2020-2021学年最新北京课改版九年级数学上学期期末教学目标检测及答案解析-精编试题
人教版2020-2021学年度上学期期末考试数学试卷(Word版 含解析)
![人教版2020-2021学年度上学期期末考试数学试卷(Word版 含解析)](https://img.taocdn.com/s3/m/94ca19a508a1284ac8504385.png)
人教版2020-2021学年度上学期期末考试数学试卷(全册)一、选择题(本大题共10小题,共30.0分)1.下列关于事件发生可能性的表述,正确的是( )A. 事件:“在地面,向上抛石子后落在地上”,该事件是随机事件B. 体育彩票的中奖率为10%,则买100张彩票必有10张中奖C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D. 掷两枚硬币,朝上的一面是一正面一反面的概率为 132.下列四个银行标志中,既是轴对称图形又是中心对称图形的是( ). A. B. C. D.3.关于 x 的一元二次方程 x 2−5x +2p =0 的一个根为 1 ,则另一根为( ).A. -6B. 2C. 4D. 14.下列关于二次函数 y =2x 2+3 ,下列说法正确的是( ).A. 它的开口方向向下B. 它的顶点坐标是 (2,3)C. 当 x <−1 时, y 随 x 的增大而增大D. 当 x =0 时, y 有最小值是35.如图,AB 为⊙O 的直径,点D 是弧AC 的中点,过点D 作DE ⊥AB 于点E ,延长DE 交⊙OO 于点F ,若AC = 12,AE = 3,则⊙O 的直径长为( )A. 10B. 13C. 15D. 166.某校食堂每天中午为学生提供A 、 B 两种套餐,甲乙两人同去该食堂打饭,那么甲乙两人选择同款套餐的概率为( )A. 12B. 13C. 14D. 237.如图,某幢建筑物从2.25米高的窗口A 用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A. 2.5米B. 3米C. 3.5米D. 4米8.小明同学是一位古诗文的爱好者,在学习了一元二次方程这一章后,改编了苏轼诗词《念奴娇·哧壁怀古》:“大江东去浪淘尽,千古风流人物。
而立之年督东吴,早逝英年两位数。
2020-2021学年北京市丰台区九年级(上)期末数学试卷(含解析)
![2020-2021学年北京市丰台区九年级(上)期末数学试卷(含解析)](https://img.taocdn.com/s3/m/95b190ff4b73f242326c5fa1.png)
2020-2021学年北京市丰台区九年级第一学期期末数学试卷一、选择题(共8小题,共24分,每小题3分)1.函数y=(x+1)2﹣2的最小值是()A.1B.﹣1C.2D.﹣22.下面是利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.若一个扇形的圆心角为90°,半径为6,则该扇形的面积为()A.B.3πC.6πD.9π4.点A(﹣1,y1),B(1,y2),C(2,y3)是反比例函数图象上的三个点,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y25.直径为10分米的圆柱形排水管,截面如图所示.若管内有积水(阴影部分),水面宽AB为8分米,则积水的最大深度CD为()A.2分米B.3分米C.4分米D.5分米6.二次函数y=ax2+bx+c(a≠0)的图象是抛物线G,自变量x与函数y的部分对应值如下表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列说法正确的是()A.抛物线G的开口向下B.抛物线G的对称轴是直线x=﹣2C.抛物线G与y轴的交点坐标为(0,4)D.当x>﹣3时,y随x的增大而增大7.如图,点O为线段AB的中点,点B,C,D到点O的距离相等,连接AC,BD.则下面结论不一定成立的是()A.∠ACB=90°B.∠BDC=∠BACC.AC平分∠BAD D.∠BCD+∠BAD=180°8.函数y=+的图象如图所示,若点P1(x1,y1),P2(x2,y2)是该函数图象上的任意两点,下列结论中错误的是()A.x1≠0,x2≠0B.y1>,y2>C.若y1=y2,则|x1|=|x2|D.若y1<y2,则x1<x2二、填空题(每小题3分)9.将抛物线y=x2向下平移2个单位长度,平移后拋物线的解析式为.10.如图,在平行四边形ABCD中,点E在边AD上,AC,BE交于点O,若AE:ED=1:2,则S△AOE:S△COB=.11.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.12.抛物线y=x2+bx+4与x轴有且只有1个公共点,则b=.13.如图,⊙O是△ABC的外接圆,D是的中点,连接AD,BD,BD与AC交于点E,请写出图中所有与△ADE相似的三角形.14.如图,为了测量操场上一棵大树的高度,小英拿来一面镜子,平放在离树根部5m的地面上,然后她沿着树根和镜子所在的直线后退,当她后退1m时,正好在镜中看见树的顶端.小英估计自己的眼睛到地面的距离为1.6m,则大树的高度是m.15.如图,△ABC是⊙O的内接三角形,OD⊥BC于点D.下面是借助直尺,画出△ABC中∠BAC的平分线的步骤:①延长OD交于点M;②连接AM交BC于点N.所以∠BAN=∠CAN.即线段AN为所求△ABC中∠BAC的平分线.请回答,得到∠BAN=∠CAN的依据是.16.2020年3月14日是全球首个国际圆周率日(πDay).历史上求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔•卡西的计算方法是:当正整数n 充分大时,计算某个圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,再将它们的平均数作为2π的近似值.当n=1时,如图是⊙O及它的内接正六边形和外切正六边形.(1)若⊙O的半径为1,则⊙O的内接正六边形的边长是;(2)按照阿尔•卡西的方法,计算n=1时π的近似值是.(结果保留两位小数)(参考数据:≈1.732)三、解答题(共52分,17-21题每小题5分,22题每小题5分,23-25题每小题5分)17.已知二次函数y=x2﹣4x+3.(1)求二次函数y=x2﹣4x+3图象的顶点坐标;(2)在平面直角坐标系xOy中,画出二次函数y=x2﹣4x+3的图象;(3)当1<x<4时,结合函数图象,直接写出y的取值范围.18.如图,在△ABC中,点D,E分别在边AB,AC上,连接DE,且AD•AB=AE•AC.(1)求证:△ADE∽△ACB;(2)若∠B=55°,∠ADE=75°,求∠A的度数.19.如图,在平面直角坐标系xOy中,△AOB的顶点坐标分别是A(1,0),O(0,0),B(2,2).(1)画出△A1OB1,使△A1OB1与△AOB关于点O中心对称;(2)以点O为位似中心,将△AOB放大为原来的2倍,得到△A2OB2,画出一个满足条件的△A2OB2.20.如图,在平面直角坐标系xOy中,A(4,0),C(0,2).点D是矩形OABC对角线的交点.已知反比例函数y=(k≠0)在第一象限的图象经过点D,交BC于点M,交AB于点N.(1)求点D的坐标和k的值;(2)反比例函数图象在点M到点N之间的部分(包含M,N两点)记为图形G,求图形G上点的横坐标x的取值范围.21.如图,AC与⊙O相切于点C,AB经过⊙O上的点D,BC交⊙O于点E,DE∥OA,CE 是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,CE=6,求AC的长.22.在倡议“绿色环保,公交出行”的活动中,学生小志对公交车的计价方式进行了研究.他发现北京公交集团的公交车站牌中都写有:“10公里以内(含)票价2元,每增加5公里以内(含)加价1元”,如图.小志查阅了相关资料,了解到北京公交车的票价按照乘客乘坐公交车的里程(公里)数计算,乘客可以按照如下方法计算票价:①站牌中每一站上面标注的数字表示该站的站位号,乘客可以通过计算上、下车站的站位号的差,得到乘车的大致里程数,然后按照下面具体标准得出票价:若里程数在0至10之间(含0和10,下同),则票价为2元;若里程数在11至15之间,则票价为3元;若里程数在16至20之间,则票价为4元,以此类推.②为了鼓励市民绿色出行,北京公交集团制定了票价优惠政策:使用市政公交一卡通刷卡,普通卡打5折,学生卡打2.5折.请根据上述信息,回答下列问题:(1)学生甲想去抗战雕塑园参观,他乘坐339路公交车从云岗站上车,到抗战雕塑园站下车,那么原票价应为元,他使用学生卡实际支付元;(2)学生乙使用学生卡乘339路公交车去北京西站,若下车刷卡时实际支付了1元,则他在佃起村上车的概率为.23.在平面直角坐标系xOy中,抛物线y=ax2+bx(a≠0)过点(4,0).(1)用含a的代数式表示b;(2)已知点A(0,a),将点A绕原点O顺时针旋转90°得到点B,再将点B向右平移2个单位长度得到点C,求点C的坐标(用含a的代数式表示);(3)在(2)的条件下,若线段AC与抛物线有公共点,求a的取值范围.24.已知正方形ABCD,点E是CB延长线上一点,位置如图所示,连接AE,过点C作CF ⊥AE于点F,连接BF.(1)求证:∠FAB=∠BCF;(2)作点B关于直线AE的对称点M,连接BM,FM.①依据题意补全图形;②用等式表示线段CF,AF,BM之间的数量关系,并证明.25.对于平面直角坐标系xOy中的点P和图形M,给出如下定义:若在图形M上存在点Q,使得OQ=kOP,k为正数,则称点P为图形M的k倍等距点.已知点A(﹣2,2),B(2,2).(1)在点C(1,0),D(0,﹣2),E(1,1)中,线段AB的2倍等距点是;(2)画出线段AB的所有2倍等距点形成的图形(用阴影表示),并求该图形的面积;(3)已知直线y=﹣x+b与x轴,y轴的交点分别为点F,G,若线段FG上存在线段AB 的2倍等距点,直接写出b的取值范围.参考答案一、选择题(共8小题).1.函数y=(x+1)2﹣2的最小值是()A.1B.﹣1C.2D.﹣2解:根据二次函数的性质,当x=﹣1时,二次函数y=(x﹣1)2﹣2的最小值是﹣2.故选:D.2.下面是利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.解:A、既是轴对称图形又是对称图形,故此选项符合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:A.3.若一个扇形的圆心角为90°,半径为6,则该扇形的面积为()A.B.3πC.6πD.9π解:S扇形==9π,故选:D.4.点A(﹣1,y1),B(1,y2),C(2,y3)是反比例函数图象上的三个点,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2解:∵中,k=2>0,∴反比例函数图象在一、三象限,并且在每一象限内y随x的增大而减小,∵﹣1<0,∴A点在第三象限,∴y1<0,∵2>1>0,∴B、C两点在第一象限,∴y2>y3>0,∴y1<y3<y2.故选:B.5.直径为10分米的圆柱形排水管,截面如图所示.若管内有积水(阴影部分),水面宽AB为8分米,则积水的最大深度CD为()A.2分米B.3分米C.4分米D.5分米【分析】连接OA,先由垂径定理求出AC的长,再由勾股定理求出OC的长,进而可得出结论.解:连接OA,如图所示:∵⊙O的直径为10分米,∴OA=5分米,由题意得:OD⊥AB,AB=8分米,∴AC=BC=AB=4分米,∴OC===3(分米),∴水的最大深度CD=OD﹣OC=5﹣3=2(分米),故选:A.6.二次函数y=ax2+bx+c(a≠0)的图象是抛物线G,自变量x与函数y的部分对应值如下表:x…﹣5﹣4﹣3﹣2﹣10…y…40﹣2﹣204…下列说法正确的是()A.抛物线G的开口向下B.抛物线G的对称轴是直线x=﹣2C.抛物线G与y轴的交点坐标为(0,4)D.当x>﹣3时,y随x的增大而增大【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的结论是否正确,本题得以解决.解:由表格可知,该函数的对称轴是直线x==﹣,故选项B错误,该抛物线开口向上,在x=﹣时,取得最小值,故选项A错误,当x>﹣时,y随x的增大而最大,故选项D错误,当x=0时,y=4,则抛物线G与y轴的交点坐标为(0,4),故选项C正确;故选:C.7.如图,点O为线段AB的中点,点B,C,D到点O的距离相等,连接AC,BD.则下面结论不一定成立的是()A.∠ACB=90°B.∠BDC=∠BACC.AC平分∠BAD D.∠BCD+∠BAD=180°【分析】先利用圆的定义可判断点A、B、C、D在⊙O上,如图,然后根据圆周角定理对各选项进行判断.解:∵点O为线段AB的中点,点B,C,D到点O的距离相等,∴点A、B、C、D在⊙O上,如图,∵AB为直径,∴∠ACB=90°,所以A选项的结论正确;∵∠BDC和∠BAC都对,∴∠BDC=∠BAC,所以B选项的结论正确;只有当CD=CB时,∠BAC=∠DAC,所以C选项的结论不正确;∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°,所以D选项的结论正确.故选:C.8.函数y=+的图象如图所示,若点P1(x1,y1),P2(x2,y2)是该函数图象上的任意两点,下列结论中错误的是()A.x1≠0,x2≠0B.y1>,y2>C.若y1=y2,则|x1|=|x2|D.若y1<y2,则x1<x2【分析】根据图象得到函数的性质,根据函数的性质即可判断.解:由图象可知,x1≠0,x2≠0,故选项A正确;∵y=+,∴y1>,y2>,故选项B正确;∵函数的图象关于y轴对称,∴y1=y2,则|x1|=|x2|,故选项C正确;根据函数的增减性,当x<0时,若y1<y2,则x1<x2,当x>0时,若y1<y2,则x1>x2,故选项D错误,故选:D.二、填空题(本题共24分,每小题3分)9.将抛物线y=x2向下平移2个单位长度,平移后拋物线的解析式为y=x2﹣2.【分析】根据“上加下减”可得答案.解:将抛物线y=x2向下平移2个单位长度,平移后拋物线的解析式为y=x2﹣2,故答案为:y=x2﹣2.10.如图,在平行四边形ABCD中,点E在边AD上,AC,BE交于点O,若AE:ED=1:2,则S△AOE:S△COB=1:9.【分析】本题通过平行四边形的性质可以得到AB=CD且AB∥CD,进而得到△AOE∽△CBO,在通过AE:ED=1:2,得到AE:BC=1:3,再由相似三角形的面积比等于相似比的平方得出答案.解:∵四边形ABCD是平行四边形,∴AB=CD且AB∥CD,∴△AOE∽△CBO,∵AE:ED=1:2,∴AE:AD=1:3,∴AE:BC=1:3,因为相似三角形的面积比等于相似比的平方,所以S△AOE:S△COB=1:9,故答案为:1:9,11.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为0.881.【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.881.故答案为:0.881.12.抛物线y=x2+bx+4与x轴有且只有1个公共点,则b=±4.【分析】令y=0,则关于x的一元二次方程x2+bx+4=0的根的判别式△=0,据此列出关于b的新方程,通过解新方程即可求得b的值.解:令y=0,则当抛物线y=x2+bx+4的图象与x轴只有一个公共点时,关于x的一元二次方程x2+bx+4=0的根的判别式△=0,即b2﹣4×4=0,解得b=±4.故答案是:±4.13.如图,⊙O是△ABC的外接圆,D是的中点,连接AD,BD,BD与AC交于点E,请写出图中所有与△ADE相似的三角形△CBE,△BDA.【分析】根据两角对应相等的两个三角形相似即可得出答案.解:∵=,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为:△CBE,△BDA.14.如图,为了测量操场上一棵大树的高度,小英拿来一面镜子,平放在离树根部5m的地面上,然后她沿着树根和镜子所在的直线后退,当她后退1m时,正好在镜中看见树的顶端.小英估计自己的眼睛到地面的距离为1.6m,则大树的高度是8m.【分析】入射角等于反射角,两个直角相等,那么图中的两个三角形相似,利用对应边成比例可求得树高.解:∵∠ABC=∠DBE,∠ACB=∠DEB=90°,∴△ABC∽△DBE,∴BC:BE=AC:DE,即1:5=1.6:DE,∴DE=8(m),故答案为:8.15.如图,△ABC是⊙O的内接三角形,OD⊥BC于点D.下面是借助直尺,画出△ABC中∠BAC的平分线的步骤:①延长OD交于点M;②连接AM交BC于点N.所以∠BAN=∠CAN.即线段AN为所求△ABC中∠BAC的平分线.请回答,得到∠BAN=∠CAN的依据是在同圆或等圆中,同弧或等弧所对的圆周角相等.【分析】根据作图步骤进行作图即可得结论.解:如图,AN为所求△ABC中∠BAC的平分线,故答案为:在同圆或等圆中,同弧或等弧所对的圆周角相等.16.2020年3月14日是全球首个国际圆周率日(πDay).历史上求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔•卡西的计算方法是:当正整数n 充分大时,计算某个圆的内接正6n边形的周长和外切正6n边形(各边均与圆相切的正6n边形)的周长,再将它们的平均数作为2π的近似值.当n=1时,如图是⊙O及它的内接正六边形和外切正六边形.(1)若⊙O的半径为1,则⊙O的内接正六边形的边长是1;(2)按照阿尔•卡西的方法,计算n=1时π的近似值是 3.23.(结果保留两位小数)(参考数据:≈1.732)【分析】(1)⊙O的内接正六边形的边长与圆的半径相等,延长可得结论.(2)求出两个正六边形的周长,再求出两个周长的平均数,可得2π的近似值,延长即可解决问题.解:(1)⊙O的半径为1,则⊙O的内接正六边形的边长是1,故答案为:1.(2)圆的外切正六边形的边长=2×1×tan30°=,∴圆的外切正六边形的周长=4,∵圆的内切正六边形的周长=6,∴2π≈,∴π≈3.23.故答案为:3.23.三、解答题(本题共52分,17-21题每小题5分,22题每小题5分,23-25题每小题5分)17.已知二次函数y=x2﹣4x+3.(1)求二次函数y=x2﹣4x+3图象的顶点坐标;(2)在平面直角坐标系xOy中,画出二次函数y=x2﹣4x+3的图象;(3)当1<x<4时,结合函数图象,直接写出y的取值范围.【分析】(1)把一般式配成顶点式得到抛物线的顶点坐标;(2)先确定抛物线与坐标轴的交点坐标,然后利用描点法画出二次函数图象;(3)结合二次函数图象,写出当1<x<4时对应的y的取值范围.解:(1)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴该二次函数图象顶点坐标为(2,﹣1);(2)当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,∴抛物线与x轴的交点坐标为(1,0),(3,0);当x=0时,y=x2﹣4x+3=3,则抛物线与y轴的交点坐标为(0,3),如图:;(3)由图象可知,当1<x<4时,﹣1≤y<3.18.如图,在△ABC中,点D,E分别在边AB,AC上,连接DE,且AD•AB=AE•AC.(1)求证:△ADE∽△ACB;(2)若∠B=55°,∠ADE=75°,求∠A的度数.【分析】(1)本题根据相似三角形的判定可以推出△ADE∽△ACB.(2)由第(1)问可知△ADE∽△ACB,进而得到∠ADE=∠ACB,从而得到∠ACB=75°,在利用三角形的内角和得出所求角即可.【解答】(1)证明:∵AD⋅AB=AE⋅AC,∴.又∵∠A=∠A,∴△ADE∽△ACB.(2)解:由(1)知,△ADE∽△ACB,∴∠ADE=∠ACB.∵∠ADE=75°,∴∠ACB=75°.又∵∠B=55°,∴∠A=180°﹣∠ACB﹣∠B=50°.19.如图,在平面直角坐标系xOy中,△AOB的顶点坐标分别是A(1,0),O(0,0),B(2,2).(1)画出△A1OB1,使△A1OB1与△AOB关于点O中心对称;(2)以点O为位似中心,将△AOB放大为原来的2倍,得到△A2OB2,画出一个满足条件的△A2OB2.【分析】(1)利用关于原点对称的点的坐标特征写出A1、B1的坐标,然后描点即可;(2)把A、B点的横纵坐标都乘以2得到A2、B2的坐标,然后描点即可.解:(1)如图,△A1OB1为所作;(2)如图,△A2OB2为所作.20.如图,在平面直角坐标系xOy中,A(4,0),C(0,2).点D是矩形OABC对角线的交点.已知反比例函数y=(k≠0)在第一象限的图象经过点D,交BC于点M,交AB于点N.(1)求点D的坐标和k的值;(2)反比例函数图象在点M到点N之间的部分(包含M,N两点)记为图形G,求图形G上点的横坐标x的取值范围.【分析】(1)先求得D点的坐标,然后根据待定系数法即可求得;(2)根据M的纵坐标,即可求得M的横坐标,结合N的横坐标,即可得到图形G上点的横坐标x的取值范围.解:(1)∵点D是矩形OABC的对角线交点,∴点D是矩形OABC的对角线AC的中点,又∵A(4,0),C(0,2),∴点D的坐标为(2,1).∵反比例函数的图象经过点D,∴,解得:k=2.(2)由题意可得:点M的纵坐标为2,点N的横坐标为4.∵点M在反比例函数的图象上,∴点M的坐标为(1,2),∴1≤x≤4.21.如图,AC与⊙O相切于点C,AB经过⊙O上的点D,BC交⊙O于点E,DE∥OA,CE 是⊙O的直径.(1)求证:AB是⊙O的切线;(2)若BD=4,CE=6,求AC的长.【分析】(1)连接OD,根据平行线的性质得出∠ODE=∠AOD,∠DEO=∠AOC,根据等腰三角形的性质得出∠OED=∠ODE,即可得出∠AOC=∠AOD,进而证得△AOD ≌△AOC(SAS),得到∠ADO=∠ACB=90°,即可证得结论;(2)根据勾股定理求得BO,得到BC=8,然后根据勾股定理列出关于AC的方程,解方程即可.【解答】(1)证明:连接OD.∵OE=OD,∴∠OED=∠ODE,∵DE∥OA,∴∠OED=∠AOC,∠ODE=∠AOD,∴∠AOC=∠AOD.在△AOD和△AOC中,,∴△AOD≌△AOC(SAS),∴∠ADO=∠ACO.∵AC与⊙O相切于点C,∴∠ADO=∠ACO=90°,又∵OD是⊙O的半径,∴AB是⊙O的切线.(2)解:∵CE=6,∴OE=OD=OC=3.在Rt△ODB中,BD=4,OD=3,∴BD2+OD2=BO2,∴BO=5,∴BC=BO+OC=8.∵⊙O与AB和AC都相切,∴AD=AC.在Rt△ACB中,AC2+BC2=AB2,即:AC2+82=(AC+4)2,解得:AC=6.22.在倡议“绿色环保,公交出行”的活动中,学生小志对公交车的计价方式进行了研究.他发现北京公交集团的公交车站牌中都写有:“10公里以内(含)票价2元,每增加5公里以内(含)加价1元”,如图.小志查阅了相关资料,了解到北京公交车的票价按照乘客乘坐公交车的里程(公里)数计算,乘客可以按照如下方法计算票价:①站牌中每一站上面标注的数字表示该站的站位号,乘客可以通过计算上、下车站的站位号的差,得到乘车的大致里程数,然后按照下面具体标准得出票价:若里程数在0至10之间(含0和10,下同),则票价为2元;若里程数在11至15之间,则票价为3元;若里程数在16至20之间,则票价为4元,以此类推.②为了鼓励市民绿色出行,北京公交集团制定了票价优惠政策:使用市政公交一卡通刷卡,普通卡打5折,学生卡打2.5折.请根据上述信息,回答下列问题:(1)学生甲想去抗战雕塑园参观,他乘坐339路公交车从云岗站上车,到抗战雕塑园站下车,那么原票价应为3元,他使用学生卡实际支付0.75元;(2)学生乙使用学生卡乘339路公交车去北京西站,若下车刷卡时实际支付了1元,则他在佃起村上车的概率为.【分析】(1)先根据上下车地点确定乘坐里程数,结合题意可得原票价及折后票价;(2)根据支付费用及学生卡折扣求出原票价,再结合下车地点确定其上车的可能地点,再根据概率公式求解即可.解:(1)乘坐339路公交车从云岗站上车,到抗战雕塑园站下车,里程数为14﹣3=11,则原票价应为3元,他使用学生卡实际支付3×0.25=0.75(元),故答案为:3、0.75;(2)∵下车刷卡时实际支付了1元,∴学生乙原票价为1÷0.25=4(元),∴学生乙乘坐的里程数再16至20之间,由图知,学生乙上车地点可能是云岗北区、佃起村、张家坟、朱家坟、赵辛店、北京十中这6个,∴他在佃起村上车的概率为,故答案为:.23.在平面直角坐标系xOy中,抛物线y=ax2+bx(a≠0)过点(4,0).(1)用含a的代数式表示b;(2)已知点A(0,a),将点A绕原点O顺时针旋转90°得到点B,再将点B向右平移2个单位长度得到点C,求点C的坐标(用含a的代数式表示);(3)在(2)的条件下,若线段AC与抛物线有公共点,求a的取值范围.【分析】(1)将(4,0)代入即可得答案,(2)y轴上的点绕原点O顺时针旋转90°到x轴,向右平移则横坐标加2即可求出B 的坐标,(3)根据图形列出不等式可得a的范围;解:(1)∵抛物线y=ax2+bx过点(4,0),∴0=16a+4b,∴b=﹣4a.(2)∵点A(0,a)绕原点O顺时针旋转90°得到点B,∴点B的坐标为(a,0),∵点B向右平移2个单位长度得到点C,∴点C的坐标为(a+2,0).(3)(i)当a>0时,抛物线y=ax2﹣4ax开口向上,与x轴交于两点(0,0),(4,0).若线段AC与抛物线有公共点(如答图1),只需满足:,解得:a≥2;(ii)当a<0时,抛物线y=ax2﹣4ax开口向下,与x轴交于两点(0,0),(4,0),若线段AC与抛物线有公共点(如答图2),只需满足:,解得:a≤﹣2;综上所述,a的取值范围为a≥2或a≤﹣2.24.已知正方形ABCD,点E是CB延长线上一点,位置如图所示,连接AE,过点C作CF ⊥AE于点F,连接BF.(1)求证:∠FAB=∠BCF;(2)作点B关于直线AE的对称点M,连接BM,FM.①依据题意补全图形;②用等式表示线段CF,AF,BM之间的数量关系,并证明.【分析】(1)根据等角的余角相等证明即可.(2)①根据要求画出图形即可.②结论:AF+BM=CF.在CF上截取点N,使得CN=AF,连接BN.证明△AFB≌△CNB(SAS),推出∠ABF=∠CBN,FB=NB,再证明四边形FMBN为平行四边形,可得结论.【解答】(1)证明:∵CF⊥AE,∴∠EFC=90°,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE=90°,∴∠EFC=∠ABE,又∵∠AEB=∠CEF,∠AEB+∠FAB=90°,∠CEF+∠BCF=90°,∴∠FAB=∠BCF.(2)①如图:图形即为所求作.②解:结论:AF+BM=CF.理由:在CF上截取点N,使得CN=AF,连接BN.∵四边形ABCD是正方形,∴AB=CB.在△AFB和△CNB中,∴△AFB≌△CNB(SAS),∴∠ABF=∠CBN,FB=NB,∴∠FBN=∠ABC=90°,∴△FBN是等腰直角三角形,∴∠BFN=45°.∵点B关于直线AE的对称点是点M,∴FM=FB,∵CF⊥AE,∠BFN=45°,∴∠BFE=45°,∴∠BFM=90°,∴∠BFM=∠FBN,∴FM∥NB.∵FM=FB,FB=NB,∴FM=NB,∴四边形FMBN为平行四边形,∴BM=NF,∴AF+BM=CF.25.对于平面直角坐标系xOy中的点P和图形M,给出如下定义:若在图形M上存在点Q,使得OQ=kOP,k为正数,则称点P为图形M的k倍等距点.已知点A(﹣2,2),B(2,2).(1)在点C(1,0),D(0,﹣2),E(1,1)中,线段AB的2倍等距点是C,E;(2)画出线段AB的所有2倍等距点形成的图形(用阴影表示),并求该图形的面积;(3)已知直线y=﹣x+b与x轴,y轴的交点分别为点F,G,若线段FG上存在线段AB 的2倍等距点,直接写出b的取值范围.【分析】(1)画图,先确定线段OQ的取值范围是2≤OQ≤2,从而确定OP的取值范围是1≤OP≤.(2)观察点P在平面上的位置,即到点O的距离最大为,最小为1的点的运动范围,画出图形,求出面积.(3)直线y=﹣x+b中的b是变量,﹣1是常量,直线y=﹣x平移的位置由b决定,也决定了与(2)中的阴影部分是否有公共点;还要注意这里的线段FG只是直线y=﹣x+b 的一部分;还要进行分类讨论,避免丢解.解:(1)由题意可知,点Q与点A重合时OQ最大为,当点Q在y轴上是最小为2,即2≤OQ≤2,∴由2≤OP≤2,得1≤OP≤2,如图1.点C(1,0),D(0,﹣2),E(1,1)中只有C、E符合要求,故选C、E.(2)如图2,线段AB的所有2倍等距点构成的图形为以点O为圆心,分别以1和为半径的同心圆形成的环形.S=π×()2﹣π×12=π.(3)直线y=﹣x+b由直线y=﹣x平移得到,与坐标轴成45°角.如图3,当b<0时,直线过点(﹣1,﹣1)时,b的值最小,由﹣1=﹣(﹣1)+b 得,b=﹣2;当直线过点(0,﹣1)时,b=﹣1,∴﹣2≤b≤﹣1.当b>0时,直线过点(0,1)时,b=1;直线过点(1,1)时,b的值最大,由1=﹣1+b得,b=2.综上所述,﹣2≤b≤﹣1或1≤b≤2.。
2020-2021学年九年级上学期期末考试数学试卷(有答案)
![2020-2021学年九年级上学期期末考试数学试卷(有答案)](https://img.taocdn.com/s3/m/01760337360cba1aa811daef.png)
