2021年高三第一次摸底考试数学试题 Word版含答案
2021年高三上学期摸底考试数学理试题 含答案
2021年高三上学期摸底考试数学理试题含答案本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用2B铅笔在“考生号、座号”处填涂考生号、座位号,用黑色字迹钢笔或签字笔将自己所在学校、班级,以及自己的姓名填写在答题卷上.2.选择题每小题选出答案后,用2B铅笔把答题卷上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卷的整洁.考试结束后,将试卷和答题卷一并交回.参考公式:圆锥的侧面积公式,其中是圆锥的底面半径,是圆锥的母线长.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则().A. B. C. D.2.已知,则().A. B. C. D.3.设,则“”是“直线与直线平行”的().A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件4.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为( ). A. B. C. D.5.在△ABC 中,,,则△ABC 的面积为( ).A.3B.4C.6D.6.函数的零点所在的一个区间是( ). A. B. C. D.7.若双曲线的渐近线与圆相切,则双曲线的离心率为( ). A. B. C.2 D. 8.若过点的直线与曲线和都相切,则的值为( ). A.2或 B.3或 C.2 D.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.若复数满足,则复数的实部是 .10.的展开式中的常数项是 .(用数字作答)11.执行如图所示的程序框图,则输出的S 的值是 . 12.已知实数满足,则的最大值 是 .13.在区间上随机取一个数,在区间上随机取一个数,则关于的方程有实根的概率是 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图,AB 为⊙O 的直径,弦AC 、BD 相交于点P ,若,,则的值为 . 15.(坐标系与参数方程选做题)已知曲线C 的参数方程是(为参数),以直角坐标系的原点O 为极点,轴的正半轴为极轴,并取相同的长度单位建立极坐标系,则曲线C 的极坐标方程是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<,的最大值是1,最小正周期是,其图像经过点. (1)求的解析式;(2)设、、为△ABC的三个内角,且,,求的值.17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物一次购物量(件)1≤n≤3 4≤n≤6 7≤n≤9 10≤n≤12 n≥13 顾客数(人)20 10 5结算时间(分钟/人)0.5 1 1.5 2 2.5(1)确定与的值;(2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望;(3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2分钟的概率.18.(本小题满分14分)如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.(1)求证:平面;(2)求证:平面平面;(3)求二面角的余弦值.19.(本小题满分14分)已知数列满足,.(1)求数列的通项公式;(2)令,数列{b n}的前n项和为T n,试比较T n与的大小,并予以证明.20.(本小题满分14分)已知椭圆的左、右焦点分别为、,P为椭圆上任意一点,且的最小值为.(1)求椭圆的方程; (2)动圆与椭圆相交于A 、B 、C 、D 四点,当为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积.21.(本小题满分14分)已知函数.(1)是否存在点,使得函数的图像上任意一点P 关于点M 对称的点Q 也在函数的图像上?若存在,求出点M 的坐标;若不存在,请说明理由;(2)定义2111221()()()()n n i i n S f f f f n n n n-=-==++⋅⋅⋅+∑,其中,求; (3)在(2)的条件下,令,若不等式对且恒成立,求实数的取值范围.xx 届越秀区高三摸底考试数学(理科)参考答案一、选择题:本大题共8题,每小题5分,满分40分.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. 9.1 10. 11. 12. 13. 14. 15. 三、解答题:本大题共6小题,满分80分. 16.(1)依题意得.由,解得.所以.因为函数的图像经过点,所以,即. 因为,所以.所以. (2)由(1)得,所以,.因为,所以,.因为为△ABC 的三个内角,所以()cos cos[()]cos()f C C A B A B π==-+=-+ .17.(1)依题意得,,,解得,. (2)该超市所有顾客一次购物的结算时间组成一个总体,所以收集的50位顾客一次购物的结算时间可视为总体的一个容量为50的随机样本,将频率视为概率得, ,,, ,.所以的分布列为的数学期望为.(3)记“该顾客结算前的等候时间不超过2分钟”为事件A ,该顾客前面第位顾客的结算时间为,由于各顾客的结算相互独立,且的分布列都与的分布列相同,所以121212()(0.5(0.5)(0.5(1)(0.5( 1.5)P A P X P X P X P X P X P X ==⋅=+=⋅=+=⋅=)))121212(1(0.5)(1(1)( 1.5(0.5)P X P X P X P X P X P X +=⋅=+=⋅=+=⋅=)))0.20.20.20.40.20.20.40.20.40.40.20.20.44=⨯+⨯+⨯+⨯+⨯+⨯= 为所求.18.(1)因为O 为AC 的中点,M 为BC 的中点,所以.因为平面ABD ,平面ABD ,所以平面.(2)因为在菱形ABCD 中,,所以在三棱锥中,.在菱形ABCD 中,AB =AD =4,,所以BD =4.因为O 为BD 的中点, 所以.因为O 为AC 的中点,M 为BC 的中点,所以.因为,所以,即.因为平面ABC ,平面ABC ,,所以平面ABC . 因为平面DOM ,所以平面平面.(3)作于,连结DE .由(2)知,平面ABC ,所以AB .因为,所以平面ODE .因为平面ODE ,所以. 所以是二面角的平面角. 在Rt △DOE 中,,,,所以.所以二面角的余弦值为.19.(1)当时,121321()()()n n n a a a a a a a a -=+-+-+⋅⋅⋅+- .又也适合上式,所以. (2)由(1)得,所以.因为①,所以②. 由①-②得,,所以121111112212122222212n n n n n n n n n T --+=+++⋅⋅⋅+-=-=--. 因为33222(2)(221)221212212(21)2n n n n nn n n n n n n T n n n n ++++--⎛⎫-=--=-= ⎪++++⎝⎭, 所以确定与的大小关系等价于比较与的大小.当时,;当时,; 当时,;当时,;……, 可猜想当时,.证明如下:当时,.综上所述,当或时,;当时,. 20.(1)因为P 是椭圆上一点,所以.在△中,,由余弦定理得()22121212122444122PF PF PF PF a PF PF PF PF +-⋅--==-⋅⋅. 因为,当且仅当时等号成立. 因为,所以.因为的最小值为,所以,解得. 又,所以.所以椭圆C 的方程为. (2)设,则矩形ABCD 的面积.因为,所以.所以2222222000003231632124332x S x y x x ⎛⎫⎛⎫==-=--+ ⎪ ⎪⎝⎭⎝⎭. 因为且,所以当时,取得最大值24.此时,.所以当时,矩形ABCD 的面积最大,最大面积为.21.(1)假设存在点,使得函数的图像上任意一点P 关于点M 对称的点Q 也在函数的图像上,则函数图像的对称中心为. 由,得,即对恒成立,所以解得所以存在点,使得函数的图像上任意一点关于点M 对称的点也在函数的图像上. (2)由(1)得.令,则.因为1221()()(2)(2)n S f f f f n n nn=++⋅⋅⋅+-+-①, 所以1221(2)(2)()()n S f f f f n n n n=-+-+⋅⋅⋅++②,由①+②得,所以.所以.(3)由(2)得,所以.因为当且时,2()121ln ln 2n amnmn n ma n n ⋅>⇔⋅>⇔>-. 所以当且时,不等式恒成立.设,则. 当时,,在上单调递减; 当时,,在上单调递增. 因为,所以, 所以当且时,. 由,得,解得.所以实数的取值范围是.]28210 6E32 渲30080 7580 疀|22043 561B 嘛33037 810D 脍u39819 9B8B 鮋20257 4F21 伡32313 7E39 縹26508 678C 枌.O &。
2021年高三上学期摸底数学试卷含解析
2021年高三上学期摸底数学试卷含解析一、填空题:本大题共14小题,每小题5分,共70分,把答案填在答题卡的相应位置.1.已知集合A={x|x>0},B={﹣1,0,1,2},则A∩B等于.2.已知复数z满足(1+i)•z=﹣i,则的模为.3.已知+=2,则a= .4.如图所示茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则乙的平均成绩超过甲的概率为.5.若双曲线x2﹣=1的焦点到渐进线的距离为2,则实数k的值是.6.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若△ABC绕直线BC旋转一周,则所形成的几何体的体积是.7.下面求2+5+8+11+…+xx的值的伪代码中,正整数m的最大值为.8.向量=(cos10°,sin10°),=(cos70°,sin70°),|﹣2|= .9.对于函数y=f(x),若存在区间[a,b],当x∈[a,b]时,f(x)的值域为[ka,kb](k>0),则称y=f(x)为k倍值函数.若f(x)=lnx+x是k倍值函数,则实数k的取值范围是.10.函数y=1﹣(x∈R)的最大值与最小值之和为.11.已知圆O:x2+y2=r2(r>0)及圆上的点A(0,﹣r),过点A的直线l交圆于另一点B,交x轴于点C,若OC=BC,则直线l的斜率为.12.已知|AB|=3,C是线段AB上异于A,B的一点,△ADC,△BCE均为等边三角形,则△CDE的外接圆的半径的最小值是.13.已知实数x、y满足,若不等式a(x2+y2)≥(x+y)2恒成立,则实数a的最小值是.14.设等比数列{a n}满足公比q∈N*,a n∈N*,且{a n}中的任意两项之积也是该数列中的一项,若a1=281,则q的所有可能取值的集合为.二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15.已知0<α<<β<π且sin(α+β)=,tan=.(1)求cosα的值;(2)证明:sinβ.16.如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.(1)求证:AB∥平面CDE;(2)求证:平面ABCD⊥平面ADE.17.某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第x个月的利润(单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第x个月的当月利润率,例如:.(1)求g(10);(2)求第x个月的当月利润率g(x);(3)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.18.已知椭圆Γ:.(1)椭圆Γ的短轴端点分别为A,B(如图),直线AM,BM分别与椭圆Γ交于E,F两点,其中点M(m,)满足m≠0,且m.①证明直线EF与y轴交点的位置与m无关;②若△BME面积是△AMF面积的5倍,求m的值;(2)若圆φ:x2+y2=4.l1,l2是过点P(0,﹣1)的两条互相垂直的直线,其中l1交圆φ于T、R两点,l2交椭圆Γ于另一点Q.求△TRQ面积取最大值时直线l1的方程.19.已知数列{a n}的前n项和S n满足:S n=t(S n﹣a n+1)(t为常数,且t≠0,t≠1).(1)求{a n}的通项公式;(2)设b n=a n2+S n a n,若数列{b n}为等比数列,求t的值;(3)在满足条件(2)的情形下,设c n=4a n+1,数列{c n}的前n项和为T n,若不等式≥2n ﹣7对任意的n∈N*恒成立,求实数k的取值范围.20.已知函数f(x)=(e为自然数的底数).(1)求f(x)的单调区间;(2)是否存在实数x使得f(1﹣x)=f(1+x),若存在求出x,否则说明理由;(3)若存在不等实数x1,x2,使得f(x1)=f(x2),证明:f()<0.xx学年江苏省泰州中学高三(上)摸底数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分,把答案填在答题卡的相应位置.1.