心趋势和离散程度。
常用的描述性统计分析方法有:平均值、中位数、标准差、频率分布等。
平均值是描述数据集中趋势的指标,它表示数据的集中程度。
但是,在临床试验中,由于样本容量较小,数据容易受到极端值的影响,因此还需考虑使用中位数来描述数据的中心趋势。
标准差是描述数据离散程度的指标,它反映了数据集中的个体与平均值之间的差异。
较大的标准差说明数据的离散程度较大,反之亦然。
频率分布是将数据分成不同区间,并记录每个区间内数据的个数或百分比,用于描述数据的分布情况。
通过频率分布,我们可以了解到数据在不同区间内的分布状况,以及数据呈现的特点。
二、假设检验与置信区间假设检验是临床试验中常用的统计分析方法之一,它用于判断试验结果是否具有统计学意义。
假设检验一般包括建立原假设和备择假设、选择统计量、设定显著性水平和计算p值等步骤。
在假设检验中,我们首先建立原假设(H0)和备择假设(H1)。
原假设通常是认为两组样本的差异没有统计学意义,备择假设则相反。
然后选择适当的统计量(如t值、χ²值等),计算p值。
p值是在原假设成立的条件下,观察到样本结果或更极端结果发生的概率。
最后,根据显著性水平(一般为0.05),判断p值是否小于显著性水平,若小于则拒绝原假设,否则则接受原假设。
置信区间是另一种常用的分析方法,它用来估计样本的真实参数范围。
在临床试验中,我们往往关注新治疗方案的效果是否超过了一定的临界值。
通过构建置信区间,我们可以得到一个范围,表示真实参数值可能落在该范围内的概率。
临床研究资料常用统计分析方法
临床研究资料常用统计分析方法在医学领域,临床研究是获取新知识、改进医疗实践的重要途径。
而对临床研究资料进行准确、恰当的统计分析,则是从海量数据中提取有价值信息、得出可靠结论的关键环节。
本文将为您介绍一些临床研究资料常用的统计分析方法。
首先,我们来谈谈描述性统计分析。
这是对数据进行初步概括和总结的方法,就像给数据画一幅“肖像”。
比如,我们会计算平均值、中位数和众数来描述数据的集中趋势。
平均值是所有数据的总和除以数据的个数,但它容易受到极端值的影响。
中位数则是将数据从小到大排序后位于中间位置的数值,能更好地反映数据的中心位置。
众数是数据中出现最频繁的数值。
除了集中趋势,数据的离散程度也很重要。
极差是最大值与最小值的差值,简单但不够稳定。
标准差则能更全面地反映数据的离散程度,它表示数据相对于平均值的分散程度。
方差是标准差的平方。
接下来是频数分布,它能让我们直观地看到不同取值出现的频率。
例如,在研究某种疾病患者的年龄分布时,我们可以将年龄分组,然后统计每组的人数。
再说说推断性统计分析。
其中最常见的就是 t 检验。
t 检验用于比较两组数据的平均值是否有显著差异。
比如,比较新药组和对照组患者症状改善的平均程度。
如果要比较三组或三组以上的数据,我们会用到方差分析(ANOVA)。
它可以告诉我们这些组之间的差异是否具有统计学意义。
对于分类数据,比如性别(男/女)、治疗效果(有效/无效)等,我们常用卡方检验。
它用于检验两个或多个分类变量之间是否存在关联。
在临床研究中,我们还常常关心变量之间的关系。
线性回归分析就是用来研究两个连续变量之间线性关系的方法。
它可以帮助我们预测一个变量如何随着另一个变量的变化而变化。
Logistic 回归则适用于因变量是二分类(如患病/未患病)的情况,用于找出影响结果的危险因素。
生存分析在临床研究中也有重要应用,特别是对于涉及时间的事件,如患者的生存时间、疾病复发时间等。
常用的方法有 KaplanMeier 法和Cox 比例风险模型。
临床分析医学研究中的统计学方法
临床分析医学研究中的统计学方法统计学在临床分析医学研究中起着重要的作用。
它在整个研究过程中发挥了统计分析、结果呈现和结论推断的重要作用。
本文将探讨临床分析医学研究中常用的统计学方法以及其应用。
一、描述性统计学方法描述性统计学方法主要用于对研究对象的特征进行总结和描述。
它通过计算均值、中位数、标准差、百分比等指标来揭示数据的分布特征。
常用的描述性统计学方法包括:1. 频数统计:对变量进行分类统计,计算各类别的频数和频率。
2. 中心趋势测量:计算数据的平均值、中位数和众数,用于表示数据集中的趋势。
3. 变异测量:计算方差、标准差和范围,用于度量数据的离散程度。