2020-2021学年九年级上学期期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.若y=(m﹣1)是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在2.如图,在平面直角坐标系中,A(6,0)、B(0,8),点C在y轴正半轴上,点D在x 轴正半轴上,且CD=6,以CD为直径在第一象限作半圆,交线段AB于E、F,则线段EF的最大值为()A.3.6B.4.8C.3D.33.一次数学测试后,随机抽取九年级三班6名学生的成绩如下:80,85,86,88,88,95.关于这组数据的错误说法是()A.极差是15B.众数是88C.中位数是86D.平均数是87 4.近年来,我国石油对外依存度快速攀升,2017年和2019年石油对外依存度分别为64.2%和70.8%,设2017年到2019年中国石油对外依存度平均年增长率为x,则下列关于x的方程正确的是()A.64.2%(1+x)2=70.8%B.64.2%(1+2x)=70.8%C.(1+64.2%)(1+x)2=1+70.8%D.(1+64.2%)(1+2x)=1+70.8%5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为.其中,正确的结论是()A.①②④B.①③⑤C.②③④D.①④⑤7.如图,△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,则cos∠BPC=()A.B.C.D.8.设max{m,n}表示m,n(m≠n)两个数中的最大值.例如max{﹣1,2}=2,max{12,8}=12,则max{2x,x2+2}的结果为()A.2x﹣x2﹣2B.2x+x2+2C.2x D.x2+2二.填空题(共10小题,满分30分,每小题3分)9.方程x2=4的解为.10.已知点P是线段AB的黄金分割点(AP>PB),AB=6,那么AP的长是.11.若,则的值为.12.已知二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y之间满足下列数量关系:x0123y75713则代数式(4a+2b+c)(a﹣b+c)的值为.13.如图,某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是cm2.14.直角三角形中,两直角边分别是12和5,则斜边上的中线长是.15.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.16.如图,小明为了测量楼房MN的高,在离N点20m的A处放了一个平面镜,小明沿NA 方向后退到C点,正好从镜子中看到楼顶M点.若AC=1.6m,小明的眼睛B点离地面的高度BC为1.5m,则楼高MN=m.17.如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的坐标为.18.在一块直角三角形铁皮上截一块正方形铁皮,如图,已有的铁皮是Rt△ABC,∠C=90°,要截得的正方形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,如果AF=4,GB=9,那么正方形铁皮的边长为.三.解答题(共10小题,满分96分)19.(1)计算:(π﹣2019)0+2sin60°﹣+|1﹣|(2)解方程:x2﹣2x﹣3=020.如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边BC、AB于点D、E,联结AD.(1)如果∠CAD:∠DAB=1:2,求∠CAD的度数;(2)如果AC=1,tan B=,求∠CAD的正弦值.21.如图,在平面直角坐标系中,点A、点B的坐标分别为(1,3),(3,2).(1)画出△OAB绕点B顺时针旋转90°后的△O′A′B;(2)以点B为位似中心,相似比为2:1,在x轴的上方画出△O′A′B放大后的△O ″A″B;(3)点M是OA的中点,在(1)和(2)的条件下,M的对应点M′的坐标为.22.“共和国勋章”是中华人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士,如图是四位院士(依次记为A、B、C、D)为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上A、B、C、D四个标号,然后背面朝上放置,搅匀后每个同学可以从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料制作小报,求小明和小华查找同一位院士资料的概率.23.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”24.如图所示,已知:∠AOB=120°,PT切⊙O于T,A,B,P三点共线,∠APT的平分线依次交AT,BT于C,D.(1)求证:△CDT为等边三角形.(2)若AC=4,BD=1,求PC的长.25.已知函数y1=x2﹣(m+2)x+2m+3,y2=nx+k﹣2n(m,n,k为常数且n≠0).(1)若函数y1的图象经过点A(2,5),B(﹣1,3)两个点中的其中一个点,求该函数的表达式.(2)若函数y1,y2的图象始终经过同一定点M.①求点M的坐标和k的值.②若m≤2,当﹣1≤x≤2时,总有y1≤y2,求m+n的取值范围.26.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.27.如图,△ABC中,以AB为直径作⊙O,交BC于点D,E为弧BD上一点,连接AD、DE、AE,交BD于点F.(1)若∠CAD=∠AED,求证:AC为⊙O的切线;(2)若DE2=EF•EA,求证:AE平分∠BAD;(3)在(2)的条件下,若AD=4,DF=2,求⊙O的半径.28.如图,已知抛物线y=ax2+bx﹣3的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.D是抛物线的顶点,对称轴与x轴交于E.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴DE上求作一点M,使△AMC的周长最小,并求出点M 的坐标和周长的最小值.(3)如图2,点P是x轴上的动点,过P点作x轴的垂线分别交抛物线和直线BC于F、G.设点P的横坐标为m.是否存在点P,使△FCG是等腰三角形?若存在,直接写出m的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:若y=(m﹣1)是关于x的二次函数,则,解得:m=﹣2.2.解:过CD的中点作EF的垂线与AB交于点M,连接GF,∵GM⊥EF,∴EF=2FM=2=2,当GM的值最小时,EF的值最小,根据垂线段最短可知,当直线过O点时,EF的值最大,∵A(6,0),B(0,8),∴AB=10,∵sin∠OAB==,∴OM=4.8,∵CD=6,∴OG=3,∴GM=1.8,∴FM=2.4,∴EF=4.8;故选:B.3.解:A、极差是15,故A正确;B、众数是88,故B正确;C、中位数是87,故C错误;D、平均数是87,故D正确.故选:C.4.解:设2017年到2019年中国石油对外依存度平均年增长率为x,由题意,得64.2%(1+x)2=70.8%.5.解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠ABO=(180°﹣120°)÷2=30°,故选:A.6.解:∵△ABC、△DCE都是等腰Rt△,∴AB=AC=BC=,CD=DE=CE;∠B=∠ACB=∠DEC=∠DCE=45°;①∵∠ACB=∠DCE=45°,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE;即∠ECB=∠DCA;故①正确;②当B、E重合时,A、D重合,此时DE⊥AC;当B、E不重合时,A、D也不重合,由于∠BAC、∠EDC都是直角,则∠AFE、∠DFC 必为锐角;故②不完全正确;④∵,∴;由①知∠ECB=∠DCA,∴△BEC∽△ADC;∴∠DAC=∠B=45°;∴∠DAC=∠BCA=45°,即AD∥BC,故④正确;③由④知:∠DAC=45°,则∠EAD=135°;∠BEC=∠EAC+∠ECA=90°+∠ECA;∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;因此△EAD与△BEC不相似,故③错误;⑤△A BC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;由④的△BEC∽△ADC知:当AD最长时,BE也最长;故梯形ABCD面积最大时,E、A重合,此时EC=AC=,AD=1;故S=(1+2)×1=,故⑤正确;梯形ABCD因此本题正确的结论是①④⑤,故选D.7.解:过点A作AE⊥BC于点E,如图所示:∵AB=AC=5,∴BE=BC=×8=4,∠BAE=∠BAC,∵∠BPC=∠BAC,∴∠BPC=∠BAE.在Rt△BAE中,由勾股定理得AE===3,∴cos∠BPC=cos∠BAE==.故选:C.8.解:∵x2+2﹣2x=(x﹣1)2+1,(x﹣1)2≥0,∴(x﹣1)2+1>0,∴x2+2>2x,∴max{2x,x2+2}的结果为:x2+2.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:开方得,x=±2,即x1=2,x2=﹣2.故答案为,x1=2,x2=﹣2.10.解:由于P为线段AB=6的黄金分割点,且AP是较长线段;则AP=6×=3﹣3.故答案为:3﹣3.11.解:∵=,∴b=a,∴==.故答案为:.12.解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x==1,∵x=3时,y=13,∴x=﹣1时,y=13,∴4a+2b+c=7,a﹣b+c=13,∴(4a+2b+c)(a﹣b+c)的值为91,故答案为91.13.解:圆锥侧面积公式为:s侧面积=πrR=π×10×40=400π.故答案为:400π.14.解:∵直角三角形中,两直角边分别是12和5,∴斜边为=13,∴斜边上中线长为×13=6.5.故答案为:6.5.15.解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.16.解:∵BC⊥CA,MN⊥AN,∴∠C=∠N=90°,∵∠BAC=∠MAN,∴△BCA∽△MNA.∴,即,∴MN=(m),答:楼房MN的高度为m,故答案为:.17.解:由折叠得:∠CBO=∠DBO,∵矩形ABCO,∴BC∥OA,∴∠CBO=∠BOA,∴∠DBO=∠BOA,∴BE=OE,在△ODE和△BAE中,,∴△ODE≌△BAE(AAS),∴AE=DE,设DE=AE=x,则有OE=BE=8﹣x,在Rt△ODE中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3,即OE=5,DE=3,过D作DF⊥OA,∵S=OD•DE=OE•DF,△OED∴DF=,OF==,则D(,﹣).故答案为:(,﹣)18.解:根据题意知,∠AFE=∠BDG=∠C=90°,∴∠A=BDG(同角的余角相等).∴△AEF∽△DBG,∴=.又∵EF=DG,AF=4,GB=9,∴=.∴EF=6.即正方形铁皮的边长为6.故答案是:6.三.解答题(共10小题,满分96分)19.解:(1)原式=1+2×﹣2+﹣1=1+﹣2+﹣1=0;(2)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1.20.解:(1)∵∠CAD:∠DAB=1:2∴∠DAB=2∠CAD在Rt△ABC中,∠CAD+∠DAB+∠DBA=90°∵DE垂直平分AB交边BC、AB于点D、E∴∠DAB=∠DBA∴∠CAD+∠DAB+∠DBA=∠CAD+2∠CAD+2∠CAD=90°解得,∠CAD=18°(2)在Rt△ABC中,AC=1,tan∠B==,∴BC=2由勾股定理得,AB===∵DE垂直平分AB交边BC、AB于点D、E∴BE=AE=∵∠DAE=∠DBE∴在Rt△ADE中tan∠B=tan∠DAE==∴DE=∴由勾股定理得AD===∴cos∠CAD===∴sin∠CAD===则∠CAD的正弦值为21.解:(1)如图,△O′A′B即为所求;(2)如图,△O″A″B即为所求;(3)如图,∵点M是OA的中点,∴M的对应点M′的坐标为(2,7).故答案为:(2,7).22.解:根据题意画树状图如下:共有16种等可能的结果数,其中小明和小华查找同一位院士资料的有4种结果,∴小明和小华查找同一位院士资料的概率为=.23.解:如图1,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12﹣x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,x=,如图2,四边形DGFE是正方形,过C作CP⊥AB于P,交DG于Q,设ED=x,S△ABC=AC•BC=AB•CP,12×5=13CP,CP=,同理得:△CDG∽△CAB,∴=,∴=,x=<,∴该直角三角形能容纳的正方形边长最大是(步).24.(1)证明:∵∠AOB=120°,∴∠ATB==60°,∵PT切⊙O于T,∴∠BTP=∠TAP,∵PC平分∠APT,∴∠APC=∠CPT,∵∠TCD=∠TAP+∠APC,∠CDT=∠BTP+∠CPT,∴∠TCD=∠CDT==60°,∴△CDT为等边三角形;(2)解:设CT=DT=x,∵∠TCD=∠CDT=∠BDP,∠BPD=∠CPT,∴△PCT∽△PDB,∴,∵∠DTP=∠PAC,∠APC=∠DPT,∴△ACP∽△TDP,∴,∴,即,∴x2=4,∴x=±2,∵x>0,∴x=2,∴,PC=4.25.解:(1)对于函数y1=x2﹣(m+2)x+2m+3,当x=2时,y=3,∴点A不在抛物线上,把B(﹣1,3)代入y1=x2﹣(m+2)x+2m+3,得到3=1+3m+5,解得m=﹣1,∴抛物线的解析式为y=x2﹣x+1.(2)①∵函数y1经过定点(2,3),对于函数y2=nx+k﹣2n,当x=2时,y2=k,∴当k=3时,两个函数过定点M(2,3).②∵m≤2,∴抛物线的对称轴x=≤2,∴抛物线的对称轴在定点M(2,3)的左侧,由题意当1+(m+2)+2m+3≤﹣n+3﹣2n时,满足当﹣1≤x≤2时,总有y1≤y2,∴3m+3n≤﹣3,∴m+n≤﹣1.26.(1)证明:连接OD.∵O为AB中点,D为BC中点,∴OD∥AC.∵DF为⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)过O作OE⊥BD,则BE=ED.在Rt△BEO中,∠B=30°,∴OE=OB,BE=OB.∵BD=DC,BE=ED,∴EC=3BE=OB.在Rt△OEC中,tan∠BCO=.27.证明:(1)∵AB是直径,∴∠BDA=90°,∴∠DBA+∠DAB=90°,∵∠CAD=∠AED,∠AED=∠ABD,∴∠CAD=∠ABD,∴∠CAD+∠DAB=90°,∴∠BAC=90°,即AB⊥AC,且AO是半径,∴AC为⊙O的切线;(2)∵DE2=EF•EA,∴,且∠DEF=∠DEA,∴△DEF∽△AED,∴∠EDF=∠DAE,∵∠EDF=∠BAE,∴∠BAE=∠DAE,∴AE平分∠BAD;(3)如图,过点F作FH⊥AB,垂足为H,∵AE平分∠BAD,FH⊥AB,∠BDA=90°,∴DF=FH=2,=AB×FH=×BF×AD,∵S△ABF∴2AB=4BF,∴AB=2BF,在Rt△ABD中,AB2=BD2+AD2,∴(2BF)2=(2+BF)2+16,∴BF=,BF=﹣2(不合题意舍去)∴AB=,∴⊙O的半径为.28.解:(1)将点A、B的坐标代入抛物线表达式得:,解得,∴抛物线的解析式为:y=﹣x2+4x﹣3;(2)如下图,连接BC交DE于点M,此时MA+MC最小,又因为AC是定值,所以此时△AMC的周长最小.由题意可知OB=OC=3,OA=1,∴BC==3,同理AC=,∴此时△AMC的周长=AC+AM+MC=AC+BC=+3;∵DE是抛物线的对称轴,与x轴交点A(1,0)和B(3,0),∴AE=BE=1,对称轴为x=2,由OB=OC,∠BOC=90°得∠OBC=45°,∴EB=EM=1,又∵点M在第四象限,在抛物线的对称轴上,∴M(2,﹣1);(3)存在这样的点P,使△FCG是等腰三角形.∵点P的横坐标为m,故点F(m,﹣m2+4m﹣3),点G(m,m﹣3),则FG2=(﹣m2+4m﹣3+3﹣m)2,CF2=(m2﹣4m)2+m2,GC2=2m2,当FG=FC时,则(﹣m2+4m﹣3+3﹣m)2=m2+(m2﹣4m)2,解得m=0(舍去)或4;当GF=GC时,同理可得m=0(舍去)或3;当FC=GC时,同理可得m=0(舍去)或5或3(舍去),综上,m=5或m=4或或3.。
九年级数学上册2020-2021学年度第一学期期末调研试卷含答案
![九年级数学上册2020-2021学年度第一学期期末调研试卷含答案](https://img.taocdn.com/s3/m/a300eda079563c1ec4da7160.png)
CBA2020—2021学年度第一学期期末调研试卷九年级数学一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1. 点P (2,1)关于原点对称点的坐标是A .(2,1)B .(2,1)C .(1,2)D .(1,2)2.抛物线2yx 的对称轴是A .直线1xB .直线1xC .y 轴D .x 轴3.如果右图是某几何体的三视图,那么该几何体是A .球B .正方体C .圆锥D .圆柱4.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其它差别,从中随机摸出一个小球,恰好是黄球的概率为 A .16B .13C .12D .235.⊙O 的半径为5,点P 到圆心O 的距离为3,点P 与⊙O 的位置关系是A .无法确定B .点P 在⊙O 外C .点P 在⊙O 上D .点P 在⊙O 内6.如图,AB 是⊙O 的直径,C ,D 为⊙O 上的点,AD CD ,如果∠CAB =40°,那么∠CAD的度数为 A .25° B .50° C .40°D .80°7.如果左图是一个正方体的展开图,那么该正方体是A B C DxyOABxyOCA8.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a ,b ,c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 A .4.25分钟 B .4.00分钟 C .3.75分钟D .3.50分钟二、填空题(本题共16分,每小题2分) 9.已知∠A 为锐角,1sin 2A =,那么∠A = °. 10.在Rt △ABC 中,∠C =90°,AB = 5,BC =4,那么cos B11.写出一个图象位于第一,三象限的反比例函数的表达式 . 12.如图,等边三角形ABC 的外接圆半径OA = 2,其内切圆的半径为 .13.函数2y ax bx c =++(a ≠0)的图象如图所示,那么ac 0.(填“>”,“=”,或“<”)14.将抛物线2y x =沿y 轴向上平移2个单位长度后的抛物线的表达式为 . 15.如图,在平面直角坐标系xOy 中,A (1,1),B (3,1),如果抛物线2y ax =(a >0)与线段AB 有公共点, 那么a 的取值范围是 .16.电影公司随机收集了2 000部电影的有关数据,经分类整理得到下表:注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是 ;(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大? 答: .xyO 三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:(1112cos 454-⎛⎫+-︒+ ⎪⎝⎭.18.已知二次函数243y x x =-+.(1)用配方法将其化为()2y a x h k =-+的形式; (2)在所给的平面直角坐标系xOy 中,画出它的图象.19.下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O 和⊙O 外的一点P . 求作:过点P 作⊙O 的切线. 作法:如图2,① 连接OP ;② 作线段OP 的垂直平分线MN ,直线MN 交OP 于C ; ③ 以点C 为圆心,CO 为半径作圆,交⊙O 于点A 和B ; ④ 作直线P A 和PB .则P A ,PB 就是所求作的⊙O 的切线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明: 证明:连接OA ,OB ,∵ 由作图可知OP 是⊙C 的直径, ∴ ∠OAP =∠OBP = 90°, ∴ OA ⊥P A ,OB ⊥PB , 又∵ OA 和OB 是⊙O 的半径,∴ P A ,PB 就是⊙O 的切线( )(填依据).OP图1图 2OPNMC20.如图,在平面直角坐标系xOy 中,点A (3,3),B (4,0),C (0,1-).xyO ABC(1)以点C 为旋转中心,把△ABC 逆时针旋转90°,画出旋转后的△''A B C ; (2)在(1)的条件下,① 点A 经过的路径'AA 的长度为 (结果保留π); ② 点'B 的坐标为 .21.如图,在四边形ABCD 中,AB = AD ,∠A = 90°,∠CBD = 30°,∠C = 45°,如果AB =求CD 的长.ABCD22.如果抛物线2224y x x k =++-与x 轴有两个不同的公共点.(1)求k 的取值范围;(2)如果k 为正整数,且该抛物线与x 轴的公共点的横坐标都是整数,求k 的值.23.如图,直线4y ax =-(0a ≠)与双曲线ky x=(0k ≠)只有一个公共点A (1,2-). (1)求k 与a 的值;(2)在(1)的条件下,如果直线y ax b =+(0a ≠)与双曲线ky x=(0k ≠)有两个 公共点,直接写出b 的取值范围.xyO A1-224.如图,AB 是⊙O 的直径,过点B 作⊙O 切线BM ,弦CD ∥BM ,交AB 于F ,AD DC =,连接AC 和AD ,延长AD 交BM 于点E . (1)求证:△ACD 是等边三角形; (2)连接OE ,如果DE = 2,求OE 的长.DBEM OFCA25.阅读材料:工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工.处理这种材料时,材料温度y(℃)是时间x(min)的函数.下面是小明同学研究该函数的过程,把它补充完整:(1)在这个函数关系中,自变量x的取值范围是.(2)下表记录了17min内10个时间点材料温度y随时间x变化的情况:上表中m的值为.(3)如下图,在平面直角坐标系xOy中,已经描出了上表中的部分点.根据描出的点,画出该函数的图象.yO x(4)根据列出的表格和所画的函数图象,可以得到,当0≤x≤5时,y与x之间的函数表达式为,当x>5时,y与x之间的函数表达式为.(5)根据工艺的要求,当材料的温度不低于30℃时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为min.26.在平面直角坐标系xOy 中,抛物线22y x mx n 经过点A (0,2),B (3,4).(1)求该抛物线的函数表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),如果直线CD 与图象G 有两个公共点,结合函数的图象,直接写出点D 纵坐标t 的取值范围.xyO27.如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E .(1)求证:∠CAE =∠CBD .(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE .① 依题意补全图形;② 用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.ABCDE28.对于平面直角坐标系xOy 中的⊙C 和点P ,给出如下定义:如果在⊙C 上存在一个动点Q ,使得△PCQ 是以CQ 为底的等腰三角形,且满足底角∠PCQ ≤60°,那么就称点P 为⊙C 的“关联点”.(1)当⊙O 的半径为2时,① 在点P 1(2,0),P 2(1,1),P 3(0,3)中,⊙O 的“关联点”是 ; ② 如果点P 在射线3yx (x ≥0)上,且P 是⊙O 的“关联点”,求点P 的横坐标m 的取值范围.(2)⊙C 的圆心C 在x 轴上,半径为4,直线22yx与两坐标轴交于A 和B ,如果线段AB 上的点都是⊙C 的“关联点”,直接写出圆心C 的横坐标n 的取值范围.xyO第(1)问图xyO第(2)问图2020—2021学年度第一学期期末调研试卷九年级数学答案及评分参考三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:(1 0112cos454-⎛⎫+-︒+ ⎪⎝⎭124=+…………………………………………………………………………………………4分5.=……………………………………………………………………………………………………………5分18.(本小题满分5分)解:(1)配方正确;……………………………………………………………………………………………3分(2)图象正确.……………………………………………………………………………………………5分19.(本小题满分5分)解:(1)补图正确;……………………………………………………………………………………………3分(2)依据正确.……………………………………………………………………………………………5分20.(本小题满分5分)解:(1)画图正确;…………………………………………………………………………………………3分(2)①52;……………………………………………………………………………………………4分②(-1,3). ………………………………………………………………………………………5分21.(本小题满分5分) 解:过点D 作DE ⊥BC 于E . ……………………………………………………………………………1分∵ 在Rt △ABD 中,∠BAD = 90°,2ABAD,∴ 由勾股定理得B D =2. ………………………………………………………………………………2分∵ DE ⊥BC ,∴ 在Rt △DBE 中,∠DEB = 90°,∠CBD = 30°,∴DE =1, (4)分又∵ 在Rt △DEC 中,∠DEC = 90°,∠C = 45°, ∴ 由勾股定理得2CD.…………………………………………………………………………5分22.(本小题满分5分)解:(1)由题意,得 △=()44240.k -->∴5.2k <……………………………………………………………………………………………2分(2)∵ k 为正整数,∴ k =1,2.………………………………………………………………………………………3分当k =1时,方程2220x x +-=的根1x =-±不是整数;………………………………4分当k =2时,方程220x x +=的根12x =-,20x =都是整数;综上所述,k =2.…………………………………………………………………………………5分23.(本小题满分6分)解:(1)∵ 直线4y ax =-(0a ≠)过点A (1,2-),∴24a -=-,……………………………………………………………………………………1分∴2.a =……………………………………………………………………………………………2分又∵ 双曲线ky x=(0k ≠)过点A (1,2-), ∴21k-=,…………………………………………………………………………………………3分 ∴2.k =-………………………………………………………………………………………4分(2)b <-4,b >4. ………………………………………………………………………………………6分24.(本小题满分6分)(1)证明:∵ AB 是⊙O 的直径,BM 是⊙O 的切线, ∴ AB ⊥BM .∵ CD ∥BM , ∴ AB ⊥CD .∴ AD AC .…………………………………………1分∵ AD DC .∴AD AC DC .………………………………………………………………………………2分∴ AD =AC =DC . ∴ △A C D 是等边三角形. …………………………………………………………3分(2)解:连接BD ,如图.∵ AB 是⊙O 的直径,∴ ∠ADB =90°. ∵ ∠ABD =∠C =60°, ∴ ∠DBE =30°. 在Rt △BDE 中,DE =2,可得BE =4,BD = ………………………………………………………………………………………………………4分在Rt △ADB 中,可得AB =∴OB = . ……………………………………………………………………………………5分在R t △O B E 中,由勾股定理得O E =. ……………………………………………………6分25.(本小题满分6分) 解:(1)x≥0;…………………………………………………………………………………………………1分 (2)20;……………………………………………………………………………………………………2分 (3)略;……………………………………………………………………………………………………3分(4)915y x ,300yx;……………………………………………………………………………5分 A E MA BE M(5)25.3……………………………………………………………………………………………………6分26.(本小题满分6分)解:(1)∵ 点A ,B 在抛物线y =2x 2+mx +n 上,∴22,4233.n m n =⎧⎨-=⨯++⎩……………………………………………………………………………1分 解得4,2.m n =⎧⎨=⎩...................................................................................................2分 ∴ 抛物线的表达式为y =-2x 2+4x +2. (3)分 ∴ 抛物线的对称轴为x =1. ………………………………………………………………………4分 (2)43≤t<4. ……………………………………………………………………………………………6分27.(本小题满分7分) (1)证明:如图1,∵ ∠ACB = 90°,AE ⊥BD , ∴ ∠ACB =∠AEB = 90°, 又∵ ∠1=∠2,∴ ∠CAE =∠CBD .………………………………3分(2)① 补全图形如图2. ………………………………………4分②2EFCEBE (5)分证明:在AE 上截取AM ,使AM =BE . 又∵ AC =CB ,∠CAE =∠CBD , ∴ △ACM ≌△BCE .∴ CM =CE ,∠ACM =∠BCE . 又∵ ∠ACB =∠ACM +∠MCB =90°, ∴ ∠MCE =∠BCE +∠MCB =90°. ∴ 2.MECE又∵ 射线AE 绕点A 顺时针旋转45°后得到AF ,且∠AEF =90°,图2图1∴EF=AE=AM+ME=BE.………………………………………………………………………7分28.(本小题满分7分)解:(1)①P1,P2;……………………………………………………………………………………………2分②由题意可知⊙O的“关联点”所围成的区域是以O为圆心,半径分别为1和2的圆环内部(包含2,不包含1). ……………………………………………………………………………3分设:射线3y x(x≥0)与该圆环交于点P1和点P2,由题意易得P1,0),P20).∴<m……………………………………………………………………………………5分(2)23≤n<3,1<n≤ 3.…………………………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