已知集合A={x|x>0},B={﹣1,0,1,2},则A∩B等于.【考点】交集及其运算.【分析】直接由交集的运算性质得答案.【解答】解:由集合A={x|x>0},B={﹣1,0,1,2},则A∩B={x|x>0}∩{﹣1,0,1,2}={1,2}.故答案为:{1,2}.2.已知复数z满足(1+i)•z=﹣i,则的模为.【考点】复数代数形式的乘除运算.【分析】把给出的等式变形得到,运用复数的除法运算化简z,从而得到,则的模可求.【解答】解:由(1+i)•z=﹣i,得:.所以,所以.故答案为.3.已知+=2,则a=.【考点】对数的运算性质.【分析】利用换底公式对等式进行化简,便可求出a值.【解答】解:,可化为log a2+log a3=2,即log a6=2,所以a2=6,又a>0,所以a=.故答案为:.4.如图所示茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则乙的平均成绩超过甲的概率为.【考点】茎叶图.【分析】根据茎叶图计算甲乙的平均数,利用古典概率的概率公式即可得到结论.【解答】解:由图示可知,甲的平均成绩为(88+89+90+91+92)=90,设被污损的数字为x,则乙的平均成绩为90+(﹣7﹣7﹣3+9+x)>90,即x﹣8>0,解得x>8.即x=9,故所求概率为.故答案为:5.若双曲线x2﹣=1的焦点到渐进线的距离为2,则实数k的值是.【考点】双曲线的简单性质.【分析】先分别求双曲线的渐近线方程,焦点坐标,再利用焦点到渐近线的距离为,可求实数k的值【解答】解:双曲线的渐近线方程为;焦点坐标是.由焦点到渐近线的距离为,不妨.解得k=8.故答案为8.6.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若△ABC绕直线BC旋转一周,则所形成的几何体的体积是.【考点】组合几何体的面积、体积问题.【分析】如图,大圆锥的体积减去小圆锥的体积就是旋转体的体积,结合题意计算可得答案.【解答】解:依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以OA=,OB=1所以旋转体的体积:故答案为:7.下面求2+5+8+11+…+xx的值的伪代码中,正整数m的最大值为.【考点】伪代码.【分析】根据已知中程序的功能,我们可以分析出累加项的步长为3,循环变量I的终值为xx,故xx<m<xx,进而可得m的最大值.【解答】解:由伪代码知,这是当型循环结构的算法,由于累加项的步长为3,循环变量I的终值为xx故xx<m<xx由于m是正整数,所以最大值为xx.故答案为:xx8.向量=(cos10°,sin10°),=(cos70°,sin70°),|﹣2|=.【考点】向量的模;平面向量数量积的运算.【分析】利用数量积运算及其性质、向量模的计算公式即可得出.【解答】解:∵向量=(cos10°,sin10°),=(cos70°,sin70°),∴=cos10°cos70°+sin10°sin70°=cos(70°﹣10°)=cos60°=.||==1,同理=1.∴|﹣2|===.故答案为:.9.对于函数y=f(x),若存在区间[a,b],当x∈[a,b]时,f(x)的值域为[ka,kb](k >0),则称y=f(x)为k倍值函数.若f(x)=lnx+x是k倍值函数,则实数k的取值范围是.【考点】函数的值域.【分析】由于f(x)在定义域{x|x>0}内为单调增函数,利用导数求得g(x)的极大值为:g(e)=1+,当x趋于0时,g(x)趋于﹣∞,当x趋于∞时,g(x)趋于1,因此当1<k <1+时,直线y=k与曲线y=g(x)的图象有两个交点,满足条件,从而求得k的取值范围.【解答】解:∵f(x)=lnx+x,定义域为{x|x>0},f(x)在定义域为单调增函数,因此有:f(a)=ka,f(b)=kb,即:lna+a=ka,lnb+b=kb,即a,b为方程lnx+x=kx的两个不同根.∴k=1+,令1+=g(x),令g'(x)==0,可得极大值点x=e,故g(x)的极大值为:g(e)=1+,当x趋于0时,g(x)趋于﹣∞,当x趋于∞时,g(x)趋于1,因此当1<k<1+时,直线y=k与曲线y=g(x)的图象有两个交点,方程k=1+有两个解.故所求的k的取值范围为(1,1+),故答案为(1,1+).10.函数y=1﹣(x∈R)的最大值与最小值之和为.【考点】奇偶函数图象的对称性;函数奇偶性的性质.【分析】构造函数g(x)=﹣,可判断g(x)为奇函数,利用奇函数图象的性质即可求出答案.【解答】解:f(x)=1﹣,x∈R.设g(x)=﹣,因为g(﹣x)=﹣==﹣g(x),所以函数g(x)是奇函数.奇函数的图象关于原点对称,它的最大值与最小值互为相反数.设g(x)的最大值为M,则g(x)的最小值为﹣M.所以函数f(x)的最大值为1+M,则f(x)的最小值为1﹣M.∴函数f(x)的最大值与最小值之和为2.故答案为211.已知圆O:x2+y2=r2(r>0)及圆上的点A(0,﹣r),过点A的直线l交圆于另一点B,交x轴于点C,若OC=BC,则直线l的斜率为.【考点】直线与圆的位置关系.【分析】设直线l的斜率为k,则直线l的方程为y=kx﹣r,求出B,C的坐标,利用OC=BC,建立方程,即可求出直线l的斜率.【解答】解:设直线l的斜率为k,则直线l的方程为y=kx﹣r,联立直线与圆的方程,可得B(,),∵C(,0),OC=BC,∴()2=(﹣)2+[]2,解得k=±.故答案为:±.12.已知|AB|=3,C是线段AB上异于A,B的一点,△ADC,△BCE均为等边三角形,则△CDE的外接圆的半径的最小值是.【考点】解三角形.【分析】设AC=m,CB=n,则m+n=3,在△CDE中,由余弦定理知DE2=9﹣3mn,利用基本不等式,可得,再利用△CDE的外接圆的半径,即可得到结论.【解答】解:设AC=m,CB=n,则m+n=3,在△CDE中,由余弦定理知DE2=CD2+CE2﹣2CD•CEcos∠DCE=m2+n2﹣mn=(m+n)2﹣3mn=9﹣3mn又,当且仅当时,取“=”,所以,又△CDE的外接圆的半径∴△CDE的外接圆的半径的最小值是故答案为:.13.已知实数x、y满足,若不等式a(x2+y2)≥(x+y)2恒成立,则实数a的最小值是.【考点】简单线性规划;函数恒成立问题.【分析】确定约束条件的平面区域,求得与原点连线的斜率的范围,再分离参数,利用函数的单调性,确定函数的最值,即可得到结论.【解答】解:实数x、y满足的可行域是一个三角形,三角形的三个顶点分别为(1,4),(2,4),与原点连线的斜率分别为4,2,∴a(x2+y2)≥(x+y)2等价于a≥1+∵∈[2,4]∴≤+≤4+=∴a≥1+=∴实数a的最小值是故答案为:14.设等比数列{a n}满足公比q∈N*,a n∈N*,且{a n}中的任意两项之积也是该数列中的一项,若a1=281,则q的所有可能取值的集合为.【考点】等比数列的通项公式.【分析】依题意可求得该等比数列的通项公式a n,设该数列中的任意两项为a m,a t,它们的积为a p,求得q=,分析即可.【解答】解:由题意,a n=281q n﹣1,设该数列中的任意两项为a m,a t,它们的积为a p,则为a m•a t=a p,即281q m﹣1•281q t﹣1=281•q p﹣1,(q,m,t,p∈N*),∴q=,故p﹣m﹣t+1必是81的正约数,即p﹣m﹣t+1的可能取值为1,3,9,27,81,即的可能取值为1,3,9,27,81,所以q的所有可能取值的集合为{281,227,29,23,2}二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15.已知0<α<<β<π且sin(α+β)=,tan=.(1)求cosα的值;(2)证明:sinβ.【考点】两角和与差的正弦函数;同角三角函数间的基本关系;半角的三角函数.【分析】(1)利用二倍角的正切公式可求得tanα,结合0<α<即可求得cosα的值;(2)由于β=(α+β)﹣α,利用两角差的正弦结合已知即可求得sinβ的值,从而使结论得证.【解答】解:(1)将tan=代入tanα=得:tanα=所以,又α∈(0,),解得cosα=.(2)证明:∵0<α<<β<π,∴<α+β<,又sin(α+β)=,所以cos(α+β)=﹣,由(1)可得sinα=,所以sinβ=sin[(α+β)﹣α]=×﹣(﹣)×=>.16.如图,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,AE⊥平面CDE,且AB=2AE.(1)求证:AB∥平面CDE;(2)求证:平面ABCD⊥平面ADE.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)根据正方形对边平行可得AB∥CD,结合线面平行的判定定理可得AB∥平面CDE;(2)由已知AE⊥平面CDE,可得AE⊥CD,结合正方形ABCD邻边垂直及线面垂直的判定定理可得CD⊥平面ADE,进而由面面垂直的判定定理可得平面ABCD⊥平面ADE【解答】证明:(1)正方形ABCD中,AB∥CD,又AB⊄平面CDE,CD⊂平面CDE,所以AB∥平面CDE.(2)因为AE⊥平面CDE,且CD⊂平面CDE,所以AE⊥CD,又正方形ABCD中,CD⊥AD且AE∩AD=A,AE,AD⊂平面ADE,所以CD⊥平面ADE,又CD⊂平面ABCD,所以平面ABCD⊥平面ADE.17.某企业投入81万元经销某产品,经销时间共60个月,市场调研表明,该企业在经销这个产品期间第x个月的利润(单位:万元),为了获得更多的利润,企业将每月获得的利润投入到次月的经营中,记第x个月的当月利润率,例如:.(1)求g(10);(2)求第x个月的当月利润率g(x);(3)该企业经销此产品期间,哪个月的当月利润率最大,并求该月的当月利润率.【考点】分段函数的应用;函数的最值及其几何意义.【分析】(1)当1≤x≤20时,f(x)=1,易知f(1)=f(2)=f(3)=…=f(9)=f(10)=1,从而知(2)求第x个月的当月利润率,要考虑1≤x≤20,21≤x≤60时f(x)的值,代入即可.(3)求那个月的当月利润率最大时,由(2)得出的分段函数,利用函数的单调性,基本不等式可得,解答如下:【解答】解:(1)由题意得:f(1)=f(2)=f(3)=…═f(9)=f(10)=1g(x)===.(2)当1≤x≤20时,f(1)=f(2)═f(x﹣1)=f(x)=1∴g(x)====.当21≤x≤60时,g(x)=====∴当第x个月的当月利润率;(3)当1≤x≤20时,是减函数,此时g(x)的最大值为当21≤x≤60时,当且仅当时,即x=40时,,又∵,∴当x=40时,所以,该企业经销此产品期间,第40个月的当月利润率最大,最大值为.18.已知椭圆Γ:.(1)椭圆Γ的短轴端点分别为A,B(如图),直线AM,BM分别与椭圆Γ交于E,F两点,其中点M(m,)满足m≠0,且m.①证明直线EF与y轴交点的位置与m无关;②若△BME面积是△AMF面积的5倍,求m的值;(2)若圆φ:x2+y2=4.l1,l2是过点P(0,﹣1)的两条互相垂直的直线,其中l1交圆φ于T、R两点,l2交椭圆Γ于另一点Q.求△TRQ面积取最大值时直线l1的方程.【考点】直线与圆锥曲线的综合问题.【分析】(1)①设出AM和BM的方程,与椭圆方程联立表示出E,F的坐标,用两点式写出EF的方程,令x=0即可确定与y轴的交点;②根据△BME面积是△AMF面积的5倍可推出5|MA||MF|=|MB||ME|,从而建立关于m的方程,求解即可;(2)直接设出两条直线方程,联立直线与圆的方程,利用根与系数的关系,表示出|OP|,然后表示出△TRQ面积,利用基本不等式可求出最大值,并确定直线方程.【解答】解:(1)①A(0,1),B(0,﹣1),M (m,),且m≠0,∴直线AM 的斜率为,直线BM 斜率为,∴直线AM 的方程为,直线BM 的方程为.由得(m 2+1)x 2﹣4mx=0,∴x=0或x=.∴E 点的坐标为().由得(m 2+9)x 2﹣12mx=0,解得x=0或x=.∴F 点的坐标为();由已知,m ≠0,m 2≠3,∴直线EF 的斜率==.∴直线EF 的方程为,令x=0,得y=2,∴EF 与y 轴交点的位置与m 无关.②,,∠AMF=∠BME ,5S △AMF =S △BME ,∴5|MA ||MF |=|MB ||ME |,∴,∴,(m ≠0),∴整理方程得,即(m 2﹣3)(m 2﹣1)=0,又∵,∴m 2﹣3≠0,∴m 2=1,∴m=±1(2)∵直线l 1⊥l 2,且都过点P (0,﹣1),∴设直线l 1:y=kx ﹣1,即kx ﹣y ﹣1=0.直线,即x +ky +k=0,∴圆心(0,0)到直线l 1的距离为,∴直线l 1被圆x 2+y 2=4所截的弦=;由得,k 2x 2+4x 2+8kx=0,∴,∴.∴=.即时等号成立,此时直线19.已知数列{a n}的前n项和S n满足:S n=t(S n﹣a n+1)(t为常数,且t≠0,t≠1).