禁忌搜索

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

禁忌搜索算法
又名“tabu搜索算法”
为了找到“全局最优解”,就不应该执着于某一个特定的区域。

局部搜索的缺点就是太贪婪地对某一个局部区域以及其邻域搜索,导致一叶障目,不见泰山。

禁忌搜索就是对于找到的一部分局部最优解,有意识地避开它(但不是完全隔绝),从而获得更多的搜索区间。

兔子们找到了泰山,它们之中的一只就会留守在这里,其他的再去别的地方寻找。

就这样,一大圈后,把找到的几个山峰一比较,珠穆朗玛峰脱颖而出。

当兔子们再寻找的时候,一般地会有意识地避开泰山,因为他们知道,这里已经找过,并且有一只兔子在那里看着了。

这就是禁忌搜索中“禁忌表(tabu list)”的含义。

那只留在泰山的兔子一般不会就安家在那里了,它会在一定时间后重新回到找最高峰的大军,因为这个时候已经有了许多新的消息,泰山毕竟也有一个不错的高度,需要重新考虑,这个归队时间,在禁忌搜索里面叫做“禁忌长度(tabu length)”;如果在搜索的过程中,留守泰山的兔子还没有归队,但是找到的地方全是华北平原等比较低的地方,兔子们就不得不再次考虑选中泰山,也就是说,当一个有兔子留守的地方优越性太突出,超过了“best to far”的状态,就可以不顾及有没有兔子留守,都把这个地方考虑进来,这就叫“特赦准则(aspiration criterion)”。

这三个概念是禁忌搜索和一般搜索准则最不同的地方,算法的优化也关键在这里。

伪码表达:
procedure tabu search;
begin
initialize a string vc at random,clear up the tabu list;
cur:=vc;
repeat
select a new string vn in the neighborhood of vc;
if va>best_to_far then {va is a string in the tabu list}
begin
cur:=va;
let va take place of the oldest string in the tabu list;
best_to_far:=va;
end else
begin
cur:=vn;
let vn take place of the oldest string in the tabu list;
end;
until (termination-condition);
end;
以上程序中有关键的几点:
(1)禁忌对象:可以选取当前的值(cur)作为禁忌对象放进tabu list,也可以把和当前值在同一“等高线”上的都放进tabu list。

(2)为了降低计算量,禁忌长度和禁忌表的集合不宜太大,但是禁忌长度太小容易循环搜索,禁忌表太小容易陷入“局部极优解”。

(3)上述程序段中对best_to_far的操作是直接赋值为最优的“解禁候选解”,但是有时候会出现没有大于best_to_far的,候选解也全部被禁的“死锁”状态,这个时候,就应该对候选解中最佳的进行解禁,以能够继续下去。

(4)终止准则:和模拟退火,遗传算法差不多,常用的有:给定一个迭代步数;设定与估计的最优解的距离小于某个范围时,就终止搜索;当与最优解的距离连续若干步保持不变时,终止搜索;
禁忌搜索是对人类思维过程本身的一种模拟,它通过对一些局部最优解的禁忌(也可以说是记忆)达到接纳一部分较差解,从而跳出局部搜索的目的.
遗传算法是基于生物进化的原理发展起来的一种广为应用的、高效的随机搜索与优化的方法。

其主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。

蚂蚁算法是群体智能可用于解决其他组合优化问题,比如有n个城市,需要对所有n个城市进行访问且只访问一次的最短距离。

2
禁忌搜索(Tabu Searc h或Taboo Searc h,简称T S)的思想最早由Glover(1986)提出,它是对局部领域搜索的一种扩展,是一种全局逐步寻优算法,是对人类智力过程的一种模拟。