2020-2021学年九年级上学期期末化学复习卷 (116)(含答案解析)
![2020-2021学年九年级上学期期末化学复习卷 (116)(含答案解析)](https://img.taocdn.com/s3/m/72c8186e4a7302768e9939a7.png)
2020-2021学年九年级上学期期末化学复习卷 (116)一、单选题(本大题共14小题,共42.0分)1.生产生活中的下列变化,只涉及物理变化的是()A. 制作陶胚B. 天然气燃烧C. 金属冶炼D. 光合作用2.下列有关分子的说法不正确的是()A. 分子在不断运动B. 分子的质量体积都很小C. 分子之间有间隔D. 任何物质都是由分子直接构成的3.有关硬水和软水的说法不正确的是()A. 硬水洗涤衣物不容易洗净B. 硬水通过蒸馏可以得到软水C. 硬水烧开后有白色沉淀产生D. 硬水通过过滤就可以得到软水4.采取正确的措施,能够避免火灾发生或减少灾害损失。
下列灭火方法不恰当的是()A. 厨房油锅着火时用锅盖盖灭B. 汽车油箱着火时用水浇灭C. 酒精在桌面上着火时用湿布盖灭D. 图书档案着火时用二氧化碳灭火器扑灭5.关于燃料和能源的利用,以下说法不正确的是()A. 人类利用的能量都是通过化学反应获得的B. 化学能转化为热能不一定通过燃烧反应来实现C. 火力发电,化学能最终转化为电能D. 化石燃料的使用带来诸多环境问题,所以应使用清洁燃料替代化石燃料6.下列对几种气体的描述中不正确的是()A. 氧气能使带火星的木条复燃B. 氮气在干燥空气中的体积分数约为21%C. 氢气是相对分子质量最小的单质D. 二氧化碳可使澄清的石灰水变浑浊7.下列各图反映的是实验室用氯酸钾和二氧化锰加热制取氧气的关系图(横坐标为加热时间t),其中不正确的是()A. 生成氧气的质量与加热氯酸钾和二氧化锰的混合物的时间关系B. 二氧化锰在固体混合物中质量变化情况C. 加热氯酸钾的对比情况:a添加了二氧化锰,b未添加二氧化锰D. 二氧化锰在固体混合物中质量分数的变化情况8.某元素在元素周期表中的相关信息如图所示.下列说法不正确的是()A. 原子序数为30B. 核外电子数为30C. 元素符号为ZnD. 相对原子质量为65.39 g9.甲、乙、丙、丁四位同学描述的是同一化学符号,此化学符号是()甲:表示一种物质乙:表示一个分子丙:表示由两种元素组成丁:表示一个分子由三个原子构成A. NH3B. O3C. HCND. ClO210.下列对一些事实的解释错误的是()事实解释A.木炭能做燃料木炭具有可燃性B.石墨能够做电池的电极材料石墨具有导电性C.焦炭可以把铁从它的氧化物矿石里还原出来焦炭具有氧化性D.制糖工业中用活性炭来脱色以制白糖活性炭具有吸附性A. AB. BC. CD. D11.在化学实验中,装置的气密性良好是实验成功的重要保障,从下列各图的气密性检查结果判断,装置漏气的是()A. B. C. D.12.实验中有些变化虽然是“<”或“>”的,但仍然符合质量守恒定律,其中不符合的是()A. 铜丝的质量为m g,在火焰上灼烧后的质量为n g,则m<nB. 木炭的质量为m g,在火焰上灼烧后所有灰烬的质量为n g,则m>nC. 浓盐酸的质量为m g,敞口放置于空气中一段时间后质量为n g,则m>nD. 氢氧化钠溶液的质量为m g,敞口放置于空气中一段时间后质量为n g,则m<n13.如图是镁元素、氯元素在周期表中的位置及有关粒子的结构示意图.下列说法错误的是()A. 镁元素的原子序数为12B. 表示阴离子的结构示意图是EC. 镁元素与氯元素的最本质的区别是最外层电子数不等D. 氯的相对原子质量为35.4514.某化学反应的微观示意图如图所示,下列说法正确的是()A. 该反应属于复分解反应B. 该反应的生成物均为化合物C. 该反应中,反应物的质量比是1:1:1D. 该反应前后分子种类、数目均不变二、填空题(本大题共1小题,共6.0分)15.食盐是维持人体正常生理活动必不可少的物质。
2020-2021学年北京十三中分校九年级(上)期中数学试卷(附答案详解)
![2020-2021学年北京十三中分校九年级(上)期中数学试卷(附答案详解)](https://img.taocdn.com/s3/m/1d834b8927284b73f342509b.png)
2020-2021学年北京十三中分校九年级(上)期中数学试卷一、选择题(本大题共8小题,共16.0分)1.下列图形是中心对称图形的是()A. B. C. D.2.用配方法解方程x2−6x−4=0时,原方程应变形为()A. (x−3)2=13B. (x−3)2=5C. (x−6)2=13D. (x−62)2=53.抛物线y=−3x2−4的开口方向和顶点坐标分别是()A. 向上,(0,4)B. 向上,(0,−4)C. 向下,(0,−4)D. 向下,(0,4)4.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A. ①B. ②C. ③D. 均不可能5.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A. B.C. D.6.如图,正方形网格中的每个小正方形的边长为1,将△ABC绕旋转中心旋转90°后得到△A′B′C′,其中点A,B,C的对应点分别是点A′,B′、C′,那么旋转中心是()A. 点QB. 点PC. 点ND. 点M7.如表是二次函数y=ax2+bx+c的几组对应值:x 6.17 6.18 6.19 6.20 y=ax2+bx+c−0.03−0.010.020.04根据表中数据判断,方程ax2+bx+c=0的一个解x的范围是()A. 6<x<6.17B. 6.17<x<6.18C. 6.18<x<6.19D. 6.19<x<6.208.如图,四边形ABCD是半圆的内接四边形,AB是直径,DC⏜=CB⏜.若∠C=110°,则∠ABC的度数等于()A. 55°B. 60°C. 65°D. 70°二、填空题(本大题共8小题,共16.0分)9.二次函数y=(a−1)x2−x+a2−1的图象经过原点,则a的值为.10.如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部面积是______.11.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD是斜边AB上的高线,以点C为圆心,2.5为半径作圆,则点D在圆____(填“外”,“内”,“上”).12.某呼吸机制造商2020年一月份生产呼吸机1000台,2020年三月份生产呼吸机4000台,设二、三月份每月的平均增长率为x,根据题意,可列方程为______.13.若二次函数y=x2−4x+c的图象经过A(−2,y1),B(4,y2),则y1______y2(填“>”,“<”或“=”).14.如图,AB,AC,BD是⊙O的切线,P,C,D为切点,若AB=5,AC=4,则BD的长为______.15.某城市规划修建一座观光人行桥,此工程由桥梁工程与桥上拱形工程组成,桥上拱形工程包含三组完全相同的拱形,观光人行桥的正视图如图所示,已知桥面上三组(x−k)2+t的一部分,拱高(抛物线最高点到桥面AB的距拱桥都为抛物线y=−116离)都为16米,三条抛物线依次与桥面AB相交于点A,C,D,B.则桥长AB=______米.16.如图,舞台地面上有一段以点O为圆心的AB⏜,某同学要站在AB⏜的中点C的位置上.于是他想:只要从点O出发,沿着与弦AB垂直的方向走到AB⏜上,就能找到AB⏜的中点C.老师肯定了他的想法.(1)请按照这位同学的想法,在图中画出点C;(2)这位同学确定点C所用方法的依据是______.三、解答题(本大题共12小题,共96.0分)17.解方程:(1)x2+4x+1=0;(2)y2+3y=10.18.如图,点O、B坐标分别为(0,0)、(3,0),将△OAB绕O点按逆时针方向旋转90°到△OA′B′.(1)画出平面直角坐标系和△OA′B′;(2)直接写出点A′的坐标;(3)求旋转过程中点B走过的路径长.19.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:△AEB≌△ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.20.已知关于x的方程x2−4x+3−a=0有两个不相等的实数根.(1)求a的取值范围;(2)当a取满足条件的最小整数值时,求方程的解.21.已知二次函数y=2x2−4x−6.(1)将y=2x2−4x−6化成y=a(x−ℎ)2+k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)当−1≤x≤2时,结合图象直接写出函数y的取值范围;(4)若直线y=k与抛物线没有交点,直接写出k的取值范围.22.已知,如图,在△ABC中,∠C=90°,D为BC边中点.(1)尺规作图:以AC为直径作⊙O,交AB于点E(保留作图痕迹,不需写作法);(2)连结DE,求证:DE为⊙O的切线;(3)若AC=10,AE=8,求DE的长.23.如图,小明在一次高尔夫球争霸赛中,从山坡下O点打出一球向球洞A点飞去,球的路线为抛物线,如果不考虑空气阻力,当球移动的水平距离为9米时,球达到最大高度12米.已知山坡OA与水平方向OC的夹角为30o,O、A两点相距8√3米.(1)求出球的飞行路线所在抛物线的解析式;(2)判断小明这一杆能否把高尔夫球从O点直接打入球洞A点,并说明理由.24.探究函数y=|x2−2x|的图象与性质.x…−3−2−10123…y…1583010m…(1)下表是y与x的几组对应值.其中m的值为______;(2)根据上表数据,在如图所示的平面直角坐标系中描点,并已画出了函数图象的一部分,请你画出该图象的另一部分;(3)结合函数的图象,写出该函数的一条性质:______;(4)若关于x的方程|x2−2x|−t=0有2个实数根,则t的取值范围是______.25.如图,AB是⊙O的直径,点D在射线BA上,DC与⊙O相切于点C,过点B作BE⊥DC,交DC的延长线于点E,连接BC、OC.(1)求证:BC是∠ABE的平分线;(2)若DC=8,DA=4,求AB的长.26.在平面直角坐标系xOy中,抛物线y=ax2+2ax−3a(a≠0).(1)求抛物线的对称轴及它与x轴两交点的坐标;(2)已知点A的坐标为(0,4),点B的坐标为(3,4),若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式ax2+2ax−3a≤5的x的最大值为2,直接写出实数a的取值范围.27.在正方形ABCD中,M是BC边上一点,且点M不与B、C重合,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.(1)如图1,当点P在线段AM上时,依题意补全图1;(2)在图1的条件下,延长BP,QD交于点H,求证:∠H=90°.(3)在图2中,当点P在线段AM的延长线上时,连接DP,若点P,Q,D恰好在同一条直线时,猜想DP,DQ,AB之间的数量关系,并证明.28.如图1,平面中的线段AB和直线AB外一点P,如果对于P,A,B三点确定的圆,∠APB所对的弧为优弧,那么称点P为线段AB的“优相关点”(1)如图2,已知点O(0,0),B(2,0).①在点P1(1,1),P2(2,1),P3(12,−12)中,为线段OB的“优相关点”的是______.②若直线y=x+b上存在线段OB的“优相关点”,求实数b的取值范围.(2)如图3,点E(−2,√3),F(1,0),点G(0,−√3),已知点C(a,0),D(a+1,0),如果△EFG的边上存在线段CD的“优相关点”,请直接写出a的取值范围.答案和解析1.【答案】D【解析】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.2.【答案】A【解析】解:用配方法解方程x2−6x−4=0时,原方程应变形为:(x−3)2=13,故选:A.根据配方法可以解答此题.本题考查解一元二次方程−配方法,解题的关键是明确配方法解方程的方法.3.【答案】C【解析】解:∵抛物线y=−3x2−4中,a=−3<0,∴该抛物线开口向下,顶点坐标为(0,−4),故选:C.根据题目中的函数解析式,可以得到抛物线的开口方向和顶点坐标,本题得以解决.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.【答案】A【解析】【试题解析】【分析】本题考查了垂径定理的应用,确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.要确定圆的大小需知道其半径.根据垂径定理知第①块可确定半径的大小.【解答】解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选A.5.【答案】C【解析】解:∵a>0,b<0,c<0,>0,∴−b2a∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.>0,可知抛物线的图象开口向上,对称轴在y轴的由a>0,b<0,c<0,推出−b2a右边,交y轴于负半轴,由此即可判断.本题考查二次函数的图象,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.6.【答案】C【解析】解:如图,N点为旋转中心.故选:C.作AA′、CC′的垂直平分线,它们的交点为N点,从而得到正确选项.本题考查了旋转的性质:对应点连线的中垂线必经过旋转中心,.7.【答案】C【解析】解:由表可以看出,当x取6.18与6.19之间的某个数时,y=0,即这个数是ax2+ bx+c=0的一个根.ax2+bx+c=0的一个解x的取值范围为6.18<x<6.19.故选:C.利用二次函数和一元二次方程的性质进行解答即可.本题考查了图象法求一元二次方程的近似值,掌握用表格的方式求函数的值的范围是本题的关键.8.【答案】A【解析】【分析】本题考查的是圆内接四边形的性质、圆周角定理,圆心角、弧、弦的关系,掌握圆内接四边形的对角互补是解题的关键.连接AC,根据圆内接四边形的性质求出∠DAB,根据圆心角、弧、弦的关系求出∠CAB,根据圆周角定理求出∠ACB,计算即可.【解答】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°−∠DCB=70°,∵DC⏜=CB⏜,∴∠CAB=1∠DAB=35°,2∵AB是直径,∴∠ACB=90°,∴∠ABC=90°−∠CAB=55°,故选:A.9.【答案】−1【解析】【分析】本题考查了二次函数图象上点的特征,图象过原点,可得出x=0,y=0.将(0,0)代入y=(a−1)x2−x+a2−1即可得出a的值.【解答】解:∵二次函数y=(a−1)x2−x+a2−1的图象经过原点,∴a2−1=0,∴a=±1,∵a−1≠0,∴a≠1,∴a的值为−1.故答案为−1.10.【答案】3π−9√34【解析】解:作OD⊥AB于D,∵△ABC为等边三角形,∴∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,OD⊥AB,∴∠AOD=12∠AOB=60°,BD=AD,则OD=OA×cos∠AOD=3×12=32,AD=OA×sin∠AOD3√32,∴AB=2AD=3√3,∴图中阴影部面积=120π×32360−12×3√3×32=3π−9√34,故答案为:3π−9√34.作OD⊥AB于D,根据等边三角形的性质得到∠ACB=60°,根据圆周角定理求出∠AOB,解直角三角形求出OD、AD,根据扇形面积公式、三角形面积公式计算即可.本题考查的是扇形面积计算、圆周角定理、等边三角形的性质,掌握扇形面积公式是解题的关键.11.【答案】内【解析】解:直角△ABC中,AB2=AC2+BC2,AC=4,BC=3,∴AB=√AC2+BC2=5,△ABC的面积S=12⋅AC⋅BC=12⋅AB⋅CDCD=AC⋅BCAB =125.∵125<2.5,∴点D在⊙C内,故答案为:内.直角三角形中根据勾股定理可以计算AB的长度,CD为AB边上的高,根据面积法AC×BC=AB×DC可以求得CD的长,与半径比较后即可得到点D与圆的位置关系.本题考查了直角三角形中勾股定理的运用及点与圆的位置关系,根据勾股定理计算斜边长是解题的关键.12.【答案】1000(1+x)2=4000【解析】【分析】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.由该呼吸机制造商2020年一月份及三月份生产呼吸机的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得:1000(1+x)2=4000.故答案为:1000(1+x)2=4000.13.【答案】>【解析】解:∵y=x2−4x+c,=2,∴图象的开口向上,对称轴是直线x=−−42×1∴A(−2,y1)关于直线x=2的对称点是(6,y1),∵2<4<6,∴y1>y2,故答案为>.根据二次函数的解析式得出图象的开口向上,对称轴是直线x=2,根据x>2时,y随x的增大而增大,即可得出答案.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.14.【答案】1【解析】解:∵AC,AP为⊙O的切线,∴AC=AP=4,∵BP,BD为⊙O的切线,∴BP=BD,∴BD=BP=AB−AP=5−4=1.故答案为:1.根据切线长定理即可求出BD的长.本题考查了切线的性质、切线长定理,解决本题的关键是掌握切线长定理.15.【答案】96【解析】解:如图,以线段AC的中垂线为y轴,AB为x轴,建立平面直角坐标系,则抛物线AC的顶点坐标为(0,16),x2+16,所以抛物线解析式为y=−116当y=0时,x1=16,x2=−16,∴点A的坐标为(−16,0),点C的坐标为(16,0),∴AC=16−(−16)=16+16=32,∴AB=3AC=96,即桥长AB为96米;故答案为:96.根据题意建立合适的平面直角坐标系,然后即可得到抛物线AC的顶点坐标,再令y=0,即可得到AC的长,从而可以求得AB的长.本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.16.【答案】解:(1)如图所示,点C即为所求.(2)这位同学确定点C所用方法的依据是:垂直于弦的直径平分弦,并且平分这条弦所对的两条弧.【解析】本题主要考查作图−应用与设计作图,解题的关键是熟练掌握垂径定理及线段中垂线的尺规作图.(1)连接AB,作弦AB的垂直平分线即可得;(2)根据垂径定理可得.17.【答案】解:(1)∵x2+4x=−1,∴x2+4x+4=−1+4,即(x+2)2=3,则x+2=±√3,∴x1=−2+√3,x2=−2−√3;(2)∵y2+3y−10=0,∴(y+5)(y−2)=0,则y+5=0或y−2=0,解得y1=−5,y2=2.【解析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.【答案】解:(1)如图,△OA′B′即为所求.(2)A′(−2,4).(3)旋转过程中点B走过的路径长=90⋅π⋅3180=3π2.【解析】(1)分别作出A,B,的对应点A′,B′即可.(2)根据点A′的位置写出坐标即可.(3)利用弧长公式计算即可.本题考查作图−旋转变换,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.【答案】解:(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.∵线段AD绕点A顺时针旋转60°,得到线段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在△EAB和△DAC中,∵{AB=AC∠EAB=∠DAC AE=AD,∴△EAB≌△DAC(SAS).(2)如图,∵∠DAE=60°,AE=AD,∴△EAD为等边三角形.∴∠AED=60°,∵△EAB≌△DAC∴∠AEB=∠ADC=105°.∴∠BED=45°.【解析】(1)由等边三角形的性质知∠BAC=60°,AB=AC,由旋转的性质知∠DAE=60°,AE=AD,从而得∠EAB=∠DAC,再证△EAB≌△DAC可得答案;(2)由∠DAE=60°,AE=AD知△EAD为等边三角形,即∠AED=60°,继而由∠AEB=∠ADC=105°可得.本题主要考查等边三角形的性质和旋转的性质及全等三角形的判定与性质,熟练掌握旋转的性质证得三角形的全等是解题的关键.20.【答案】解:(1)根据题意得△=(−4)2−4(3−a)>0,解得a>−1;(2)a的最小整数值为0,此时方程变形为x2−4x+3=0,(x−1)(x−3)=0,x−1=0或x−3=0,所以x1=1,x2=3.【解析】(1)根据判别式的意义得到△=(−4)2−4(3−a)>0,然后解不等式即可;(2)确定a的最小整数值为0,此时方程变形为x2−4x+3=0,然后利用因式分解法解方程.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.【答案】解:(1)y=2x2−4x−6=2(x−1)2−8;(2)列表:x…−10123…y…0−6−8−60…描点,画出函数y=2x2−4x−6的图象如图:(3)观察图象知:当x=−1时,y=0,顶点坐标为(1,−8)即函数的最小值为−8,所以当−1≤x≤2时,函数y的取值范围−8≤y≤0.(4)2x2−4x−6=k,整理得:2x2−4x−6−k=0,∵△=16+8(6+k)=64+8k.即64+8k<0,即k<−8.∴直线y=k与抛物线没有交点时,k<−8.【解析】(1)根据配方法把二次函数配方即可;(2)根据二次函数的顶点坐标、与x轴的交点坐标、与y轴的交点坐标即可画出图象;(3)根据x的取值范围和二次函数的最低点即可求解;(4)根据二次函数与直线没有交点,可知判别式小于0即可求解.本题考查了二次函数的图象和性质、二次函数上点的坐标特征,解决本题的关键是观察函数图象解决问题.22.【答案】(1)解:⊙O如图所示.(2)证明:连结OE,CE,∵AC为直径,∴∠AEC=90°,∵D为BC边中点,∴DE为Rt△BDC斜边BC上的中线,∴DE=DC=BD,∴∠ECD=∠CED,∵OC=OD,∴∠OCE=∠OEC,∴∠OED=∠OEC+∠CED=∠OCE+∠ECD=∠ACB=90°,∴OD⊥DE,∴DE为⊙O的切线.(3)解:在Rt△ACE中,EC=√AC2−AE2=√102−82=6,∵∠AEC=∠CEB=90°,∠ACE+∠ECB=90°,∠B+∠ECB=90°,∴∠ACE=∠B,∴△ACE∽△CBE,∴ACBC =AEEC,∴10BC =86,∴BC=152,∴DE=12BC=154.【解析】(1)作线段AC的垂直平分线,垂足为O,以O为圆心,OA为半径作⊙O即可.(2)欲证明DE是切线,只要证明OE⊥OD即可.(3)证明△ACE∽△CBE,推出ACBC =AEEC可得结论.本题主要考查作图−复杂作图,解题的关键是熟练掌握切线的判定与性质、相似三角形的判定与性质等知识点.23.【答案】解:(1)∵顶点B的坐标是(9,12),∴设抛物线的解析式为y=a(x−9)2+12,∵点O的坐标是(0,0)∴把点O的坐标代入得:0=a(0−9)2+12,解得a=−427,∴抛物线的解析式为y=−427(x−9)2+12即y=−427x2+83x;(2)在Rt△AOC中,∵∠AOC=30°,OA=8√3,∴AC=OA⋅sin30°=8√3×12=4√3,OC=OA⋅cos30°=8√3×√32=12.∴点A的坐标为(12,4√3),∵当x=12时,y=323≠4√3,∴小明这一杆不能把高尔夫球从O点直接打入球洞A点.【解析】(1)分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式;(2)OA与水平方向OC的夹角为30°,OA=8√3米,解直角三角形可求点A的坐标,把点A的横坐标x=12代入抛物线解析式,看函数值与点A的纵坐标是否相符.本题考查了二次函数的应用以及待定系数法求函数解析式,解题的关键是根据点的坐标利用待定系数法求出抛物线关系式是关键.24.【答案】3 函数的最小值为0 t>1或t=0【解析】解:(1)由表中数据得到函数图象与x轴的交点坐标为(0,0)、(2,0),图象的对称轴为直线x=1,所以x=−1和x=3时的函数值相等,即m=3;(2)如图,(3)该函数的性质有:函数的最小值为0等等;(4)当t>1或t=0时,关于x的方程|x2−2x|−t=0有2个实数根.故答案为3;函数的最小值为0;t>1或t=0.(1)利用所给对应值的特点可判断图象的对称轴为直线x=1,然后利用x=−1和x=3时的函数值相等得到m的值;(2)利用对称轴和描点法画函数图象;(3)利用图象可写出此函数的最值、增减性等性质;(4)结合图象,利用函数y=|x2−2x|与直线y=1有三个交点,从而可判断函数y=|x2−2x|与直线y=t有2个交点的t的范围.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.25.【答案】(1)证明:∵DC是⊙O的切线,∴OC⊥DC,∵BE⊥DC,∴OC//BE,∴∠OCB=∠CBE,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠CBE,即BC是∠ABE的平分线;(2)解:设⊙O的半径为r,则OD=r+4,在Rt△OCD中,OD2=OC2+CD2,即(r+4)2=r2+82,解得,r=6,则AB=2r=12.【解析】(1)根据切线的性质得到OC⊥DC,得到OC//BE,根据平行线的性质得到∠OCB=∠CBE,根据等腰三角形的性质、角平分线的定义证明即可;(2)设⊙O的半径为r,根据勾股定理列出方程,解方程得到答案.本题考查的是切线的性质定理、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.26.【答案】解:(1)∵y=ax2+2ax−3a=a(x+1)2−4a,∴抛物线的对称轴为直线x=−1,顶点坐标为(−1,−4a),令y=0,得到ax2+2ax−3a=0,解得x=−3或1,∴抛物线与x轴交于(−3,0)和(1,0).(2)如图1中,当a<0时,抛物线经过点A(0,4)时,a=−4,3时,抛物线与线段AB恰有一个公共点.观察图象可知当a≤−43如图2中,当a >0时,抛物线经过B(3,4)时,a =13,观察图象可知,a ≥13时,抛物线与线段AB 恰有一个公共点.综上所述,满足条件的a 的值为a ≤−43或a ≥13.(3)当a >0时,当x =2时,y =5,即4a +4a −3a =5,∴a =1,观察图象可知a ≥1时,满足条件.当a <0时,不存在符合题意的a 的值.综上所述,a ≥1.【解析】(1)把解析式化成顶点式,即可求得结果;(2)分两种情形:如图1中,当a<0时,抛物线经过点A(0,4)时,a=−4,如图2中,3,观察图象,利用图象法即可解决问题.当a>0时,抛物线经过B(3,4)时,a=13(3)分a>0,a<0两种情形分别求解即可.本题考查了二次函数与不等式的关系,二次函数的性质,利用数形结合思想解决问题是本题的关键.27.【答案】解:(1)补全图形如图1:(2)如图1,延长BP,QD交于点H,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∵将线段AP绕点A顺时针旋转90°得到线段AQ,∴AQ=AP,∠QAP=∠DAB=90°,∴∠QAD=∠BAP,∴△AQD≌△APB(SAS),∴PB=QD,∠AQD=∠APB,∵∠APB+∠APH=180°,∴∠AQD+∠APH=180°,∵∠QAP+∠APH+∠AQD+∠H=360°,∴∠H=90°;(3)DP2+DQ2=2AB2.证明:连接BD,如图2,∵线段AP绕点A顺时针旋转90°得到线段AQ,∴AQ=AP,∠QAP=90°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠2.∴△ADQ≌△ABP(SAS),∴DQ=BP,∠Q=∠3,∵在Rt△QAP中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,在Rt△BPD中,DP2+BP2=BD2,又∵DQ=BP,BD2=2AB2,∴DP2+DQ2=2AB2.【解析】(1)根据要求画出图形,即可得出结论;(2)由旋转的性质可得AQ=AP,∠QAP=∠DAB=90°,由“SAS”可证△AQD≌△APB,可得PB=QD,∠AQD=∠APB,由平角的性质和四边形内角和定理可得∠QHP=90°,即可得出结论;(3)连接BD,如图2,只要证明△ADQ≌△ABP,∠DPB=90°,即可解决问题.此题是四边形综合题,主要考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.28.【答案】P3【解析】解:(1)①∵是优相关点即对应的弧为优弧,∴∠OPB>90°,如图1,∵P1(1,1),∴△P1OB为等腰直角三角形,所以∠OP1B所对的弧为半圆,不符合题意;∵∠P2BO=90°,∴∠OP2B<90°,∴∠OP2B所对的弧为劣弧,不符合题意;∵P3(12,12 ),∴∠OP3B为钝角,∴其所对的弧为优弧;∴P3符合题意.②如图2,过点(1,0)作半径为1的圆,可知圆上的点P x 构成的角∠OP x B =90°,其为所对的弧都是半圆,当点P x 在圆内部时,在其所在圆中所对的弧为优弧,满足此条件的点为OB 的优相关点, 当y =x +b 与圆相切于点M ,N 时,为临界点,过点M 作MH ⊥x 轴,∵sin∠MTH =MH MT =√22,MT =1, ∴MH =√22,HT =√22 ∴M(1−√22,√22), ∵点M 在一次函数y =x +b 上,∴√22=1−√22+b ,b =−1+√2,同理可得当直线与圆T 相切于点N 时,b 的值最小,此时b =−1−√2,因此,当−1−√2<b <−1+√2时符合题意;(2)如图3,当圆分别与EG左切,右切,与EF左切,过点F时,为四个临界状态,因此可得,−2<a<−1或0<a<1.(1)首先根据题意得出相关角度,即可判断优相关点;(2)经过分析可以知道,当点P在以OB为直径的圆内部时,P为OB的优相关点,找到直线y=x+b与圆的相切的情况作为临界状态即可求得b的范围;(3)利用第二问的结论,我们找到CD所在圆与三角形的四个临界位置,然后即可求得a 的范围.本题综合考查了圆的相关知识,相切的性质,圆周角,三角函数,一次函数的性质.而后两问又可以浓缩成线的运动和圆的运动,因此找到临界状态是本题的关键.。
2020-2021年新人教版九年级上期末数学试卷及答案解析