(1)求{a n}的通项公式;(2)设b n=a n2+S n a n,若数列{b n}为等比数列,求t的值;(3)在满足条件(2)的情形下,设c n=4a n+1,数列{c n}的前n项和为T n,若不等式≥2n ﹣7对任意的n∈N*恒成立,求实数k的取值范围.【考点】数列与不等式的综合;等比数列的性质;数列递推式.【分析】(1)当n=1时,S1=t(S1﹣a1+1),得a1=t.当n≥2时,由(1﹣t)S n=﹣ta n+t,得,(1﹣t)S n﹣1=﹣ta n﹣1+t.故a n=ta n﹣1,由此能求出{a n}的通项公式.(2)由,得数列{b n}为等比数列,,由此能求出t的值.(3)由t=,得,所以,由不等式恒成立,得恒成立,由此能求出实数k的取值范围.【解答】解:(1)当n=1时,S1=t(S1﹣a1+1),得a1=t.当n≥2时,由S n=t(S n﹣a n+1),即(1﹣t)S n=﹣ta n+t,①得,(1﹣t)S n﹣1=﹣ta n﹣1+t,②①﹣②,得(1﹣t)a n=﹣ta n+ta n﹣1,即a n=ta n﹣1,∴,∴{a n}是等比数列,且公比是t,∴.(2)由(1)知,,即,若数列{b n}为等比数列,则有,而,故[a3(2t+1)]2=(2a2)•a4(2t2+t+1),解得,再将代入b n,得,由,知{b n}为等比数列,∴t=.(3)由,知,∴,由不等式恒成立,得恒成立,设,由,∴当n ≤4时,d n +1>d n ,当n ≥4时,d n +1<d n ,而,∴d 4<d 5,∴,∴.20.已知函数f (x )=(e 为自然数的底数).(1)求f (x )的单调区间;(2)是否存在实数x 使得f (1﹣x )=f (1+x ),若存在求出x ,否则说明理由;(3)若存在不等实数x 1,x 2,使得f (x 1)=f (x 2),证明:f ()<0.【考点】利用导数研究函数的单调性.【分析】(1)先求出函数的导数,通过解关于导函数的不等式从而求出函数的单调区间; (2)通过讨论x 的范围,假设存在x 使得f (1﹣x )=f (1+x ),当x=1时不成立,当x ≠1时化简整理得e 2x =,进一步说明x >1,0<x <1,﹣1<x <0,x <﹣1时不成立; (3)由于存在不等实数x 1、x 2,使得f (x 1)=f (x 2),即x 1﹣lnx 1=x 2﹣lnx 2,令g (x )=x ﹣lnx ,g (x 1)=g (x 2),不妨设0<x 1<1<x 2,则2﹣x 1>1,g (2﹣x 1)﹣g (x 2)=g (2﹣x 1)﹣g (x 1),化简整理,设F (t )=﹣lnt ,求出导数,判断单调性,得到x 1+x 2>2,即可得证【解答】解:(1)f ′(x )==,令f ′(x )>0,解得:x <1,令f ′(x )<0,解得:x >1,∴函数f (x )在(﹣∞,1)递增,在(1,+∞)递减;(2)①若存在正实数x ,使得f (1﹣x )=f (1+x ),即有 =.当x=1时等式左边等于0,右边大于0,等式不成立;当x ≠1时整理得e 2x =,当x >1时,等式左边大于0,右边小于0,等式不成立,当0<x <1时,有e 2x <,故不存在正实数x ,使得f (1﹣x )=f (1+x );②同理可证不存在负实数x ,使得f (1﹣x )=f (1+x );③x=0时,显然满足条件,综上x=0时,存在实数x 使得f (1﹣x )=f (1+x );(3)证明:由于存在不等实数x 1、x 2,使得f (x 1)=f (x 2),即为 =,即 =ex 1﹣x 2,即有x 1﹣x 2=lnx 1﹣lnx 2,即x 1﹣lnx 1=x 2﹣lnx 2,令g (x )=x ﹣lnx ,g ′(x )=1﹣,g (x 1)=g (x 2),不妨设0<x 1<1<x 2,则2﹣x 1>1,而g (2﹣x 1)﹣g (x 2)=g(2﹣x1)﹣g(x1)=(2﹣x1)﹣ln(2﹣x1)﹣x1+lnx1=2﹣2x1﹣ln,令=t,则t>1,x1=,故F(t)=﹣lnt,故F′(t)=<0,故F(t)在(1,+∞)上是减函数,故F(t)<F(1)=0,故g(2﹣x1)﹣g(x2)<0,又∵g(x)在(1,+∞)上单调递增,∴2﹣x1<x2,故x1+x2>2,即>1,则有f′()=<0,故f′()<0xx年10月14日29358 72AE 犮28380 6EDC 滜39181 990D 餍38734 974E 靎] x22129 5671 噱40074 9C8A 鲊j$MJ37841 93D1 鏑。
2021年高三上学期开学摸底考试数学(理)试题 含答案
2021年高三上学期开学摸底考试数学(理)试题含答案第Ⅰ卷(选择题)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项符合题意的)1.已知集合,,则()A. B. C. D.2.如果复数(其中为虚数单位,为实数)的实部和虚部互为相反数,那么等于()A.-6 B. C. D.23.设等差数列的前项和为,若,则的值为()A. 27 B.36 C.45 D.544.下列命题错误的是()A.命题“若,则”的逆否命题为“若中至少有一个不为0,则”B.若命题,则C.中,是的充要条件D.若向量满足,则与的夹角为钝角5.某几何体的三视图如上图所示(单位:),则该几何体的体积是()A. B. C. D.6.若用下边的程序框图求数列的前100项和,则赋值框和判断框中可分别填入()A. B.C.D.7.已知函数的图象与直线的三个相邻交点的横坐标分别是2,4,8,则的单调递增区间是()A. B. C.D.8.已知实数满足约束条件,则的最小值是()A. B.2 C. D.19. 若函数y=(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=的图像大致是10.已知双曲线与抛物线相交于两点,公共弦恰过它们的公共焦点,则双曲线的一条渐近线的倾斜角所在的区间可能是()A. B. C. D.11.已知满足,,,则()A. B. C. D.12.已知是定义在上的单调函数,且对任意的,都有,则方程的解所在的区间是()A. B. C. D.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.已知的展开式中的各项系数的和为2,则该展开式中的常数项为.14.曲线在点处的切线与坐标轴围成的三角形的外接圆方程是.15.已知两个小孩和甲、乙、丙三个大人排队,不排两端,3个大人有且只有两个相邻,则不同的排法种数有.16.在正方体中,是棱的中点,是侧面内的动点,且平面,则与平面所成角的正切值的取值范围是.三、解答题:本大题共6小题,共70分。
2021年高三第一次模拟考试 数学 Word版含答案
2021年高三第一次模拟考试 数学 Word 版含答案一、填空题:本大题共14小题,每小题5分,计70分. 1.设集合,集合,若,则 ▲ . 答案:12.若复数(其中为虚数单位)的实部与虚部相等,则实数 ▲ . 答案:-13.在一次射箭比赛中,某运动员次射箭的环数依次是,则该组数据的方差是 ▲ .答案:4.甲、乙两位同学下棋,若甲获胜的概率为,甲、乙下和棋的概率为,则乙获胜的概率为 ▲ . 答案:解读:为了体现新的《考试说明》,此题选择了互斥事件,选材于课本中的习题。
5.若双曲线的右焦点与抛物线的焦点重合,则 ▲ . 答案:6.运行如图所示的程序后,输出的结果为 ▲ .答案:42解读:此题的答案容易错为22。
7.若变量满足,则的最大值为 ▲ .答案:88.若一个圆锥的底面半径为,侧面积是底面积的倍,则该圆锥的体积为 ▲ .答案:9.若函数图象的两条相邻的对称轴之间的距离为,且该函数图象关于点成中心对称,,则 ▲ . 答案:10.若实数满足,且,则的最小值为 ▲ . 答案:4 11.设向量,,则“”是“”成立的 ▲ 条件 (选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”) . 答案:必要不充分 12.在平面直角坐标系中,设直线与圆交于两点,为坐标原点,若圆上一点满足,则 ▲ . 答案:解读:方法1:(平面向量数量积入手)22225325539244164416OC OA OB OA OA OB OB ⎛⎫=+=+⋅⋅+ ⎪⎝⎭,即:,整理化简得:,过点作的垂线交于,则,得,又圆心到直线的距离为,所以,所以,.第6题图方法2:(平面向量坐标化入手)设,,,由得,, 则22222222121211112222535325251525251544441616816168x y x x y y x y x y x y x y ⎛⎫⎛⎫+=+++=+++++ ⎪ ⎪⎝⎭⎝⎭由题意得,,联立直线与圆的方程,由韦达定理可解得:. 方法3:(平面向量共线定理入手)由得,设与交于点,则三点共线。
北京市延庆区2021届高三一模考试数学试题Word版含解析
北京市延庆区2021届高三一模考试数学试题第一部分(选择题,共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项1.已知复数22z a i a i =--是正实数,则实数a 的值为( )A. 0B. 1C. 1-D. 1± 【答案】C【解析】【分析】将复数化成标准形式,由题意可得实部大于零,虚部等于零,即可得到答案.【详解】因为2222(1)z a i a i a a i =--=-+-为正实数,所以20a ->且210a -=,解得1a =-.故选:C【点睛】本题考查复数的基本定义,属基础题.2.已知向量()()1,,,2,a k b k ==若a 与b 方向相同,则k 等于( )A. 1B.C. 【答案】D【解析】【分析】依题a //b ,且a 与b 符号相同,运用坐标运算即可得到答案.【详解】因为a 与b 方向相同,则存在实数λ使(0)a b λλ=>,因为()()1,,,2a k b k ==,所以(,2)b k λλλ=,所以12k k λλ=⎧⎨=⎩,解之得22k =,因为0λ>,所以0k >,所以k =故答案选:D【点睛】本题考查共线向量的基本坐标运算,属基础题.3.下列函数中最小正周期为π的函数是( )A. y sinx =B. 12y cos x = C. 2y tan x = D. y sinx = 【答案】D【解析】【分析】根据三角函数周期公式即可得到答案.【详解】A 选项的最小正周期为221T ππ==;B 选项的最小正周期为2412T ππ==;C 选项的最小正周期为2T π=;D 选项的最小正周期为1T ππ==.故选:D【点睛】本题考查三角函数的周期性,属基础题.4.下列函数中,是奇函数且在其定义域上是增函数的是( ) A. 1y x = B. y tanx = C. x xy e e -=- D. 2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】【分析】根据奇函数的定义及函数单调性的判断即可得出答案.【详解】对于A 选项,反比例函数1y x =,它有两个减区间,对于B 选项,由正切函数y tanx =的图像可知不符合题意;对于C 选项,令()x x f x e e -=-知()x x f x e e --=-,所以()()0f x f x +-=所以()x x f x e e -=-为奇函数,又x y e =在定义内单调递增,所以x y e -=-单调递增,所以函数x x y e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩, 所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数. 故选:C【点睛】本题主要考查函数的单调性和奇偶性,属于基础题.5.某四棱锥的三视图所示,已知该四棱锥的体积为433,则它的表面积为( )A. 8B. 12C. 443+D. 20【答案】B【解析】【分析】 由三视图可知该四棱柱为正四棱柱,底面为正方形,根据三视图的数据即可求出该四棱柱的表面积.【详解】由三视图可知该四棱柱为正四棱柱,如图所示,底面边长为2,设四棱锥的高为h ,则依题意有1223V h =⨯⨯=所以h =12h === 所以四棱锥的侧面积11=422=82S ⨯⨯⨯, 所以该四棱锥的表面积为:2=8+22=12S ⨯.故选:B【点睛】本题主要考查由三视图还原几何体,锥体体积公式应用,表面积的求法,属于基础题. 6.5212x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 的系数是( ) A. 160B. 80C. 50D. 10【答案】B【解析】【分析】由二项式定理公式1C r n r r r n T a b -+=即可得到结果. 【详解】依题5212x x ⎛⎫+ ⎪⎝⎭的展开式的通项为: 2551031551(2)()2r r r r r r r T C x C x x---+==, 当1034r -=时,2r,此时523552280r r C C -==, 所以5212x x ⎛⎫+ ⎪⎝⎭的展开式中,4x 的系数是80. 故选:B【点睛】本题考查二项式定理,属于基础题.7.在平面直角坐标系xOy 中,将点()1,2A 绕原点O 逆时针旋转90︒到点B ,设直线OB 与x 轴正半轴所成的最小正角为α,则cos α等于( )A. 5-B. 5-C. 5D. 25- 【答案】A【解析】【分析】设直线直线OA 与x 轴正半轴所成的最小正角为β,由任意角的三角函数的定义可以求得sin β的值,依题有OA OB ⊥,则90αβ,利用诱导公式即可得到答案.