T S算法通过引入一个灵活的存储结构和相应的禁忌准则来避免迂回搜索,并通过藐视准则来赦免一些被禁忌的优良状态,进而保证多样化的有效探索以最终实现全局优化。

相对于模拟退火和遗传算法,T S是又一种搜索特点不同的 meta-heuris tic算法。

迄今为止,T S算法在组合优化、生产调度、机器学习、电路设计和神经网络等领域取得了很大的成功,近年来又在函数全局优化方面得到较多的研究,并大有发展的趋势。

本章将主要介绍禁忌搜索的优化流程、原理、算法收敛理论与实现技术等内容。

1. 引言
局部领域搜索是基于贪婪思想持续地在当前解的领域中进行搜索,虽然算法通用易实现,且容易理解,但其搜索性能完全依赖于领域结构和初解,尤其窥陷入局部极小而无法保证全局优化性。

针对局部领域搜索,为了实现全局优化,可尝试的途径有:以可控性概率接受劣解来逃逸局部极小,如模拟退火算法;扩大领域搜索结构,如T SP的2opt扩展到k-opt;多点并行搜索,如进化计算;变结构领域搜索( M ladenovic et al,1997);另外,就是采用T S的禁忌策略尽量避免迂回搜索,它是一种确定性的局部极小突跳策略。

禁忌搜索是人工智能的一种体现,是局部领域搜索的一种扩展。

禁忌搜索最重要的思想是标记对应已搜索的局部最优解的一些对象,并在进一步的迭代搜索中尽量避开这些对象(而不是绝对禁止循环),从而保证对不同的有效搜索途径的探索。

禁忌搜索涉及到领域(neighborhood)、禁忌表(tabu lis t)、禁忌长度(tabu 1ength)、候选解(c andidate)、藐视准则(c andidate)等概念,我们首先用一个示例来理解禁忌搜索及其各重要概念,而后给出算法的一般流程。

2.禁忌搜索示例
组合优化是T S算法应用最多的领域。

置换问题,如T SP、调度问题等,是一大批组合优化问题的典型代表,在此用它来解释简单的禁忌搜索算法的思想和操作。

对于n元素的置换问题,其所有排列状态数为n!,当n较大时搜索空间的大小将是天文数字,而禁忌搜索则希望仅通过探索少数解来得到满意的优化解。

首先,我们对置换问题定义一种邻域搜索结构,如互换操作(SWAP),即随机交换两个点的位置,则每个状态的邻域解有C n2 =n(n一1)/2个。

称从一个状态转移到其邻域中的另一个状态为一次移动(move),显然每次移动将导致适配值(反比于目标函数值)的变化。

其次,我们采用一个存储结构来区分移动的属性,即是否为禁忌“对象”在以下示例中:考虑7元素的置换问题,并用每一状态的相应21个邻域解中最优的5次移动(对应最佳的5个适配值)作为候选解;为一定程度上防止迂回搜索,每个被采纳的移动在禁忌表中将滞留3步(即禁忌长度),即将移动在以下连续3步搜索中将被视为禁忌对象;需要指出的是,由于当前的禁忌对象对应状态的适配值可能很好,因此在算法中设置判断,若禁忌对象对应的适配值优于“ bes t s o far”状态,则无视其禁忌属性而仍采纳其为当前选择,也就是通常所说的藐视准则(或称特赦准则)。

可见,简单的禁忌搜索是在领域搜索的基础上,通过设置禁忌表来禁忌一些已经历的操作,并利用藐视准则来奖励一些优良状态,其中领域结构、候选解、禁忌长度、禁忌对象、藐视准则、终止准则等是影响禁忌搜索算法性能的关键。

需要指出的是:(1)首先,由于TS是局部领域搜索的一种扩充,因此领域结构的设计很关键,它决定了当前解的领域解的产生形式和数目,以及各个解之间的关系。

(2)其次,出于改善算法的优化时间性能的考虑,若领域结构决定了大量的领域解(尤其对大规模问题,如T SP的SWAP操作将产生C n2个领域解),则可以仅尝试部分互换的结果,而候选解也仅取其中的少量最佳状态。