![2020-2021年新人教版九年级上期末数学试卷及答案解析](https://img.taocdn.com/s3/m/958af3b78e9951e79a8927be.png)
湖北省孝感市汉川市2020-2021学年九年级(上)期末数学试卷一、精心选一选(将唯一正确答案的代号填在题后的答题卡中36分)1.(3分)下列图形是中心对称图形的是()A.B.C.D.2.(3分)(2020•滨州)二次根式有意义时,x的取值范围是()A.x ≥B.x≤﹣C.x≥﹣D.x ≤3.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)4.(3分)已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2=cm,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.内切D.相交5.(3分)(2020•荆州)下列根式中属最简二次根式的是()A.B.C.D.6.(3分)(2020•孝感)下列事件中,属于随机事件的是()A.通常水加热到100℃时沸腾B.测量孝感某天的最低气温,结果为﹣150℃C.一个袋中装有5个黑球,从中摸出一个是黑球D.篮球队员在罚球线上投篮一次,未投中7.(3分)(2020•新疆)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD 等于()A.30°B.40°C.50°D.60°8.(3分)某公司今年产值300万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x,则可列方程为()A.300(1+x)2=1400 B.300(1+x)3=1400C.1400(1﹣x)2=300 D.300+300(1+x)+300(1+x)2=14009.(3分)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是()A.10m B.3m C.4m D.2m或10m10.(3分)(2020•临沂)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.6πB.5πC.4πD.3π11.(3分)(2020•十堰)同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为8的概率为()A.B.C.D.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1二、细心填一填(每小题3分,共18分)13.(3分)计算:=_________.14.(3分)白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_________个飞机场.15.(3分)(2020•红桥区模拟)已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为_________.16.(3分)如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B 地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,则从A地到C地可供选择的方案有_________种.17.(3分)如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则由这个扇形围成的圆锥的底面半径是_________.18.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),下列说法:①若b2﹣4ac=0,则抛物线的顶点一定在x轴上;②若a﹣b+c=0,则抛物线必过点(﹣1,0);③若a>0,且一元二次方程ax2+bx+c=0有两根x1,x2(x1<x2),则ax2+bx+c<0的解集为x1<x<x2;④若,则方程ax2+bx+c=0有一根为3.其中正确的是_________(把正确说法的序号都填上).三、用心做一做(本大题共7小题,满分66分)19.(6分)解下列方程:(1)x2﹣2x﹣1=0(2)(x﹣2)2=2x﹣4.20208分)先化简,再求值:,其中,.21.(10分)如图,已知点P是边长为5的正方形ABCD内的一点,连结PA,PB,PC,若PA=2,PB=4,∠APB=135°.(1)将△PAB绕点B顺时针旋转90°,画出△P′CB的位置.(2)①求PC的长;②求△PAB旋转到△P′CB的过程中边PA所扫过区域的面积.22.(10分)(2020•湘潭)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.23.(10分)(2020•瑶海区一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.24.(10分)已知关于x的一元二次方程x2﹣4x+1﹣2k=0有两个不等的实根,(1)求k的取值范围;(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;(3)在(2)的条件下,二次函数y=x2﹣4x+1﹣2k与x轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若∠DAB=60°,求D点的坐标.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.2020-2021学年湖北省孝感市汉川市九年级(上)期末数学试卷参考答案与试题解析一、精心选一选(将唯一正确答案的代号填在题后的答题卡中12×3分=36分)1.(3分)下列图形是中心对称图形的是()A.B.C.D.考点: 中心对称图形.分析:根据中心对称图形的概念,即可求解.解答:解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,只有D 符合;其它不是中心对称图形.故选:D.点评:本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.(3分)(2020•滨州)二次根式有意义时,x的取值范围是()A.x ≥B.x≤﹣C.x≥﹣D.x ≤考点: 二次根式有意义的条件;解一元一次不等式.专题: 存在型.分析:根据二次根式有意义的条件,被开方数大于等于0,列出不等式,求出x的取值范围即可.解答:解:∵二次根式有意义,∴1+2x≥0,解得x≥﹣.故选C.点评:本题考查的是二次根式有意义的条件及解一元一次不等式,比较简单.3.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3)考点: 关于原点对称的点的坐标.专题: 常规题型;压轴题.分析:根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.解答:解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选D.点评:本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.4.(3分)已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2=cm,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.内切D.相交考点: 圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别为1cm、4cm,且圆心距O1O2=cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别为1cm、4cm,且圆心距O1O2=cm,又∵1+4>>4﹣1,∴两圆的位置关系是相交.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.5.(3分)(2020•荆州)下列根式中属最简二次根式的是()A.B.C.D.考点: 最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、是最简二次根式;B、=,可化简;C、==2,可化简;D、==3,可化简;故选A.点评:最简二次根式是本节的一个重要概念,也是中考的常考点.最简二次根式应该是:根式里没分母(或小数),分母里没根式.被开方数中不含开得尽方的因数或因式.被开方数是多项式时,还需将被开方数进行因式分解,然后再观察判断.6.(3分)(2020•孝感)下列事件中,属于随机事件的是()A.通常水加热到100℃时沸腾B.测量孝感某天的最低气温,结果为﹣150℃C.一个袋中装有5个黑球,从中摸出一个是黑球D.篮球队员在罚球线上投篮一次,未投中考点: 随机事件.分析:随机事件就是可能发生也可能不发生的事件,依据定义即可求解.解答:解:A、C一定正确,是必然事件;B是不可能事件,D、篮球队员在罚球线上投篮未中属于随机事件.故选D.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)(2020•新疆)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD 等于()A.30°B.40°C.50°D.60°考点: 圆周角定理.分析:根据圆周角定理可知∠B=∠D=30°,∠ACD=90°,在Rt△ACD中,已知了∠D的度数,易求出∠CAD的度数.解答:解:∵AD是⊙O的直径∴∠ACD=90°由圆周角定理知,∠D=∠B=30°∴∠CAD=90°﹣∠D=60°.故选D.点评:本题利用了圆周角定理、直角三角形的性质求解.8.(3分)某公司今年产值300万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数为x,则可列方程为()A.300(1+x)2=1400 B.300(1+x)3=1400C.1400(1﹣x)2=300 D.300+300(1+x)+300(1+x)2=1400考点: 由实际问题抽象出一元二次方程.专题: 增长率问题.分析:三年的总产值=今年的产值+明年的产值+后年的产值,要明确每一年的产值的表达式.根据此等量关系列方程求解即可.解答:解:已设这个百分数为x,则有300+300(1+x)+300(1+x)2=1400.故选D.点评:本题考查由实际问题抽象出一元二次方程和对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.9.(3分)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是()A.10m B.3m C.4m D.2m或10m考点: 二次函数的应用;一元二次方程的应用.分析:根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.解答:解:令函数式y=﹣(x﹣4)2+3中,y=0,0=﹣(x﹣4)2+3,解得x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故选:A.点评:本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.10.(3分)(2020•临沂)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.6πB.5πC.4πD.3π考点: 扇形面积的计算.专题: 压轴题.分析:从图中可以看出阴影部分的面积=扇形面积+半圆面积﹣半圆面积,即等于扇形面积,依扇形的面积公式计算即可.解答:解:阴影部分面积==6π.故选A.点评:本题主要考查了扇形的面积公式.即S=.11.(3分)(2020•十堰)同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为8的概率为()A.B.C.D.考点: 列表法与树状图法.专题: 压轴题.分析:列举出所有情况,看两个骰子向上的一面的点数和为8的情况占总情况的多少即可.解答:解:列表得:∴两个骰子向上的一面的点数和为8的概率为.故选B.点评:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1考点: 二次函数的性质.分析:观察图象即可判断.①开口向上,应有最小值;②根据抛物线与x轴的交点坐标来确定抛物线的对称轴方程;③x=﹣2时,对应的图象上的点在x轴下方,所以函数值小于0;④图象与x轴交于﹣3和1,所以当x=﹣3或x=1时,函数y的值都等于0.解答:解:由图象知:①函数有最小值;错误.②该函数的图象关于直线x=﹣1对称;正确.③当x=﹣2时,函数y的值小于0;错误.④当x=﹣3或x=1时,函数y的值都等于0.正确.故正确的有两个,选C.点评:此题考查了根据函数图象解答问题,体现了数形结合的数学思想方法.二、细心填一填(每小题3分,共18分)13.(3分)计算:=14.考点: 二次根式的加减法.分析:首先对二次根式进行化简,然后合并同类二次根式即可求解.解答:解:原式=4﹣2+12=14.故答案是:14.点评:主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行二次根式的运算时要先化简再计算可使计算简便.14.(3分)白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有5个飞机场.考点: 一元二次方程的应用.专题: 应用题.分析:每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:飞机场数×(飞机场数﹣1)=10×2,把相关数值代入求正数解即可.解答:解:设共有x个飞机场.x(x﹣1)=10×2,解得x1=5,x2=﹣4(不合题意,舍去),故答案为:5.点评:考查一元二次方程的应用;得到飞行总航线与飞机场数的等量关系是解决本题的关键.15.(3分)(2020•红桥区模拟)已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为(﹣b,a).考点: 坐标与图形变化-旋转.分析:画出草图分析.不妨设A在第一象限,将线段OA绕点O按逆时针方向旋转90°得OA1,如图所示.根据旋转的性质,A1B1=AB,OB1=OB.综合A1所在象限确定其坐标,其它象限解法完全相同.解答:解:不妨设A在第一象限,将线段OA绕点O按逆时针方向旋转90°得OA1,如图所示.∵A(a,b),∴OB=a,AB=b,∴A1B1=AB=b,OB1=OB=a,因为A1在第二象限,所以A1(﹣b,a),A在其它象限结论也成立.点评:不失一般性,可设点A在某一象限,以点带面求解.16.(3分)如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B 地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,则从A地到C地可供选择的方案有13种.考点: 可能性的大小.专题: 方案型.分析:从A间接到C的走法:从A到B有4种走法,从B到C有3种走法,那么共有4×3种走法,那么加上直接到达的那一条路线即可.解答:解:从A直接到C有1中,从A到B再到C,有4×3=12种,故从A地到C地可供选择的方案有12+1=13种.点评:本题考事件的可能情况,关键是列齐所有的可能情况.17.(3分)如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则由这个扇形围成的圆锥的底面半径是.考点: 圆锥的计算;直角梯形.分析:要求以A为圆心在梯形内画出一个最大的扇形(图中阴影部分)的周长,需过点A作AE⊥BC于点E,根据切线的性质求得AE是扇形的半径,再利用直角梯形的性质和直角三角形的性质求得扇形的半径和圆心角度数,再利用弧长公式求得扇形的底面半径即可.解答:解:过点A作AE⊥BC于点E,∵AD∥BC,∠C=90°,∴四边形ADCE是矩形,∵AB=AD=4,BC=6,∴CE=AD=4,BE=2∴AE=2,∠BAE=30°∴∠BAD=90°+30°=12020设底面半径为r,则2πr=解得:r=故答案为:点评:本题要熟知切线的性质,直角梯形的性质和扇形弧长计算公式.利用切线的性质求得AE的长即半径是解题的关键,注意扇形的周长为两条半径的长加上弧长.18.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),下列说法:①若b2﹣4ac=0,则抛物线的顶点一定在x轴上;②若a﹣b+c=0,则抛物线必过点(﹣1,0);③若a>0,且一元二次方程ax2+bx+c=0有两根x1,x2(x1<x2),则ax2+bx+c<0的解集为x1<x<x2;④若,则方程ax2+bx+c=0有一根为3.其中正确的是①②③(把正确说法的序号都填上).考点: 二次函数与不等式(组);二次函数图象上点的坐标特征;抛物线与x轴的交点.分析:利用抛物线与x轴的交点问题判断①正确;根据二次函数图象上点的坐标特征判断出②正确;根据二次函数与不等式组的关系判断出③错误;令x=﹣3,然后根据二次函数图象上点的坐标特征解答.解答:解:①若b2﹣4ac=0,则ax2+bx+c=0有两个相等的实数根,所以,抛物线的顶点一定在x轴上,故本小题正确;②x=﹣1时,a﹣b+c=0,所以,抛物线必过点(﹣1,0),故本小题正确;③a>0,抛物线开口向上,ax2+bx+c<0的解集为x1<x<x2,故本小题正确;④若b=3a+,则9a﹣3b+c=0,所以方程ax2+bx+c=0有一根为﹣3,故本小题错误;综上所述,正确的是①②③.故答案为:①②③.点评:本题考查了二次函数与不等式,二次函数图象上点的坐标特征,抛物线与x轴的交点,综合题,熟练掌握二次函数的性质是解题的关键.三、用心做一做(本大题共7小题,满分66分)19.(6分)解下列方程:(1)x2﹣2x﹣1=0(2)(x﹣2)2=2x﹣4.考点: 解一元二次方程-因式分解法;解一元二次方程-配方法.专题: 计算题.分析:(1)方程移项后,两边加上1变形,利用平方根定义开方转化为两个一元一次方程来求解;(2)方程右边变形后,整体移到左边,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(1)方程变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,解得:x1=1+,x2=1﹣;(2)方程移项得:(x﹣2)2﹣2(x﹣2)=0,因式分解得:(x﹣2)(x﹣4)=0,解得:x1=2,x2=4.点评:此题考查了解一元二次方程﹣因式分解法与配方法,熟练掌握方程的解法是解本题的关键.20208分)先化简,再求值:,其中,.考点: 二次根式的化简求值.专题: 计算题.分析:由于a=3+>0,b=3﹣>0,且有a+b=6,ab=7,再根据二次根式的性质化简得到原式=a+b,然后计算(a+b)2得到7(+1)2,再利用算术平方根求值.解答:解:∵a=3+>0,b=3﹣>0,∴a+b=6,ab=7,∴原式=a+﹣+b=a+b,∵(a+b)2=a2b+2ab+ab2=ab(a+b+2)=7×(6+2)=7×(+1)2,∴原式=(+1)=7+.点评:本题考查了二次根式的化简求值:先根据二次根式的性质和二次根式的运算法则把所给的代数式进行化简,然后把满足条件的字母的值代入计算.21.(10分)如图,已知点P是边长为5的正方形ABCD内的一点,连结PA,PB,PC,若PA=2,PB=4,∠APB=135°.(1)将△PAB绕点B顺时针旋转90°,画出△P′CB的位置.(2)①求PC的长;②求△PAB旋转到△P′CB的过程中边PA所扫过区域的面积.考点: 作图-旋转变换;正方形的性质;扇形面积的计算.分析:(1)利用旋转的性质得出对应点P′的位置进而得出即可;(2)①利用旋转的性质得出,∠PP′C=90°,利用勾股定理得出PC的长;②根据PA所扫过区域的面积为:S扇形ABC+S△BCP′﹣S扇形PBP′﹣S△ABP,进而得出即可.解答:解:(1)如图所示:△P′CB即为所求;(2)①连接PP′,∵将△PAB绕点B顺时针旋转90°,∴PB=P′B=4,A,P,P′在一条直线上,∠PP′C=∠BP'C﹣∠BP'P=135°﹣45°=90°,∵∠APB=135°,∴∠BPP′=45°,∴△PBP′是等腰直角三角形,∴PP′=4,∵P′C=PC=2,∴PC==6;②△PAB旋转到△P′CB的过程中边PA所扫过区域的面积为:S扇形ABC+S△BCP′﹣S扇形PBP′﹣S△ABP=S扇形ABC﹣S扇形PBP′==π.点评:此题主要考查了旋转的性质以及旋转图形的画法和扇形面积公式等知识,根据题意得出旋转后图形的形状是解题关键.22.(10分)(2020•湘潭)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.考点: 二元一次方程的应用;概率公式.专题: 应用题.分析:(1)应设出两种奖品的件数,由钢笔和笔记本两种奖品的价格为15元列出方程,根据整数值来确定购买方案;(2)根据概率公式P(A)=,求解即可.解答:解:(1)设钢笔和笔记本两种奖品各a,b件则a≥1,b≥1,2a+b=15当a=1时,b=13;当a=2时,b=11;当a=3时,b=9;当a=4时,b=7;当a=5时,b=5;当a=6时,b=3;当a=7时,b=1.故有7种购买方案;(2)买到的钢笔与笔记本数量相等的购买方案有1种,共有7种购买方案.∵1÷7=,∴买到的钢笔与笔记本数量相等的概率为.点评:考查了二元一次方程的应用和概率公式.解决问题的关键是读懂题意,找到所求的量的等量关系.注意根据整数值来确定购买方案.23.(10分)(2020•瑶海区一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.考点: 切线的判定;平行线的判定与性质;勾股定理;圆周角定理.专题: 计算题.分析:(1)连接OD,由AC=AB,根据等边对等角得到一对角相等,再由OD=OB,根据等边对等角得到又一对角相等,等量代换可得一对同位角相等,根据同位角相等两直线平行可得OD与AC平行,又EF垂直于AC,根据垂直于两平行线中的一条,与另一条也垂直,得到EF与OD也垂直,可得EF为圆O的切线;(2)连接AD,由AB为圆的直径,根据直径所对的圆周角为直角可得∠ADB=90°,即AD与BC垂直,又AC=AB,根据三线合一得到D为BC中点,由BC求出CD的长,再由AC的长,利用勾股定理求出AD的长,三角形ACD的面积有两种求法,AC乘以DE除以2,或CD乘以AD除以2,列出两个关系式,两关系式相等可求出DE的长.解答:解:(1)连接OD,…(1分)∵AB=AC,∴∠C=∠OBD,∵OD=OB,∴∠1=∠OBD,…(2分)∴∠1=∠C,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;…(3分)(2)连接AD,∵AB为⊙O的直径,∴∠ADB=90°,…(4分)又∵AB=AC,且BC=6,∴CD=BD=BC=3,在Rt△ACD中,AC=AB=5,CD=3,根据勾股定理得:,又S△ACD=AC•ED=AD•CD,即×5×ED=×4×3,∴.…(5分)点评:此题考查了等腰三角形的性质,圆周角定理,平行线的性质,勾股定理,三角形面积的求法,以及切线的判定,其中证明切线的方法为:有点连接圆心与此点,证垂直;无点过圆心作垂线,证明垂线段长等于圆的半径.本题利用的是第一种方法.24.(10分)已知关于x的一元二次方程x2﹣4x+1﹣2k=0有两个不等的实根,(1)求k的取值范围;(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;(3)在(2)的条件下,二次函数y=x2﹣4x+1﹣2k与x轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若∠DAB=60°,求D点的坐标.考点: 根的判别式;解一元二次方程-配方法;抛物线与x轴的交点.专题: 综合题.分析:(1)根据根的判别式,有两个不等的实根,根的判别式△=b2﹣4ac>0列出关于k的不等式12+8k>0,求解即可得到k的取值范围;(2)利用(1)中k的取值范围求得k的整数解,然后将其代入关于x的一元二次方程x2﹣4x+1﹣2k=0并整理,再根据配方法进行求解;(3)先求出二次函数的解析式,然后求出抛物线与x轴的交点,从而得到对称轴的解析式以及AB的长度,再根据∠DAB=60°求出点D到x轴的距离,然后根据点D在AB 的上方与下方两种情况讨论得解.解答:解:(1)∵关于x的一元二次方程x2﹣4x+1﹣2k=0有两个不等的实根,∴△=(﹣4)2﹣4×1×(1﹣2k)=12+8k>0,解得,k>﹣;(2)∵k取小于1的整数,∴k=﹣1或0,①当k=﹣1时,方程为x2﹣4x+3=0,即(x﹣2)2=1,∴x﹣2=1或x﹣2=﹣1,解得x1=3,x2=1,②当k=0时,方程为x2﹣4x+1=0,即(x﹣2)2=3,∵方程的解为整数,∴k=0不符合,∴k=﹣1,此时方程的两个整数根是x1=3,x2=1;(3)如图所示,根据(2),二次函数解析式为,y=x2﹣4x+3,∴点A、B的坐标分别为A(1,0),B(3,0),∴对称轴为x=2,∴AC=(3﹣1)=1,∵∠DAB=60°,∴AD=2AC=2,∴CD===,当点D在AB的上方时,坐标为(2,),在AB的下方时,坐标为(2,﹣),∴点D的坐标为(2,)或(2,﹣).点评:本综合考查了根的判别式,一元二次方程的解法以及二次函数的性质,抛物线与x轴的交点情况,综合性较强,但难度不是很大,根据整数根求出k的值是解题的关键.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.考点: 二次函数综合题.分析:(1)将A(﹣2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)由于二次项系数a=﹣<0,所以抛物线有最大值,最大值为,代入计算即可;(3)先将点D(2,m)代入(1)中所求的抛物线的解析式,求出m的值,得到点D的坐标,然后假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,再分三种情况进行讨论:①PB=PD;②BP=BD;③DP=DB;每一种情况都可以根据两点间的距离公式列出关于y的方程,解方程即可.解答:解:(1)将A(﹣2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,得,解得.所以此抛物线的解析式为y=﹣x2+x+4;(2)∵y=﹣x2+x+4,a=﹣<0,∴抛物线有最大值,最大值为=;(3)∵点D(2,m)在抛物线y=﹣x2+x+4上,∴m=﹣×22+2+4=4,∴D(2,4),∵B(4,0),∴BD==2.假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,分三种情况:①如果PB=PD,那么42+y2=22+(y﹣4)2,解得y=,所以P1(0,);②如果BP=BD,那么42+y2=2020得y=±2(负值舍去),所以P2(0,2);③如果DP=DB,那么22+(y﹣4)2=2020得y=0或8,y=0不合题意舍去,所以P3(0,8);综上可知,所有符合条件的P点的坐标为P1(0,),P2(0,2),P3(0,8).点评:本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求抛物线的解析式,抛物线的最值的求法,等腰三角形的性质等知识,难度适中.运用分类讨论、方程思想是解题的关键.。
2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)
![2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)](https://img.taocdn.com/s3/m/e6f809043186bceb18e8bb15.png)