【详解】如图,设直线直线OA 与x 轴正半轴所成的最小正角为β因为点()1,2A 在角β的终边上,所以2225sin 12β 依题有OA OB ⊥,则90αβ,所以25cos cos(90)sin αββ,故选:A【点睛】本题考查三角函数的定义及诱导公式,属于基础题.8.已知直线,a b ,平面,//b a a b αβαβα⋂=⊥,,,,那么“a β⊥”是“αβ⊥”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据面面垂直的判定定理和面面垂直的性质定理即可得到结论.【详解】若//a α,则在平面α内必定存在一条直线a '有//a a ',因为a b ⊥,所以a b '⊥,若a β⊥,则a β'⊥,又a α'⊂,即可得αβ⊥,反之,若αβ⊥,由b αβ=,a b '⊥,a α'⊂可得a β'⊥,又//a a ',则有a β⊥.所以“a β⊥”是“αβ⊥”的充分必要条件.故选:C【点睛】本题主要考查面面垂直的判定和性质定理,以及线面平行的判定定理,属中档题.9.某企业生产,A B 两种型号的产品,每年的产量分别为10万支和40万支,为了扩大再生产,决定对两种产品的生产线进行升级改造,预计改造后的,A B 两种产品的年产量的增长率分别为50%和20%,那么至少经过多少年后,A 产品的年产量会超过B 产品的年产量(取20.3010lg =)( )A. 6年B. 7年C. 8年D. 9年 【答案】B【解析】【分析】依题求出经过x 年后,A 产品和B 产品的年产量分别为310()2x ,640()5x ,根据题意列出不等式,求出x 的范围即可得到答案.【详解】依题经过x 年后,A 产品的年产量为1310(110()22x x+=) B 产品的年产量为1640(140()55x x +=), 依题意若A 产品的年产量会超过B 产品的年产量, 则3610()40()25x x >化简得154x x +>,即lg5(1)lg 4x x >+, 所以2lg 213lg 2x >-,又20.3010lg =,则2lg 2 6.206213lg 2≈- 所以至少经过7年A 产品的年产量会超过B 产品的年产量.故选:B【点睛】本题主要考查指数函数模型,解指数型不等式,属于基础题.10.已知双曲线221169x y C -=:的右焦点为F ,过原点O 的直线与双曲线C 交于,A B 两点,且60AFB ∠=︒,则BOF 的面积为( )C. 32D. 92【解析】【分析】根据题意画出图像,设双曲线的左焦点为1F ,连接11,AF BF ,即可得四边形1AFBF 为平行四边形,从而求出1F BF ∠,利用余弦定理和双曲线的定义联立方程可求出1|BF ||BF|的值,利用面积公式可求出1F BF 的面积,根据1F BF 和BOF 的关系即可得到答案. 【详解】如图,设双曲线的左焦点为1F ,连接11,AF BF , 依题可知四边形1AFBF 的对角线互相平分, 则四边形1AFBF 为平行四边形,由60AFB ∠=︒可得1120F BF ∠=︒, 依题可知12||2216910F F c ==+=, 由余弦定理可得:2221111|BF |+|BF|-2|BF ||BF|cos |||F BF F F ∠= 即2211|BF |+|BF|+|BF ||BF|100=; 又因为点B 在椭圆上,则1||BF |-|BF||28a ==,所以2211|BF |+|BF|-2|BF ||BF|64=. 两式相减得13|BF ||BF|36=,即1|BF ||BF|12=,所以1F BF 的面积为: 111113||||sin 123322F BF S BF BF F BF =∠=⨯=因为O 为1F F 的中点,所以11332OBF F BFS S ==【点睛】本题主要考查双曲线的几何性质,涉及到了双曲线的定义,余弦定理和面积公式,考查学生转化和化归的能力,属中档题.第二部分(非选择题,共110分)二、填空题共5小题,每小题 5 分,共 25 分11.已知集合|1k M x x ⎧⎫=>-⎨⎬⎩⎭,且3M -∈,则k 的取值范围是____________. 【答案】(,3)-∞【解析】【分析】由集合元素与几何的关系即可得到答案. 【详解】因为集合|1k M x x ⎧⎫=>-⎨⎬⎩⎭,且3M -∈, 所以13k >--,解得3k <, 所以k 的取值范围是(,3)-∞.故答案为:(,3)-∞【点睛】本题考查集合的基本定义,属基础题.12.经过点()2,0M -且与圆221x y +=相切的直线l 的方程是____________.【答案】(2)3y x =±+ 【解析】【分析】 设直线l 方程为(2)y k x =+,根据题意有圆心到直线的距离等于圆的半径,即可得到答案.【详解】依题满足条件的直线斜率存在,设直线l 方程为:(2)y k x =+即20kx y k -+=.又221x y +=的圆心为(0,0),半径为1,又直线l 与圆相切,所以圆心到直线的距离等于圆的半径,1=,解之得:k =所以直线的方程为(2)3y x =±+.故答案为:(2)3y x =±+ 【点睛】本题主要考查直线与圆的位置关系,利用圆心到直线的距离解决问题,属于基础题.13.已知函数()222f x sin x sin x cos x =+-,则12f π⎛⎫= ⎪⎝⎭____________.【解析】【分析】利用倍角公式化简,代入即可得到答案.【详解】()222sin 2cos2f x sin x sin x cos x x x =+-=-所以11sin cos 1266222f πππ⎛⎫=-=-= ⎪⎝⎭.故答案为:12 【点睛】本题考查三角函数的倍角公式,代入法求值,属基础题.14. 某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】【详解】试题分析:①设第一天售出商品的种类集为A ,第二天售出商品的种类集为B ,第三天售出商品的种类集为C ,如图,则第一天售出但第二天未售出的商品有19﹣3=16种;②由①知,前两天售出的商品种类为19+13﹣3=29种,第三天售出但第二天未售出的商品有18﹣4=14种,当这14种商品第一天售出但第二天未售出的16种商品中时,即第三天没有售出前两天的商品时,这三天售出的商品种类最少为29种.故答案为①16;②29.【名师点睛】本题将统计与实际情况相结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论时要做到不重复、不遗漏,另外,注意数形结合思想的运用.15.在ABC 中,10AB D =,是BC 边的中点.若660AC A =∠=︒,,则AD 的长等于________;若4562CAD AC ∠=︒=,,则ABC 的面积等于____________.【答案】 (1). 7 (2). 42【解析】【分析】(1)依题可得1()2AD AB AC =+,则有1||||2AD AB AC =+,利用向量运算即可得到答案. (2)在ADC 和ADB △中分别用正弦定理,求出AD DB ,,再利用AD DB =,180ADB ADC ∠+∠=,即可求得sin BAC ∠,再利用三角形的面积公式即可得到答案.【详解】(1)依题在ABC 中,D 是AB 的中点, 所以1()2AD AB AC =+所以1||||2AD AB AC =+ 又6,60AC A =∠=所以22||2AB AC AB AB AC AC +=+⋅+ 22102106cos60619614=+⨯⨯+==所以1||||72AD AB AC =+= 所以AD 的长等于7. (2)在ADC 中,由正弦定理有:sin sin AC DAC D A C C D =∠∠ 所以sin 62456sin sin sin AC DAC DC ADC ADC ADC ∠===∠∠∠;在ADB △中,由正弦定理有:sin sin BD AB BAD ADB=∠∠ 所以sin 10sin sin sin AB BAD BAD BD ADB ADB ∠∠==∠∠ 因为D 是AB 的中点,则AD DB =,180ADB ADC ∠+∠=,所以sin sin ADB ADC ∠=∠,所以10sin 6BAD ∠=即3sin 5BAD ∠=,所以4cos 5BAD ∠==± 当4cos 5BAD ∠=时, sin sin(45)sin cos 45cos sin 45BAC BAD BAD BAD ∠=∠+=∠+∠34cos )()55BAD BAD =∠+∠=+=当4cos 5BAD ∠=-时,sin sin(45)BAC BAD ∠=∠+34)55=-=不符合题意, 所以ABC 的面积为:11sin 10422210ABC S AB AC BAC =⋅⋅∠=⨯⨯= 故答案为:(1)7;(2)42【点睛】本题主要考查平面向量的线性运算及模的运算,考查正弦定理和三角形的面积公式,考查学生推理和计算能力,属中档题.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程16.如图,四棱锥P ABCD -的底面ABCD 是正方形,4AB PD PC O =⊥,,是CD 的中点,PO ⊥平面ABCD ,E 是棱PC 上的一点,//PA 平面BDE .(1)求证:E 是PC 的中点;(2)求证:PD 和BE 所成角等于90.︒【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)因为//PA 平面BDE ,由线面平行的性质定理及三角形中位线的判定即可得证.(2)由PO ⊥平面ABCD ,四边形ABCD 为正方形可证BC ⊥平面PDC ,从而可证PD ⊥平面PBC ,从而得证结论. 【详解】(1)如图,联结AC ,设AC 与BD 交于F ,联结EF ,因//PA 平面BDE ,平面PAC 平面BDE =EF ,所以//PA EF .又因为四边形ABCD 是正方形,所以F 是AC 的中点,所以EF 是PAC 的中位线,所以E 是PC 的中点(2)因为PO ⊥平面ABCD ,所以PO BC ⊥.因为四边形ABCD 是正方形,所以BC CD ⊥又PO CD O =,所以BC ⊥平面PDC ,所以BC PD ⊥又因为PD PC ⊥且BC PC C ⋂=,所以PD ⊥平面PBC因为BE ⊂平面PBC ,所以PD BE ⊥,所以PD 与BE 成90︒角.【点睛】本题主要考查了线面平行的性质定理和线面平行的判定定理的运用,考查学生逻辑推理能力,属中档题.17.已知数列{}n a 是等差数列,n S 是{}n a 的前n 项和,1016a =.(1)判断2024是否是数列{}n a 中的项,并说明理由;(2)求n S 的最值.从 ①810a =;②88a =;③820a =中任选一个,补充在上面的问题中并作答.【答案】(1)不是,理由见解析;(2)n S 最小值-26,无最大值 .【解析】【分析】(1)选择①,用等差数列的通项公式即可求出数列{}n a 的首项和公差,即可求出数列{}n a 的通项,令2024n a =,求出的n 若为整数则2024是数列{}n a 中的项,否则不是.(2)令0n a >,求出n 的范围,从而可确定n S 的最大最小值情况.【详解】选①810a =(1)选①810a =,设等差数列{}n a 的公差为d ,因为1081610a a =⎧⎨=⎩,所以11916710a d a d +=⎧⎨+=⎩,解得1311d a =⎧⎨=-⎩ 所以1(1)11(1)3n a a n d n =+-=-+-⨯314n =-令 3142024n -=,则32038n =,此方程无正整数解所以2024不是数列{}n a 中的项.(2)令0n a >,即3140n ->,解得:142433n >= 所以当5n ≥时,0,n a >当4n ≤时,0,n a <所以当4n =时,n S 的最小值为41185226S =----=-.n S 无最大值.选②88a =设等差数列{}n a 的公差为d ,因为108168a a =⎧⎨=⎩,所以1191678a d a d +=⎧⎨+=⎩,解得1420d a =⎧⎨=-⎩ 所以1(1)20(1)4n a a n d n =+-=-+-⨯424n =-令 4242024n -=,则512n =,此方程有正整数解所以2024是数列{}n a 中的项.(2)令0n a >,即4240n ->,解得:6n >所以当7n ≥时,0,n a >当6n ≤时,0,n a ≤所以当5n =或6n =时,n S 的最小值为56656(20)4602S S ⨯==⨯-+⨯=-. n S 无最大值.若选②820a =设等差数列{}n a 的公差为d ,因为1081620a a =⎧⎨=⎩,所以11916720a d a d +=⎧⎨+=⎩,解得1234d a =-⎧⎨=⎩ 所以1(1)34(1)(2)n a a n d n =+-=+-⨯-362n =-令 3622024n -=,则994n =-,此方程无正整数解所以不是数列{}n a 中的项.