解三角形知识点归纳

合集下载

解三角形知识点

解三角形知识点

《必修五》解三角形知识点归纳一、正弦定理 正弦定理:2sin sin sin a b cR A B C=== 文字语言:在一个三角形中,各边和它所对角的正弦的比相等. 符号语言:2sin sin sin a b cR A B C=== 特点:对称美、和谐美 (一)理解定理1、正弦定理:在△ABC 中,2sin sin sin sin sin sin a b c a b cR A B C A B C++====++【在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角,从而知正弦定理的基本作用是进行三角形中的边角互化】2、正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如角化边sin sin b Aa B=②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a BA b= 3、常用公式及其结论⑴正弦定理包含三个等式sin sin a b A B =,sin sin b c B C =,sin sin a c A C=每一个等式中都包含四个量,可以“知三求一” (2)三内角和为180︒即180A B C ︒++=,222A B C π+=- (3)两边之和大于第三边,两边之差小于第三边,,;,,.a b c a c b b c a a b c b c a a c b +>+>+>-<-<-< (4)面积公式:2111sin sin sin 2sin sin sin 2224abcS ab C bc A ac B R A B C R===== ⑸三角函数的恒等变形:sin()sin A B C +=,cos()cos A B C +=- ,()tan tan A B C +=-,sincos 22A B C +=,cos sin 22A B C+=,tan tan 22A B C +=,tan tan +tan tan tan tan A B C A B C +=⋅⋅ ⑹C B A c b a sin :sin :sin ::= ⑺角化边: C R c B R b A R a sin 2sin 2sin 2===⑻边化角:RcC Rb B Ra A 2sin 2sin 2sin ===⑼在△ABC 中,①若B b A a cos cos =,则△ABC 是等腰三角形或直角三角形; ②若B a A b cos cos =,则△ABC 是等腰三角形;③若222cos cos +cos 1A B C +=或cos cos cos a A b B c C +=,则△ABC 是直角三角形.⑽在△ABC 中,sin sin sin A B C a b c A B C >>⇔>>⇔>>(二)题型:使用正弦定理解三角形共有三种题型题型1: 利用正弦定理公式原型解三角形题型2: 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化.例如:222222sin 3sin 2sin 32A B C a b c +=⇒+=题型3: 三角形解的个数的讨论 方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数.(三)三角形内角平分线定理:△ABC 中,AD 是A ∠的角平分线,则DCBDAC AB = 我们知道,当一个三角形已知任意两角和一边时,根据全等三角形的判定定理可以得知这个三角形就是唯一确定的,也就是可解的.先由三角形内角和定理求出第三个角,再由正弦定理计算另两边.另外,一个三角形的三边之间必须满足:任意两边之和大于第三步且任意两边之差小于第三边.当已知一个三角形的三边时,已知的三条边必须满足上面的条件才能够作出三角形.否则作不出三角形,当然也无法解三角形.从上面的探讨可以得知,已知三角形的三边要解三角形时,必须满足三边关系,解三角形才有意义.当已知三边时,连续利用余弦定理的推论求出较小边的对角,再用三角形内角和求出第三个角. 如果已知三角形的两边及其夹角,那么根据三角形的判定定理我们知道这个三角形是唯一确定的,也就是可解的.我们可以利用余弦定理计算第三边,用余弦定理的推论或正弦定理计算其余两个角. 如果已知任意两边及其中一边的对角如何来解三角形呢?我们先看下面的例题: 例题:已知:在△ABC 中,22,25,133,a cm b cm A ︒===解三角形. 解:22,25,133a cm b cm A ︒===∴根据正弦定理,得sin 25sin133sin 0.831122b A B a ︒==≈ 0180B ︒︒<< ∴56.21B ︒≈,或123.79B ︒≈ 180A B C ︒++= ∴9.21C ︒=-或76.79C ︒=-【师】:问题出在哪里呢?【生】:分析已知条件,我们注意到,133a b A ︒<=,是一个钝角,根据三角形的性质应该有A B <,因而B 也是一个钝角.而在一个三角形中是不可能存在两个钝角的.【师】:从上面的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.如:①已知32,2,60===O b a A ,求B (有一个解);②已知32,2,60===O a b A ,求B (有两个解)二、余弦定理(一)知识与工具:余弦定理:222222222222222222cos 22cos 2cos cos 22cos cos 2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩(二)题型:使用余弦定理解三角形共有三种现象的题型题型1:利用余弦定理公式的原型解三角形题型2:利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

(完整版)解三角形专题题型归纳

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳一、知识点归纳(★☆注重细节,熟记考点☆★)1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径)变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b B b B c C c C=== 2.正弦定理适用情况:(1)已知两角及任一边;(2)已知两边和一边的对角(需要判断三角形解的情况).3.余弦定理及其推论2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab+-=+-=+-= 4.余弦定理适用情况:(1)已知两边及夹角; (2)已知三边.注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式.5.常用的三角形面积公式(1)高底⨯⨯=∆21ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R===∆为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边)(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边)(3)在ABC ∆中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 7.实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)(2)方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。

解三角形知识点总结

解三角形知识点总结

解三角形中的一些常用的知识点——周文强2020年2月28日14:19:071、 正弦定理【边角转换定理】:2sin sin sin a b c R A B C ===(注:R 为ABC ∆的外接圆半径) 边转角:2sin 2sin 2sin a R A b R B c R C ===、、 角转边:sin sin sin 222a b c A B C R R R ===、、 适用的的条件:①边的齐次式;②角的正弦齐次式2、 余弦定理【一角三边定理】:22222()2cos 22b c a b c bc a A bc bc+−+−−== 22222()2cos 22a c b a c ac b B ac ac+−+−−== 22222()2cos 22a b c a b ab c C ab ab+−+−−== 3、 常用面积公式汇总:面积公式一【已知底和高】:111222ABC a b c S ah bh ch Λ=== 面积公式二【已知两边夹一角】:111sin sin sin 222ABC S ab C bc A ac B Λ=== (以角为主导) 面积公式三【已知三边】:2a b c p ++=,()()()ABC S p p a p b p c Λ=−−− 面积公式四【已知三点的坐标】: 112233(,),(,),(,)A x y B x y C x y 21213131(,),(,)AB x x y y AC x x y y =−−=−−,2131312111()()()()22ABC S AB AC x x y y x x y y Λ=⨯=−−−−− 4、 面积公式+余弦定理 222tan 4b c a S A +−=, 222tan 4a cb S B +−=,222tan 4a bc S C +−= 5、 中线长定理(D 为BC 的中点)2222()a b c a m +−=,2222()b a c b m +−=,2222()c a b c m +−= 推导:2222222222()22cos cos 00a a a AD c AD b b c a BDA CDA AD m AD a AD a ⎛⎫⎛⎫+−+− ⎪ ⎪+−⎝⎭⎝⎭∠+∠=⇒+=⇒==⋅⋅ 其他两个推导方法一致,这里说明下,a m 表示边a 的中线。