(3)禁忌长度是一个很重要的关键参数,它决定禁忌对象的任期,其大小直接进而影响整个算法的搜索进程和行为。

同时,以上示例中,禁忌表中禁忌对象的替换是采用FIFO方式(不考虑藐视准则的作用),当然也可以采用其他方式,甚至是动态自适应的方式。

(4)藐视准则的设置是算法避免遗失优良状态,激励对优良状态的局部搜索,进而实现全局优化的关键步骤。

(5)对于非禁忌候选状态,算法无视它与当前状态的适配值的优劣关系,仅考虑它们中间的最佳状态为下一步决策,如此可实
现对局部极小的突跳(是一种确定性策略)。

(6)为了使算法具有优良的优化性能或时间性能,必须设置一个合理的终止准则来结束整个搜索过程。

此外,在许多场合禁忌对象的被禁次数(frequency)也被用于指导搜索,以取得更大的搜索空间。

禁忌次数越高,通常可认为出现循环搜索的概率越大。

3.禁忌搜索算法流程
通过上述示例的介绍,基本上了解了禁忌搜索的机制和步骤。

简单T S算法的基本思想是:给定一个当前解(初始解)和一种邻域,然后在当前解的邻域中确定若干候选解;若最佳候选解对应的目标值优于“bes t s o far”状态,则忽视其禁忌特性,用其替代当前解和“bes t s o far”状态,并将相应的对象加入禁忌表,同时修改禁忌表中各对象的任期;若不存在上述候选解,则选择在候选解中选择非禁忌的最佳状态为新的当前解,而无视它与当前解的优劣,同时将相应的对象加入禁忌表,并修改禁忌表中各对象的任期;如此重复上述迭代搜索过程,直至满足停止准则。

条理化些,则简单禁忌搜索的算法步骤可描述如下:
(1)给定算法参数,随机产生初始解x,置禁忌表为空。

(2)判断算法终止条件是否满足?若是,则结束算法并输出优化结果;否则,继续以下步骤。

(3)利用当前解工的邻域函数产生其所有(或若干)邻域解,并从中确定若干候选解。

(4)对候选解判断藐视准则是否满足?若成立,则用满足藐视准则的最佳状态y替代x成为新的当前解,即x=y,并用与y对应的禁忌对象替换最早进入禁忌表的禁忌对象,同时用y替换“bes t so far”状态,然后转步骤6;否则,继续以下步骤。

(5)判断候选解对应的各对象的禁忌属性,选择候选解集中非禁忌对象对应的最佳状态为新的当前解,同时用与之对应的禁忌对象替换最早进入禁忌表的禁忌对象元素。

(6)转步骤(2)。

同时,上述算法可用如下流程框图更直观地描述,如图4.1.1。

我们可以明显地看到,邻域函数、禁忌对象、禁忌表和藐视准则,构成了禁忌搜索算法的关键。

其中,邻域函数沿用局部邻域搜索的思想,用于实现邻域搜索;禁忌表和禁忌对象的设置,体现了算法避免迂回搜索的特点;藐视准则,则是对优良状态的奖励,它是对禁忌策略的一种放松。

需要指出的是,上述算法仅是一种简单的禁忌搜索框架,对各关键环节复杂和多样化的设计则可构造出各种禁忌搜索算法。

同时,算法流程中的禁忌对象,可以是搜索状态,也可以是特定搜索操作,甚至是搜索目标值等。

同时,与传统的优化算法相比,T S算法的主要特点是:
(1)在搜索过程中可以接受劣解,因此具有较强的“爬山”能力;
(2)新解不是在当前解的邻域中随机产生,而或是优于“bes t s o far”的解,或是非禁忌的最佳解,因此选取优良解的概率远远大于其他解。

由于T S算法具有灵活的记忆功能和藐视准则,并且在搜索过程中可以接受劣解,所以具有较强的“爬山”能力,搜索时能够跳出局部最优解,转向解空间的其他区域,从而增强获得更好的全局最优解的概率,所以T S算法是一种局部搜索能力很强的全局迭代寻优算法。

相关文档
最新文档