2020-2021学年北师大新版九年级上册数学期末复习试卷一.选择题(共10小题,满分20分,每小题2分)1.方程x2﹣6x+5=0较小的根为p,方程5x2﹣4x﹣1=0较大的根为q,则p+q等于()A.3B.2C.1D.22.如图所示几何体的左视图正确的是()A.B.C.D.3.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃4.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2 6.若,则的值为()A.1B.C.D.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB =1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.88.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD =2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是()A.①③④B.②③④C.①②③D.①②④9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1610.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.小明想知道学校旗杆的高,他在某一时刻测得直立的标杆高1米时影长0.9米,此时他测旗杆影长时,因为旗杆靠近建筑物,影子不全落在地面上,有一部分影子在墙上,他测得落在地面上的影长BC为2.7米,又测得墙上影高CD为1.2米,旗杆AB的高度为米.12.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是.13.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.14.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.15.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为.16.如图,在△ABC中,AB=AC=9,过点B、C分别作AB、BC的垂线相交于点D,延长AC、BD相交于点E,若tan∠BDC=2,则DE=.三.解答题(共3小题,满分22分)17.计算:2cos45°tan30°cos30°+sin260°.18.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是.(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.19.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE ∥BD,BE与CE交于点E.(1)求证:四边形OBEC是矩形;(2)当∠ABD=60°,AD=2时,求BE的长.四.解答题(共1小题,满分8分,每小题8分)20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五.解答题(共1小题,满分10分,每小题10分)21.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?六.解答题(共3小题,满分34分)22.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式及点B的坐标;(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.23.【方法提炼】解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.【问题情境】如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.小明在分析解题思路时想到了两种平移法:方法1:平移线段FG使点F与点B重合,构造全等三角形;方法2:平移线段BC使点B与点F重合,构造全等三角形;【尝试应用】(1)请按照小明的思路,选择其中一种方法进行证明;(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连结DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连结AC交DE于点H,求的值.24.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:方程x2﹣6x+5=0较小的根为p=1,方程5x2﹣4x﹣1=0较大的根为q=1,则p+q=2,故选:B.2.解:从几何体的左面看所得到的图形是:故选:A.3.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是==0.5,符合这一结果,故此选项正确;C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;故选:B.4.解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.解:∵,∴=2=2﹣=;故选:B.7.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.解:∵中线AD,BE相交于点F,∴BD=CD,AE=CE,BF=2EF,AF=2FD,②正确;∵EG∥BC,∴△BDF∽△EGF,∴==2,∴BD=2GE,①正确;∵AF=2FD,∴△ABF的面积=2△BDF的面积=△ABD的面积=△ABC的面积,△BDF的面积=△ABC的面积,∵EG∥BC,AE=CE,∴△AGE∽△ADC,=,∴=()2=,∴△AGE的面积=△ADC的面积△ABC的面积,∴△AGE与△BDF面积不相等,③不正确;∵BD=CD,AE=CE,∴△ABD的面积=△ADC的面积=△ABC的面积=△ABE的面积=△BCE的面积,∴△ABD的面积=△BCE的面积,∴△ABD的面积﹣△BDF的面积=△BCE的面积﹣△BDF的面积,即△ABF与四边形DCEF面积相等,④正确;故选:D.9.解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.10.解:∵BF∥AD∴△BNF∽△DNA∴,而BF=BC=1,AF=,∴AN=,又∵AE=BF,∠EAD=∠FBA,AD=AB,∴△DAE≌△ABF(SAS),∴∠AED=∠BFA∴△AME∽△ABF∴,即:,∴AM=,∴MN=AN﹣AM=.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:过点D作DE⊥AB于点E,则BE=CD=1.2m,∵他在某一时刻测得直立的标杆高1米时影长0.9米,∴=,即=,解得:AE=3m,∴AB=AE+BE=3+1.2=4.2(m).故答案为:4.2.12.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).13.解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.14.解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.15.解:∵E、F分别是AB、AD的中点,∴EF=BD,∵EF=5,∴BD=10,∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=10,∴菱形ABCD的周长=4×10=40,故答案为:40.16.解:作CF⊥BD于F,作AG⊥BC于G,如图所示:∵AB=AC=9,AG⊥BC,∴BG=CG,∵BE⊥AB,CD⊥BC,∴∠ABG+∠CBD=90°,∠CBD+∠BDC=90°,∴∠ABG=∠BDC,∴tan∠ABG==tan∠BDC==2,∴AG=2BG,BC=2CD,设BG=x,则AG=2x,在Rt△ABG中,由勾股定理得:x2+(2x)2=92,解得:x=,∴BC=2BG=,CD=BC=,∴BD===9,∵CF⊥BD,∴△BCD的面积=BD×CF=BC×CD,∴CF==,∴DF===,∵AB⊥BD,CF⊥BD,∴CF∥AB,∴△CFE∽△ABE,∴=,即=,解得:DE=3;故答案为:3.三.解答题(共3小题,满分22分)17.解:原式=2×﹣××+()2=﹣+=.18.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,∴小亮猜的结果是“正数”,那么小亮获胜的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中两次的结果都是“正数”的有4种,∴小亮获胜的概率是.19.(1)证明:∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC是矩形;(2)解:∵四边形ABCD为菱形,∴AD=AB,OB=OD,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AD=AB=2,∴OD=OB=,在Rt△AOD中,AO===3∴OC=OA=3,∵四边形OBEC是矩形,∴BE=OC=3.四.解答题(共1小题,满分8分,每小题8分)20.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40,∵AB=57,∴BE=17∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17,∴BC=EF=30﹣17=13.答:教学楼BC高约13米.五.解答题(共1小题,满分10分,每小题10分)21.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.六.解答题(共3小题,满分34分)22.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=,解得,,,∴B(2,1);(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),∵A(1,2),∴AC==2,过A作AD⊥x轴于D,∴OD=1,CD=AD=2,当AP=AC时,PD=CD=2,∴P(﹣1,0),当AC=CP=2时,△ACP是等腰三角形,∴OP=3﹣2或OP=3+2∴P(3﹣2,0)或(3+2,0),当AP=CP时,△ACP是等腰三角形,此时点P与D重合,∴P(1,0),综上所述,所有点P的坐标为(﹣1,0)或(3﹣2,0)或(3+2,0)或(1,0).23.解:(1)①平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△CBH中,,∴△ABE≌△CBH(ASA),∴AE=BH,∴AE=FG;②平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,根据勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴∠DAC=∠PAC=∠DMC=45°,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.24.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).。
2021九年级数学上册20.5 2次函数的1些应用课前预习训练+北京课改版
![2021九年级数学上册20.5 2次函数的1些应用课前预习训练+北京课改版](https://img.taocdn.com/s3/m/fa914f47f61fb7360a4c650d.png)
20.5 二次函数的一些应用自主学习主干知识 ←提前预习 勤于归纳→ 认真阅读教材,完成下列问题1.利用二次函数性质判断下列抛物线与x 轴的交点情况:(1)y=x 2+2x -4 (2)y=-2x 2+5x -1 (3)y=x 2+3x+8 答案:(1)两个交点 (2)两个交点 (3)没有交点2.某市近年来经济发展速度很快,根据统计:该市国民生产总值1990年为8.6亿元人民币,1995年为10.4亿元人民币,2000年为12.9亿元人民币.经论证,上述数据适合一个二次函数关系式.请你根据这个函数关系式,预测2005年该市国民生产总值将达到多少? 答案:解析:依题意,可以把三组数据看成三个点: A(0,8.6),B(5,10.4),C(10,12.9),设y=ax 2+bx+c ,把A 、B 、C 三点坐标代人此式,得⎪⎩⎪⎨⎧=++=++=,9.1210100,4.10525,6.8c b a c b a c ,解得⎪⎩⎪⎨⎧===,6.8,29.0,014.0c b a 即所求二次函数为y=0.014x 2+0.29x+8.6. 令x=15,代入二次函数关系式,得y=16.1.所以,2005年该市国民生产总值将达到16.1亿元人民币. 点击思维 ←温故知新 查漏补缺→1.对于二次函数y=-3x 2+2x -5,小明说,无论x 取何值时,函数值永远是负值,你同意他的观点吗?为什么?答案:解析:小明的观点是正确的,理由:因为a=-3<0,所以抛物线开口向下,又因为b2-4ac=22-4×(-3)×(-5)<0,所以该抛物线与x 轴无交点,所以无论x 取何值时,对应的函数值永远是负值.(可结合图象理解)2.某工厂的大门是一抛物线形水泥建筑物(如图20-5-1所示),大门的地面宽度为8米,两侧距地面3米高处各有一壁灯,两壁灯之间的水平距离为6米,则厂门的高为多少米?(水泥建筑物厚度忽略不计,精确到0.1米)答案:解析:可建立如图所示的坐标系,求得抛物线的解析式为:)4)(4(73+--=x x y ,当x=0,代人上式,9.6)16(73≈-⨯-=y (米).英语不规则动词归类记忆表一、AAA型(原形→原形→原形)原形过去式过去分词汉语意思become became become成为come came come来run ran run跑原形过去式过去分词汉语意思read read read读cut cut cut切,割let let let让put put put放cost cost cost花费,值hit hit hit撞,击set set set安排,安置hurt hurt hurt使…伤痛二、ABA型(原形→过去式→原形)三、ABC型原形过去式过去分词汉语意思blow blew blown吹draw drew drawn画grow grew grown生长know knew known 知道fly flew flown飞2. i→a →u四、ABB型不规则单词测试卷(1)微信添加“小魔方站”或“fifteen1617”免费获得更多中考资料与模拟试题不规则单词测试卷(2)不规则单词测试卷(3)不规则单词测试卷(4)。
北京课改版九年级数学上册第一学期期末教学目标检测初三数学试卷.doc
![北京课改版九年级数学上册第一学期期末教学目标检测初三数学试卷.doc](https://img.taocdn.com/s3/m/0e717858d5bbfd0a78567356.png)
东城区2009-2010学年度第一学期期末教学目标检测初三数学试卷学校 姓名 准考证号一、选择题:(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1.已知1sin 2A =,则锐角A 的度数是 ( ) A .30︒ B .45︒ C .60︒ D .75︒2. 已知△ABC ∽△DEF ,且AB :DE = 1:2,则△ABC 的周长与△DEF 的周长之比为 ( ) A .2:1 B .1:2 C .1:4 D . 4:13.二次函数223y x x =-+的对称轴为 ( ) A .x =-2 B .x =2 C .x =1 D .x =-14.下面四张扑克牌中,图案属于中心对称的是 ( ) 5.如图,ABC △内接于O ⊙,若30OAB ∠=°,则C ∠的大小为 ( )A .30︒B .45︒C .60°D .︒906.若点B (a ,0)在以点A (1,0)为圆心,以2为半径的圆内, 则a 的取值范围为( ) A .13a -<< B .3a < C .1a >-D .3a >或1a <-7. 抛物线1C :21y x =+与抛物线2C 关于x 轴对称,则抛物线2C 的解析式为 ( )A. 2y x =-B. 21y x =-+C.21y x =-D. 21y x =-- 8.汽车匀加速行驶路程为2012s v t at =+,匀减速行驶路程为2012s v t at =-,其中0v 、a 为常数. 一汽车经过启动、匀加速行驶、匀速行驶、匀减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是 ( )二、填空题:(本题共16分,每小题4分)9.圆锥的母线长为3,底面半径为2,则它的侧面积为 . 10. 如右图,是由四个直角边分别是6和8的全等的直角三角形拼成的“赵爽弦图”,如果某人随机地往大正方形区域内投针一次,则针扎在阴影部分的概率为 .COBA11.如图,∠DAB =∠CAE ,要使△ABC ∽△ADE ,则补充的一个 条件可以是 (注:只需写出一个正确答案即可). 12. 在数学研究性学习中,佳佳为了求2311112222n ++++L L 的值n S ,设计了如图所示的几何图形,请你利用这个几何图形,计算n S = (用含n 的式子表示).三、解答题:(本题共30分,每小题5分) 13. 计算:sin30cos45sin 45tan60︒+︒⋅︒-︒.14. 以直线1x =为对称轴的抛物线过点(3,0),(0,3),求此抛物线的解析式. 15. 如图,在ABC ∆中,DE // BC ,EF // AB ,AD :AB=3:5,BC=25,求FC 的长.16. 如图,90D ∠=︒,10BC =,30CBD ∠=︒,15A ∠=︒. (1)求CD 的长; (2)求tan A 的值.17.如图,已知点C 、D 在以O 为圆心,AB 为直径的半圆上,且OC BD ⊥于点M ,CF ⊥AB 于点F 交BD 于点E ,8BD =,2CM =. (1)求⊙O 的半径;(2)求证:CE = BE .18.如图,一枚运载火箭从地面O 处发射,当火箭到达A 点时,在观测点测得其仰角是30o,火箭又上升了10km 到达B 点时,测得其仰角为60o,求观测点C 到发射点O 的距离. (结果精确到0.1km .参考数据:41.12≈ 1.73≈,.25≈四、解答题:(本题共20分,每小题5分)把CBD △19. 如图,正方形ABCO 的边长为4,D 为AB 上一点,且BD = 3顺时针旋转90o,得到11CB D △. (1)直接写出点1D 的坐标;(2)求点D 旋转到点1D 所经过的路线长.20.某园艺公司计划投资种植花卉及树木,根据市场调查与预测,利润1y (万元)与投入资金x (万元)成正比例关系,如图2y (万元)与投入资金x (万元)成二次函数关系,如图2所示....12122132CBA MF EDC B A O EFD C BAABCDEO(1)分别求出利润1y (万元)与2y (万元)关于投入资金x (万元)的函数关系式;(2)如果该园艺公司以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?21.小明购买了4瓶酸奶,其中3瓶原味,1瓶草莓味,他从中随机拿2瓶酸奶. (1)用列表法(或树状图)列出所有可能的情况; (2)求其中有12(0)y ax bx c a =++≠,如果当x 取任意整数时,函数值y 都22.对于二次该函数的图象为整点抛物线(例如:222y x x =++). 是整数,此时称该点(1线的 解析式 .(不必证;(2)请直接写出整点抛物线222y x x =++与直线4y = 围成的阴影图形中(不包括边界)所含的整点个数 . 五、解答题:(本题共22分,第23、24题每题7分,第25题823.已知抛物线C 1:22(24)10y x m x m =-++-的顶点A 到y 轴的距离为3, 与x 轴交于C 、D 两点. (1)求顶点A 的坐标;(2)若点B 在抛物线C 1上,且BCD S ∆=,求点B 的坐标.24.如图,直线AB 经过⊙O 上的点C ,并且OA OB =,CA CB =,直线OB 交⊙O 于点E D ,,连接EC CD ,.(1)试判断直线AB 与⊙O 的位置关系,并加以证明; (2)求证:2BC BD BE =⋅; (3)若1tan 2E =,⊙O 的半径为3,求OA 的长. 25. 在平面直角坐标系中,矩形OABC 的顶点 A 、C 的坐标分别为(-8,0)和(0,6).将矩形OABC 绕点O 顺时针旋转α度,得到四边形OA B C ''',使得边'A 'B 与y 轴交于点D ,此时边OA '、B C ''分别与BC 边所在的直线相交于点P 、Q .(1)如图1,当点D 与点B '重合时,求点D 的坐标; (2)在(1)的条件下,求PQOD的值; 图1(3)如图2,若点D 与点B '不重合,则PQOD的值是否发生变化?若不变,试证明你的结论;若有变化,请说明理由.东城区2009-2010学年度第一学期期末教学目标检测 初三数学参考答案 2010.1一、选择题:(本题共32分,每小题4分)二、填空题:(本题共16分,每小题4分) 9. 6π,10.125,11. ABC ADE ∠=∠或 ACB AED ∠=∠或AB AC AD AE =, 12. 112n -. 三、 解答题:(本题共30分,每小题5分)1222+13.解:原式=………………………………………………………4分1=. …………………………………………………………………5分14.解:设抛物线的解析式为2(1)y a x b =-+, ………………………………………1分Q 抛物线过点(3,0),(0,3). ∴40,3.a b a b +=⎧⎨+=⎩ 解得1,4.a b =-⎧⎨=⎩… ……………4分∴抛物线的解析式为223y x x =-++. ……………………………………………5分 15. 解: Q 在ABC ∆中,DE //BC ,∴ ADE ABC ∆∆:. ……………………………1分 ∴35AD DE AB BC ==. ……………………………………………………………………2分 又Q BC =25,∴ DE =15. …………………………………………………………3分Q DE //BC ,EF //AB ,∴四边形DEFB 是平行四边形. ∴DE =BF =15. ……………4分∴FC =25-15=10. ………………………………………………………………………5分 16.解:(1)在Rt △BDC 中,90,30D CBD ∠=︒∠=︒, Q sin 30CDBC︒=. ∴1sin 301052CD BC ︒=⋅=⨯=. …………………………………………….…2分 (2)在Rt △BDC 中,90,30D CBD ∠=︒∠=︒,Q cos30BD BC︒=.∴cos30102BD BC ︒=⋅=⨯=……………………………………………3分A BCOABC DE FMOGBC DE FMO30,15CBD A ∠=︒∠=︒Q ,∴A ACB ∠=∠. ∴ AB =BC =10.∴在Rt△CAD中,tan 2CD A AD ==== ……………………………5分 17.解:(1) Q OC 为⊙O 的半径,OC BD ⊥,∴ 12DM MB DB ==. Q DB = 8,∴MB = 4. ………………………………………………………………………1分设⊙O 的半径为r ,Q 2CM =,∴ OM =r -2, 在Rt OMB ∆中,根据勾股定理得22(2)r r -2+4=,解得r =5. …………………………………………………………………2分(2)方法一:连接AC 、CB ,Q AB 是直径,∴ 90ACB ∠=︒. ∴90ACF FCB ∠+∠=︒.CF AB CAF ACF ⊥∴∠∠︒Q 又,+=90.∴FCB CAF ∠=∠. ……………………………………3分Q OC 为⊙O 的半径,OC BD ⊥,∴C 是»BD的中点,∴CAF CBD ∠=∠. ……………4分 ∴FCB DBC ∠=∠. ∴.CE BE = …………………5分 方法二:如图,连接BC ,补全⊙O ,延长CF 交⊙O 于点G .CF AB AB ⊥Q 又,为直径,∴»BC=»BG . ……………3分 Q OC 为⊙O 的半径,OC BD ⊥,∴ C 是»BD的中点, ∴ »BC=»DC . ……………………………………………4分 ∴»BG=»DC .∴FCB DBC ∠=∠. ∴.CE BE = ……5分 18.解:设CO x =,在OBC ∆中,90,60BOC OCB ∠=︒∠=︒,∴30B ∠=︒.tan 30,tan 30OC OCOB OB ︒=∴==︒Q .……………2分 又10,10AB AO =∴=-Q .在OAC ∆中,90,30AOC OCA ∠=︒∠=︒,∴10tan 303AO OC x -︒===. 解得5 1.738.658.7()x km =≈⨯=≈.答:观测点C 到发射点O 的距离为8.7km . ………………………………………………5分 四、解答题:(本题共20分,每小题5分)19.解(1)1D (-3,0). ………………………………………………………………2分 (2)Q 正方形ABCD 的边长为4,D 为AB 上一点,且BD =3,根据勾股定理可求得CD = 5. ………………………………………………………3分 ∴点D 旋转到点1D 所经过的路线长为152542ππ⨯⨯=. ………………………5分 20. 解:(1)设1y kx =,Q 直线过点(1,2),∴2k =. ∴12(0)y x x =≥.设22y ax =,Q 抛物线过点(2,2),∴12a =. ∴221(0)2y x x =≥.…………2分 (2)设该园艺公司投入资金x 万元种植花卉,则投入资金(8)x -万元种植树木,则获取的利润212(8)(08)2y x x x =-+≤≤,整理得21216(08)2y x x x =-+≤≤. ……………………………………………………………………………………………3分 根据图象得,当x =2时,y 有最小值为14,当x =8时,y 有最大值为32.答:该园艺公司投入资金2万元种植花卉和6万元种植树木时,获得最少14万元利润; 投入资金8万元种植花卉时,能获取最大利润,且最大利润是32万元.……………5分 21. 解:记原味酸奶为A 、B 、C ,草莓味酸奶为D .(1) 方法一:表格……………………………………………………………………………………………3分 方法二:树状图 (略):…………………………………………………………………3分 (2)小明随机拿2瓶酸奶的所有可能为:AB 、AC 、AD 、BC 、BD 、CD ,共6种. 随机拿2瓶酸奶中有一瓶是草莓味的所有结果为:AD 、BD 、CD ,共3种.ABCDEO∴小明随机拿2瓶酸奶中有一瓶是草莓味的概率为:3162=. …………………5分 22.解:(1)211122y x x =++或213122y x x =++或211222y x x =++等. …… 3分(2)4. ……………………………………………………………………………………5分 五、解答题:(本题共22分,第23、24题每题7分,第25题8分) 23.解:(1) 22(24)10y x m x m =-++-=222[(2)]10(2)x m m m -++--+= 2[(2)]414x m m -+--∴抛物线顶点A 的坐标为 (2,414)m m +--.由于顶点A 到y 轴的距离为3,∴23m +=. ∴1m =或5m =-.Q 抛物线与x 轴交于C 、D 两点,∴5m =-舍去. ∴1m =.∴抛物线顶点A 的坐标为(3,-18). ……………………………………3分 (2)Q 抛物线1C 的解析式为2(3)18y x =--.∴抛物线1C 与x 轴交C 、D 两点的坐标为(3+0),(3-,0).∴ CD=.Q B 点在抛物线C 1上,BCD S ∆=B (,B B x y ),则2B y =±. ……………5分把2B y =代入到抛物线1C 的解析式为2(3)18y x =--解得3B x =或3B x =-. 把2B y =-代入到抛物线1C 的解析式为2(3)18y x =--解得1B x =-或7B x =.∴B点坐标为3,2),(3,2),(1,2),(7,2)----. ………………………7分 24.解:(1)证明:如图,连接OC .OA OB =Q ,CA CB =,OC AB ∴⊥.∴AB 是O e 的切线. ··························· 2分 (2)ED Q 是直径,90ECD ∴∠=o. ∴90E EDC ∠+∠=o.又90BCD OCD ∠+∠=oQ ,OCD ODC ∠=∠, ∴BCD E ∠=∠.又CBD EBC ∠=∠Q ,∴BCD BEC △∽△.BC BDBE BC∴=.∴2BC BD BE =⋅. ····················· 4分 (3)1tan 2E ∠=Q ,∴12CD EC =.BCD BEC Q △∽△,∴12BD CD BC EC ==.设BD x =,则2BC x =. 又2BC BD BE =g ,∴2(2)(6)x x x =+. 解得10x =,22x =.0BD x =>Q ,∴2BD =.235OA OB BD OD ∴==+=+=.····················· 7分 25.解:(1)解:∵将矩形OABC 绕点O 顺时针旋转α度,得到四边形OA B C ''',且A 、C 的坐标分别为(-8,0)和(0,6),∴8'==OA OA ,6''===OC AB B A . ∴1068'22=+=OB .∴点D 的坐标为)10,0(. ……………2分 (2)解:∵10'=OB ,6=CO ,∴4'=C B .∵43'''tan ==∠=O A B A POC CO CP ,且6=CO∴29=CP . 同理3=CQ .∴215=PQ . ∴43=OD PQ .(或:∵43tan =∠==POC CO CP CD CQ .∴43=++=CO CD CP CQ OD PQ .)……………5分(3)解:如图2所示,作E C '∥OA 交OP 于点E ,∵E C '∥OA ,且PE ∥CQ ,∴四边形PEC ,Q 是平行四边形. ∴E C PQ '=.∵'''',C E OD A B AO ⊥⊥,∴''90,90C EO EOD ODA EOD ∠+∠=︒∠+∠=︒.∴''ODA EO C ∠=∠.又∵︒=∠=∠90''O DA EOC ,∴EO C '∆∽'ODA ∆. ∴43'''===OA O C OD E C OD PQ . (图2)∴PQOD的值不会发生改变. …………………………………………………8分初中数学试卷桑水出品。
2020-2021学年北京市密云区九年级(上)期末数学试卷
![2020-2021学年北京市密云区九年级(上)期末数学试卷](https://img.taocdn.com/s3/m/b2fb3189294ac850ad02de80d4d8d15abe230035.png)