解三角形知识点小结

解三角形知识点小结

解三角形知识点小结一、知识梳理1.内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -sin sin A B A B >⇔>,cos cos A B A B >⇔<〔cos y x =在(0,)π上单调递减〕面积公式:111sin sin sin 222ABC S ab C bc A ac B ∆===设2a b cp ++=那么()()()S p p a p b p c =---在三角形中大边对大角,反之亦然.2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具)形式二:⎪⎩⎪⎨⎧===CR c B R b A R a sin 2sin 2sin 2 (边化正弦)形式三:::sin :sin :sin a b c A B C =〔比的性质〕形式四:sin ,sin ,sin 222a b cA B C R R R ===〔正弦化边〕3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A=+-2222cos b c a ca B =+- (遇见二次想余弦)2222cos c a b ab C =+-形式二:222cos 2b c a A bc +-=,222cos 2a c b B ac +-=,222cos 2a b c C ab +-=二、方法归纳(1)两角A 、B 与一边a,由A+B+C=π及sin sin sin a b cA B C ==,可求出角C ,再求b 、c.(2)两边及一角,用余弦定理。

(3)三边,用余弦定理。

(4)求角度,用余弦。

三、经典例题问题一:利用正弦定理解三角形 【例1】在ABC ∆中,假设5b =,4B π∠=,1sin 3A =,那么a = .【例2】在△ABC 中,a=3,b=2,B=45°,求A 、C 和c. 问题二:利用余弦定理解三角形【例3】设ABC ∆的内角C B A 、、所对的边分别为c b a 、、.1=a ,2=b ,41cos =C . 〔Ⅰ〕求ABC ∆的周长,〔Ⅱ〕求()C A -cos 的值.【注】常利用到的三角公式两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=- 【例4】〔2021重庆文数〕设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32a bc .(Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值. 假设条件改为:2223sin 3sin 3sin sin B C A B C +-=? 2 .在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且CB cos cos =-c a b +2. 〔1〕求角B 的大小;〔2〕假设b=13,a+c=4,求△ABC 的面积. 问题三:正弦定理余弦定理综合应用【例5】〔2021山东文数〕在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .cos A-2cos C 2c-a=cos B b.〔I 〕求sin sin CA的值;〔II 〕假设cosB=14,5b ABC 的周长为,求的长.【注】“边化正弦,正弦化边〞“余弦直接代入〞考虑以下式子:1cos 2a C c b+=,(2)cos cos a c B b C -=,(2)cos cos 0a c b b C -+=【例6】〔2021全国卷Ⅰ理〕在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,222a c b -=,且sin cos 3cos sin ,A C A C = 求b【注】对条件(1)222a c b -=左侧是二次的右侧是一次的,可以考虑余弦定理;而对条件(2)sin cos 3cos sin ,A C A C =化角化边都可以。

解三角形知识点归纳总结

解三角形知识点归纳总结

解三角形知识点归纳总结三角形是平面几何中的重要概念,是由三条线段相连构成的多边形。

本文将对三角形的基本性质、分类、面积和周长计算以及相关定理进行归纳总结。

一、基本性质:1. 三角形的边是线段,由三个顶点连接而成。

2. 任意两边之和大于第三边。

3. 三角形的角是由两条相邻边所夹的部分。

二、分类:根据三角形的边长和角度可以将其分为以下几类:1. 根据边长:a. 等边三角形:三条边相等。

b. 等腰三角形:两条边相等。

c. 普通三角形:三条边都不相等。

2. 根据角度:a. 直角三角形:一个角为90度。

b. 钝角三角形:一个角大于90度。

c. 锐角三角形:三个角都小于90度。

三、面积和周长计算:1. 面积:a. 根据三边求面积:可以使用海伦公式计算,即面积=√[s(s-a)(s-b)(s-c)],其中s为半周长,s=(a+b+c)/2,a、b、c分别为三边的长度。

b. 根据底边和高求面积:面积=底边长度×高/2。

2. 周长:周长=边1长度+边2长度+边3长度。

四、相关定理:1. 三角形内角和定理:三角形的内角和等于180度。

2. 三角形外角定理:三角形的外角等于与其不相邻的两个内角之和。

3. 三角形高线定理:三条高线所构成的三个小三角形的面积之和等于原三角形的面积。

4. 三角形中线定理:三条中线所构成的三个小三角形的面积之和等于原三角形的面积的三分之一。

5. 正弦定理:在任意三角形ABC中,设边a对应角A,边b 对应角B,边c对应角C,则有a/sinA = b/sinB = c/sinC。

6. 余弦定理:在任意三角形ABC中,设边a对应角A,边b 对应角B,边c对应角C,则有c²=a²+b²-2abcosC。

7. 正切定理:在任意三角形ABC中,设边a对应角A,边b 对应角B,边c对应角C,则有tanA = (b/a) × (sinC/cosC)。

综上所述,三角形的知识点主要包括基本性质、分类、面积和周长计算以及相关定理。

解三角形知识点归纳总结

解三角形知识点归纳总结

第一章 解三角形一.正弦定理:1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R Cc B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin CA c a = 3)化边为角:C R cB R b A R a sin 2,sin 2,sin 2===4)化角为边:;sin sin b a B A = ;sin sin c b C B =;sin sin ca C A = 5)化角为边: Rc C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin CB c b = ;sin sin CA c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理BA b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理CA c a sin sin =求出c 边4.△ABC 中,已知锐角A ,边b ,则①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解;③b a A b <<sin 时,B 有两个解。

如:①已知32,2,60===O b a A ,求B (有一个解)②已知32,2,60===O a b A ,求B (有两个解)注意:由正弦定理求角时,注意解的个数。

