数学-8年级-第4讲-整式方程与分式方程

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1对3辅导教案

1.知道一元整式方程与高次方程的有关概念;

2.理解含字母系数的一元一次方程、一元二次方程的概念,掌握它们的基本解法; 3.会解可化成一元二次方程的分式方程.

(此环节设计时间在10-15分钟)

教法说明:首先回顾下上次课的预习思考内容

1.一元整式方程:如果方程中只有一个未知数且两边都是关于未知数的整式,这个方程叫做一元整式方程. 2.一元n 次方程:一元整式方程中含未知数的项的最高次数是n (n 是正整数),这个方程叫做一元n 次方程. 3.一元高次方程:一元整式方程中含有未知数的项的最高次数是n ,若次数n 是大于2的正整数,这样的方程统称为一元高次方程.

4.(1)二项方程:如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的

方程就叫做二项方程.

(2)二项方程的一般形式为0(0,0,)n

ax b a b n +=≠≠是正整数 (3)二项方程根的情况:当n 为奇数时,方程有且只有一个实数根

当n 为偶数时,如果ab <0,那么方程有两个实数根,且这两个根互为相反数;

如果ab >0,那么方程没有实数根.

5.下面四个方程中是整式方程的是( ).

A .212x x x =+

B .33x x x --=

C .100991x x x -=-

D .()71

10x x

+= 6.下面四个关于x 的方程中,次数和另外三个不同的是( ).

A .231ax x a +=-

B .32x x ax -=

C .3230ax a x x ++=

D .33x a = 7.下列方程中,是二项方程的是( )

A . 230x x +=;

B .42230x x +-=;

C .41x =;

D . 2

(1)80x x ++=.

参考答案:5.C ; 6.A ; 7.C

(此环节设计时间在50-60分钟)

例题1:用适当的方法解下列方程

(1)()2

28x -= (2)22410x x --=

(3)2699910x x --=

(4)()()2

12115x x ---=

教法说明:首先回顾下解一元二次方程的四种方法:开平方法、因式分解法、配方法、公式法,要求灵活应用四种方法解一元二次方程,可以让学生观察四个方程分别用什么方法解比较简单。 强调:求根公式要求学生熟练掌握

参考答案:(1)开平方法:12222,222x x =+=-+; (2)公式法:122626

,22

x x +-=

= (3)配方法:12103,97x x ==-; (4)因式分解法:126,2x x ==- 例题2:解下列关于x 的方程

(1)(32)2(3)a x x -=- (2)2

2

11(1)bx x b -=-≠-

1223

,(1)034x x x =-=-+检验把代入均不为

所以1223

,34

x x =-=-均为原方程的根.

(2)设22

21x x y x +=-,那么22112x x x y -=+,于是原方程变形为3

811y y

+=, 去分母,得 2

81130y y -+=,解得:13

8

y =

,21y = 当138y =时,22

2318x x x +=-, 去分母并整理,得251630x x ++=,解得 121

,35

x x =-=-. 当21y =时,即22

211x x x +=-, 去分母并整理,得:21x =-, 解得 31

2

x =- 检验:把1231

1

,3,5

2

x x x =-=-=-

分别代入原方程的分母,各分母都不等于0 所以原方程根是:12311

,3,52

x x x =-=-=-.

此环节设计时间在30分钟左右(20分钟练习+10分钟互动讲解)。

1.方程32320x x x --=的解是 __________. 2.方程2

(9)0x x -=的实数根有________个. 3.x x 83=的解是____________________. 4.方程

3

1903

x +=的解是 . 5.关于x 的方程2(32)2(32)()3

a x x a -=-≠-的根是 . 6.方程01224=-+-x x x 的解为________________. 7.下列方程中,只有两个实数根的方程的个数是( ) ①023=-x x ②02432=+-x x ③1624=x ④06524=+-x x

A .0

B .1

C .2

D .3

8.解下列方程

(1)429180x x -+= (2)425360x x +-=

∴7482

k =---或或 3.去分母:2460x x a +--=;此时0∆>且2x =±不是此方程的根;

当0∆>时,14(46)0a --->,解得:25

16

a >-

而当2x =时,0a =; 当2x =-时,1a =-; ∴25

16

a >-

且0a ≠且1a ≠- (此环节设计时间在5—10分钟内)

让学生回顾本节课所学的重点知识,以学生自我总结为主,学科教师引导为辅,为本次课做一个总结回顾

【巩固练习】

1.方程①422100x x -+=;②6220x x +=;③310x x ++=;④42x =是双二次方程的有( ). A .①② B .②③ C .③④ D .①④ 2.如果关于y 的方程()

213a y -=无解,那么a 值是 3.解下列方程:

(1)425140x x --=; (2)422310x x -+=;

相关文档
最新文档