2020-2021学年北京市密云区九年级(上)期末数学试卷试题数:25,总分:1001.(单选题,3分)抛物线y=(x+2)2-1的顶点坐标是()A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)2.(单选题,3分)如图,直线l1 || l2 || l3,直线l4被l1,l2,l3所截得的两条线段分别为CD、DE,直线l5被l1,l2,l3所截得的两条线段分别为FG、GH.若CD=1,DE=2,FG=1.2,则GH的长为()A.0.6B.1.2C.2.4D.3.6图象上的两点,则3.(单选题,3分)已知点P(1,y1),Q(2,y2)是反比例函数y= 3x()A.y1<y2<0B.y2<y1<0C.0<y1<y2D.0<y2<y1,则锐角A的正弦值()4.(单选题,3分)将Rt△ABC的各边长都缩小为原来的12A.不变B.缩小为原来的12C.扩大为原来的2倍D.缩小为原来的145.(单选题,3分)如图,二次函数y="ax"2+bx+c的图象经过点A(-1,0),B(3,0)和C(0,-1),则下列结论错误的是()A.二次函数图象的对称轴是直线x=1B.方程ax2+bx+c="0"的两根是x1="-1",x2=3C.当x<1时,函数值y随自变量x的增大而减小D.函数y=ax2+bx+c的最小值是-26.(单选题,3分)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠CDB=20°,则∠ABC 的度数为()A.20°B.40°C.70°D.90°7.(单选题,3分)如图,在平面直角坐标系xOy中有两点A(-2,0)和B(-2,-1),以原点O为位似中心作△COD,△COD与△AOB的相似比为2,其中点C与点A对应,点D与点B 对应,且CD在y轴左侧,则点D的坐标为()A.(4,2)B.(-4,-2))C.(1,12)D.(-1,- 128.(单选题,3分)如图,AB是⊙O的直径,AB=4,P是圆周上一动点(点P与点A、点B 不重合),PC⊥AB,垂足为C,点M是PC的中点.设AC长为x,AM长为y,则表示y与x 之间函数关系的图象大致为()A.B.C.D.9.(填空题,3分)已知扇形的圆心角为60°,半径为2,则扇形的弧长为___ (结果保留π).10.(填空题,3分)已知△ABC中,D是BC上一点,添加一个条件使得△ABC∽△DAC,则添加的条件可以是___ .图象上的两点,其11.(填空题,3分)已知点P(x1,y1)、Q(x2,y2)是反比例函数y= 2x中x1+x2="0",则y1+y2=___ .12.(填空题,3分)如图,▱ABCD中,E是AD中点,BE与AC交于点F,则△AEF与△CBF的面积比为___ .13.(填空题,3分)二次函数y=x2-2x-3的最小值是___ .14.(填空题,3分)如图,A、B、C是⊙O上三点,BC⊥OA,垂足为D.已知OA=3,AD=1,则BC长为___ .15.(填空题,3分)如图是某商场自动扶梯的示意图.自动扶梯AB的倾斜角为30°在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为6m,则自动扶梯的垂直高度BD=___ m.(结果保留根号)16.(填空题,3分)《九章算术》是我国古代数学名著,也是古代东方数学的代表作之一.书中记载了一个问题:“今有勾五步,股十二步,问勾中容圆径几何?”译文:“如图,今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该直角三角形内切圆的直径为___ 步.17.(问答题,5分)计算:√8 -2sin45°+2cos60°+|1- √2 |.18.(问答题,5分)已知抛物线y="x"2+bx+c经过两点A(4,0),B(2,-4).(1)求该抛物线的表达式;(2)在平面直角坐标系xOy内画出抛物线的示意图;(3)若直线y="mx"+n经过A,B两点,结合图象直接写出不等式x2+bx+c<mx+n的解集.19.(问答题,5分)如图,AB⊥BC,EC⊥BC,点D在BC上,AB="1",BD=2,CD=3,CE=6.(1)求证:△ABD∽△DCE;(2)求∠ADE的度数.20.(问答题,5分)如图,四边形ABCD中,∠CBA=∠CAD=90°,∠BCA=45°,∠ACD=60°,BC= √2,求AD的长.21.(问答题,5分)已知双曲线y= k与直线l1交于A(1,2)和B(-2,m).x(1)求k、m值;(2)将直线l1平移得到l2:y="ax"+b,且l1,l2与双曲线围成的封闭区域内(不含边界)恰有3个整点(把横纵坐标均为整数的点称为整点)结合图象,直接写出b的取值范围.22.(问答题,6分)如图,AB是⊙O的直径,C、D是圆上两点,CD="BD",过点D作AC 的垂线分别交AC,AB延长线于点E,F.(1)求证:EF是⊙O的切线;,求⊙O的半径.(2)若AE=3,sin∠EAF= 4523.(问答题,7分)已知抛物线y="ax"2+bx+3a与y轴交于点P,将点P向右平移4个单位得到点Q,点Q也在抛物线上.(1)抛物线的对称轴是直线x="___" ;(2)用含a的代数式表示b;(3)已知点M(1,1),N(4,4a-1),抛物线与线段MN恰有一个公共点,求a的取值范围.24.(问答题,7分)如图,矩形ABCD中,AD>AB,DE平分∠ADC交BC于点E,将线段AE绕点A逆时针旋转90°得到线段AF,连接EF,AD与FE交于点O.(1)① 补全图形;② 设∠EAB的度数为α,直接写出∠AOE的度数(用含α的代数式表示).(2)连接DF,用等式表示线段DF,DE,AE之间的数量关系,并证明.25.(问答题,7分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P是图形M 上的任意一点,Q是图形N上任意一点,如果P,Q两点间距离有最小值,则称这个最小值为图形M,N的“最小距离”,记作d(M,N).已知⊙O的半径为1.(1)如图,P(4,3),则d(点O,⊙O)="___" ,d(点P,⊙O)="___" .̂的度数为60°.(2)已知A、B是⊙O上两点,且AB① 若AB || x轴且在x轴上方,直线l:y= √3 x-2,求d(l,AB)的值;② 若点R坐标为(√2,1),直接写出d(点R,AB)的取值范围.2020-2021学年北京市密云区九年级(上)期末数学试卷参考答案与试题解析试题数:25,总分:1001.(单选题,3分)抛物线y=(x+2)2-1的顶点坐标是()A.(2,1)B.(-2,-1)C.(-2,1)D.(2,-1)【正确答案】:B【解析】:直接利用顶点式的特点可求顶点坐标.【解答】:解:∵y=(x+2)2-1是抛物线的顶点式,∴抛物线的顶点坐标为(-2,-1).故选:B.【点评】:本题主要考查的是二次函数的性质,掌握二次函数的三种形式是解题的关键.2.(单选题,3分)如图,直线l1 || l2 || l3,直线l4被l1,l2,l3所截得的两条线段分别为CD、DE,直线l5被l1,l2,l3所截得的两条线段分别为FG、GH.若CD=1,DE=2,FG=1.2,则GH的长为()A.0.6B.1.2C.2.4D.3.6【正确答案】:C【解析】:根据平行线分线段成比例定理得出CDDE = FGGH,再求出答案即可.【解答】:解:∵直线l1 || l2 || l3,∴ CD DE = FGGH,∵CD="1",DE="2",FG="1".2,∴ 1 2 = 1.2GH,∴GH="2".4,故选:C.【点评】:本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.3.(单选题,3分)已知点P(1,y1),Q(2,y2)是反比例函数y= 3x图象上的两点,则()A.y1<y2<0B.y2<y1<0C.0<y1<y2D.0<y2<y1【正确答案】:D【解析】:先根据反比例函数的解析式判断出函数的图象所在的象限,再由P、Q两点横坐标的特点即可得出结论.【解答】:解:∵y= 3x中k=3>0,∴此函数图象的两个分支分别位于第一、三象限,且在每一象限内y随x的增大而减小,∵1<2,∴0<y2<y1,故选:D.【点评】:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数的增减性是解答此题的关键.4.(单选题,3分)将Rt△ABC的各边长都缩小为原来的12,则锐角A的正弦值()A.不变B.缩小为原来的 12C.扩大为原来的2倍D.缩小为原来的 14【正确答案】:A【解析】:根据正弦的定义计算,判断即可.【解答】:解:设AC=b ,AB=c ,BC=a ,则sinA= a c ,由题意得,缩小后三边长是A′C′= 12 b ,A′B′= 12 c ,B′C′= 12 a ,∴sinA′= 12a 12c = a c,∴锐角A 的正弦值不变,故选:A .【点评】:本题考查的是锐角三角函数的定义,掌握锐角A 的对边a 与斜边c 的比叫做∠A 的正弦是解题的关键.5.(单选题,3分)如图,二次函数y="ax"2+bx+c 的图象经过点A (-1,0),B (3,0)和C (0,-1),则下列结论错误的是( )A.二次函数图象的对称轴是直线x=1B.方程ax 2+bx+c="0"的两根是x 1="-1",x 2=3C.当x <1时,函数值y 随自变量x 的增大而减小D.函数y=ax 2+bx+c 的最小值是-2【正确答案】:D【解析】:A.由点A、B的坐标得到二次函数图象的对称轴,即可求解;B.由函数图象知,y="ax"2+bx+c与x轴交点坐标为(-1,0)、(3,0),即可求解;C.抛物线的对称轴为直线x="1",根据对称轴左侧函数的增减性,即可求解;D.由点A、B、C的坐标求出抛物线表达式,即可求解.【解答】:A.由点A、B的坐标知,二次函数图象的对称轴是直线x= 12(3-1)=1,故A正确,不符合题意;B.由函数图象知,y="ax"2+bx+c与x轴交点坐标为(-1,0)、(3,0),故方程ax2+bx+c="0"的两根是x1="-1",x2="3",故B正确,不符合题意;C.抛物线的对称轴为直线x=1,从图象看,当x<1时,函数值y随自变量x的增大而减小,故C正确,不符合题意;D.设抛物线的表达式为y="a"(x-x1)(x-x2)="a"(x+1)(x-3),当x="0"时,y="a"(0+1)(0-3)="-1",解得a= 13,故抛物线的表达式为y= 13(x+1)(x-3),当x=1时,函数y="ax"2+bx+c的最小值为13(1+1)(1-3)="-" 43≠-2,故D错误,符合题意,故选:D.【点评】:本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.6.(单选题,3分)如图,AB是⊙O的直径,C、D是⊙O上的两点,∠CDB=20°,则∠ABC 的度数为()A.20°B.40°C.70°D.90°【正确答案】:C【解析】:根据圆周角定理得出∠CAB=∠CDB,∠ACB=90°,再根据直角三角形的性质求出即可.【解答】:解:∵∠CDB="20"°,∴∠CAB=∠CDB="20"°(圆周角定理),∵AB是⊙O的直径,∴∠ACB="90"°,∴∠ABC="90"°-∠CAB="90"°-20°=70°,故选:C.【点评】:本题考查了圆周角定理和直角三角形的性质,注意:一条弧所对的圆周角等于圆心角的一半,直径所对的圆周角是直角,直角三角形的两锐角互余.7.(单选题,3分)如图,在平面直角坐标系xOy中有两点A(-2,0)和B(-2,-1),以原点O为位似中心作△COD,△COD与△AOB的相似比为2,其中点C与点A对应,点D与点B 对应,且CD在y轴左侧,则点D的坐标为()A.(4,2)B.(-4,-2))C.(1,12)D.(-1,- 12【正确答案】:B【解析】:直接利用位似图形的性质得出对应点坐标.【解答】:解:∵点A(-2,0)和B(-2,-1),以原点O为位似中心作△COD,△COD与△AOB的相似比为2,点C与点A对应,点D与点B对应,且CD在y轴左侧,∴点D的坐标为(-4,-2).故选:B.【点评】:此题主要考查了位似变换,正确得出对应点位置是解题关键.8.(单选题,3分)如图,AB是⊙O的直径,AB=4,P是圆周上一动点(点P与点A、点B 不重合),PC⊥AB,垂足为C,点M是PC的中点.设AC长为x,AM长为y,则表示y与x 之间函数关系的图象大致为()A.B.C.D.【正确答案】:B【解析】:证明∠PAC=∠BPC,则PC2="AC"•BC=x(4-x),进而求解.【解答】:解:∵AB是直径,则∠APB="90"°,则∠BPC+∠APC="90"°,而∠APC+∠PAC="90"°,∴∠PAC=∠BPC,则tan∠PAC="tan"∠BPC,则PCAC =BCPC,即PC2="AC"•BC=x(4-x),∵点M是PC的中点,则CM2= 14 PC2="x-" 14x2,则y2="MC"2+AC2="x-" 14 x2+x2= 34x2+x(0<x<4),即y2是开口向上的抛物线,∵x为1时,y值大于1,故选:B.【点评】:本题考查的是动点问题的函数图象,确定函数的表达式是本题解题的关键.9.(填空题,3分)已知扇形的圆心角为60°,半径为2,则扇形的弧长为___ (结果保留π).【正确答案】:[1] 23π【解析】:已知扇形的圆心角为60°,半径为2,代入弧长公式计算.【解答】:解:依题意,n=60,r=2,∴扇形的弧长= nπr180 = 60π×2180= 23π.故答案为23π.【点评】:本题考查了弧长公式的运用.关键是熟悉公式:扇形的弧长= nπr180.10.(填空题,3分)已知△ABC中,D是BC上一点,添加一个条件使得△ABC∽△DAC,则添加的条件可以是___ .【正确答案】:[1]∠B=∠DAC【解析】:由相似三角形的判定定理可求解.【解答】:解:添加∠B=∠DAC,又∵∠C=∠C,∴△ABC∽△DAC,故答案为:∠B=∠DAC(答案不唯一).【点评】:本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.11.(填空题,3分)已知点P(x1,y1)、Q(x2,y2)是反比例函数y= 2x图象上的两点,其中x1+x2="0",则y1+y2=___ .【正确答案】:[1]0【解析】:根据反比例函数图象上点的坐标特征,把两个点的坐标分别代入解析式得出y1=2 x1,y2= 2x2,然后利用y1+y2= 2x1+ 2x2= 2(x1+x2)x1x2即可求得结果.【解答】:解:∵点P(x1,y1)、Q(x2,y2)是反比例函数y= 2x图象上的两点,∴y1= 2x1,y2= 2x2,∵x1+x2="0",∴y1+y2= 2x1 + 2x2= 2(x1+x2)x1x2="0",故答案为0.【点评】:本题考查了反比例函数图象上点的坐标特征,反比例函数图象的点的坐标适合解析式是关键.12.(填空题,3分)如图,▱ABCD中,E是AD中点,BE与AC交于点F,则△AEF与△CBF 的面积比为___ .【正确答案】:[1]1:4【解析】:由平行四边形可得△AEF∽△CBF,且相似比是12,面积比为相似比平方即可得答案;【解答】:解:∵平行四边形ABCD,∴AD || BC,AE="BC",∴∠FAE=∠FCB,∠FEA=∠FBC,∴△AEF∽△CBF,∴S△AEF:S△CBF=(AE:BC)2,∵E为AD中点,∴AE:AD="1":2,∴AE:BC="1":2,∴S△AEF:S△CBF="1":4,故答案为:1:4.【点评】:本题考查相似三角形面积比等于相似比的平方及相似三角形的判定,题目较容易.13.(填空题,3分)二次函数y=x2-2x-3的最小值是___ .【正确答案】:[1]-4【解析】:求开口向上的抛物线的最小值即求其定点的纵坐标,再由二次函数的顶点式解答即可.【解答】:解:∵二次函数y=x2-2x-3可化为y=(x-1)2-4,∴最小值是-4.【点评】:本题考查二次函数的最值问题,二次函数是初中数学最重要的考点之一,对于其顶点公式(−b2a ,4ac−b24a)必须熟记.14.(填空题,3分)如图,A、B、C是⊙O上三点,BC⊥OA,垂足为D.已知OA=3,AD=1,则BC长为___ .【正确答案】:[1]2 √5【解析】:连接OB,先由垂径定理得BD=CD,再由勾股定理求出BD= √5,即可得出答案.【解答】:解:连接OB,如图所示:∵BC⊥OA,∴BD="CD",∵OB=OA=3,AD=1,∴OD="OA-AD"=2,∴BD= √OB2−OD2 = √32−22 = √5,∴BC="2BD"=2 √5,故答案为:2 √5.【点评】:本题考查了垂径定理和勾股定理;熟练掌握垂径定理和勾股定理是解题的关键,属于中考常考题型.15.(填空题,3分)如图是某商场自动扶梯的示意图.自动扶梯AB的倾斜角为30°在自动扶梯下方地面C处测得扶梯顶端B的仰角为60°,A、C之间的距离为6m,则自动扶梯的垂直高度BD=___ m.(结果保留根号)【正确答案】:[1]3 √3【解析】:根据等腰三角形的性质和三角形的外角的性质得到BC=AC=6m,根据三角函数的定义即可得到结论.【解答】:解:∵∠BCD=∠BAC+∠ABC,∠BAC="30"°,∠BCD=60°,∴∠ABC=∠BCD-∠BAC="30"°,∴∠BAC=∠ABC,∴BC="AC"=6m,在Rt△BDC中,=3 √3(m),∵BD="BC"•sin∠BCD=6× √32故答案为:3 √3.【点评】:本题考查了解直角三角形的应用-仰角俯角问题,坡度坡角问题,含30度角的直角三角形,解决本题的关键是掌握仰角俯角定义.16.(填空题,3分)《九章算术》是我国古代数学名著,也是古代东方数学的代表作之一.书中记载了一个问题:“今有勾五步,股十二步,问勾中容圆径几何?”译文:“如图,今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该直角三角形内切圆的直径为___ 步.【正确答案】:[1]4【解析】:如图,∠C=90°,BC=5,AC=12,⊙O为Rt△ABC的内切圆,分别与三边切于D、E、F,连接OD、OE,如图,设⊙O的半径为r,根据切线的性质得到OD⊥BC,OE⊥AC,再证明矩形ODCE为正方形得到CD=CE=OD=r,所以BF=BF=5-r,AE=AF=12-r,所以5-r+12-r=13,解方程求出r,从而得到⊙O的直径.【解答】:解:如图,∠C=90°,BC=5,AC=12,⊙O为Rt△ABC的内切圆,分别与三边切于D、E、F,连接OD、OE,如图,设⊙O的半径为r,∵AC、BC与⊙O相切,∴OD⊥BC,OE⊥AC,∴四边形ODCE为矩形,而CD="CE",∴矩形ODCE为正方形,∴CD="CE"=OD=r,∴BD=5-r,AE=12-r,∵BD="BF",AF=AE,∴BF=5-r,AF=12-r,∵AB= √52+122 ="13",∴5-r+12-r="13",解得r=2,∴⊙O的直径为4.故答案为4.【点评】:本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了切线的性质.17.(问答题,5分)计算: √8 -2sin45°+2cos60°+|1- √2 |.【正确答案】:无【解析】:直接利用特殊角的三角函数值、绝对值的性质、二次根式的性质分别化简得出答案.【解答】:解:原式="2" √2 -2× √22 +2× 12 + √2 -1="2" √2 - √2 +1+ √2 -1="2" √2 .【点评】:此题主要考查了实数运算,正确化简各数是解题关键.18.(问答题,5分)已知抛物线y="x"2+bx+c 经过两点A (4,0),B (2,-4).(1)求该抛物线的表达式;(2)在平面直角坐标系xOy 内画出抛物线的示意图;(3)若直线y="mx"+n 经过A ,B 两点,结合图象直接写出不等式x 2+bx+c <mx+n 的解集.【正确答案】:无 【解析】:(1)将点A 、B 坐标代入二次函数解析式即可求得;(2)根据二次函数的解析式化成函数图象即可;(3)根据图象即可求得.【解答】:解:(1)∵抛物线y="x"2+bx+c 经过两点A (4,0),B (2,-4).∴ {16+4b +c =04+2b +c =−4, 解得 {b =−4c =0, ∴抛物线的表达式为y="x"2-4x .(2)画出函数图象如图;(3)由图象可知,不等式x2+bx+c<mx+n的解集为2<x<4.【点评】:本题主要考查待定系数法求二次函数的解析式及二次函数图象和性质,正确画出图象,利用数形结合是解题的关键,19.(问答题,5分)如图,AB⊥BC,EC⊥BC,点D在BC上,AB="1",BD=2,CD=3,CE=6.(1)求证:△ABD∽△DCE;(2)求∠ADE的度数.【正确答案】:无【解析】:(1)利用“两边及夹角”法进行推理论证;(2)根据(1)中相似三角形的性质、补角的定义进行解答.【解答】:(1)证明:∵AB⊥BC,EC⊥BC,点D在BC上,∴∠ABD=∠DCE="90"°.∵AB=1,BD=2,CD=3,CE=6,∴ AB BD = 12,DCCE= 12.∴ AB BD = DCCE.∴△ABD∽△DCE;(2)由(1)知,△ABD∽△DCE,则∠BAD=∠EDC.∵∠BAD+∠ADB="90"°,∴∠ADB+∠EDC="90"°.∴∠ADE="180"°-∠ADB-∠EDC="90"°.【点评】:本题主要考查了相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.20.(问答题,5分)如图,四边形ABCD中,∠CBA=∠CAD=90°,∠BCA=45°,∠ACD=60°,BC= √2,求AD的长.【正确答案】:无【解析】:根据等腰直角三角形的性质和勾股定理可求AC,再根据含30度角的直角三角形的性质即可求解.【解答】:解:∵∠CBA=90°,∠BCA=45°,BC= √2,∴AB= √2,∴AC= √(√2)2+(√2)2 ="2",∵∠CAD=90°,∠ACD=60°,∴AD="AC"•tan60°="2" √3.【点评】:考查了勾股定理,等腰直角三角形的性质,含30度角的直角三角形的性质,关键是求出AC.与直线l1交于A(1,2)和B(-2,m).21.(问答题,5分)已知双曲线y= kx(1)求k、m值;(2)将直线l1平移得到l2:y="ax"+b,且l1,l2与双曲线围成的封闭区域内(不含边界)恰有3个整点(把横纵坐标均为整数的点称为整点)结合图象,直接写出b的取值范围.【正确答案】:无【解析】:(1)把两点坐标代入反比例函数的解析式,便可求得结果;(2)观察图象,若直线l2在直线l1的下方时,则有整点(1,1),(0,0),(-1,-1),若直线l2在直线l1的上方时,则有整点(-2,0),(-1,-1),(0,2)据此解答便可.上,【解答】:解:(1)∵点A(1,2)在双曲线y= kx∴k="1"×2=2.∴双曲线的表达式为y= 2x上,∵点B(-2,m)在双曲线y= 2x="-1";∴m= 2−2(2)由函数图象可知,若直线l2在直线l1的下方时,-1≤b<0;若直线l2在直线l1的上方时,2<b≤3;综上,b的取值范围是:-1≤b<0或2<b≤3.【点评】:本题是一次函数图象与反比例函数图象的交点问题,主要考查了待定系数法求函数解析式,数形结合的思想是解题的关键22.(问答题,6分)如图,AB是⊙O的直径,C、D是圆上两点,CD="BD",过点D作AC 的垂线分别交AC,AB延长线于点E,F.(1)求证:EF是⊙O的切线;,求⊙O的半径.(2)若AE=3,sin∠EAF= 45【正确答案】:无【解析】:(1)连接OD,AD,由等腰三角形的性质得出∠CAD=∠DAB,∠ADO=∠DAB,由直角三角形的性质可得出EF⊥OD,则可得出结论;(2)设EF="4k",AF=5k(k>0),则AE=3k,求出k=1,证明△FOD∽△FAE,由相似三角形的性质得出FOFA =ODAE,则可求出答案.【解答】:(1)证明:连接OD,AD,∵CD="BD",∴∠CAD=∠DAB,∵OA="OD",∴∠ADO=∠DAB,∴∠CAD=∠ADO,∵AE⊥ED,∴∠AED="90"°,∴∠EAD+∠EDA="90"°,∴∠ADO+∠EDA="90"°,∴EF⊥OD,∴EF是⊙O的切线;(2)解:在Rt△AEF中,∠AEF="90"°,∴sin∠EAF= EFAF,∵sin∠EAF= 45,设EF="4k",AF=5k(k>0),则AE=3k,∵AE=3,∴k="1",∴AF=5,∵EF⊥OD,EF⊥AE,∴OD || AE,∴△FOD∽△FAE,∴ FO FA =ODAE,∴ 5−r5=r3,∴r= 15.8【点评】:本题主要考查了切线的判定,圆周角定理,等腰三角形的性质,相似三角形的判定与性质,锐角三角函数,解题的关键是熟练掌握切线的判定.23.(问答题,7分)已知抛物线y="ax"2+bx+3a与y轴交于点P,将点P向右平移4个单位得到点Q,点Q也在抛物线上.(1)抛物线的对称轴是直线x="___" ;(2)用含a的代数式表示b;(3)已知点M(1,1),N(4,4a-1),抛物线与线段MN恰有一个公共点,求a的取值范围.【正确答案】:2【解析】:(1)先求得点P的坐标,再根据平移的性质得到点Q的坐标;由于点P、点Q的坐标关于对称轴对称,可以求得该抛物线的对称轴;(2)根据对称轴公式即可求得;(3)根据题意,可以画出相应的函数图象,然后利用分类讨论的方法即可得到a的取值范围.【解答】:解:(1)∵抛物线y="ax"2+bx+3a与y轴交于点P,∴P(0,3a),∵将点P向右平移4个单位得到点Q,∴Q(4,3a);∵P与Q关于对称轴x="2"对称,∴抛物线对称轴直线x="2",故答案为2;(2)∵抛物线对称轴直线x="2",="2",∴- b2a∴b="-4a";(3)解:由(2)可知,抛物线的表达式为y="ax"2-4ax+3a,令y="0",解得:x1="1",x2="3",∴抛物线经过(1,0)和(3,0)设点R(1,y1),S(4,y2)在抛物线上,则y1="0",y2="3"a.故此点M在R上方,① 当a>0时,若使抛物线与线段恰有一个公共点,需满足点N与点S重合(如图1)或点N在点S下方(如图2),即3a≥4a-1,解得:a≤1,即0<a≤1,② 当a<0时,3a>4a-1,故此点N在点S下方,此时抛物线与线段恰有一个公共点(如图3),综上所述:a的取值范围是:a<0或0<a≤1.【点评】:本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合是解题的关键.24.(问答题,7分)如图,矩形ABCD中,AD>AB,DE平分∠ADC交BC于点E,将线段AE绕点A逆时针旋转90°得到线段AF,连接EF,AD与FE交于点O.(1)① 补全图形;② 设∠EAB的度数为α,直接写出∠AOE的度数(用含α的代数式表示).(2)连接DF,用等式表示线段DF,DE,AE之间的数量关系,并证明.【正确答案】:无【解析】:(1)① 按意补全图形即可;② 由旋转的性质得出∠EAF="90"°,AE=AF,由等腰三角形的性质得出∠F=45°,由三角形的外角得出答案;(2)延长DE,AB交于点G,证明△FAD≌△EAG(SAS),由全等三角形的性质得出∠FDA=∠EGA=45°,得出∠FDE="90"°,由勾股定理可得出结论.【解答】:解:(1)① 补全图形如下:② ∵将线段AE绕点A逆时针旋转90°得到线段AF,∴∠EAF="90"°,AE="AF",∴∠F=∠AEF="45"°,∵∠DAB="90"°,∴∠EAB=∠DAF=α,∴∠AOE=∠F+∠AOF="45"°+α.(2)DF2+DE2="2AE"2.证明:延长DE,AB交于点G,∵四边形ABCD是矩形,∴∠ADC=∠DAB="90"°,∵DE平分∠ADC,∴∠ADE="45"°,∴AD=AG,∵∠FAE="90"°,∴∠FAD+∠DAE="90"°,∵∠DAE+∠EAG="90"°,∴∠FAD=∠EAG,∵AF="AE",∴△FAD≌△EAG(SAS),∴∠FDA=∠EGA="45"°,∴∠FDE=∠FDA+∠ADE="90"°,∴DF2+DE2="FE"2,∵FE2="AF"2+AE2="2AE"2,∴DF2+DE2="2AE"2.【点评】:本题属于四边形综合题,考查了旋转的性质,矩形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题,属于中考常考题型.25.(问答题,7分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P是图形M 上的任意一点,Q是图形N上任意一点,如果P,Q两点间距离有最小值,则称这个最小值为图形M,N的“最小距离”,记作d(M,N).已知⊙O的半径为1.(1)如图,P(4,3),则d(点O,⊙O)="___" ,d(点P,⊙O)="___" .̂的度数为60°.(2)已知A、B是⊙O上两点,且AB① 若AB || x轴且在x轴上方,直线l:y= √3 x-2,求d(l,AB)的值;② 若点R坐标为(√2,1),直接写出d(点R,AB)的取值范围.【正确答案】:1; 4【解析】:(1)利用勾股定理求出OP的长,再根据图形M,N的“最小距离”的定义求解即可.(2)① 如图1中,不妨假设点B在点A的右侧,连接OA,OB,设直线y= √3 x-2交x轴于C,交y轴于D,过点O作OE⊥CD于E.证明OB || CD,求出OE即可解决问题.② 如图2中,连接OR.当点B或点A在OR时,d(R,AB)的值最小,如图3中,当OR⊥AB交AB于E时,d(R,AB)的值最大,分别求出最大值与最小值即可解决问题.【解答】:解:(1)∵P(4,3),∴OP= √32+42 ="5",∵⊙O的半径为1,∴d(点O,⊙O)="1",d(点P,⊙O)="5"-1=4,故答案为:1,4.(2)① 如图1中,不妨假设点B在点A的右侧,连接OA,OB.设直线y= √3 x-2交x轴于C,交y轴于D,,0),则D(0,-2),C(2√33= √3,∴tan∠OCB= ODOC∴∠OCB="60"°,∵ AB̂的度数为60°,∴∠AOB="60"°,∵OA=OB,∴△AOB是等边三角形,∴∠ABO="60"°,∵AB || x轴,∴∠ABO=∠BOC="60"°,∴∠BOC=∠OCD,∴OB || CD,过点O作OE⊥CD于E.∵∠ODE="30"°,∠OED=90°,∴OE= 12 OD=2, ∴d (l ,AB )="1".② 如图2中,连接OR . ∵R ( √2 ,1),∴OR= √12+(√2)2= √3 ,当点B 或点A 在OR 时,d (R ,AB )的值最小,最小值= √3 -1.如图3中,当OR⊥AB 交AB 于E 时,d (R ,AB )的值最大,最大值="RE"=OR+OE= √3 +√32 = 3√32 ,∴ √3 -1≤d (r ,AB )≤3√32 .【点评】:本题属于圆综合题,考查了点与圆的位置关系,等边三角形的判定和性质,勾股定理,图形M ,N 的“最小距离”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.。
北京课改版数学九年级上册21.4《圆周角》教学设计
![北京课改版数学九年级上册21.4《圆周角》教学设计](https://img.taocdn.com/s3/m/e796c250cd1755270722192e453610661ed95aef.png)
北京课改版数学九年级上册21.4《圆周角》教学设计一. 教材分析《圆周角》是北京课改版数学九年级上册第21.4节的内容,主要介绍了圆周角的定义、性质和应用。
本节内容是在学生已经掌握了圆的基本概念、弧、弦、圆心角等知识的基础上进行教学的。
通过本节内容的学习,使学生能够理解圆周角的含义,掌握圆周角的性质,并能够运用圆周角的知识解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象力,对于圆的基本概念和性质有一定的了解。
但是,对于圆周角的定义和性质的理解,以及如何运用圆周角解决实际问题,还需要通过本节课的教学来进一步提高。
三. 教学目标1.理解圆周角的定义,掌握圆周角的性质。
2.能够运用圆周角的知识解决一些实际问题。
3.培养学生的空间想象力,提高学生的解决问题的能力。
四. 教学重难点1.圆周角的定义和性质。
2.如何运用圆周角的知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论等方式,自主探索圆周角的性质。
2.通过实例讲解,让学生了解圆周角在实际问题中的应用。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学PPT,包括圆周角的定义、性质和应用的实例。