解三角形知识点归纳

解三角形知识点归纳

解三角形知识点归纳三角形是平面几何中的重要概念,其研究涉及到多个知识点。

解三角形是指通过给定的条件,确定三角形的边长和角度。

本文将对解三角形所需的知识点进行详细归纳和讨论。

1. 三角形的分类在解三角形之前,我们首先需要了解三角形的分类。

根据边长及角度的不同,三角形可以分为以下几种:等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形。

对于不同类型的三角形,解题方法也有所不同。

2. 角的性质解三角形的过程中,我们需要利用角的性质来推导和计算。

其中一些常见的角的性质包括:- 余角:两个角互为余角当且仅当它们的和为90度。

在解三角形时,有时会用到两个角的互余性质来计算未知角的值。

- 对顶角:对顶角指在两条交叉直线上的两个角,它们互为对顶角。

- 外角:对于三角形ABC,如果在BC上延长一条线段BD,使得∠ABC和∠CBD相邻,那么∠ABC和∠CBD的外角就是∠ABD。

外角等于两个内角的和。

3. 三角形的边的关系在解三角形时,我们常常需要利用三角形边的关系来进行计算和推导。

- 三边关系:根据三角形的三边关系,任意两边之和大于第三边。

利用这个关系,我们可以判断给定的三条边能否构成一个三角形。

- 三角形的中线:三角形的三条中线交于一点,这个点叫做重心。

重心将中线分成2:1的比例,可以利用中线的性质计算三角形的面积和边长。

4. 三角形的角的关系除了边的关系外,三角形的角的关系也是解题过程中的重要内容。

- 三角形内角和:三角形的内角和等于180度。

利用这个关系,我们可以通过已知角的数值来计算未知角的数值。

- 相似三角形角的对应性质:如果两个三角形的对应角相等,那么它们是相似三角形。

相似三角形的边长比例和角的对应性质是解三角形问题中经常使用的重要性质。

5. 解三角形的方法在解三角形时,我们可以应用多种方法,具体方法取决于给定的条件和所求的未知量。

以下是一些常见的解三角形方法:- 余弦定理:当已知三角形的两边和夹角时,可以利用余弦定理计算第三边的长度。

解三角形知识点总结

解三角形知识点总结

解三角形知识点总结一、正弦定理正弦定理是指在任意一个三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。

即:$\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C} = 2R$(其中$R$为三角形外接圆的半径)。

正弦定理的应用非常广泛,主要包括以下几个方面:1、已知两角和一边,求其他两边和一角。

例如,已知三角形的两角$A$、$B$和一边$c$,则可以先通过三角形内角和为$180^{\circ}$求出角$C$,然后利用正弦定理求出其他两边$a$和$b$。

2、已知两边和其中一边的对角,求另一边的对角,进而求出其他的边和角。

此时需要注意可能会出现一解、两解或无解的情况。

二、余弦定理余弦定理是对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

对于边$a$,有$a^2 = b^2 + c^2 2bc\cos A$;对于边$b$,有$b^2 = a^2 + c^2 2ac\cos B$;对于边$c$,有$c^2 = a^2 + b^2 2ab\cos C$。

余弦定理的应用包括:1、已知三边,求三个角。

可以直接代入余弦定理的公式求出角的余弦值,进而得到角的大小。

2、已知两边和它们的夹角,求第三边和其他两个角。

三、面积公式三角形的面积公式有多种形式,常见的有:1、$S =\frac{1}{2}ab\sin C$2、$S =\frac{1}{2}bc\sin A$3、$S =\frac{1}{2}ac\sin B$这些公式可以根据已知条件的不同灵活选择使用。

四、三角形中的常见结论1、大边对大角,大角对大边。

即三角形中,较长的边所对的角较大,较大的角所对的边较长。

2、三角形内角和为$180^{\circ}$。

3、在锐角三角形中,$\sin A >\cos B$;在钝角三角形中,若$A$为钝角,$B$为锐角,则$\sin A <\cos B$。

高考数学-解三角形知识点

高考数学-解三角形知识点

高考数学-解三角形1、(1)正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆半径) (2)正弦定理变形:①2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R =,sin 2b B R =,sin 2c C R= ③::sin :sin :sin a b c A B C =; ④sin sin sin sin sin sin a b c a b c A B C A B C++===++ (3)正弦定理主要用来解决两类问题:A 、已知两边和其中一边所对的角,求其余的量。

B 、已知两角和一边,求其余的量。

2、三角形的面积:22221111sin sin sin 2sin sin sin 22224sin sin sin sin sin sin 2sin 2sin 2sin a abc S a h ab C bc A ac B R A B C Ra B Cb A Cc A B pr A B C =⋅==========V (其中)(21c b a p ++=,r 为三角形内切圆半径) 3、(1)余弦定理:2222cos a b c bc A =+- bca cb A 2cos 222-+= 2222cos b a c ac B =+- 222cos 2a c b B ac +-= 2222cos c a b ab C =+- 222cos 2a b c C ab +-= (2)余弦定理主要解决的问题:A 、已知两边和夹角,求其余的量。

B 、已知三边求角。

4、如何判断三角形的形状:设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =o ; ②若222a b c +>,则90C <o ; ③若222a b c +<,则90C >o 。