(2)令0n a ≥,即3620n -≥,解得:18n ≤,所以当18n >时,0n a <,当18n >时,0n a < ,所以当17n =或18n =时,n S 的最大值为171818171834(2)3062S S ⨯==⨯+⨯-=. n S 无最小值. 【点睛】本题主要考查等差数列通项公式,以及等差数列的前n 项和的最值问题,主要考查学生的计算能力和直观想象能力,属于基础题.18.A B C ,,三个班共有120名学生,为调查他们的上网情况,通过分层抽样获得了部分学生一周的上网时长,数据如下表(单位:小时):(1)试估计A 班的学生人数;(2)从这120名学生中任选1名学生,估计这名学生一周上网时长超过15小时的概率;(3)从A 班抽出的6名学生中随机选取2人,从B 班抽出的7名学生中随机选取1人,求这3人中恰有2人一周上网时长超过15小时的概率.【答案】(1)36;(2)920;(3)1135. 【解析】【分析】(1)利用分层抽样的方法即可得到答案;(2)利用古典概率的公式即可得到答案;(3)利用分类和分步计数原理和组合公式即可得到答案.【详解】(1)由题意知,抽出的20名学生中,来自A 班的学生有6名.根据分层抽样的方法可知A 班的学生人数估计为61203620⨯=人. (2)设从选出的20名学生中任选1人,共有20种选法, 设此人一周上网时长超过15小时为事件D, 其中D 包含的选法有3+2+4=9种,所以 9()20P D =. 由此估计从120名学生中任选1名,该生一周上网时长超过15小时的概率为920. (3)设从A 班抽出的6名学生中随机选取2人,其中恰有(12)i i ≤≤人一周上网超过15小时为事件i E ,从B 班抽出的7名学生中随机选取1人,此人一周上网超过15小时为事件F ,则所求事件的概率为:2111135332212167151811()15735C C C C C P E F E F C C ++⋃===⨯. 【点睛】本题主要考查分层抽样,古典概型及计数原理和组合公式,属基础题.19.已知函数()2221,1ax a f x x +-=+其中0a ≠ (1)当1a =时,求曲线()y f x =在原点处的切线方程;(2)若函数()f x 在[)0,+∞上存在最大值和最小值,求a 的取值范围.【答案】(1)2y x =;(2)(,1](0,1]-∞-⋃.【解析】【分析】(1)利用导数的几何意义求出切线的斜率,然后利用直线的点斜式即可得到答案;(2)利用导数求出函数的极值及单调区间,列表求出函数的最值,根据题意即可确定a 的取值范围. 【详解】(1)解:2222(1)1()(1)x a f x x -'==+当时,. 所以切线的斜率(0)2k f '==;又(0)0f =所以曲线()y f x =在原点处的切线方程为:2y x =.(2)22222(1)(21)2()(1)a x ax a x f x x +-'+-=+ ()()22222222221()(1)(1)ax a x a ax x a x x -+-+--+==++ 当0a >时,()0f x '=解得 121,x a x a=-= 则[0,)x ∈+∞时()()f x f x '、随x 的变化情况如下表:所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以()f x 的最大值为21()f a a=, 若()f x 存在最小值,则()0x ∈+∞,时, 2()(0)1f x f a ≥=-恒成立,即2222111ax a a x +-≥-+, 所以()2221ax a x ≥-即2112a a x -≤在(0,)x ∈+∞恒成立, 所以2102a a-≤.又因为 0a >,所以210a -≤,则01a <≤. 当0a <时,()0f x '=解得 121,x a x a=-= 则[0,)x ∈+∞时()()f x f x '、随x 的变化情况如下表:所以()f x 在()0,a -上单调递减,在(),a -+∞上单调递增,所以()f x 的最小值为1-,若()f x 存在最大值,则()0x ∈+∞,时,2()(0)1f x f a ≤=-恒成立,即2222111ax a a x +-≤-+, 所以()2221ax a x ≤-即2112a a x -≤在(0,)x ∈+∞恒成立, 所以2102a a-≤.又因为 0a <,所以210a -≥,则1a ≤-. 综上所述,a 的取值范围为(,1](0,1]-∞-⋃.【点睛】本题主要考查导数的几何意义以及利用导数求函数的最大值和最小值,考查学生的运算求解能力,分类讨论和转化与化归的能力,属中档题.20.已知椭圆22221(0)x y a b a b G +=>>:的左焦点为(),F 且经过点(),,C A B 分别是G 的右顶点和上顶点,过原点O 的直线l 与G 交于,P Q 两点(点Q 在第一象限),且与线段AB 交于点M .(1)求椭圆G 的标准方程;(2)若3PQ =,求直线l 的方程;(3)若BOP △的面积是BMQ 的面积的4倍,求直线l 的方程.【答案】(1)22142x y +=;(2)2y x =;(3)814y x =. 【解析】【分析】(1)利用椭圆的定义即可求出a 的值,从而求出b ,从而得到答案.(2)根据题意设出直线方程,联立方程由根与系数的关系可得1212,x x x x +,再利用弦长公式即可得到答案.(3)依题设出点,,P Q M 的坐标以及直线l 的斜率,根据题目条件即可得坐标之间的关系,从而求出直线l 的斜率,从而求出直线直线l 的方程.【详解】(1)依题知c =1F ),因为点()C 在椭圆上,且1||CF =, 又||1CF =,所以12||||4a CF CF =+=,所以2a =所以222422b a c =-=-=, 所以椭圆的标准方程为22142x y +=. (2)因为点Q 在第一象限,所以直线l 的斜率存在,设直线l 的斜率为(0)k k >,则直线l 的方程为y kx =,设直线 l 与该椭圆的交点为1122(,),(,)P x y Q x y ,由2224y kx x y =⎧⎨+=⎩可得22(12)40k x +-=, 易知>0∆,且1212240,12x x x x k -+==+,则PQ ==3===,所以27,22k k ==±, 又0k >,所以直线l的方程为2y x =. (3)设(,)m m M x y ,()00,Q x y ,则()00,P x y --,易知002x <<,001y <<.由()2,0A,B ,所以直线AB的方程为12x +=,即20x +-=. 若BOP ∆的面积是BMQ ∆的面积的4倍,则||4||OP MQ =,由,P Q 关于原点对称,可得||||OP OQ =,所以||4||OQ MQ =,所以3||||4OM OQ =即034m x x = ① . 设直线l 的方程为y kx =,由20y kx x =⎧⎪⎨-=⎪⎩得m x =, 由2224y kx x y =⎧⎨+=⎩得0x =34=,化简得21470k-+=,解得814k=,所以直线l的方程为:814y x=.【点睛】本题主要考查椭圆的标准方程,直线与椭圆的位置关系、弦长公式等,考查运算求解能力,方程思想,体现了逻辑推理、数学运算等核心素养.21.在数列{}n a中,若*,na N∈且()1,?1,2,3,?··23,nnnn naaa na a+⎧⎪==⎨⎪+⎩是偶数,是奇数则称{}n a为“J数列”.设{}na为“J数列”,记{}n a的前n项和为.n S(1)若110a=,求3nS的值;(2)若317S=,求1a的值;(3)证明:{}n a中总有一项为1或3.【答案】(1)3716nS n=+;(2)15a=;(3)证明见解析.【解析】【分析】(1)根据递推公式列出数列{}n a中的项,找规律,发现周期性即可得到答案;(2)根据题意分情况进行求解即可得到答案;(3)首先证明:一定存在某个i a,使得6ia≤成立,再进行检验即可得到答案.【详解】(1)当110a=时,{}na中的各项依次为10,5,8,4,2,1,4,2,1,,即数列{}n a从第四项开始每三项是一个周期,所以312323S a a a=++=,634564217S S a a a-=++=++=,9678933(1)42177n nS S a a a S S--=++=++=-=,所以3237(1)716nS n n=+-=+.(2)① 若1a 是奇数,则213a a =+是偶数,213322a a a +==, 由317S =,得1113(3)172a a a ++++=,解得15a =,适合题意. ② 若1a 是偶数,不妨设*12()a k k =∈N ,则122a a k ==. 若k 是偶数,则2322a k a ==,由317S =, 得2172k k k ++=,此方程无整数解; 若k 是奇数,则33a k =+,由317S =,得2317k k k +++=,此方程无整数解.综上,15a =.(3)首先证明:一定存在某个i a ,使得6ia ≤成立. 否则,对每一个*i ∈N ,都有6i a >,则在i a 为奇数时,必有232i i i a a a ++=<; 在i a 为偶数时,有232i i i a a a +=+<,或24i i i a a a +=<. 因此,若对每一个*i ∈N ,都有6i a >,则135,,,a a a 单调递减,注意到*n a ∈N ,显然这一过程不可能无限进行下去,所以必定存在某个i a ,使得6i a ≤成立. 经检验,当2i a =,或4i a =,或5i a =时,{}n a 中出现1;当6i a =时,{}n a 中出现3,综上,{}n a 中总有一项为1或3.【点睛】本题主要考查递推数列以及推理知识的综合应用,考查学生逻辑思维能力、运算求解能力和推理论证能力,属中档题.。
2021年高三上学期摸底考试数学(理)试题 含答案
2021年高三上学期摸底考试数学(理)试题 含答案本卷共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题:1.已知集合 M= ,集合为自然对数的底数),则=( ) A . B . C . D .2.命题“x ∈R ,x 2-x+l<0”的否定是 A . x ∈R,x 2一x+1≥0B .x ∈R,x 2 -x+1>0C . x ∈R,x 2-x+l ≥0 D . x ∈R,x 2-x+l>0 3.在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10= (A) 12 (B) 16 (C)20 (D)24 4.若的值为 A . -1 B . C .l D .2 5.三棱锥及其三视图中的主视图和左视图如图所示,则棱的长为( ).A. 4B. 4C. 3D. 2 6.定义在上的可导函数,当时,恒成立,,则的大小关系为 ( ) A . B . C . D .7、若、为双曲线: 的左、右焦点,点在双曲线上,∠=,则到轴的距离为( )A .B .C .D .8.如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是( ) A . B . C . D .9、在平面直角坐标系中,是坐标原点,两定点满足则点集DABC主视图左视图{}|,1,,P OP OA OB R λμλμλμ=++≤∈所表示的区域的面积是( )A .B .C .D . 10、已知圆,圆,分别是圆上的动点,为轴上的动点,则的最小值为( )A .B .C .D .11、在三棱锥S -ABC 中,AB ⊥BC ,AB =BC =,SA =SC =2,AC 的中点为M ,∠SMB 的余弦值是,若S 、A 、B 、C 都在同一球面上,则该球的表面积是( ) A. B. C. D.12、设定义在上的函数,若关于的方程 有3个不同实数解、、,且,则下列说法中错误的是( )A .B .C .D .第Ⅱ卷 非选择题二、填空题:本大题共4小题。
2021届广东省普通高等学校招生全国统一考试模拟测试数学试题(一)(word版,含官方答案)
★启用前注意保密2021年普通高等学校招生全国统一考试模拟测试(一)数学本试卷共5页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的市(县、区)、学校、班级、姓名、考场号、座位号和考生号填写在答题卡上。
将条形码横贴在每张答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写 上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合M={x|-7<3x-1<2},N={x|x+1>0},则M ∪N=A.(-2,+∞)B. (-1,1)C.(-∞,1)D.(-1,+∞) 2.若复数z 满足(z-1)(1+i)=2-2i,则|z|=3.已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则f(2e)= A. 2e 2 B. 2e C. 1+ln2 D. 21n 24.函数f(x)=cos 2x+6cos(2π-x)(x ∈[0, 2π])的最大值为 A.4 B.5 C.6 D.75.已知数列{a n }的前n 项和S n =2n -1,则数列{log 2a n }的前10项和等于 A. 1023 B.55 C.45 D.356.已知a,b 是两个正数,4是2a 与16b 的等比中项,则下列说法正确的是A. ab 的最小值是1B.ab 的最大值是1C. 11a b +的最小值是92D. 11a b +的最大值是927.《算数书》是我国现存最早的系统性数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h,计算其体积V 的近似公式V≈2136L h .用该术可求得圆率π的近似值。