4. 百分比:计算各类别在总体中的百分比,用于比较不同类别的频率。
5. 相关性分析:通过计算相关系数来评估两个变量之间的相关性。
以上方法可以帮助研究者对研究对象的特征进行准确地描述和总结,为后续的进一步分析提供依据。
二、推断性统计学方法推断性统计学方法主要用于从样本中推断总体的特征,通过对样本数据的分析,推断总体数据的分布、差异、相关性等。
常用的推断性统计学方法包括:1. 参数检验:通过对总体参数的估计和假设检验来推断总体的特征。
常见的参数检验方法有t检验、方差分析、卡方检验等。
2. 置信区间:通过计算样本统计量的范围来估计总体参数的区间。
置信区间可以评估估计值的可靠程度。
3. 回归分析:用于研究自变量对因变量的影响程度和方向。
回归分析可以帮助确定变量之间的关系。
4. 生存分析:用于分析事件发生的时间,并估计事件的概率。
生存分析通常应用于疾病预后和研究领域。
推断性统计学方法可以从样本数据中推断总体的特征,进而对整个研究对象做出准确的结论。
三、统计学方法的应用案例统计学方法在临床分析医学研究中有着广泛的应用。
以下是几个常见的应用案例:1. 药物疗效评价:通过随机对照试验设计,使用参数检验方法比较药物治疗组和对照组的疗效差异,从而评价新药物的疗效。
临床研究的统计方法
临床研究的统计方法1. 引言临床研究是疾病治疗和预防的重要手段之一。
然而,仅依靠临床经验和观察结果可能存在偏差和不确定性。
因此,统计学方法在临床研究中的应用变得至关重要。
在本文中,我们将探讨一些常用的临床研究统计方法和其在研究中的应用。
2. 研究设计2.1 基本概念在进行临床研究之前,研究者需要制定研究设计。
研究设计包括研究问题的明确、研究对象的选择和实际操作的规定。
其中,样本选取及其大小、数据收集方式和时间等都要合理设置。
2.2 非随机对照研究非随机对照研究是一种常见的研究设计,其中研究组和对照组之间不存在随机分配。
在这种情况下,统计学方法可以用来分析两组之间的差异,例如卡方检验、t检验和Wilcoxon秩和检验等。
2.3 随机对照研究随机对照研究是一种更科学且有效的研究设计,其中研究对象被随机分配到研究组或对照组。
在这种情况下,统计学方法可以用来比较两组间的差异,并评估干预措施的效果。
常用的统计学方法包括t检验、方差分析和生存分析等。
3. 数据分析数据分析是临床研究中不可或缺的部分。
研究者需要通过合适的统计学方法从海量数据中提取有用的信息,并作出可靠的结论。
3.1 描述统计学描述统计学是数据分析的一种重要方法,它用来总结和描述研究数据的特征。
常见的描述统计学方法包括平均值、标准差、中位数和百分比等。
通过描述统计学方法,研究者可以对研究数据的整体情况有一个直观的认识。
3.2 探索性数据分析在进行正式统计分析之前,探索性数据分析(EDA)是一个非常有用的工具。
EDA可以帮助研究者发现数据中的模式、异常值和趋势等信息。
EDA方法包括直方图、散点图和箱线图等。
3.3 推断统计学推断统计学是从样本数据中推断总体参数的方法。
常见的推断统计学方法包括置信区间估计和假设检验。
置信区间估计可以用来对总体参数进行估计,并给出一个置信度。
而假设检验可以用来检验研究假设的可信度。
4. 临床试验临床试验是评估新药、新疗法或其他临床干预措施效果的重要手段。
临床试验统计方法
临床试验统计方法
临床试验是一种科学研究方法,用于评估新药、治疗方法、诊断技术等的疗效和安全性。
统计方法在临床试验中起着至关重要的作用,可以通过数据分析来得出结论和推断。
以下是一些常用的临床试验统计方法:
1. 随机化控制试验(RCT):RCT是最常见的临床试验设计,将患者随机分为治疗组和对照组,以比较不同治疗方案的有效性。
统计方法包括假设检验、置信区间和风险比(relative risk)等。
2. 生存分析:生存分析用于评估治疗对患者生存时间的影响,常用的统计方法包括卡普兰-迈尔曲线(Kaplan-Meier curve)、Cox比例风险模型等。
3. 假设检验:假设检验用于比较两个或多个组别之间的差异,例如治疗组和对照组之间的疗效差异。
常用的假设检验方法包括t检验、方差分析(ANOVA)等。
4. 效应量(Effect size)估计:效应量是用于衡量治疗效果大小的指标,可以帮助临床研究者判断治疗是否具有实际意义。