5、附:三角形的五个“心”:(旁心:旁切圆的圆心)重心:三角形三条中线交点; 垂心:三角形三边上的高相交于一点。

解三角形最全知识点总结

解三角形最全知识点总结

解 三 角 形正弦定理要点1 正弦定理在一个三角形中,各边和所对角的正弦值的比相等,即a sinA =b sinB =csinC.要点2 解三角形三角形的三个角A ,B ,C 和三条边a ,b ,c 叫做三角形的元素,已知三角形的几个元素求其它元素的过程叫做解三角形. 正弦定理可以解决的问题1.已知两角及一边解三角形,只有一解.2.已知两边及一边的对角解三角形,可能有两解、一解或无解.方法1:计算法.方法2:已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中,已知a ,b 和A 时,解的情况如下:要点3 正弦定理的变式CB A c b a sin :sin :sin ::)1(=RA aC B A c b a C A c a C B c b B A b a 2sin sin sin sin sin sin sin sin sin sin )2(==++++=++=++=++A c C aB cC b A b B a sin sin ;sin sin ;sin sin )3(===B Cb A C ac A B a C B c b C A c B A b a sin sin sin sin ;sin sin sin sin ;sin sin sin sin )4(======(边化角)C R c B R b A R a sin 2;sin 2;sin 2)5(===要点5 常用结论1.A +B +C =π.2.在三角形中大边对大角,大角对大边.3.任意两边之和大于第三边,任意两边之差小于第三边.4.sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C 2,cos A +B 2=sin C 2.5.∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .6.若A 为最大的角,则A ∈[π3,π);若A 为最小的角,则A ∈(0,π3];若A 、B 、C 成等差数列,则B =π3.7.sin A =sin B ⇔A =B ; sin(A -B )=0⇔A =B ; sin2A =sin2B ⇔A =B 或A +B =π2A 为锐角 A 为钝角或直角图形关系式 a<bsinA a =bsinA bsinA <a <b a ≥b a >b a ≤b 解个数 无解 一解 两解 一解 一解 无解(角化边)R c C R b B R a A 2sin ;2sin ;2sin )6(===要点4 三角形的面积公式 Bac A bc C ab S ABC sin 21sin 21sin 21===∆题型一 解三角形例1 已知在△ABC 中,c =10,A =45°,C =30°,求a ,b 和B.例2(1)在△ABC 中,(1)a =6,b =2,B =45°,求C ;(2)A =60°,a =2,b =233,求B ;(3)a =3,b =4,A =60°,求B.题型二 判断三角形解的个数(1)在△ABC 中,a =1,b =3,A =45°.则满足此条件的三角形的个数是( ) A .0 B .1 C .2 D .无数个(2)在△ABC 中,已知b =30,c =15,C =26°,则此三角形解的情况是( ) A .一个解 B .两个解 C .无解 D .无法确定(3)已知△ABC 中,a =x ,b =2,B =45°,若这个三角形有两解,求x 的取值范围【解析】 例1 ∵a sinA =c sinC ,∴a =csinA sinC =10×sin45°sin30°=10 2.B =180°-(A +C)=180°-(45°+30°)=105°.又∵b sinB =c sinC ,∴b =csinB sinC =10×sin105°sin30°=20sin75°=20×6+24=5(6+2).例2(1)由正弦定理a sinA =b sinB ,得sinA =asinB b =6×222=32.又0°<A<180°,且a>b ,∴A>B.∴A =60°或120°.∴C =75°或C =15°. (2)由正弦定理,得sinB =bsinAa=233×322=22.∵a =2=323>b ,∴A>B ,∴B =45°. (3)由正弦定理,得sinB =bsinA a =4×323=23>1.∴这样的角B 不存在.练习(1)A . (2) B. (3)2<x<2 2题型三 判断三角形的形状 例3 (1)在△ABC 中,已知a 2tanB =b 2tanA ,试判断△ABC 的形状.(2)在△ABC 中,若sinA =2sinB ·cosC ,sin 2A =sin 2B +sin 2C ;(3)在△ABC 中,cosA a =cosB b =cosCc.【解析】 (1)由已知,得a 2sinB cosB =b 2sinAcosA.由正弦定理a =2RsinA ,b =2RsinB(R 为△ABC 的外接圆半径),得4R 2sin 2AsinB cosB =4R 2sin 2BsinAcosA.∴sinAcosA =sinBcosB ,∴sin2A =sin2B.∵2A ∈(0,2π),2B ∈(0,2π),∴2A =2B 或2A =π-2B ,即A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形.(2)由已知a 2=b 2+c 2.∴A =90°,C =90°-B.由sinA =2sinB ·cosC ,得1=2sinB ·cos(90°-B).∴sinB =22(负值舍去).∴B =C =45°.∴△ABC 为等腰直角三角形.(3)由已知,得cosA sinA =cosBsinB.∴cosA ·sinB =cosB ·sinA.∴tanA =tanB.∵A ,B ,C ∈(0,π),∴A =B.同理可证:B =C.∴△ABC 为等边三角形.题型四 正弦定理中的比例性质例4 (1)已知在△ABC 中,A ∶B ∶C =1∶2∶3,a =1,求a -2b +csinA -2sinB +sinC.(2)在△ABC 中,若(b +c)∶(c +a)∶(a +b)=4∶5∶6,求sinA ∶sinB ∶sinC . 【解析】 (1)∵A ∶B ∶C =1∶2∶3,∴A =30°,B =60°,C =90°.∵a sinA =b sinB =c sinC =1sin30°=2,∴a =2sinA ,b =2sinB ,c =2sinC.∴a -2b +c sinA -2sinB +sinC=2. (2)若(b +c)∶(c +a)∶(a +b)=4∶5∶6,则存在常数k(k>0),使得b +c =4k ,c +a =5k ,a +b =6k ,解得a =72k ,b =52k ,c =32k. ,则有a ∶b ∶c =7∶5∶3,所以sinA ∶sinB ∶sinC =a ∶b ∶c =7∶5∶3题型五 三角形的面积公式例5 (1)在△ABC 中,A =30°,c =4,a =3,求△ABC 的面积. (2)若△ABC 的面积为3,BC =2,C =60°,求边AB 的长.(3)在△ABC 中,已知AB =2,BC =5,△ABC 的面积为4,若∠ABC =θ,求θcos .(4)在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S.【解析】(1)由正弦定理,得sinC =csinA a =4sin30°3=23.,∵c>a ,A 为锐角,∴角C 有两解.①当角C 为锐角时,cosC =1-sin 2C =53,sinB =sin(180°-30°-C)=sin(150°-C)=sin150°cosC -cos150°sinC =12·53+32·23=16(5+23), ∴S △ABC =12acsinB =12×3×4×16(5+23)=5+23;②当角C 为钝角时,cosC =-53,sinB =sin(150°-C)=16(23-5), ∴S △A B C =12acsinB =23- 5.综上可知:△ABC 的面积为23+5或23- 5.(2)在△ABC 中,由面积公式,得S =12BC ·CA ·sinC =12×2·AC ·sin60°=32AC =3,∴AC=2.∴△ABC 为等边三角形,∴AB =2.(3)∵S △ABC =12AB ·BCsin ∠ABC =12×2×5×sin θ=4,∴sin θ=45.又θ∈(0,π),∴cos θ=±1-sin 2θ=±35.(4)因为cosB =2cos 2B2-1=35,故B 为锐角,sinB =45.所以sinA =sin(π-B -C)=sin ⎝ ⎛⎭⎪⎫3π4-B =7210.由正弦定理得c =asinC sinA =107,所以S =12acsinB =12×2×107×45=87.1.1.2 余 弦 定 理要点1 余弦定理三角形中任何一边的平方等于其他两边的平方和减去这两边与它们的夹角的余弦的积的两倍.