2021年高三数学开学第一次摸底考试试题
2021年高三数学开学第一次摸底考试试题一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则复数=A. B. C. D.2、设函数f(x)=则满足f(x)≤2的x的取值范围是(A)[-1,2] (B)[0,2] (C)[1,+)(D)[0,+)3、某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有(A)4种 (B)10种 (C)18种 (D)20种4、执行右面的程序框图,如果输入的N是6,那么输出的p是(A)120 (B)720(C)1440(D)50405、设函数和分别是R上的偶函数和奇函数,则下列结论恒成立的是A.是偶函数B.是奇函数C.是偶函数D.是奇函数6、甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为A. B.C. D.7、某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元) 4 2 3 5销售额y(万元)49 26 39 54根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为(A)63.6万元(B)65.5万元(C)67.7万元(D)72.0万元8、下列命题中错误的是(A)如果平面,那么平面内一定存在直线平行于平面(B)如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面(C)如果平面,平面,,那么(D)如果平面,那么平面内所有直线都垂直于平面9、已知O是坐标原点,点A(-1,1)若点M(x,y)为平面区域,上的一个动点,则·的取值范围是A.[-1.0]B.[0.1]C.[0.2]D.[-1.2]10、已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于两点,若恰好将线段三等分,则(A)(B)(C)(D)第II卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,满分25分。
2021年高三上学期第一次模拟考试数学理试题 含答案
2021年高三上学期第一次模拟考试数学理试题含答案一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数为纯虚数,则实数的值为A.3 B.1 C.-3 D.1或-32.已知为等差数列,若,则的值为A.B.C.D.3.若椭圆的离心率为,则双曲线的离心率为A.B.C.D.24.函数(其中)的图象如图所示,为了得到的图像,则只需将的图像A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位5.设∶,∶,则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.新学期开始,学校接受6名师大学生生到校实习,学校要把他们分配到三个年级,每个年级2人,其中甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为A.18 B.15 C.12 D.97.已知直线与圆交于两点,且(其中为坐标原点),则实数的值为A.B.C.或D.或8.已知,则函数的零点个数为A.1 B.2 C.3 D.49.在抛物线上取横坐标为,的两点,经过两点引一条割线,有平行于该割线的一条直线同时与该抛物线和圆相切,则抛物线的顶点坐标是A. (-2,-9)B. (0,-5)C. (2,-9)D. (1,-6)10.已知函数对任意都有,若的图象关于直线对称,且,则A.2 B.3 C.4 D.0第Ⅱ卷非选择题(共100分)二、填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上.11. 右图中的三个直角三角形是一个体积为的几何体的三视图,则h= cm12.已知=2·,=3·, =4·,….若=8· (均为正实数),类比以上等式,可推测的值,则= .13. 某棉纺厂为了了解一批棉花的质量, 从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示.从抽样的100根棉花纤维中任意抽取一根,则其棉花纤维的长度小于20mm 的概率为 .14.在二项式的展开式中,各项的系数和比各项的二项式系数和大992,则的值为 .15.不等式的解集为 .三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. 16. (本题满分12分)已知函数2()2sin()cos()23cos ()3222f x x x x ααα=++++-为偶函数, 且(Ⅰ)求的值;(Ⅱ)若为三角形的一个内角,求满足的的值. 17.(本小题满分12分)甲、乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码后放入乙盒,再从乙盒中任取一小球,记下号码. (Ⅰ)求的概率;(Ⅱ)设随机变量,求随机变量的分布列及数学期望. 18.(本题满分12分)如图,PA 垂直于矩形ABCD 所在的平面, AD =PA =2,,E 、F 分别是AB 、PD 的中点. (Ⅰ)求证:平面PCE 平面PCD ; (Ⅱ)求四面体PEFC 的体积.19.(本小题满分12分)数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(Ⅰ)求数列的通项公式; (Ⅱ)设,数列的前项和为,求证:. 20.(本小题共13分)已知的边所在直线的方程 为,满足,点在所在直线上且. (Ⅰ)求外接圆的方程; (Ⅱ)一动圆过点,且与的外接圆外切,求此动圆圆心的轨迹的方程;(Ⅲ)过点斜率为的直线与曲线交于相异的两点,满足,求的取值范围. 21.(本小题满分14分)设函数.(Ⅰ)若,求的最小值;(Ⅱ)若当时,求实数的取值范围.数学一模(理科)参考答案11.4 12. 71 13. 14. 5 15. 三、解答题:16.解:(Ⅰ)2()2sin()cos()()222f x x x x ααα=++++sin(2))2sin(2)3x x x πααα=++=++由为偶函数得又 (Ⅱ)由 得 又 为三角形内角,17.解:(Ⅰ)(2)(2,2)(2,2)P y P x y P x y ====+≠=(Ⅱ)随机变量可取的值为0,1,2,3 当=0时,121212122(0)454545455P X ∴==⨯+⨯+⨯+⨯=当=1时,(,)(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)x y =1111111111113(1)45454545454510P X ∴==⨯+⨯+⨯+⨯+⨯+⨯=同理可得随机变量的分布列为 0 1 2 3 P01231510510EX ∴=⨯+⨯+⨯+⨯=18. 解(Ⅰ),PA CD AD CD PAAD A CD PAD AF PAD AF CD PD CD D AF PCD GE PCD GE PEC PCE PCD ∴⊥⊥=∴⊥⊆∴⊥=∴⊥∴⊥⊆∴⊥,平面,平面,,平面,平面,平面,平面平面;(Ⅱ)由(2)知GE PCD EG PEFC ⊥平面,所以为四面体的高,//122212212233PCF PCF GF CD GF PDEG AF GF CD S PD GF PEFC V S EG ∆∆⊥=====⋅==⋅=又,所以,得四面体的体积 19.解:(Ⅰ)由已知:对于,总有 ①成立∴ (n ≥ 2)② ①-②得 ∴∵均为正数,∴ (n ≥ 2)∴数列是公差为1的等差数列 又n=1时,, 解得=1, ∴.()(Ⅱ) 解:由(1)可知11111(1)()()22311n nT n n n ∴>-+-++-=++ 20.解:(Ⅰ),从而直线AC 的斜率为. 所以AC 边所在直线的方程为.即. 由得点的坐标为,又.所以外接圆的方程为: .(Ⅱ)设动圆圆心为,因为动圆过点,且与外接圆外切, 所以,即.故点的轨迹是以为焦点,实轴长为,半焦距的双曲线的左支. 从而动圆圆心的轨迹方程为. (Ⅲ)直线方程为:,设 由得222122122212122101624(1)04016012261k k k k x x k x x k k OP OQ x x y y k ⎧⎪⎪-≠⎪∆=+->⎪⎪⎪∴+=<⎨-⎪⎪=>⎪-⎪+⎪⋅=+=>⎪-⎩解得:故的取值范围为 21.解:(Ⅰ)时,,.当时,;当时,.所以在上单调减小,在上单调增加 故的最小值为 (Ⅱ),当时,,所以在上递增, 而,所以,所以在上递增, 而,于是当时, . 当时,由得当时,,所以在上递减, 而,于是当时,,所以在上递减, 而,所以当时,.综上得的取值范围为.32861 805D 聝 3!JZcq5K35093 8915 褕[30628 77A4 瞤30713 77F9 矹。
2021年高三上学期迎一模模拟考试数学试题 Word版含答案
(第6题)结束 输出y y ←x 2 2x +2 y ←5 x <4 Y 输入x开始 N2021年高三上学期迎一模模拟考试数学试题 Word 版含答案一.填空题(每题5分,共70分) 1.已知集合,,则= ▲ . 【答案】2.复数(i 是虚数单位)是纯虚数,则实数a 的值为 ▲ . 【答案】 43.已知命题是真命题,则实数的取值范围是_______. 【答案】4.从长度为2、3、5、6的四条线段中任选三条,能构成三角形的概率为 . 【答案】5.某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数为__________. 【答案】 30.6. 在如图所示的算法流程图中,若输出的y 的值为26,则输入的x 的值为 ▲ . 【答案】47. 在平面直角坐标系xOy 中,点F 为抛物线x 2=8y 的焦点,则F 到双曲线的渐近线的距离为 ▲ . 【答案】8.已知a ,b 为实数,且a ≠b ,a <0,则a ▲ 2b -。
(填“>”、“<”或“=”) 【答案】“<”ED9.是直角边等于4的等腰直角三角形,是斜边的中点,,向量的终点在的内部(不含边界),则的取值范围是 . 【答案】10.已知正数依次成等比数列,且公比.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则公比的取值集合是 . 【答案】 ;11.已知棱长为1的正方体,是棱的中点,是线段上的动点,则△与△的面积和的最小值是 . 【答案】 ;12.已知函数的值域为,若关于的不等式的解集为,则实数的值为 . 【答案】13. 若对任意的x ∈D ,均有f 1(x )≤f (x )≤f 2(x )成立,则称函数f (x )为函数f 1(x )到函数f 2(x )在区间D 上的“折中函数”.已知函数f (x )=(k -1)x -1,g (x )=0,h (x )=(x +1)ln x ,且f (x )是g (x )到h (x )在区间[1,2e]上的“折中函数”,则实数k 的取值集合为________. 【答案】{2}14.若实数x , y 满足x -4y =2x -y ,则x 的取值范围是 . 【答案】{0} [4,20] .二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在平面上,点,点在单位圆上,() (1)若点,求的值; (2)若,,求.15. (1)由于,,所以, ,所以, 所以 ; (2)由于,,所以,22218cos (1cos )sin cos cos sin 13OC OB θθθθθθ⋅=⨯++=++=. 所以,所以,所以cos()cos cos sin sin 333πππθθθ-=+ 16.(本小题满分14分)如图,六面体ABCDE中,面DBC⊥面ABC,AE⊥面ABC.(1)求证:AE //面DBC;(2)若AB⊥BC,BD⊥CD,求证:AD⊥DC.16.(1)过点D作DO⊥BC,O为垂足.因为面DBC⊥面ABC,又面DBC∩面ABC=BC,DO⊂面DBC,所以DO⊥面ABC.又AE⊥面ABC,则AE//DO.又AE面DBC,DO⊂面DBC,故AE //面DBC.(2)由(1)知DO⊥面ABC,AB⊂面ABC,所以DO⊥AB.又AB⊥BC,且DO∩BC=O,DO,BC⊂平面DBC,则AB⊥面DBC.因为DC ⊂面DBC,所以AB⊥DC.又BD⊥CD,AB∩DB=B,AB,DB⊂面ABD,则DC⊥面ABD.又AD⊂面ABD,故可得AD⊥DC.17.(本小题满分14分)如图,某城市有一条公路从正西方通过市中心后转向东偏北角方向的.位于该市的某大学与市中心的距离,且.