常用的效应量估计方法包括标准化均值差异(standardized mean difference)和风险比(risk ratio)。
5. 多元分析:多元分析用于控制和调整潜在的干扰因素,以减少混杂的影响。
常用的多元分析方法包括多元线性回归、逻辑回归和生存分析中的Cox回归等。
需要注意的是,临床试验统计分析需要遵循严格的研究设计和分析原则,以确保结果的可靠性和有效性。
此外,统计方法的选择应该根据具体情况和研究目的进行合理确定。
临床分析的统计方法
临床分析的统计方法统计方法在临床分析中扮演着重要的角色,它能帮助医生和研究人员更好地理解和解释临床数据。
本文将介绍临床分析中常用的统计方法,包括描述性统计、推断统计和相关性分析。
一、描述性统计描述性统计是对数据进行总结和描述的方法。
它能够提供关于数据集中趋势、变异程度和分布形态的信息。
在临床分析中,描述性统计通常用于对患者人群的特征进行概括,比如年龄、性别、疾病种类等。
描述性统计的常用方法包括以下几种:1. 平均值:平均值是数据集的总和除以数据的个数。
它反映了数据的集中趋势,可以帮助我们了解患者人群的平均状况。
2. 中位数:中位数是将数据按大小顺序排列后,处于中间位置的数值。
它不受极端值的影响,更能反映数据的典型值。
3. 众数:众数是数据集中出现次数最多的数值。
在临床分析中,众数可以帮助我们找到最常见的病例特点。
4. 方差和标准差:方差和标准差是用来衡量数据的离散程度。
方差是每个数据点与平均值的差值的平方和的平均值,而标准差则是方差的平方根。
它们能够告诉我们数据的变异程度,帮助我们判断数据的稳定性。
二、推断统计推断统计是利用样本数据对总体进行推断的方法。
在临床研究中,我们往往不能对整个患者人群进行研究,因此需要通过推断统计来帮助我们作出总体的判断。
常用的推断统计方法有:1. 抽样和抽样误差:在临床研究中,我们需要从患者总体中取得样本,通过对样本进行分析来推断总体的特征。
抽样方法包括随机抽样、分层抽样等,而抽样误差则是样本结果与总体结果之间的差别。
2. 置信区间:置信区间是利用样本数据求得的总体参数估计的范围。
常见的置信水平为95%,表示我们有95%的把握总体参数在该范围内。
3. 假设检验:假设检验是对两个或多个样本进行比较的方法。
通过设立一个零假设和一个备择假设,我们可以判断样本之间是否具有显著差异。
常用的假设检验方法有t检验、卡方检验、方差分析等。
三、相关性分析相关性分析是用来判断两个变量之间关系强度和方向的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
临床研究常用统计方法概述金雪娟周俊时智英葛均波(复旦大学附属中山医院,上海市心血管病研究所,上海200032) 经过周密设计和科学实施的临床研究还需要规范的数据管理和统计分析,才能得到可靠的结论。
随着计算机技术和统计分析软件发展,近年来,统计理论和方法发展非常迅速。
临床医师日常繁忙的工作使得他们很少有时间系统学习医学统计理论,及时了解一些实用、有效的新方法。
在此,我们介绍目前临床研究最常用的一些统计分析方法,以实用、易懂为原则,重点综述各种方法的适用条件。
1 几个基本概念和统计量1.1 数据的类型数据(Data)是统计分析的基础。
统计分析方法的选择取决于不同的数据类型。
最常见的数据类型有两种,分类数据(Categorical Data)或称定性数据(Qualitative Data)和定量数据(Qulantitative Data) 或称计量数据(Numerical Data)。
分类数据类型:分类数据的分层大于2时,又称为多分类数据(Polytomous Data)。
分类数据类型有无序(Nominal Categorial)和有序(Ordinal Categorieal)。
无序数据如性别(男、女)、血型(A、B、O、AB 型)等。
有序数据如肿瘤的分级(I级、II级、III级)、疼痛的程度(轻、中、重)等,以及在临床研究设计中,经常看到的“非常好、好、一般、差”这样的数据类型。
不同类型的分类数据在统计分析方法上也不同,并不是大家所熟悉的x2检验所能全部涵盖的。
定量数据类型:包括连续性数据(Continuous Data),如身高、体重以及不连续性数据(Discrete Data),如妇女的产次,疾病的复发次数等。