即:C ab b a c cos 2222-+=;A bc c b a cos 2222-+=;B ac c a b cos 2222-+=要点2 余弦定理的推论bc a c b A 2cos 222-+=;ac b c a B 2cos 222-+=;ab c b a C 2cos 222-+= 要点3 由余弦定理如何判断三角形形状是锐角三角形是锐角是钝角三角形是钝角是直角三角形是直角ABC A c b a ABC A c b a ABC A cb a∆⇒⇔+∆⇔⇔+>∆⇔⇔+=<222222222要点4 利用余弦定理可以解决的问题(1)已知两边和夹角解三角形(2)已知两边及一边的对角解三角形 (3)已知三边解三角形题型一 已知两边和夹角解三角形例1 (1)在△ABC 中,已知a =2,b =22,C =15°,求A.【解析】 方法一:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3. ∴c =6- 2.又b>a ,∴B>A.∴A 为锐角.由正弦定理,得sinA =a c sinC =26-2×6-24=12.∴A =30°.方法二:∵cos15°=cos(45°-30°)=6+24,sin15°=sin(45°-30°)=6-24, 由余弦定理,得c 2=a 2+b 2-2abcosC =4+8-22×(6+2)=8-4 3.∴c =6- 2.∴cosA =b 2+c 2-a 22bc =32.又0°<A<180°,∴A =30°.题型二 已知两边及一边的对角解三角形例2(1)在△ABC 中,已知b =3,c =33,B =30°,求角A ,角C 和边a.(2)在△ABC 中,已知a =2,b =2,A =45°,解此三角形. 【解析】(1)方法一:由余弦定理,得b 2=a 2+c 2-2accosB ,得32=a 2+(33)2-2a ×33×cos30°.∴a 2-9a +18=0,得a =3或6. 当a =3时,A =30°,∴C =120°.当a =6时,由正弦定理,得sinA =asinBb=6×123=1.∴A =90°,∴C =60°.方法二:由b<c ,B =30°,b>csin30°=33×12=332知本题有两解.由正弦定理,得sinC =csinB b =33×123=32.∴C =60°或120°.当C =60°时,A =90°,由勾股定理,得a =b 2+c 2=32+(33)2=6. 当C =120°时,A =30°,△ABC 为等腰三角形,∴a =3.(2)由a 2=b 2+c 2-2bccosA ,得22=(2)2+c 2-22ccos45°, c 2-2c -2=0,解得c =1+3或c =1-3(舍去).∴c =1+ 3.cosB =c 2+a 2-b 22ca =22+(1+3)2-(2)22×2×(1+3)=32.∴B =30°,C =180°-(A +B)=180°-(45°+30°)=105°.题型三 已知三边解三角形例3 在△ABC 中,已知a =7,b =3,c =5,求最大角和sinC.【解析】 ∵a>c>b ,∴A 为最大角.∴cosA =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A<180°,∴A =120°.∴sinA =sin120°=32. 由正弦定理,得sinC =csinAa=5×327=5314.∴最大角A 为120°,sinC =5314. 题型四 判断三角形的形状 例4 (1)在△ABC 中,cos 2A2=b +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),判断△ABC 的形状.(2)在△ABC 中,已知(a +b +c)(a +b -c)=3ab ,且2cosA ·sinB =sinC ,试确定△ABC的形状.【解析】(1)方法一:在△ABC 中,∵cos 2A2=b +c 2c ,∴1+cosA 2=b 2c +12,∴cosA =b c.又由余弦定理知cosA =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc,∴b 2+c 2-a 2=2b 2.∴a 2+b 2=c 2.∴△ABC 是以C 为直角的直角三角形.方法二:由方法一知cosA =b c ,由正弦定理,得b c =sinB sinC,∴cosA =sinBsinC .∴sinCcosA =sinB =sin[180°-(A +C)]=sinAcosC +cosAsinC.∴sinAcosC =0,∵A ,C 是△ABC 的内角,∴sinA ≠0.∴只有cosC =0,∴C =90°. ∴△ABC 是直角三角形.(2)方法一(角化边):由正弦定理,得sinC sinB =cb.由2cosA ·sinB =sinC ,得cosA =sinC 2sinB =c 2b .cosA =c 2+b 2-a 22bc ,∴c 2b =c 2+b 2-a 22bc.即c 2=b2+c 2-a 2,∴a =b.又∵(a +b +c)(a +b -c)=3ab ,∴(a +b)2-c 2=3b 2,∴4b 2-c 2=3b 2,∴b =c. ∴a =b =c ,∴△ABC 为等边三角形.方法二(边化角):∵A +B +C =180°,∴sinC =sin(A +B).又∵2cosA ·sinB =sinC ,∴2cosA ·sinB =sinA ·cosB +cosA ·sinB. ∴sin(A -B)=0.又∵A 与B 均为△ABC 的内角,∴A =B.又由(a +b +c)(a +b -c)=3ab ,得(a +b)2-c 2=3ab ,a 2+b 2-c 2+2ab =3ab.即a 2+b 2-c 2=ab ,由余弦定理,得cosC =12.而0°<C<180°,∴C =60°.又∵A =B ,∴△ABC 为等边三角形.1.2 应用举例(第一课时)解三角形的实际应用举例要点1 基线(1)定义:在测量上,根据测量需要适当确定的线段叫做基线.(2)性质:在测量过程中,要根据实际需要选取合适的基线,使测量具有较高的精确度.一般来说,基线越长,测量的精确度越高.要点2 仰角和俯角在视线和水平线所成角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角,要点3 方位角指从正北方向顺时针转到目标方向线所成的角,如图中B点的方位角为α.要点4 方向角从指定方向线到目标方向线所成的小于90°的水平角,如南偏西60°,指以正南方向为始边,顺时针方向向西旋转60°.如图中∠ABC为北偏东60°或为东偏北30°;正南方向:指目标在正南的方向线上.依此类推正北方向、正东方向和正西方向.要点5 坡度坡面的铅直高度和水平宽度L 的比叫做坡度(或叫做坡比).即坡角的正切值.要点6 测量距离的基本类型及方案类别两点间不可通或不可视两点间可视但点不可达两点都不可达图形方法用余弦定理用正弦定理在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB结论AB=a2+b2-2abcosC AB=asinCsin(B+C)①AC=asin∠ADCsin(∠ACD+∠ADC)②BC=asin∠BDCsin(∠BCD+∠BDC)③AB=AC2+BC2-2AC·BC·cos∠ACB要点7测量高度的基本类型及方案类别点B与点C,D共线点B与点C,D不共线图形方法先用正弦定理求出AC或AD,再解直角三角形求出AB在△BCD中先用正弦定理求出BC,在△ABC中∠ACB可知,即而求出AB结论AB=a1tan∠ACB-1tan∠ADBAB=asin∠BDC×tan∠ACBsin(∠BCD+∠BDC)题型一 有关距离问题例1 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的C ,D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,求A ,B 之间的距离.【解析】 如图所示,在△ACD 中,∠ACD =∠ACB +∠BCD =120°,∠CAD =∠ADC =30°,∴AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =∠ADB +∠ADC =75°,∠CBD =60°. ∴BC =3sin75°sin60°=6+22. 在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos75°=3+2+3-3=5,∴AB =5,∴A ,B 之间的距离为 5 km.题型二 测量高度例2 A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的垂足,求山高CD. 