2.准备一些实际的数学问题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一个实际的数学问题,引导学生回顾已学的圆的基本知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过PPT展示圆周角的定义和性质,让学生初步了解圆周角的概念。
同时,引导学生通过观察、思考,自主探索圆周角的性质。
3.操练(15分钟)教师通过一些具体的实例,让学生了解圆周角在实际问题中的应用。
同时,引导学生通过自主练习,巩固对圆周角性质的理解。
4.巩固(10分钟)教师提出一些问题,让学生进行小组讨论,进一步巩固对圆周角的理解。
5.拓展(10分钟)教师提出一些拓展问题,引导学生运用圆周角的知识解决实际问题,提高学生的解决问题的能力。
2020-2021学年上学期九年级第一阶段考试数学试题及答案
![2020-2021学年上学期九年级第一阶段考试数学试题及答案](https://img.taocdn.com/s3/m/6f34c6dca45177232f60a2d0.png)
2020-2021学年上学期九年级第一阶段考试数学试题(考试时间:100分钟试卷满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是( )。
A B C D2.用配方法解方程 x2-6x+8=0 时,方程可变形为 ( )A.(x-3)2=1 B.(x-3)2=-1 C.(x+3)2=1 D.(x+3)2=-13.关于x的一元二次方程x2+kx-2=0(k为实数)根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.不能确定4.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+35.平行于x轴的直线与抛物线y=a(x-2)2的一个交点坐标是(-1,2),则另一个交点的坐标是( ) A.(1,2) B.(1,-2) C.(5,2) D.(-1,4)6.在抛物线y=ax2﹣2ax﹣7上有A(﹣4,y1)、B(2,y2)、C(3,y3)三点,若抛物线开口向下,则y1、y2和y3的大小关系为() A.y1<y3<y2 B.y3<y2<y1C.y2<y1<y3 D.y1<y2<y37.在平面直角坐标系中,把点A(3,4)绕原点逆时针旋转90°,得到点B,则点B的坐标为( )A.(4,-3) B.(-4,3) C.(-3,4) D.(-3,-4)8.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.9.如图,△ABC中,将△ABC绕点A顺时针旋转40°后,得到△AB′C′,且C′在边BC上,则∠A C′C的度数为( )A.50° B.60° C.70° D.80°10、二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1.给出下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中正确的结论有( )A.1个 B.2个 C.3个 D.4个二.填空题(每小题3分,共18分)11.若一元二次方程ax2﹣bx﹣2020=0有一个根为x=﹣1,则a+b= .12.若二次函数y=(2﹣m)x|m|﹣3的图象开口向下,则m的值为.13.若关于x的一元二次方程(k﹣1)x2+6x+3=0有实数根,则实数k的取值范围为.14.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是________.15.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,下列结论中:①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2;正确的有(填序号)三. 解答题(共75分)16.(8分)解方程:(1)x2+3x=1 (2)3x(x-2)=2(x-2).17.(9分)已知关于x的一元二次方程x2-(2m-2)x+(m2-2m)=0.(1)求证:方程有两个不相等的实数根;(2)等腰△ABC的一边是3,另两边是此方程的两个根,求△ABC的周长.18.(9分)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(1,1)、B(5,1)、C(4,4)(1) 将△ABC向左平移5个单位得到△A1B1C1,画出△A1B1C1并写出三顶点的坐标。
北京市西城区三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(基础题)知识点分类
![北京市西城区三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(基础题)知识点分类](https://img.taocdn.com/s3/m/f12bb67c32687e21af45b307e87101f69e31fbce.png)
北京市西城区三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(基础题)知识点分类一.解一元二次方程-配方法(共2小题)1.(2021秋•西城区期末)解方程:x2﹣2x﹣2=0.2.(2022秋•西城区期末)解方程:x2﹣4x+2=0.二.根的判别式(共2小题)3.(2020秋•西城区期末)已知关于x的方程x2+2x+k﹣4=0.(1)如果方程有两个不相等的实数根,求k的取值范围;(2)若k=1,求该方程的根.4.(2021秋•西城区期末)已知关于x的一元二次方程x2﹣(k+5)x+6+2k=0.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于﹣1,求k的取值范围.三.二次函数的性质(共3小题)5.(2020秋•西城区期末)已知抛物线y=﹣x2+x.(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;(2)已知该抛物线经过A(3n+4,y1),B(2n﹣1,y2)两点.①若n<﹣5,判断y1与y2的大小关系并说明理由;②若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.6.(2021秋•西城区期末)已知二次函数y=x2+4x+3.(1)求此函数图象的对称轴和顶点坐标;(2)画出此函数的图象;(3)若点A(0,y1)和B(m,y2)都在此函数的图象上,且y1<y2,结合函数图象,直接写出m的取值范围.7.(2022秋•西城区期末)已知二次函数y=x2﹣2x﹣3.(1)将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式,并写出它的顶点坐标;(2)在所给的平面直角坐标系中画出此函数的图象;(3)当﹣1<x<2时,结合图象,直接写出函数值y的取值范围.四.待定系数法求二次函数解析式(共1小题)8.(2020秋•西城区期末)二次函数y=ax2+bx+c(a≠0)的图象经过(3,0)点,当x=1时,函数的最小值为﹣4.(1)求该二次函数的解析式并画出它的图象;(2)直线x=m与抛物线y=ax2+bx+c(a≠0)和直线y=x﹣3的交点分别为点C,点D,点C位于点D的上方,结合函数的图象直接写出m的取值范围.五.二次函数的应用(共1小题)9.(2021秋•西城区期末)某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y(单位:m)与行进的水平距离x(单位:m)之间关系的图象如图所示.已知篮球出手位置A与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m.(1)图中点B表示篮筐,其坐标为 ,篮球行进的最高点C的坐标为 ;(2)求篮球出手时距地面的高度.六.垂径定理(共1小题)10.(2022秋•西城区期末)如图,AB是⊙O的一条弦,点C是AB的中点,连接OC并延长交劣弧AB于点D,连接OB,DB.若AB=4,CD=1,求△BOD的面积.七.切线的判定与性质(共1小题)11.(2020秋•西城区期末)如图,AB为⊙O的直径,AC为弦,点D在⊙O外,∠BCD=∠A,OD交⊙O于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,AC=2.7,cos∠BCD=,求DE的长.八.特殊角的三角函数值(共1小题)12.(2020秋•西城区期末)计算:2sin60°﹣tan45°+cos230°.北京市西城区三年(2020-2022)九年级上学期期末数学试题汇编-03解答题(基础题)知识点分类参考答案与试题解析一.解一元二次方程-配方法(共2小题)1.(2021秋•西城区期末)解方程:x2﹣2x﹣2=0.【答案】见试题解答内容【解答】解:移项,得x2﹣2x=2,配方,得x2﹣2x+1=2+1,即(x﹣1)2=3,开方,得x﹣1=±.解得x1=1+,x2=1﹣.2.(2022秋•西城区期末)解方程:x2﹣4x+2=0.【答案】见试题解答内容【解答】解:x2﹣4x+2=0x2﹣4x=﹣2x2﹣4x+4=﹣2+4(x﹣2)2=2,则x﹣2=±,解得:x1=2+,x2=2﹣.二.根的判别式(共2小题)3.(2020秋•西城区期末)已知关于x的方程x2+2x+k﹣4=0.(1)如果方程有两个不相等的实数根,求k的取值范围;(2)若k=1,求该方程的根.【答案】(1)k<5;(2)x1=1,x2=﹣3.【解答】解:(1)Δ=22﹣4×1×(k﹣4)=20﹣4k.∵方程有两个不相等的实数根,∴Δ>0.∴20﹣4k>0,解得k<5;∴k的取值范围为k<5.(2)当k=1时,原方程化为x2+2x﹣3=0,(x﹣1)(x+3)=0,x﹣1=0或x+3=0,解得x1=1,x2=﹣3.4.(2021秋•西城区期末)已知关于x的一元二次方程x2﹣(k+5)x+6+2k=0.(1)求证:此方程总有两个实数根;(2)若此方程恰有一个根小于﹣1,求k的取值范围.【答案】(1)见解答;(2)k<﹣4.【解答】(1)证明:∵Δ=(k+5)2﹣4(6+2k)=k2+2k+1=(k+1)2≥0,∴此方程总有两个实数根;(2)∵x=,∴x1=2,x2=k+3,∵此方程恰有一个根小于﹣1,∴k+3<﹣1,解得k<﹣4,即k的取值范围为k<﹣4.三.二次函数的性质(共3小题)5.(2020秋•西城区期末)已知抛物线y=﹣x2+x.(1)直接写出该抛物线的对称轴,以及抛物线与y轴的交点坐标;(2)已知该抛物线经过A(3n+4,y1),B(2n﹣1,y2)两点.①若n<﹣5,判断y1与y2的大小关系并说明理由;②若A,B两点在抛物线的对称轴两侧,且y1>y2,直接写出n的取值范围.【答案】(1)x=1,(0,0);(2)①y1<y2;②﹣1<n<﹣.【解答】解:(1)∵y=﹣x2+x,∴对称轴为直线x=﹣=1,令x=0,则y=0,∴抛物线与y轴的交点坐标为(0,0),(2)x A﹣x B=(3n+4)﹣(2n﹣1)=n+5,x A﹣1=(3n+4)﹣1=3n+3=3(n+1),x B﹣1=(2n﹣1)﹣1=2n﹣2=2(n﹣1).①当n<﹣5时,x A﹣1<0,x B﹣1<0,x A﹣x B<0.∴A,B两点都在抛物线的对称轴x=1的左侧,且x A<x B,∵抛物线y=﹣x2+x开口向下,∴在抛物线的对称轴x=1的左侧,y随x的增大而增大.∴y1<y2;②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得,∴不等式组无解,若点B在对称轴直线x=1的左侧,点A在对称轴直线x=1的右侧时,由题意可得:,∴﹣1<n<﹣,综上所述:﹣1<n<﹣.6.(2021秋•西城区期末)已知二次函数y=x2+4x+3.(1)求此函数图象的对称轴和顶点坐标;(2)画出此函数的图象;(3)若点A(0,y1)和B(m,y2)都在此函数的图象上,且y1<y2,结合函数图象,直接写出m的取值范围.【答案】(1)对称轴为直线x=﹣2,顶点(﹣2,﹣1);(2)见解析;(3)m>0或m<﹣4.【解答】解:(1)y=x2+4x+3=(x+2)2﹣1,∴对称轴为直线x=﹣2,顶点(﹣2,﹣1);(2)如图:(3)∵点A(0,y1)和B(m,y2)都在此函数的图象上,且y1<y2,∴2<|m+2|,∴m>0或m<﹣4.7.(2022秋•西城区期末)已知二次函数y=x2﹣2x﹣3.(1)将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式,并写出它的顶点坐标;(2)在所给的平面直角坐标系中画出此函数的图象;(3)当﹣1<x<2时,结合图象,直接写出函数值y的取值范围.【答案】(1)y=(x﹣1)2﹣4,顶点坐标为(1,﹣4);(2)图象见解答;(3)﹣4≤y<0.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4.∴该函数的顶点坐标为(1,﹣4);(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4=(x﹣3)(x+1),∴该函数的顶点坐标为(1,﹣4),与x轴的交点为(3,0),(﹣1,0),经过点(0,﹣3)和点(2,﹣3),函数图象如图所示;(3)当﹣1<x<2时,由图象可知,y的取值范围是﹣4≤y<0.四.待定系数法求二次函数解析式(共1小题)8.(2020秋•西城区期末)二次函数y=ax2+bx+c(a≠0)的图象经过(3,0)点,当x=1时,函数的最小值为﹣4.(1)求该二次函数的解析式并画出它的图象;(2)直线x=m与抛物线y=ax2+bx+c(a≠0)和直线y=x﹣3的交点分别为点C,点D,点C位于点D的上方,结合函数的图象直接写出m的取值范围.【答案】(1)y=(x﹣1)2﹣4;(2)m<0或m>3.【解答】解:(1)∵当x=1时,二次函数y=ax2+bx+c(a≠0)的最小值为﹣4,∴二次函数的图象的顶点为(1,﹣4),∴二次函数的解析式可设为y=a(x﹣1)2﹣4(a≠0),∵二次函数的图象经过(3,0)点,∴a(3﹣1)2﹣4=0.解得a=1.∴该二次函数的解析式为y=(x﹣1)2﹣4;如图,(2)由图象可得m<0或m>3.五.二次函数的应用(共1小题)9.(2021秋•西城区期末)某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度y(单位:m)与行进的水平距离x(单位:m)之间关系的图象如图所示.已知篮球出手位置A与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m.(1)图中点B表示篮筐,其坐标为 (4.5,3.05) ,篮球行进的最高点C的坐标为 (3,3.3) ;(2)求篮球出手时距地面的高度.【答案】(1)(4.5,3.05),(3,3.3);(2)篮球出手时距地面的高度为2.3米.【解答】解:(1)∵篮球出手位置A与篮筐的水平距离为4.5m,篮筐距地面的高度为3.05m;当篮球行进的水平距离为3m时,篮球距地面的高度达到最大为3.3m,∴点B表示篮筐,其坐标为(4.5,3.05),篮球行进的最高点C的坐标为(3,3.3);故答案为:(4.5,3.05),(3,3.3);(2)设抛物线的解析式为y=a(x﹣3)2+3.3,把B(4.5,3.05)代入得,3.05=a(4.5﹣3)2+3.3,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+3.3,当x=0时,y=2.3,答:篮球出手时距地面的高度为2.3米.六.垂径定理(共1小题)10.(2022秋•西城区期末)如图,AB是⊙O的一条弦,点C是AB的中点,连接OC并延长交劣弧AB于点D,连接OB,DB.若AB=4,CD=1,求△BOD的面积.【答案】.【解答】解:设⊙O的半径是r,∵点C是AB的中点,OC过圆心O,∴OC⊥AB,∵AB=4,CD=1,∴BC=AB=2,OC=OD﹣CD=r﹣1,∵OB2=OC2+BC2,∴r2=(r﹣1)2+22,∴r=,∴OD=,∴△BOD的面积=OD•BC=××2=.七.切线的判定与性质(共1小题)11.(2020秋•西城区期末)如图,AB为⊙O的直径,AC为弦,点D在⊙O外,∠BCD=∠A,OD交⊙O于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,AC=2.7,cos∠BCD=,求DE的长.【答案】(1)证明过程见解析;(2)2.【解答】(1)证明:如图,连接OC.∵AB为⊙O的直径,AC为弦,∴∠ACB=90°,∠OCB+∠ACO=90°.∵OA=OC,∴∠ACO=∠A.∵∠BCD=∠A,∴∠ACO=∠BCD.∴∠OCB+∠BCD=90°.∴∠OCD=90°.∴CD⊥OC.∵OC为⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠BCD=∠A,cos∠BCD=,∴cos A=cos∠BCD=.在Rt△ABC中,∠ACB=90°,AC=2.7,cos A=.∴AB===6.∴OC=OE==3.在Rt△OCD中,∠OCD=90°,OC=3,CD=4,∴.∴DE=OD﹣OE=5﹣3=2.八.特殊角的三角函数值(共1小题)12.(2020秋•西城区期末)计算:2sin60°﹣tan45°+cos230°.【答案】﹣.【解答】解:原式===.。
2020-2021学年北京市朝阳区初三数学第一学期期末试卷及解析
![2020-2021学年北京市朝阳区初三数学第一学期期末试卷及解析](https://img.taocdn.com/s3/m/f639d124cd1755270722192e453610661ed95ab6.png)
2020-2021学年北京市朝阳区初三数学第一学期期末试卷一.选择题(本题共24分每小题3分)第1-8题均有四个选项,符合题意的选项只有一个。
1.(3分)下列自然能源图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.(3分)用配方法解方程23620x x -+=,将方程变为21()3x m -=的形式,则m 的值为( )A .9B .9-C .1D .1-3.(3分)正方体的棱长为x ,表面积为y ,则y 与x 之间的函数关系式为( ) A .16y x =B .6y x =C .26y x =D .6y x=4.(3分)若O 的内接正n 边形的边长与O 的半径相等,则n 的值为( ) A .4B .5C .6D .75.(3分)下列方程中,无实数根的方程是( ) A .230x x +=B .2210x x +-=C .2210x x ++=D .230x x -+=6.(3分)如图,一个可以自由转动的转盘被分为8个大小相同的扇形,颜色标注为红,黄,绿,指针的位置固定,转动转盘停后,其中某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则下列说法正确的是( )A .指针指向黄色的概率为23B .指针不指向红色的概率为34C .指针指向红色或绿色的概率为12D .指针指向绿色的概率大于指向黄色的概率 7.(3分)如图,在半径为1的扇形AOB 中,90AOB ∠=︒,点P 是AB 上任意一点(不与点A ,B 重合),OC AP ⊥,OD BP ⊥,垂足分别为C ,D ,则CD 的长为( )A .12B .22C .32D .18.(3分)如图,平面直角坐标系xOy 中,抛物线2y ax bx c =++与直线y kx =交于M ,N 两点,则二次函数2()y ax b k x c =+-+的图象可能是( )A .B .C .D .二、填空题(本题共24分,每小题3分)9.(3分)如图,利用垂直于地面的墙面和刻度尺,可以度量出圆的半径为 cm .10.(3分)如图所示的正方形网格中,A ,B ,C ,D ,P 是网格线交点.若APB α∠=,则BPC ∠的度数为 (用含α的式子表示).11.(3分)一元二次方程2310x x -+=的根为 .12.(3分)下列事件:①通常加热到100C ︒,水沸腾;②人们外出旅游时,使用手机app 购买景点门票;③在平面上,任意画一个三角形,其内角和小于180︒.其中是随机事件的是 (只填写序号即可). 13.(3分)在同一个平面直角坐标系xOy 中,二次函数211y a x =,222y a x =,233y a x =的图象如图所示,则1a ,2a ,3a 的大小关系为 .14.(3分)为响应国家号召打赢脱贫攻坚战,小明利用信息技术开了一家网络商店,将家乡的土特产销往全国,今年6月份盈利24000元,8月份盈利34560元,求6月份到8月份盈利的月平均增长率.设6月份到8月份盈利的月平均增长率为x ,根据题意,可列方程为 .15.(3分)如图,在平面直角坐标系xOy 中,等边ABC ∆的顶点A 在y 轴的正半轴上,(5,0)B -,(5,0)C ,点(11,0)D ,将ACD ∆绕点A 顺时针旋转60︒得到ABE ∆,则BC 的长度为 ,线段AE 的长为 ,图中阴影部分面积为 .16.(3分)不透明的盒子中装有红、黄色的小球共20个,除颜色外无其他差别,随机摸出一个小球,记录颜色后放回并摇匀,再随机摸出一个.如图显示了某数学小组开展上述摸球活动的某次实验的结果. 下面有四个推断:①当摸球次数是300时,记录“摸到红球”的次数是99,所以“摸到红球”的概率是0.33;②随着试验次数的增加,“摸到红球”的频率总在0.35附近摆动,显示出一定的稳定性,可以估计“摸到红球”的概率是0.35;③可以根据本次实验结果,计算出盒子中约有红球7个;④若再次开展上述摸球活动,则当摸球次数为500时,“摸到红球”的频率一定是0.40. 所有合理推断的序号是 .三、解答题(本题共31分,第17-20题,每小题5分,第21题6分,第22题5分) 17.(5分)关于x 的一元二次方程22(21)20x m x m m +-++-=有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为正整数,写出一个符合条件的m 的值并求出此时方程的根.18.(5分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了ABC ∆和点(D A ,B ,C ,D 是网格线交点). (1)画出一个DEF ∆,使它与ABC ∆全等,且点D 与点A 是对应点,点E 与点B 是对应点,点F 与点C 是对应点(要求:DEF ∆是由ABC ∆经历平移、旋转得到的,两种图形变化至少各一次). (2)在(1)的条件下,在网格中建立平面直角坐标系,写出点C 和点F 的坐标.19.(5分)已知:如图,ABC ∆中,90C ∠=︒. 求作:CPB A ∠=∠,使得顶点P 在AB 的垂直平分线上. 作法:①作AB 的垂直平分线l ,交AB 于点O ;②以O 为圆心,OA 为半径画圆,O 与直线l 的一个交点为P (点P 与点C 在AB 的两侧); ③连接BP ,CP ,CPB ∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明.证明:连接OC , l 为AB 的垂直平分线, OA ∴= . 90ACB ∠=︒, OA OB OC ∴==.∴点A ,B ,C 都在O 上.又点P 在O 上,(CPB A ∴∠=∠ )(填推理依据). 20.(5分)12月4日是全国法制宣传日.下面是某校九年级四个班的学生(各班人数相同)在一次“宪法知识竞答”活动中的成绩的频数分布表: 成绩x 人数 班级 7075x < 7580x < 8085x < 8590x < 9095x < 95100x一班 2 0 3 7 8 0 二班 0 1 5 7 7 0 三班 01 4 7 7 1 四班m3752(1)频数分布表中,m = ;(2)从7075x <中,随机抽取2名学生,那么所抽取的学生中,至少有1人是一班学生的概率是多少? 21.(6分)如图,AB 为O 的直径,C 为O 上一点,D 是BC 的中点,过点D 作AC 的垂线,交AC 的延长线于点E ,连接AD . (1)求证:DE 是O 的切线;(2)连接CD ,若30CDA ∠=︒,2AC =,求CE 的长.22.(5分)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =+-与直线1y x =--交于点(1,0)A -,(,3)B m -,点P 是线段AB 上的动点.(1)①m = ; ②求抛物线的解析式.(2)过点P 作直线l 垂直于x 轴,交抛物线23y ax bx =+-于点Q ,求线段PQ 的长最大时,点P 的坐标.四、解答题(本题共21分,每小题7分)23.(7分)在等腰直角ABC ∆中,AB AC =,90A ∠=︒,过点B 作BC 的垂线l .点P 为直线AB 上的一个动点(不与点A ,B 重合),将射线PC 绕点P 顺时针旋转90︒交直线l 于点D . (1)如图1,点P 在线段AB 上,依题意补全图形. ①求证:BDP PCB ∠=∠;②用等式表示线段BC ,BD ,BP 之间的数量关系,并证明.(2)点P 在线段AB 的延长线上,直接写出线段BC ,BD ,BP 之间的数量关系.24.(7分)已知抛物线22234y ax ax a =++-. (1)该抛物线的对称轴为 ;(2)若该抛物线的顶点在x 轴上,求抛物线的解析式;(3)设点1(,)M m y ,2(2,)N y 在该抛物线上,若12y y >,求m 的取值范围.25.(7分)在平面直角坐标系xOy 中,O 的半径为2,A ,B 为O 外两点,1AB =.给出如下定义:平移线段AB,使线段AB的一个端点落在O上,其他部分不在O外,点A,B的对应点分别为点A',B',线段AA'长度的最大值称为线段AB到O的“极大距离”,记为(,)d AB O.(1)若点(4,0)A-.①当点B为(3,0)-,如图所示,平移线段AB,在点1(2,0)P-,2(1,0)P-,3(1,0)P,4(2,0)P中,连接点A 与点的线段的长度就是(,)d AB O;②当点B为(4,1)-,求线段AB到O的“极大距离”所对应的点A'的坐标.(2)若点(4,4)A-,(,)d AB O的取值范围是.参考答案与试题解析一.选择题(本题共24分每小题3分)第1-8题均有四个选项,符合题意的选项只有一个。
2020-2021学年度第一学期九年级数学期末考试试卷及答案
![2020-2021学年度第一学期九年级数学期末考试试卷及答案](https://img.taocdn.com/s3/m/4830c81b168884868762d689.png)
2020-2021学年度第一学期期末考试试卷九年级数学一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项,将此选项的字母填在题后括号内.1.下列图形中既是轴对称图形又是中心对称图形的是( )2.一元二次方程xx=-232化成一般形式后,二次项系数为3,它的一次项系数和常数项分别是( )A.1、2B.-1、-2C.3、2D.0、-23.⊙O的半径r=10cm,圆心到直线的距离OA=8cm,则直线与圆的位置关系是( )A.相交B.相切C.相离D.不确定4.有下列四个说法,其中正确说法的个数是( )①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个5.对于抛物线3)1(2y2+--=x,下列判断正确的是( )A.抛物线的开口向上B.抛物线的顶点坐标为(-1,3)C.对称轴为直线x=1D.当x>1时,y随x的增大而增大6.如图,点A,B,C三点均在⊙O上,若∠A=30°,则∠BOC的度数是( )A.30°B.60°C.15°D.70°7.如图,AB是⊙O的直径,点C在⊙O上,若∠A=40°,则∠B的度数为( )A.80°B.60°C.50°D.40°8.某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为( )A.100(1+x)2=800B.100+100×2x=800C.100+100×3x=800D.100[1+(1+x)+(1+x)2]=8009.如图,⊙C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内⊙C上一点,∠BMO=120°,则⊙C的直径为( )A.6B.5C.3D.2310.二次函数)0(2≠++=acbxaxy的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是( )A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程12+=++ncbxax无实数根.二、填空题:本大题共8小题,每小题3分,共24分.11.中国汉字有许多具有几何图形的特性,观察“羊,士,田,旦”这4个汉字有一个共同特性都是________图形,其中_______字可看成中心对称图形.12.点P(-1,2)关于原点的对称点坐标为.13.抛物线23xy=先向右平移2个单位,再向上平移5个单位,所得抛物线的解析式为___ __.14.如图,△ABC为等边三角形,D为△ABC内一点,△ABD逆时针旋转后到达△ACP的位置,则(1)旋转中心是____;(2)旋转角度是______;(3)△ADP是______三角形.15.如图所示,图中五角星绕着中心O最小旋转度能与自身重合.16.若方程有两个相等的实数根,则k= _________.17.如图,⊙O是等边三角形ABC的外接圆,点D是⊙O上一点,则∠BDC= _________.290x kx++=题号一二三四总分得分第15题图第14题图第17题图第18题图第6题图第10题图第7题图第9题图第1页(共4页)。
2020-2021学 年上 学期人教版九年级数学试题
![2020-2021学 年上 学期人教版九年级数学试题](https://img.taocdn.com/s3/m/45c9d20e5fbfc77da269b1f5.png)