现要修筑一条铁路L,L在OA上设一站,在OB上设一站B,铁路在部分为直线段,且经过大学.其中,,.(1)求大学与站的距离;(2)求铁路段的长.17. (1)在中,,且,,由余弦定理得,,即大学与站的距离为;(2),且为锐角,,在中,由正弦定理得,,即,,,,,,,又,,在中,,由正弦定理得,,即,,即铁路段的长为.18.(本小题满分16分)设椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切.(1)求椭圆的方程;(2)设直线与椭圆交于不同的两点,以线段为直径作圆.若圆与轴相交于不同的两点,求的面积;(3)如图,、、、是椭圆的顶点,是椭圆上除顶点外的任意点,直线交轴于点,直线交于点.设的斜率为,的斜率为,求证:为定值.18. (1)圆的方程为,直线与圆O相切,,即,又,,,椭圆的方程为;(2)由题意,可得,圆的半径,,的面积为;(3)由题意可知,的斜率为,直线的方程为,由,得,其中,,,则直线的方程为,令,则,即,直线的方程为,由,解得,,的斜率,(定值).19.(本小题满分16分)已知数列{a n}的前n项和为S n,且满足S n+n=2a n(n∈N*).(1)证明:数列{a n+1}为等比数列,并求数列{a n}的通项公式;(2)若b n=(2n+1)a n+2n+1,数列{b n}的前n项和为T n.求满足不等式T n-22n-1>2 010的n的最小值.19.(1)因为S n+n=2a n,所以S n-1=2a n-1-(n-1)(n≥2,n∈N*).两式相减,得a n=2a n-1+1.所以a n+1=2(a n-1+1)(n≥2,n∈N*),所以数列{a n+1}为等比数列.因为S n+n=2a n,令n=1得a1=1.a 1+1=2,所以a n +1=2n ,所以a n =2n -1. (2)因为b n =(2n +1)a n +2n +1,所以b n =(2n +1)·2n .所以T n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n , ① 2T n =3×22+5×23+…+(2n -1)·2n +(2n +1)·2n +1,②①-②,得-T n =3×2+2(22+23+…+2n )-(2n +1)·2n +1 =6+2×22-2n +11-2-(2n +1)·2n +1=-2+2n +2-(2n +1)·2n +1=-2-(2n -1)·2n +1. 所以T n =2+(2n -1)·2n +1.若Tn -22n -1>2 010,则>2 010,即2n +1>2 010. 由于210=1 024,211=2 048,所以n +1≥11,即n ≥10. 所以满足不等式Tn -22n -1>2 010的n 的最小值是10.20.(本小题满分16分)已知函数,,设.(1)若在处取得极值,且,求函数h (x )的单调区间; (2)若时函数h (x )有两个不同的零点x 1,x 2.①求b 的取值范围;②求证:.20. (1)因为,所以,由可得a =b -3. 又因为在处取得极值, 所以,所以a = -2,b =1 . 所以,其定义域为(0,+)2121(21)(1)()21=x x x x h x x x x x-++-+-'=-++=令得, 当(0,1)时,,当(1,+),所以函数h (x )在区间(0,1)上单调增;在区间(1,+)上单调减.(2)当时,,其定义域为(0,+). ①由得,记,则,所以在单调减,在单调增, 所以当时取得最小值. 又,所以时,而时,所以b 的取值范围是(,0). ②由题意得,所以12122121ln ()0,ln ln ()0x x b x x x x b x x ++=-+-=, 所以,不妨设x 1<x 2, 要证 , 只需要证. 即证,设, 则, 所以,所以函数在(1,+)上单调增,而, 所以即, 所以 .第Ⅱ卷(附加题,共40分)21.[选做题] B .(选修4-2:矩阵与变换)已知点P (a ,b ),先对它作矩阵M 对应的变换,再作N 对应的变换,得到的点的坐标为 (8,),求实数a ,b 的值. B .依题意,NM ,由逆矩阵公式得, (NM ), 所以,即有,. C .(选修4-4:坐标系与参数方程) 已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若直线的极坐标方程为.(1)把直线的极坐标方程化为直角坐标系方程; (2)已知为椭圆上一点,求到直线的距离的最小值. C.(1)直线l 的极坐标方程,则,即,所以直线l 的直角坐标方程为;(2)P 为椭圆上一点,设,其中,则P 到直线l的距离d ==,所以当时,的最小值为【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得数字分别为x ,y .设为随机变量,若为整数,则;若为小于1的分数,则;若为大于1的分数,则. (1)求概率;(2)求的分布列,并求其数学期望. 22.(1)依题意,数对(x ,y )共有16种,其中使为整数的有以下8种: (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),所以; (2)随机变量的所有取值为,,, 有以下6种:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4), 故;有以下2种:(3,2),(4,3),故; 所以的分布列为: ,答:的数学期望为. 23.(本小题满分10分)已知2012(2)(1)(1)+(1)(*)n n n x a a x a x a x n N +=+-+--∈. ⑴求及;⑵试比较与的大小,并说明理由.23.⑴令,则,令,则,所以.⑵要比较与的大小,只要比较与的大小. 当时,, 当或时,,当n=4或5时, 猜想:当时,.下面用数学归纳法证明: ①由上述过程可知,当时,结论成立. ②假设当时结论成立,即,两边同乘以,得1212244(1)3232(1)[(4)342]k k k k k k k k k k k ⎡⎤>-=---⎣⎦+++++++6, 而22(4)342(4)3(2)k k k k k k k k ---=---+6+6+2k +10 , 所以,即时结论也成立.由①②可知,当时,成立. 综上所述,当时,;当或时,; 当时,. 38324 95B4 閴31988 7CF4 糴36369 8E11 踑38239 955F 镟W|35645 8B3D 謽:27077 69C5 槅28416 6F00 漀34667 876B 蝫26630 6806 栆8。
安徽省黄山市2021届高三上学期第一次模拟数学(理)试卷 Word版含解析
2021年安徽省黄山市高考数学一模试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z满足方程Z2+2=0,则z=()A.±i B.± C.﹣i D.﹣2.函数f(x)=lgx ﹣的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,10)3.“tanx=”是“x=2kπ+(k∈Z)”成立的()A.充分不必要条件 B.必要不充分条件C.充分条件 D.既不充分也不必要条件4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点之间的距离不小于该正方形边长的概率为()A. B. C. D.5.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ36.已知双曲线﹣=1(a>0,b>0)的离心率e∈[,2],则一条渐近线与实轴所成角的取值范围是()A. B. C. D.7.如图1,已知点E、F、G分别是棱长为a的正方体ABCD﹣A1B1C l D1的棱AA1、CC1、DD1的中点,点M、N、Q、P分别在线段DF、AG、BE、C1B1上运动,当以M、N、Q、P为顶点的三棱锥P﹣MNQ的俯视图是如图2所示的等腰三角形时,点P到平面MNQ的距离为()A. a B. a C. a D. a8.数列{a n}满足a n+1=,若a1=,则a2021=()A. B. C. D.9.己知函数f(x)=tx,g(x)=(2﹣t)x2﹣4x+l.若对于任一实数x0,函数值f(x0)与g(x0)中至少有一个为正数,则实数t的取值范围是()A.(﹣∞,﹣2)∪(0,2] B.(﹣2,0)∪(﹣2,2] C.(﹣2,2] D.(0,+∞)10.由无理数引发的数学危机始终连续到19世纪.直到1872年,德国数学家戴德金从连续性的要求动身,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试推断,对于任一戴德金分割(M,N),下列选项中,不行能成立的是()A. M没有最大元素,N有一个最小元素B. M没有最大元素,N也没有最小元素C. M有一个最大元素,N有一个最小元素D. M有一个最大元素,N没有最小元素三、填空题(本大题共5小题,每小题5分,共25分把答案填在答题卡的相应位置上)11.在极坐标系中,点P(2,)到极轴的距离为.12.已知两点A(1,0),B(l,1),O为坐标原点,点C在其次象限,且∠AOC=135°,设=+λ(λ∈R),则λ的值为.13.已知x>0,y>0,且2y+x﹣xy=0,若x+2y﹣m>0恒成立,则实数m 的取值范围是.14.执行如图所示的程序框图,则输出结果S的值为.15.在直角坐标系中,定义两点P(x1,y l),Q(x2,y2)之间的“直角距离为d(P,Q)=|x1﹣x2|+|y1﹣y2|.现有以下命题:①若P,Q是x轴上两点,则d(P,Q)=|x1﹣x2|;②已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;③原点O到直线x﹣y+l=0上任意一点P的直角距离d(O,P)的最小值为;④若|PQ|表示P、Q两点间的距离,那么|PQ|≥d(P,Q);其中为真命题的是(写出全部真命题的序号).三、解答题(本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内)16.己知=(sin(θ﹣),﹣1),=(﹣1,3)其中θ∈(0,),且∥.(1)求sinθ的值;(2)已知△ABC 中,∠A=θ,BC=2+1,求边AC的最大值.17.四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点(1)求证:QP⊥AC;(2)当二面角Q﹣AC﹣P的大小为120°时,求QB的长.18.甲、乙两人参与某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙只能答对其中的5道题,规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,得分低于o分时记为0分(即最低为0分),至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.19.已知函数f(x)=lnx+cosx﹣(﹣)x的导数为f′(x),且数列{a n}满足a n+1+a n=nf′()+3(n∈N*).(1)若数列{a n}是等差数列,求a1的值:(2)若对任意n∈N*,都有a n+2n2≥0成立,求a1的取值范围.20.如图,已知椭圆Γ:=1(a>b>0)的离心率e=,短轴右端点为A,M(1,0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于两点P,Q,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.21.已知函数f(x)=ax﹣1﹣1n x.(1)若f(x)≥0对任意的x∈(0,+∞)恒成立,求实数a的取值范围;(2)求证:对任意的x∈N*,<e(其中e为自然对数的底,e≈2.71828).2021年安徽省黄山市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z满足方程Z2+2=0,则z=()A.±i B.± C.﹣i D.﹣考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:设z=a+bi(a,b∈R),由于复数z满足方程Z2+2=0,可得a2﹣b2+2+2abi=0,利用复数相等即可得出.解答:解:设z=a+bi(a,b∈R),∵复数z满足方程Z2+2=0,∴(a+bi)2+2=0,∴a2﹣b2+2+2abi=0,∴,解得,∴z=.故选:A.点评:本题考查了复数的运算法则、复数相等,属于基础题.2.函数f(x)=lgx ﹣的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,10)考点:函数零点的判定定理.专题:计算题;函数的性质及应用.分析:由函数的连续性及f(2)=lg2﹣=lg2﹣lg<0,f(3)=lg3﹣lg>0;从而推断.解答:解:函数f(x)=lgx ﹣在定义域上连续,f(2)=lg2﹣=lg2﹣lg<0,f(3)=lg3﹣lg>0;故f(2)f(3)<0;从而可知,函数f(x)=lgx ﹣的零点所在的区间是(2,3);故选C.