1.2 常用的描述性统计量最常用的描述集中趋势的统计量为算术均数(Arithmetic Mean),但其值易受极端值影响。
可以采用中位数(Median)、修整均数(Trimmed Mean,去除最大和最小值后的算术均数)或Winsorized均数(Winsorized Mean,极端值用最接近的非极端值替代后的算术均数)来代替。
对于数值呈几何分布的资料,则可采用几何均数(Geometric Mean)。
临床研究论文中常采用均数±标准差或均数±标准误来表示定量数据的分布特征。
标准差(Standard Deviation)为方差(Variance)的平方根,表示个体数值与样本均数间的离散程度;标准误(Standard Error)为均数的标准差,表示样本统计量与总体参数间的离散程度,标准误越小,总体均数的95%可信区间(confident interval,CI)越窄,也就是说样本均数对总体均数的代表性越好。
虽然不同的统计学家对论文中应该引用哪种表达方式有争议,但两种方式均用于描述正态分布的计量数据。
在医学论文中,采用标准差或标准误应该说明。
对于非对称数据只用均数±标准差或标准误表达是不恰当的,可以采用中位数结合四分位数间距(Inter-quartile Range)表示。
1.3 显著性水平(a)和P值为了说明统计学显著性差异,通常把P值与参考值a比较,如果P<a,则拒绝H0,(按此a水平,存在统计学显著性差异)。
a水平通常选用0.05,其实0.05并非是一个具有魔力的数字,其它常用的a值还有0.01和0.10等,甚至在某些特殊的情况下,a值可以取0.20等。
a值说明I类错误的概率,如a等于0.05,则I类错误的概率为5%(拒绝正确H0的概率)。
研究论文报告结果时,应该把a和P值,同时加以说明。
参阅已经发表的文献,常发现这样的问题,研究者设立了A、B和C组3个组,在统计检验时,先把A与B比较,然后B与C比较,再A与C比较,这是需要极力避免的。
多重比较会增加I类错误的概率。
假设有K个中心,同时参与某临床实验,如果按各个中心分别统计,则a = 1 - ( 1 - 0.05 ) K。
当K等于1、2、3、4时,a值依次为0.050、0.098、0.243、0.185,随着独立检验次数的增加,a值也增加。
1.4 统计分析软件的选择统计软件非常多,目前临床研究常用并且比较权威的统计软件有SAS(Statistics AnalysisSystem)、SPSS(Statistical Package for the Social Science)、STATA(Statisties / Data Analysis) 和Splus 等。
STATA灵巧方便,价格也能为个人用户所承受。
SSPS的菜单式操作,使用简便,而且介绍SPSS的书籍比较多,目前已经成为国内非统计专业人员统计的首选软件。
SAS是主要针对专业统计用户设计的软件,在数据处理和统计分析领域,被誉为国际上的标准软件系统。
国际上大部分著名高校和生物统计机构均使用SAS作为统计分析工具,一些最新的统计方法在SPSS和STAT中没有包括,需要选用SAS处理。
2 临床研究常用统计方法选择的原则2.1 单组资料的分析如果数据呈正态分布,则采用单样本t检验(One-Sample Test);如果数据呈非正态分布,可以采用相应的非参数统计方法Wilcoxon符号等级检验(Wilcoxon Signed-Rank Test)。
2.2 两组资料的分析首先,需要判别数据为定量数据还是分类数据。
如果是定量数据,数据的分布特征呈正态,则选择两样本t检验(Two-Sample Test);如果定量数据呈非正态分布,则选择Wilcoxon等级和检验(Wileoxon Rank Sum Test)。
对于分类数据,卡方检验(Chi-Square Test)被广泛运用。
但值得注意的是,如果行列表中有1/5以上的格子理论频数小于5,或有飞个格子理论频数小于1,卡方检验将导致分析的偏性。
此时,可以采用Fishe's 精确概率法(Fishe's Exact Test)计算P值。