【解析】 如图,在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin15°=AD sin45°,得AD =AB ·sin45°sin15°=800×226-24=800(3+1)(m). ∵CD ⊥平面ABD ,∠CAD =45°,∴CD =AD =800(3+1)≈2 186(m).所以,山高CD 为2 186 m.题型三 测量角度例3 某货船在索马里海域航行中遭海盗袭击,发出呼救信号,我海军护航舰在A 处获悉后,立即测出该货船在方位角为45°,距离为10海里的C 处,并测得货船正沿方位角为105°的方向,以10海里/小时的速度向前行驶,我海军护航舰立即以10 3 海里/小时的速度前去营救,求护航舰的航向和靠近货船所需的时间.【解析】 如图所示,设所需时间为t 小时,则AB =103t ,CB =10t. 在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BCcos120°, 可得(103t)2=102+(10t)2-2×10×10tcos120°,整理得2t 2-t -1=0, 解得t =1或t =-12(舍去).舰艇需1小时靠近货船.此时AB =103,BC =10,在△ABC 中,由正弦定理,得BC sin ∠CAB =AB sin120°.所以sin ∠CAB =BCsin120°AB =10×32103=12.所以∠CAB =30°.所以护航舰航行的方位角为75°.1.2 应用举例(第二课时)题型一 有关面积问题三角形面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12ab sin C =12 bc sin A =12 ac sin B .(3)S =12·r ·(a +b +c )(r 为内切圆半径 ).(4),))()((c p b p a p p S ---=其中2cb a p ++=例1 (1)已知△ABC 的面积为1,tanB =12,tanC =-2,求△ABC 的边长以及△ABC 外接圆的面积.(2)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.①若△ABC 的面积等于3,求a ,b ; ②若sinB =2sinA ,求△ABC 的面积.【解析】(1) ∵tanB =12,∴0<B<π2.∴sinB =55,cosB =255.又∵tanC =-2,∴π2<C<π.∴sinC =255,cosC =-55.则sinA =sin(B +C)=sinBcosC +cosBsinC =55×⎝ ⎛⎭⎪⎫-55+255×255=35. ∵a sinA =b sinB ,∴a =bsinA sinB =35b.则S △ABC =12absinC =12·35b 2·255=1. 解得b =153,于是a = 3.再由正弦定理,得c =asinC sinA =2153. ∵外接圆的直径2R =a sinA =533,∴R =536.∴外接圆的面积S =πR 2=25π12.(2)①∵S =12absinC =12ab ·32=3,∴ab =4. ①∵c 2=a 2+b 2-2abcosC =(a +b)2-2ab -2abcosC =(a +b)2-12=4,∴a +b =4. ② 由①②可得a =2,b =2.②∵sinB =2sinA ,∴b =2a.又∵c 2=a 2+b 2-2abcosC =(a +b)2-3ab =4,∴a =233,b =433.∴S =12absinC =233题型二 正余弦定理的综合问题例2 (1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asinA =(2b +c)sinB +(2c +b)sinC.①求A 的大小;②求sinB +sinC 的最大值.(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sinAcosC =3cosAsinC ,求b.【解析】 (1)①由已知,根据正弦定理,得2a 2=(2b +c)b +(2c +b)c ,即a 2=b 2+c 2+bc.由余弦定理,得a 2=b 2+c 2-2bccosA.故cosA =-12,∴A =120°.②由(1),得sinB +sinC =sinB +sin(60°-B)=32cosB +12sinB =sin(60°+B). 故当B =30°时,sinB +sinC 取得最大值1.(2)由余弦定理,得a 2-c 2=b 2-2bccosA.又a 2-c 2=2b ,b ≠0,所以b =2ccosA +2.① 又sinAcosC =3cosAsinC ,∴sinAcosC +cosAsinC =4cosAsinC. ∴sin(A +C)=4cosAsinC ,sinB =4sinCcosA.由正弦定理,得sinB =bc sinC.故b =4ccosA.② 由①②解得b =4.例3 如图,在平面四边形ABCD 中,AD =1,CD =2,AC =7. (1)①求cos ∠CAD 的值;②若cos ∠BAD =-714,sin ∠CBA =216,求BC 的长.(2)如图所示,在△ABC 中,∠B =π3,AB =8,点D 在BC 边上,且CD =2,cos ∠ADC =17.①求sin ∠BAD ; ②求BD ,AC 的长.【解析】(1)①在△ADC 中,由余弦定理,得cos ∠CAD =AC 2+AD 2-CD22AC ·AD,故由题设知,cos ∠CAD =7+1-427=277.②设∠BAC =α,则α=∠BAD -∠CAD.因为cos ∠CAD =277,cos ∠BAD =-714,所以sin ∠CAD =1-cos 2∠CAD =1-⎝⎛⎭⎫2772=217,sin ∠BAD =1-cos 2∠BAD =1-⎝⎛⎭⎫-7142=32114.于是sin α=sin(∠BAD -∠CAD)=sin ∠BADcos ∠CAD -cos ∠BADsin ∠CAD =32114×277-⎝ ⎛⎭⎪⎫-714×217=32.在△ABC 中,由正弦定理,得BC sin α=AC sin ∠CBA .故BC =AC ·sin αsin ∠CBA=7×32216=3.(2)①在△ADC 中,因为cos ∠ADC =17,所以sin ∠ADC =437.所以sin ∠BAD =sin(∠ADC -∠B)=sin ∠ADCcosB -cos ∠ADCsinB =437×12-17×32=3314.②在△ABD 中,由正弦定理,得BD =AB ·sin ∠BADsin ∠ADB =8×3314437=3.在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cosB =82+52-2×8×5×12=49.所以AC =7.题型三 证明恒等式例4 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sinC.(2)在△ABC 中,记外接圆半径为R.求证:2Rsin(A -B)=a 2-b2c .(3)已知在△ABC 中,a 2=b(b +c),求证:A =2B.【证明】 (1)由余弦定理,得a 2=b 2+c 2-2bccosA ,b 2=c 2+a 2-2cacosB , 两式相减,得a 2-b 2=b 2-a 2-2bccosA +2cacosB.∴a 2-b 2c 2=acosB -bcosAc.由正弦定理,知a c =sinA sinC ,b c =sinB sinC .∴a 2-b 2c 2=sinAcosB -sinBcosA sinC =sin (A -B )sinC .(2)由正弦定理的变形形式:sinA =a 2R ,sinB =b 2R 及由等号左边的a 2,b 2,c 2,运用余弦定理进行转化,即可得.左边=2R(sinAcosB -cosAsinB)=a ·a 2+c 2-b 22ac -b ·b 2+c 2-a 22bc =a 2-b2c =右边.(3)方法一:∵a 2=b(b +c),根据正弦定理,得sin 2A =sinB(sinB +sinC),即sin 2A -sin 2B =sinBsinC. ∴cos2B -cos2A2=sinBsinC.∴sin(A +B)sin(A -B)=sinBsinC.又在△ABC 中,sin(A +B)=sinC ≠0,∴sin(A -B)=sinB.∴A -B =B 或(A -B)+B =π(舍去).∴A =2B. 方法二:2bcosB =2b ×a 2+c 2-b 22ac =b (c 2+bc )ac =b (b +c )a =a ,即2bcosB =a ,根据正弦定理,得sinA =2sinBcosB ,即sinA =sin2B.∴A =2B 或A +2B =π. 若A +2B =π,则B =C.由a 2=b(b +c),知a 2=b 2+c 2. ∴B =C =π4,A =π2,∴A =2B.。