2020-2021上学期人教版九年级数学期末试卷一.选择题(共12小题)1.如果一个数的绝对值小于另一个数,则这两个数的和是()A.正数B.正数或零C.负数D.负数或零2.下列各数:1,,4.112134,0,,3.14,其中分数有()A.6个B.3个C.4个D.5个3.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个4.等式就像平衡的天平,能与如图的事实具有相同性质的是()A.如果a=b,那么ac=bc B.如果a=b,那么=(c≠0)C.如果a=b,那么a+c=b+c D.如果a=b,那么a2=b25.若M在第三象限,则M点的坐标可能是()A.(1,2)B.(2,﹣3)C.(﹣5,﹣6)D.(﹣3,5)6.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(,0),顶点D的坐标为(0,),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A₂,作正方形A2B2C2C1,…,按这样的规律进行下去,第2021个正方形的周长为()A.()2020B.()2021C.4×()2020D.4×()2021 7.下列几何体,用一个平面去截,不能截得三角形截面的是()A.圆柱B.圆锥C.三棱柱D.正方体8.已知正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积是()A.27cm3B.27πcm3C.18cm3D.18πcm39.如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.如图,在等边△ABC中,点D和点B关于直线AC对称,过点D做DE⊥BC,交BC 的延长线于点E,若CE=5,则BE的长为()A.5B.10C.5D.1511.某市有9个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是()A.测试该市某一所中学初中生的体重B.测试该市某个区所有初中生的体重C.测试全市所有初中生的体重D.每区随机抽取5所初中,测试所抽学校初中生的体重12.﹣2和2对应的点将数轴分成3段,如果数轴上任意n个不同的点中至少有3个在其中之一段,那么n的最小值是()A.5B.6C.7D.8二.填空题(共6小题)13.若向前进10米记为+10,那么向后退10米记为.14.方程(b﹣3)b+2015=1的解是b=.15.点P到x轴和y轴的距离分别为2和3,且点P在第四象限,则P点的坐标为.16.一个直棱柱一共有21条棱,那么这个棱柱的底面的形状是.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序.(只填序号)三.解答题(共9小题)19.为全力迎接全国第十四届运动会,西安市将继续加快交通高质量发展,不断增强市民获得感和幸福感.某检修小组从O地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下,(单位:km)第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣1(1)求收工时距O地多远?(2)在第几次记录时距O地最远?(3)若每千米耗油0.2升,问共耗油多少升?20.把下列各数填在相应的集合中:22,,0.81,﹣3,,﹣3.1,0,3.14,π,1.6整数集合{…};负分数集合{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.已知方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,求a的值.23.已知点P(2x﹣6,3x+1)在y轴上,求P的坐标.24.计算下面圆锥的体积.25.国庆期间,广场上对一片花圃做了美化造型(如图所示),整个造型构成花的形状.造型平面呈轴对称,其正中间“花蕊”部分(区域①)摆放红花,两边“花瓣”部分(区域②)摆放黄花.(1)两边“花瓣”部分(区域②)的面积是.(用含a的代数式表示)(2)已知a=2米,红花价格为220元/平方米,黄花价格为180元/平方米,求整个造型的造价(π取3).26.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式A B C D E人数463785表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式A B C D E人数21331表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式A B C D E人数65261310根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.27.若干个人相聚,其中有些人彼此认识,已知:(1)如果某两个人有相等数目的熟人,则他两没有公共的熟人;(2)有一个人至少有56个熟人.证明:可找出一个聚会者,他恰好有56个熟人.2020-2021上学期人教版九年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据一个数的绝对值小于另一个数,可知另一个数是正数,并且另一个数的绝对值较大,根据有理数的加法法则即可确定答案.【解答】解:∵一个数的绝对值小于另一个数,∴另一个数是正数,并且另一个数的绝对值较大,∴这两个数的和一定是正数.故选:A.2.【分析】根据有理数的分类判断即可.【解答】解:在1,,4.112134,0,,3.14中,分数有4.112134,,3.14,共3个.故选:B.3.【分析】分别求出四个方程的解各是多少,判断出x=3是所给方程的解的有多少个即可.【解答】解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.4.【分析】利用等式的性质对每个等式进行变形即可找出答案.【解答】解:观察图形,是等式a=b的两边都加c,得到a+c=b+c,利用等式性质1,所以成立.故选:C.5.【分析】根据在第三象限的点的横坐标和纵坐标均为负数判断即可.【解答】解:A.点(1,2)在第一象限;B.(2,﹣3)在第四象限;C.(﹣5,﹣6)在第三象限,D.(﹣3,5)在第二象限,故选:C.6.【分析】根据相似三角形的判定定理,得出△AA1B∽△A1A2B1,继而得知∠BAA1=∠B1A1A2;利用勾股定理计算出正方形的边长;最后利用正方形的周长公式计算三个正方形的周长,从中找出规律,问题也就迎刃而解了.【解答】解:设正方形的周长分别为C1,C2 (2021)根据题意,得:AD∥BC∥C1A2∥C2B2,∴∠BAA1=∠B1A1A2=∠B2A2x(两直线平行,同位角相等).∵∠ABA1=∠A1B1A2=90°,∴△BAA1∽△B1A1A2,∵顶点A的坐标为(,0),顶点D的坐标为(0,),∴OA=,OD=,在直角△ADO中,根据勾股定理,得:AD==1,∴AD=AB=1,∵cot∠DAO==,∵tan∠BAA1==cot∠DAO,∴BA1=AB=,∴CA1=1+=,同理,得:C1A2=+==()2,由正方形的周长公式,得:C1=4×()0C2=4×()1,C3=4×()2,…由此,可得∁n=4×()n﹣1,∴C2021=4×()2020.故选:C.7.【分析】当截面的角度和方向不同时,圆柱,球的截面不相同,无论什么方向截取圆柱都不会截得三角形.【解答】解:用一个平面截一个几何体,不能截得三角形的截面的几何体有圆柱.故选:A.8.【分析】首先根据题意可得将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,再计算体积即可.【解答】解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,∴所得几何体的体积=32•π•3=27π(cm3),故选:B.9.【分析】利用轴对称画图可得答案.【解答】解:如图所示,,球最后落入的球袋是2号袋,故选:B.10.【分析】连接CD,构造含30°角的直角三角形DCE,根据BC=DC进行计算即可.【解答】解:如图,连接CD,∵△ABC是等边三角形,点D和点B关于直线AC轴对称,∴BC=DC,∠ACB=∠ACD=60°,∴∠DCE=60°,∵DE⊥CE,CE=5,∴∠CDE=30°,∴CD=2CE=10,∴BC=10.∴BE=BC+CE=10+5=15.故选:D.11.【分析】利用抽样调查的中样本的代表性即可作出判断.【解答】解:某市有9个区,为了解该市初中生的体重情况,设计了四种调查方案.比较合理的是:每区随机抽取5所初中,测试所抽学校初中生的体重,故选:D.12.【分析】将数轴上的3段看成3个抽屉,先考虑相反的情况,得到的结果再取反即为答案.令每个抽屉最多有2个点,则最多有6个点,由此可得出结论.【解答】解:∵令每个抽屉最多有2个点,则最多有6个点,∴n≥7.故选:C.二.填空题(共6小题)13.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:若向前进10米记为+10,那么向后退10米记为﹣10.故答案为:﹣10.14.【分析】根据零指数幂的性质得到b+2015=0,右侧求得b的值.【解答】解:根据题意,得b+2015=0,或b﹣3=1.解得b=﹣2015或b=4故答案是:﹣2015或4.15.【分析】根据第四象限内点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【解答】解:∵点P(x,y)在第四象限,P到x轴,y轴的距离分别等于2和3,∴点P的横坐标是3,纵坐标是﹣2,∴点P的坐标为(3,﹣2).故答案为:(3,﹣2).16.【分析】根据n棱柱有3n条棱可得答案.【解答】解:∵一个直n棱柱有3n条棱,∴21÷3=7,故答案为:7.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据调查的一般步骤,得出结论.【解答】解:调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.三.解答题(共9小题)19.【分析】(1)首先把题目的已知数据相加,然后根据结果的正负即可确定相距O多少千米;(2)分别写出各次记录时距离O地的距离,然后判断即可;(3)首先把所给的数据的绝对值相加,然后乘以0.2升,即可求解.【解答】解:(1)﹣4+7+(﹣9)+8+6+(﹣5)+(﹣1)=2(千米).答:收工时检修小组在O地东面2千米处;(2)第一次距O地|﹣4|=4千米;第二次:|﹣4+7|=3(千米);第三次:|3﹣9|=|﹣6|=6(千米);第四次:|﹣6+8|=2(千米);第五次:|2+6|=8(千米);第六次:|8﹣5|=3(千米);第七次:|3﹣1|=2(千米).所以距O地最远的是第5次;(3)从出发到收工汽车行驶的总路程:|﹣4|+|+7|+|﹣9|+|+8|+|+6|+|﹣5|+|﹣1|=40;从出发到收工共耗油:40×0.2=8(升).答:从出发到收工共耗油8升.20.【分析】根据整数包括正整数、0和负整数,可得整数集合;根据小于0的分数为负分数,可得负分数集合.【解答】解:整数集合{22,﹣3,0…};负分数集合{,﹣3.1…}.故答案为:22,﹣3,0;,﹣3.1.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】先求出每个方程的解,根据相反数得出关于a的方程,求出方程的解即可.【解答】解:解方程3x+2a﹣1=0得:x=,解方程x﹣2a=0得:x=2a,∵方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,∴2a+(﹣)=0,解得:a=﹣.23.【分析】根据y轴上点的横坐标为0列方程求出x的值,再求解即可.【解答】解:∵点P(2x﹣6,3x+1)在y轴上,∴2x﹣6=0,解得x=3,所以,3x+1=9+1=10,故P(0,10).24.【分析】根据圆锥的体积解答即可.【解答】解:圆锥的体积:=(cm3).25.【分析】(1)区域②的面积=2个正方形的面积.(2)分别求出区域①,②的面积,再乘以单价即可.【解答】解:(1)区域②的面积=2a2.故答案为:2a2.(2)整个造型的造价:220(2×22﹣×22)+180(2×22+•π•22)=2960(元).26.【分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行判断;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.【解答】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.27.【分析】考虑聚会中熟人最多的人(如果不止一个,则任取其中之一),记为A,设A认识了n个人,设为B1,B2,…,B n,由条件(1)知B i,B j熟人的数目不相等,于是B1,B2,…,B n,各人的熟人数互不相等,且均不超过n(根据的最大性),因此,必然是1,2,…,n,再根据条件(2)知n≥56,从而求解.【解答】解:考虑聚会中熟人最多的人(如果不止一个,则任取其中之一),记为A,设A认识了n个人,设为B1,B2,…,B n,由于任意两人B i,B j都以A为共同熟人,由条件(1)知B i,B j熟人的数目不相等,于是B1,B2,…,B n,各人的熟人数互不相等,且均不超过n(根据的最大性),因此,必然是1,2,…,n,再根据条件(2)知n≥56,因此1,2,…,n中包含着56,即B1,B2,…,B n中必有人恰好认识56人.。
九年级数学上册 20.2 30°、45°、60°角的三角函数值教案 北京课改版(2021学年)
![九年级数学上册 20.2 30°、45°、60°角的三角函数值教案 北京课改版(2021学年)](https://img.taocdn.com/s3/m/3f10923fb9f3f90f76c61bff.png)
九年级数学上册20.2 30°、45°、60°角的三角函数值教案(新版)北京课改版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册20.2 30°、45°、60°角的三角函数值教案(新版)北京课改版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册20.2 30°、45°、60°角的三角函数值教案(新版)北京课改版的全部内容。
20.230°,45°,60°角的三角函数值一、教学目标1.通过探索,理解同角三角函数的关系。
(难点)2。
能够掌握互余两角三角函数的关系及特殊角的三角函数值。
(重点)3.运用所学的知识解决实际的问题。
二、课时安排1课时三、教学重点能够掌握互余两角三角函数的关系及特殊角的三角函数值。
四、教学难点通过探索,理解同角三角函数的关系.五、教学过程(一)导入新课当你走进公园游乐场,看到小孩荡秋千的情景,秋千时高时低,你是不是很想知道秋千摆至最高位置和其摆至最低位置的高度差是多少?如图所示,一个小孩荡秋千,秋千链子的长度为2。
5m,当秋千向两边摆动时,摆角恰好为60°,且两边摆动的角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差(结果精确到0。
01m)(二)讲授新课活动1:小组合作1.锐角三角函数的定义直角三角形中边与角的关系:锐角三角函数。
2.在直角三角形中,若一个锐角确定,那么这个角的对边,斜边和邻边之间的比值也随之确定。
sinA=a/c,cosA=b/c,sinB=b/c, cosB=a/c3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.B.C.D.北京课改版九年级上学期 期末教学目标检测初三数学试卷学校 姓名 准考证号 考 生 须 知 1. 本试卷共 4 页,共五道大题,25个小题,满分120分.考试时间120分钟. 2. 在试卷和答题卡上认真填写学校名称、姓名和准考证号. 3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4. 考试结束,请将本试卷和答题卡一并交回.一、选择题:(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1.已知1sin 2A =,则锐角A 的度数是 ( ) A .30︒ B .45︒ C .60︒ D .75︒2. 已知△ABC ∽△DEF ,且AB:DE = 1:2,则△ABC 的周长与△DEF 的周长之比为 ( ) A .2:1 B .1:2 C .1:4 D . 4:13.二次函数223y x x =-+的对称轴为 ( ) A .x =-2 B .x =2 C .x =1 D .x =-14.下面四张扑克牌中,图案属于中心对称的是 ( )5.如图,ABC △内接于O ⊙,若30OAB ∠=°,则C ∠的大小为 ( ) A .30︒ B .45︒C OBAEDACBC .60°D .︒906.若点B (a ,0)在以点A (1,0)为圆心,以2为半径的圆内, 则a 的取值范围为( ) A .13a -<< B .3a <C .1a >-D .3a >或1a <-7. 抛物线1C :21y x =+与抛物线2C 关于x 轴对称,则抛物线2C 的解析式为 ( ) A. 2y x =-B. 21y x =-+C.21y x =-D. 21y x =--8.汽车匀加速行驶路程为2012s v t at =+,匀减速行驶路程为2012s v t at =-,其中0v 、a 为常数. 一汽车经过启动、匀加速行驶、匀速行驶、匀减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是 ( )二、填空题:(本题共16分,每小题4分)9.圆锥的母线长为3,底面半径为2,则它的侧面积为 . 10. 如右图,是由四个直角边分别是6和8的全等的直角三角形拼成的“赵爽弦图”,如果某人随机地往大正方形区域内投针一次,则针扎在阴影部分的概率为 .ACDB11.如图,∠DAB =∠CAE ,要使△ABC ∽△ADE ,则补充的一个 条件可以是 (注:只需写出一个正确答案即可). 12. 在数学研究性学习中,佳佳为了求2311112222n++++的值n S ,设计了如图所示的几何图形,请你利用这个几何图形,计算n S =(用含n 的式子表示).三、解答题:(本题共30分,每小题5分) 13. 计算:sin30cos45sin 45tan60︒+︒⋅︒-︒.14. 以直线1x =为对称轴的抛物线过点(3,0),(0,3),求此抛物线的解析式.15. 如图,在ABC ∆中,DE // BC ,EF // AB ,AD:AB=3:5,BC=25,求FC 的长.16. 如图,90D ∠=︒,10BC =,30CBD ∠=︒,15A ∠=︒.(1)求CD 的长; (2)求tan A 的值.17.如图,已知点C 、D 在以O 为圆心,AB 为直径的半圆上,且OC BD ⊥于点M ,CF ⊥AB 于点F 交BD 于点E ,8BD =,2CM =. (1)求⊙O 的半径; (2)求证:CE = BE....12122132CA MFE DCBAO E FDCBAA B CO18.如图,一枚运载火箭从地面O 处发射,当火箭到达A 点时,在观测点C 测得其仰角是30,火箭又上升了10km 到达B 点时,测得其仰角为60,求观测点C 到发射点O 的距离. (结果精确到0.1km .参考数据:41.12≈ 1.73≈,24.25≈).四、解答题:(本题共20分,每小题5分)19. 如图,正方形ABCO 的边长为4,D 为AB 上一点,且BD = 3,以点C 为中心,把CBD △ 顺时针旋转90,得到11CB D △. (1)直接写出点1D 的坐标;(2)求点D 旋转到点1D 所经过的路线长.20.某园艺公司计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y (万元)与投入资金x (万元)成正比例关系,如图1所示;种植花卉的利润2y (万元)与投入资金x (万元)成二次函数关系,如图2所示.(1)分别求出利润1y (万元)与2y (万元)关于投入资金x (万元)的函数关系式; (2)如果该园艺公司以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?21.小明购买了4瓶酸奶,其中3瓶原味,1瓶草莓味,他从中随机拿2瓶酸奶. (1)用列表法(或树状图)列出所有可能的情况; (2)求其中有1瓶是草莓味酸奶的概率.22.对于二次函数2(0)y ax bx c a =++≠,如果当x 取任意整数时,函数值y 都是整数,此时称该点(x ,y )为整点,该函数的图象为整点抛物线(例如:222y x x =++).(1)请你写出一个二次项系数的绝对值小于1的整点抛物线的图1ABCDEO解析式 .(不必证明);(2)请直接写出整点抛物线222y x x =++与直线4y = 围成的阴影图形中(不包括边界)所含的整点个数 .五、解答题:(本题共22分,第23、24题每题7分,第25题8分)23.已知抛物线C 1:22(24)10y x m x m =-++-的顶点A 到y 轴的距离为3, 与x 轴交于C 、D 两点.(1)求顶点A 的坐标;(2)若点B 在抛物线C 1上,且BCD S ∆=B 的坐标.24.如图,直线AB 经过⊙O 上的点C ,并且OA OB =,CA CB =,直线OB 交⊙O 于点E D ,,连接EC CD ,.(1)试判断直线AB 与⊙O 的位置关系,并加以证明; (2)求证:2BC BD BE =⋅;(3)若1tan 2E =,⊙O 的半径为3,求OA 的长.25. 在平面直角坐标系中,矩形OABC 的顶点 A 、C 的坐标分别为(-8,0)和(0,6).将矩形OABC 绕点O 顺时针旋转α度,得到四边形OA B C ''',使得边'A 'B 与y 轴交于点D ,此时边OA '、B C ''分别与BC 边所在的直线相交于点P 、Q . (1)如图1,当点D 与点B '重合时,求点D 的坐标;(2)在(1)的条件下,求PQOD的值;(3)如图2,若点D与点B'不重合,则PQOD的值是否发生变化?若不变,试证明你的结论;若有变化,请说明理由.初三数学参考答案一、选择题:(本题共32分,每小题4分)9. 6π,10. 125,11. ABC ADE∠=∠或ACB AED∠=∠或ABACAD AE=,12.112n-.三、解答题:(本题共30分,每小题5分)1222+13.解:原式= ………………………………………………………4分1=. …………………………………………………………………5分14.解:设抛物线的解析式为2(1)y a x b =-+, ………………………………………1分抛物线过点(3,0),(0,3). ∴40,3.a b a b +=⎧⎨+=⎩ 解得1,4.a b =-⎧⎨=⎩… ……………4分∴抛物线的解析式为223y x x =-++. ……………………………………………5分 15. 解: 在ABC ∆中,DE//BC ,∴ ADEABC ∆∆. ……………………………1分∴35AD DE AB BC ==. ……………………………………………………………………2分 又BC=25,∴ DE=15. …………………………………………………………3分DE//BC ,EF//AB ,∴四边形DEFB 是平行四边形. ∴DE=BF=15. ……………4分 ∴FC=25-15=10. ………………………………………………………………………5分 16.解:(1)在Rt △BDC 中,90,30D CBD ∠=︒∠=︒,sin 30CDBC︒=. ∴1sin 301052CD BC ︒=⋅=⨯=. …………………………………………….…2分 (2)在Rt △BDC 中,90,30D CBD ∠=︒∠=︒,cos30BDBC︒=.∴cos3010BD BC ︒=⋅== ……………………………………………3分 30,15CBD A ∠=︒∠=︒,∴A ACB ∠=∠. ∴ AB=BC=10.∴在Rt △CAD中,tan 2CD A AD ==== ……………………………5分 17.解:(1)OC 为⊙O 的半径,OC BD ⊥,∴ 12DM MB DB ==.A BCOABC DE FMOGBC DE FMODB = 8,∴MB = 4. ………………………………………………………………………1分 设⊙O 的半径为r ,2CM =,∴ OM=r -2, 在Rt OMB ∆中,根据勾股定理得22(2)r r -2+4=,解得r =5. …………………………………………………………………2分(2)方法一:连接AC 、CB ,AB 是直径,∴ 90ACB ∠=︒. ∴90ACF FCB ∠+∠=︒.CF AB CAF ACF ⊥∴∠∠︒又,+=90.∴FCB CAF ∠=∠. ……………………………………3分 OC 为⊙O 的半径,OC BD ⊥,∴C 是BD 的中点,∴CAF CBD ∠=∠. ……………4分 ∴FCB DBC ∠=∠. ∴.CE BE = …………………5分 方法二:如图,连接BC ,补全⊙O ,延长CF 交⊙O 于点G.CF AB AB ⊥又,为直径,∴BC =BG . ……………3分OC 为⊙O 的半径,OC BD ⊥,∴ C 是BD 的中点, ∴ BC =DC . ……………………………………………4分∴BG =DC .∴FCB DBC ∠=∠. ∴.CE BE = ……5分 18.解:设CO x =,在OBC ∆中,90,60BOC OCB ∠=︒∠=︒,∴30B ∠=︒.tan 30,tan 30OC OC OB OB ︒=∴==︒. ……………2分又10,10AB AO =∴=-.在OAC ∆中,90,30AOC OCA ∠=︒∠=︒,∴tan 30AO OC ︒===. 解得5 1.738.658.7()x km =≈⨯=≈.答:观测点C 到发射点O 的距离为8.7km . ………………………………………………5分 四、解答题:(本题共20分,每小题5分)19.解(1)1D (-3,0). ………………………………………………………………2分 (2)正方形ABCD 的边长为4,D 为AB 上一点,且BD=3,根据勾股定理可求得CD = 5. ………………………………………………………3分 ∴点D 旋转到点1D 所经过的路线长为152542ππ⨯⨯=. ………………………5分 20. 解:(1)设1y kx =,直线过点(1,2),∴2k =. ∴12(0)y x x =≥.设22y ax =,抛物线过点(2,2),∴12a =. ∴221(0)2y x x =≥.…………2分 (2)设该园艺公司投入资金x 万元种植花卉,则投入资金(8)x -万元种植树木,则获取的利润212(8)(08)2y x x x =-+≤≤,整理得21216(08)2y x x x =-+≤≤. ……………………………………………………………………………………………3分 根据图象得,当x =2时,y 有最小值为14,当x =8时,y 有最大值为32.答:该园艺公司投入资金2万元种植花卉和6万元种植树木时,获得最少14万元利润; 投入资金8万元种植花卉时,能获取最大利润,且最大利润是32万元.……………5分 21. 解:记原味酸奶为A 、B 、C ,草莓味酸奶为D.(1) 方法一:表格……………………………………………………………………………………………3分 方法二:树状图 (略):…………………………………………………………………3分 (2)小明随机拿2瓶酸奶的所有可能为:AB 、AC 、AD 、BC 、BD 、CD ,共6种. 随机拿2瓶酸奶中有一瓶是草莓味的所有结果为:AD 、BD 、CD ,共3种. ∴小明随机拿2瓶酸奶中有一瓶是草莓味的概率为:3162=. …………………5分22.解:(1)211122y x x =++或213122y x x =++或211222y x x =++等. …… 3分 (2)4. ……………………………………………………………………………………5分 五、解答题:(本题共22分,第23、24题每题7分,第25题8分) 23.解:(1) 22(24)10y x m x m =-++-=222[(2)]10(2)x m m m -++--+= 2[(2)]414x m m -+--∴抛物线顶点A 的坐标为 (2,414)m m +--.由于顶点A 到y 轴的距离为3,∴23m +=. ∴1m =或5m =-.抛物线与x 轴交于C 、D 两点,∴5m =-舍去. ∴1m =.ABCDEO∴抛物线顶点A 的坐标为(3,-18). ……………………………………3分 (2)抛物线1C 的解析式为2(3)18y x =--.∴抛物线1C 与x 轴交C 、D 两点的坐标为(3+0),(3-,0).∴CD=. B 点在抛物线C 1上,BCD S ∆=B (,B B x y ),则2B y =±. ……………5分把2B y =代入到抛物线1C 的解析式为2(3)18y x =--解得3B x =或3B x =-.把2B y =-代入到抛物线1C 的解析式为2(3)18y x =--解得1B x =-或7B x =.∴B点坐标为3,2),(3,2),(1,2),(7,2)----. ………………………7分 24.解:(1)证明:如图,连接OC .OA OB =,CA CB =,OC AB ∴⊥.∴AB 是O 的切线. ··························· 2分(2)ED 是直径,90ECD ∴∠=.∴90E EDC ∠+∠=. 又90BCD OCD ∠+∠=,OCD ODC ∠=∠,∴BCD E ∠=∠. 又CBD EBC ∠=∠,∴BCD BEC △∽△.BC BDBE BC∴=.∴2BC BD BE =⋅. ···················· 4分 (3)1tan 2E ∠=,∴12CD EC =. BCD BEC △∽△,∴12BD CD BC EC ==.设BD x =,则2BC x =. 又2BC BD BE =,∴2(2)(6)x x x =+.解得10x =,22x =.0BD x =>,∴2BD =.235OA OB BD OD ∴==+=+=. ···················· 7分25.解:(1)解:∵将矩形OABC 绕点O 顺时针旋转α度,得到四边形OA B C ''',且A 、C的坐标分别为(-8,0)和(0,6),∴8'==OA OA ,6''===OC AB B A . ∴1068'22=+=OB .∴点D 的坐标为)10,0(. ……………2分 (2)解:∵10'=OB ,6=CO ,∴4'=C B .∵43'''tan ==∠=O A B A POC CO CP ,且6=CO , ∴29=CP . 同理3=CQ . ∴215=PQ . ∴43=OD PQ . (或:∵43tan =∠==POC CO CP CD CQ . ∴43=++=CO CD CP CQ OD PQ .)……………5分 (3)解:如图2所示,作E C '∥OA 交OP 于点E , ∵E C '∥OA ,且PE ∥CQ ,∴四边形PEC ,Q 是平行四边形. ∴E C PQ '=.∵'''',C E OD A B AO ⊥⊥,∴''90,90C EO EOD ODA EOD ∠+∠=︒∠+∠=︒.∴''ODA EO C ∠=∠.又∵︒=∠=∠90''O DA EOC ,(图2)∴EO C '∆∽'ODA ∆. ∴43'''===OA O C OD E C OD PQ . ∴PQOD的值不会发生改变. …………………………………………………8分。