2.3 三组或以上资料的分析与两组资料分析类似,如果数据为定量资料呈正态分布,则采用单因素方差分析(One way ANOVA);如果定量数据,呈非正态分布,则选择Kruskal一Wallis检验(Kruskal一Wallis Test)。
对于分类数据,多分类无序数据采用卡方检验(Chi-Square Test)或Fish's精确概率法;多分类有序数据可采用Cochran-Mantel-Haenszel 检验(Cochran-Mantel-Haenszel Test)。
2.4 生存分析(Analyzing Researeh Questions about Survival)分析一段时间后生存、死亡或其它事件发生情况需要采用生存分析,例如,研究者想了解心脏移植后病人生存天数是否与不同的手术方式有关。
生存分析的目的通常是为了描述研究人群的事件发生时间(生存时间、suvival time)的分布特征,比较不同组的生存时间或研究生存时间是否与研究变量有关。
单因素生存分析可以采用Log-Rank检验(Log-Rank Test);多因素可以考虑选择比例风险模型(Cox Proportional Hazards Model)。
需要注意的是,在临床研究中经常包含重复测量数据,如病人从心脏移植至死亡发生期间,重复测量了多次心功能值,对于这种资料,可以采用SAS PHREG中,重复测量资料的cox模型的运用。
2.5 相关性分析(Researeh Question Sabout Relationships among Variables)许多临床研究涉及对一组研究对象2个连续性变量的相互关系的研究。
如用2个不同的指标测定心功能,拟评价这2个指标是否一致,这就需要涉及相关(Correlation)和一致性(Agreement)的评价。
当数据为正态分布时,Pearson相关系数(Pearson's relation Coefficient)可以评价2个指标的相关性。
当数据分布非正态,相应的非参数统计量为Spearman's等级相关系数(Spearman's Rank Correlation Coeffielent)以及Kendall's Tau-b等级相关系数(Kendall's Tau-b Rank Correlation Coeffielent),两者类似,但更多的统计学家推荐使用后者。
对一致性的评价,定量数据可以采用Concordance相关系数(Concordance Correlation Coeffieient),分类数据采用Kappa分析(Cohen's Kappa statistic)。
值得注意的是,相关性与一致性的区别。
如在临床研究中,希望评价一个新的方法是否等同于原来的方法,需要使用一致性分析。
2.6 多因素分析(StatlstiealMethodSfo:MultipleVariables)临床研究的对象常常为病人,与有严格实验条件控制的动物实验不同,除了研究的因素外,常需要控制许多混杂因素或协变量,统计分析需要采用多因素模型对协变量进行校正。
统计分析软件和程序的使用为多因素分析提供了可能。
根据反应变量的类型,可以采用多元线形回归(Muiriple Linear Regression)、协方差分析(ANOVA,Analysis of Covariance)以及Logistic回归(Logistic Regression)等。
2.7 重复测量数据的分析(Methods for Analyzing Repeated Measures Data)定量数据可以采用重复测量方差分析(Repeated-Measures ANOVA)以及混合效应模型(MixeD-effects linear Model)。
对于分类数据,可以广义估算方程(Generalized Estimated Evluation,GEE)拟合Logistic模型。
表1总结了常用的多因素分析方法以及选择原则以及对应的SAS步。
表1 多因素分析方法与SAS自变量反应变量----------------------------------------连续性数据分类数据重复测量3. 小结临床工作者花费了大量心血收集到的宝贵资料,需要有适当的统计分析和结果呈现。
目前国内统计书籍中介绍的方法常常不能满足充分利用研究信息的需要。
我们对各种常用统计方法的选择作了概述,实际运用时,还需要参阅相应的SAS程序。