完整版)解三角形知识点归纳总结

完整版)解三角形知识点归纳总结

完整版)解三角形知识点归纳总结第一章解三角形一、正弦定理:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 sinA/a = sinB/b = sinC/c = 2R (其中R是三角形外接圆的半径)。

变形:1) sinA/sinB/sinC = (a/b/c)/(2R),化边为角;2) a:b:c = = sinA/sinB,化角为边;3) a = 2RsinA,b = 2RsinB,c = 2RsinC,化边为角;4) sinA = a/2R,sinB = b/2R,sinC = c/2R,化角为边。

利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,求解:由A+B+C=180°,求角A,由正弦定理求出b与c。

②已知两边和其中一个角的对角,求其他两个角及另一边。

例:已知边a,b,A,求解:由正弦定理求出角B,由A+B+C=180°求出角C,再使用正弦定理求出c边。

4.在△ABC中,已知锐角A,边b,则①a<bsinA时,B无解;②a=bsinA或a≥b时,B有一个解;③bsinA<a<b时,B有两个解。

二、三角形面积1.SΔABC = absinC = bcsinA = acsinB;2.SΔABC = (a+b+c)r,其中r是三角形内切圆半径;3.SΔABC = p(p-a)(p-b)(p-c),其中p=(a+b+c)/2;4.SΔABC = abc/4R,R为外接圆半径;5.SΔABC = 2R²sinAsinBsinC,R为外接圆半径。

三、余弦定理余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 a² = b² + c² -2bccosA,b² = a² + c² - 2accosB。

高中数学解三角形知识点总结

高中数学解三角形知识点总结

高中数学解三角形知识点总结一、引言解三角形是高中数学中的一个重要内容,它涉及到三角形的边长、角度以及面积等基本元素的计算和应用。

本文旨在总结解三角形的核心知识点,为学生提供一个复习和参考的框架。

二、基本概念1. 三角形的边和角- 三角形的内角和定理:三角形内角和恒为180度。

- 三角形的外角:一个三角形外角等于与其不相邻的两个内角之和。

2. 三角形的分类- 按边分类:等边三角形、等腰三角形、不等边三角形。

- 按角分类:锐角三角形、直角三角形、钝角三角形。

三、三角形的性质1. 边长关系- 三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边。

2. 角度关系- 对应角定理:在直角三角形中,大边对大角,小边对小角。

3. 特殊三角形的性质- 等边三角形:三边相等,三个内角均为60度。

- 等腰三角形:两边相等,底角相等。

- 直角三角形:一个角为90度,勾股定理适用。

四、解三角形的方法1. 边角互解- 利用正弦定理和余弦定理求解未知边长和角度。

2. 正弦定理- 公式:a/sin(A) = b/sin(B) = c/sin(C)- 应用:适用于任意三角形,特别是边角不全知的情况。

3. 余弦定理- 公式:c² = a² + b² - 2ab*cos(C)- 应用:适用于已知两边及夹角的情况。

4. 三角形面积公式- 基本公式:Area = 1/2 * base * height- 海伦公式:Area = √(s*(s-a)*(s-b)*(s-c)),其中s为半周长。

五、解三角形的应用1. 实际问题中的运用- 测量问题:利用三角形知识解决实际测量问题,如高度、距离的估算。

- 建筑设计:在建筑设计中,利用三角形的稳定性和解三角形的方法进行结构计算。

2. 解题技巧- 选择合适的定理:根据已知条件选择使用正弦定理还是余弦定理。

- 转换思想:将问题转化为已知条件可解的形式。

六、结论解三角形是高中数学中的基础内容,掌握其核心知识点对于解决相关数学问题至关重要。

解三角形知识点

解三角形知识点

解三角形知识点三角形是数学中的一个基本图形,也是几何学的重要内容之一。

它由三条线段组成,其中每两条线段的端点构成一个角。

解三角形就是根据已知条件,求出三角形的各边长和角度。

解三角形的基本知识点有以下几个:1、角度关系:三角形内角和为180度。

这个定理对于解三角形非常重要,可以利用这个关系求出未知角度。

2、三边关系:在三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

这个定理保证了三角形的存在性,即只要满足这个条件,就可以构成一个三角形。

3、三角形的分类:根据三边的长短关系,三角形可以分为等边三角形、等腰三角形和一般三角形。

等边三角形的三边相等,等腰三角形的两边相等,一般三角形的三边都不相等。

4、三角形的角分类:根据角的大小关系,三角形可以分为锐角三角形、直角三角形和钝角三角形。

锐角三角形的三个内角都小于90度,直角三角形的一个内角是90度,钝角三角形的一个内角大于90度。

在解三角形的过程中,我们常用到以下几个定理:1、正弦定理:在任意三角形ABC中,有以下公式成立:a/sinA = b/sinB = c/sinC其中a,b,c分别为三角形的边长,A,B,C为对应的角。

2、余弦定理:在任意三角形ABC中,有以下公式成立:a^2 = b^2 + c^2 - 2bc*cosA其中a,b,c分别为三角形的边长,A为对应的角。

3、正切定理:在任意三角形ABC中,有以下公式成立:tanA = (b*sinC)/(c-b*cosC)其中A,C为两个角,a,b,c为对应的边长。

解三角形的步骤一般分为以下几个步骤:1、先根据已知条件,判断三角形的类型和已知的边和角;2、根据已知条件和三角形的类型,利用正弦定理、余弦定理或正切定理求出未知的边和角;3、最后再检查计算结果是否符合三角形的性质,如边长是否满足三边关系,角度之和是否等于180度。

解三角形是解决实际问题、解决空间关系的重要方法之一。

在日常生活中,我们常常会遇到需要计算三角形的边长和角度的问题,比如测量房屋的高度、计算物体的距离等。

高中数学-解三角形知识点汇总及典型例题

高中数学-解三角形知识点汇总及典型例题

解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b2=c 2。

(勾股定理) (2)锐角之间的关系:A +B=90°; (3)边角之间的关系:(锐角三角函数定义) s inA =cos B =c a ,cos A =sin B =c b ,tan A=ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C为其内角,a 、b 、c 分别表示A 、B 、C的对边。

(1)三角形内角和:A+B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2=b 2+c 2-2bccos A; b 2=c2+a 2-2c acos B ; c 2=a 2+b2-2ab c osC 。

3.三角形的面积公式:(1)∆S =21ah a=21bh b =21ch c (ha、h b 、h c 分别表示a、b 、c 上的高); (2)∆S =21ab s inC =21bc si nA =21ac s inB;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型: (1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。

解三角形知识点总结知识点

解三角形知识点总结知识点

解三角形知识点总结三角形是几何学中一种重要的图形,本文将总结解三角形的知识点。

解三角形指的是根据已知条件,求解三角形的各个元素,如边长、角度等。

在解三角形时,我们可以运用不同的数学方法和定理,下面将从几何关系和三角函数两方面进行总结。

一、几何关系 1. 角的和与差三角形内角的和为180度,即三个内角之和等于180度。

当我们已知其中两个内角的大小时,可以用180度减去这两个已知角的和,即可得到第三个未知角的大小。

2.直角三角形直角三角形是一种特殊的三角形,其中一个角为90度。

在直角三角形中,我们可以运用勾股定理来求解边长,即a² + b² = c²,其中a、b为直角边的长度,c为斜边的长度。

3.等腰三角形等腰三角形是指两条边相等的三角形。

在等腰三角形中,两个底角的大小相等,可以用底角的角度来求解。

4.正弦定理正弦定理是解三角形中常用的定理之一,用于求解三角形的边长。

正弦定理表达式为a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应边的角度。

5.余弦定理余弦定理也是解三角形中常用的定理之一,用于求解三角形的边长。

余弦定理表达式为c² = a² + b² -2abcosC,其中a、b、c为三角形的边长,C为夹在a和b两边的角度。

二、三角函数 1. 正弦函数正弦函数是三角函数中常用的函数之一,用于求解三角形的边长和角度。

在三角形中,正弦函数的定义为sinA = 对边/斜边,也可表示为sinA = a/c。

通过已知条件,我们可以利用正弦函数来求解三角形的其他元素。

2.余弦函数余弦函数是三角函数中常用的函数之一,也用于求解三角形的边长和角度。

在三角形中,余弦函数的定义为cosA = 邻边/斜边,也可表示为cosA = b/c。

通过已知条件,我们可以利用余弦函数来求解三角形的其他元素。

3.正切函数正切函数是三角函数中常用的函数之一,用于求解三角形的角度。

解三角形知识点总结及典型例题

解三角形知识点总结及典型例题

课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。

中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角. 第2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角. 5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义)sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)∆S =21ab sin C =21bc sin A =21ac sin B ;4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.主要类型:(1)两类正弦定理解三角形的问题:第1、已知两角和任意一边,求其他的两边及一角.第2、已知两角和其中一边的对角,求其他边角.(2)两类余弦定理解三角形的问题:第1、已知三边求三角.第2、已知两边和他们的夹角,求第三边和其他两角.5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形知识点归纳
1、三角形三角关系:A+B+C=180°;C=180°—(A+B);
2、三角形三边关系:a+b>c; a-b<c
3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sin
cos ,cos sin ,tan cot 222222
A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C ===A B . 5、正弦定理的变形公式:
①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R
=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.
②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))
7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =
A ==
B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---
8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,
2222cos c a b ab C =+-.
9、余弦定理的推论:222cos 2b c a bc +-A =,222
cos 2a c b ac
+-B =,222cos 2a b c C ab +-=. 10、余弦定理主要解决的问题:
①已知两边和夹角,求其余的量。

②已知三边求角)
11、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式
设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:
①若222a b c +=,则90C =o ;
②若222a b c +>,则90C <o ;
③若222a b c +<,则90C >o .
12、三角形的五心:
垂心——三角形的三边上的高相交于一点
重心——三角形三条中线的相交于一点
外心——三角形三边垂直平分线相交于一点
内心——三角形三内角的平分线相交于一点
旁心——三角形的一条内角平分线与其他两个角的外角平分线交于一点
【三角形中的常见结论】
(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-
2cos 2sin C B A =+,2
sin 2cos C B A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >>
若C B A sin sin sin >>⇒c b a >>⇒C B A >>
(大边对大角,小边对小角)
(4)三角形中两边之和大于第三边,两边之差小于第三边
(5)三角形中最大角大于等于ο60,最小角小于等于ο60
(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.
钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是ο60=B .
(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列.
二、题型汇总
题型1【判定三角形形状】
判断三角形的类型
(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.
(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形

(注意:是锐角A ⇔ABC 是锐角三角形∆)
(3) 若B A 2sin 2sin =,则A=B 或2π
=+B A .
例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状
. 1.已知△ABC 中,30A =
o ,105C =o ,8
b =,则等于 ( )
A 4
B 2. △AB
C 中,45B =o ,60C =o ,1c =,则最短边的边长等于 ( )
A 3
B 2
C 12
D 2
3.长为5、7、8的三角形的最大角与最小角之和为 ( )
A 90°
B 120°
C 135°
D 150°
4. △ABC 中,cos cos cos a b
c
A B C ==,则△ABC 一定是 ( )
A 直角三角形
B 钝角三角形
C 等腰三角形
D 等边三角形
5. △ABC 中,60B =o ,2b ac =,则△ABC 一定是 ( )
A 锐角三角形
B 钝角三角形
C 等腰三角形
D 等边三角形
6.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )
A 有 一个解
B 有两个解
C 无解
D 不能确定
7. △ABC 中,8b =
,c =
ABC S =V A ∠等于 ( )
A 30o
B 60o
C 30o 或150o
D 60o 或120o
8.△ABC 中,若60A =o
,a =sin sin sin a b c
A B C +-+-等于 ( ) A 2 B 12
2
9. △ABC 中,:1:2A B =,C 的平分线CD 把三角形面积分成3:2两部分,则cos A =( ) A 1
3 B 12 C 3
4 D 0
10.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为 ( )
A 锐角三角形
B 直角三角形
C 钝角三角形
D 由增加的长度决定
11.在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cos C 等于 。

12.在△ABC
中,已知b =150c =,30B =o ,则边长a = 。

13.在钝角△ABC 中,已知1a =,2b =,则最大边c 的取值范围是 。

14.三角形的一边长为14,这条边所对的角为60o ,另两边之比为8:5,则这个三角形的 面积为 。

15在△ABC 中,已知边c=10, 又知cos 4
cos 3A
b
B a ==,求边a 、b 的长。

相关文档
最新文档