点评:本题考查了函数的零点的判定定理的应用,属于基础题.3.“tanx=”是“x=2kπ+(k∈Z)”成立的()A.充分不必要条件 B.必要不充分条件C.充分条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:三角函数的求值;简易规律.分析:依据三角函数的性质结合充分条件和必要条件的定义进行推断即可.解答:解:若tanx=,则x=kπ+,k∈Z,则“tanx=”是“x=2kπ+(k∈Z)”成立的必要不充分条件,故选:B点评:本题主要考查充分条件和必要条件的推断,比较基础.4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点之间的距离不小于该正方形边长的概率为()A. B. C. D.考点:几何概型.专题:概率与统计.分析:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.解答:解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,其中4条长度为1,4条长度为,两条长度为,满足这2个点之间的距离不小于该正方形边长的有4+2=6条,∴所求概率为P==.故选:A点评:本题考查概率的计算,列举出满足条件的基本大事是关键.5.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ3考点:正态分布曲线的特点及曲线所表示的意义.专题:数形结合.分析:正态曲线关于x=μ对称,且μ越大图象越靠近右边,第一个曲线的均值比其次和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果.解答:解:∵正态曲线关于x=μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比其次和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,∵σ越小图象越瘦长,得到其次个图象的σ比第三个的σ要小,故选D.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和外形的影响,是一个基础题.6.已知双曲线﹣=1(a>0,b>0)的离心率e∈[,2],则一条渐近线与实轴所成角的取值范围是()A. B. C. D.考点:双曲线的简洁性质.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:由及c2=a2+b2,得的取值范围,设一条渐近线与实轴所成的角为θ,可由tanθ=及0<θ<探求θ的取值范围.解答:解:∵e,∴2≤≤4,又∵c2=a2+b2,∴2≤≤4,即1≤≤3,得1≤≤.由题意知,为双曲线的一条渐近线的方程,设此渐近线与实轴所成的角为θ,则,即1≤tan θ≤.∵0<θ<,∴≤θ≤,即θ的取值范围是.故答案为:C.点评:本题考查了双曲线的离心率及正切函数的图象与性质等,关键是通过c2=a2+b2将离心率的范围转化为渐近线的斜率的范围.7.如图1,已知点E、F、G分别是棱长为a的正方体ABCD﹣A1B1C l D1的棱AA1、CC1、DD1的中点,点M、N、Q、P分别在线段DF、AG、BE、C1B1上运动,当以M、N、Q、P为顶点的三棱锥P﹣MNQ的俯视图是如图2所示的等腰三角形时,点P到平面MNQ的距离为()A. a B. a C. a D. a考点:点、线、面间的距离计算.专题:空间位置关系与距离.分析:可先由俯视图的特征推断出M,Q的位置,再求点到平面MNQ的距离即可.解答:解:∵点E、F、G分别是棱长为a的正方体ABCD﹣A1 B1C l D1的棱AA1、CC1、DD1的中点,点M、N、Q、P分别在线段DF、AG、BE、C1B1上运动,∴当以M、N、Q、P为顶点的三棱锥P﹣MNQ的俯视图是如图2所示的等腰三角形时,M与D重合,Q与E重合,N在线段AG上,此时点P到平面MNQ的距离等于点P到侧面AA1D1D的距离,∴点P到平面MNQ的距离等于正方体的棱长a.故选:D.点评:本题考查点到平面的距离的求法,是基础题,解题时要认真审题,留意空间思维力量的培育.8.数列{a n}满足a n+1=,若a1=,则a2021=()A. B. C. D.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:依据数列的递推关系得到数列为周期数列即可得到结论.解答:解:由递推数列可得,a1=,a2=2a1﹣1=2×﹣1=,a3=2a2=2×=,a4=2a3=2×=,a5=2a4﹣1=2×﹣1=,…∴a5=a1,即a n+4=a n,则数列{a n}是周期为4的周期数列,则a2021=a503×4+3=a3=,故选:B点评:本题主要考查递推数列的应用,依据递推关系得到数列{a n}是周期为4的周期数列是解决本题的关键.9.己知函数f(x)=tx,g(x)=(2﹣t)x2﹣4x+l.若对于任一实数x0,函数值f(x0)与g(x0)中至少有一个为正数,则实数t的取值范围是()A.(﹣∞,﹣2)∪(0,2] B.(﹣2,0)∪(﹣2,2] C.(﹣2,2] D.(0,+∞)考点:二次函数的性质.专题:函数的性质及应用.分析:不论t为何值,对于任一实数x,f(x)与g(x)的值至少有一个为正数,所以对t分类争辩,即t=0、t=2、t>2,t<﹣2 争辩f(x)与g(x)的值的正负,排解即可得出答案.解答:解:函数f(x)=tx,g(x)=(2﹣t)x2﹣4x+l.△=16﹣4×(2﹣t)×1=8+4t,①当t=0时,f(x)=0,△>0,g(x)有正有负,不符合题意,故排解C.②当t=2时,f(x)=2x,g(x)=﹣4x+1,符合题意,③当t>2时,g(x)=(2﹣t)x2﹣4x+l.f(x)=tx,当x取﹣∞时,f(x0)与g(x0)都为负值,不符合题意,故排解D④当t<﹣2时,△<0,∴g(x)=(2﹣t)x2﹣4x+l>0恒成立,符合题意,故B不正确,故选:A点评:本题考查一元二次方程的根的分布与系数的关系,考查分类争辩思想,排解转化思想,是中档题.10.由无理数引发的数学危机始终连续到19世纪.直到1872年,德国数学家戴德金从连续性的要求动身,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试推断,对于任一戴德金分割(M,N),下列选项中,不行能成立的是()A. M没有最大元素,N有一个最小元素B. M没有最大元素,N也没有最小元素C. M有一个最大元素,N有一个最小元素D. M有一个最大元素,N没有最小元素考点:集合的表示法.专题:计算题;集合.分析:由题意依次举例对四个命题推断,从而确定答案.解答:解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x <},N={x∈Q|x ≥};则M没有最大元素,N也没有最小元素;故B正确;M有一个最大元素,N有一个最小元素不行能,故C不正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;故选C.点评:本题考查了同学对新定义的接受与应用力量,属于基础题.三、填空题(本大题共5小题,每小题5分,共25分把答案填在答题卡的相应位置上)11.在极坐标系中,点P(2,)到极轴的距离为.考点:简洁曲线的极坐标方程.专题:坐标系和参数方程.分析:本题可以利用公式求出点的平面直角坐标,从而得到它在平面直角坐标系中与x轴的距离,即得到点P(2,)到极轴的距离.解答:解:∵在极坐标系中,点P(2,),∴ρ=2,.将极点与平面直角坐标系的原点重合,极轴与x 轴重合,正方向全都,建立平面直角坐标系,设P (x,y),则,.∴它在平面直角坐标系中与x轴的距离为:.∴到点P(2,)到极轴的距离为:.故答案为:.点评:本题考查了极坐标化成平面直角坐标,本题难度不大,属于基础题.12.已知两点A (1,0),B(l,1),O为坐标原点,点C在其次象限,且∠AOC=135°,设=+λ(λ∈R),则λ的值为.考点:平面对量的基本定理及其意义.专题:平面对量及应用.分析:由已知条件设出C点坐标(x0,﹣x0),所以求出向量的坐标带入即可求出λ.解答:解:依据已知条件设C(x0,﹣x0);∴由得:(x0,﹣x0)=(1,0)+λ(1,1);∴;∴解得.故答案为:.点评:考查依据∠AOC=135°能设出C(x0,﹣x0),由点的坐标求出向量的坐标,以及向量坐标的加法及数乘的坐标运算.13.已知x>0,y>0,且2y+x﹣xy=0,若x+2y﹣m>0恒成立,则实数m 的取值范围是m<8 .考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式的性质可得x+2y==2(y﹣1)++4≥8,而x+2y﹣m>0恒成立,可得m<(x+2y)min.即可得出.解答:解:∵x>0,y>0,且2y+x﹣xy=0,∴x=>0,解得y >1.∴x+2y==2(y ﹣1)++4≥+4=8,当且仅当y=2,x=4时取等号.∴(x+2y )min=8.∵x+2y﹣m>0恒成立,∴m<(x+2y)min=8.故答案为:m<8.点评:本题考查了变形利用基本不等式的性质、恒成立问题的等价转化方法,属于基础题.14.执行如图所示的程序框图,则输出结果S的值为﹣.考点:程序框图.专题:计算题;算法和程序框图.分析:算法的功能是求S=cos+cos+…+cos的值,依据条件确定最终一次循环的n值,再利用余弦函数的周期性计算输出S的值.解答:解:由程序框图知:算法的功能是求S=cos+cos+…+cos的值,∵跳出循环的n值为2021,∴输出S=cos+cos+…+cos,∵cos+cos+cos+cos+cos+cos =cos+cos +cos﹣cos﹣cos﹣cos=0,∴S=cos+cosπ=﹣.故答案为:﹣.点评:本题考查了循环结构的程序框图,关键框图的流程推断算法的功能是关键.15.在直角坐标系中,定义两点P(x1,y l),Q(x2,y2)之间的“直角距离为d(P,Q)=|x1﹣x2|+|y1﹣y2|.现有以下命题:①若P,Q是x轴上两点,则d(P,Q)=|x1﹣x2|;②已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;③原点O到直线x﹣y+l=0上任意一点P的直角距离d(O,P)的最小值为;④若|PQ|表示P、Q两点间的距离,那么|PQ|≥d(P,Q);其中为真命题的是①②④(写出全部真命题的序号).考点:命题的真假推断与应用.专题:简易规律.分析:先依据直角距离的定义分别表示出所求的问题的表达式,然后依据确定值的性质进行判定即可.解答:解:①若P,Q是x轴上两点,则y1=y2=0,所以d(P,Q)=|x1﹣x2|,正确;②已知P(2,3),Q(sin2α,cos2α)(a∈R),则d(P,Q)=|2﹣sin2α|+|3﹣cos2α|=1+cos2α+2+sin2α=4为定值,正确;③设P(x,y),O(0,0),则d(0,P)=|x1﹣x2|+|y1﹣y2|=|x|+|y|=|x|+|x+1|,表示数轴上的x到1和0的距离之和,其最小值为1,故不正确;④若|PQ|表示P、Q两点间的距离,那么|PQ|=,d(P,Q)=|x1﹣x2|+|y1﹣y2|,由于2(a2+b2)≥(a+b)2,所以|PQ|≥2d(P,Q),正确;.故答案为:①②④.点评:本题考查两点之间的“直角距离”的定义,确定值的意义,关键是明确P(x1,y1)、Q(x2,y2)两点之间的“直角距离”的含义.三、解答题(本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内)16.己知=(sin (θ﹣),﹣1),=(﹣1,3)其中θ∈(0,),且∥.(1)求sinθ的值;(2)已知△ABC中,∠A=θ,BC=2+1,求边AC的最大值.考点:平面对量共线(平行)的坐标表示;正弦定理.专题:平面对量及应用.分析:(1)利用向量共线定理由∥,可得=.由于θ∈(0,),∈,即可得出.变形sinθ=.(2)在△ABC 中,由正弦定理可得:,代入可得AC=3sinB,利用sinB≤1,即可得出.解答:解:(1)∵∥,∴=1,即=.∵θ∈(0,),∴∈.∴=.∴sinθ==+==.(2)在△ABC 中,由正弦定理可得:,∴=,∴AC=3sinB,当且仅当sinB=1,即时取等号,∴边AC的最大值是3.点评:本题考查了向量共线定理、正弦定理、三角函数的单调性,考查了计算力量,属于基础题.17.四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点(1)求证:QP⊥AC;(2)当二面角Q﹣AC﹣P的大小为120°时,求QB的长.考点:二面角的平面角及求法;棱锥的结构特征.专题:空间位置关系与距离;空间角.分析:(1)由已知得PD⊥AC,AC⊥BD,从而AC⊥平面PDBQ,由此能证明AC⊥PQ.(2)设AC和BD的交点为O,连结OP,OQ,则∠POD是二面角P﹣AC﹣D的平面角,∠POQ是二面角P﹣AC﹣Q的平面角,∠POQ=120°,由此利用余弦定理能求出QB.解答:(1)证明:∵PD⊥面ABCD,AC⊂面ABCD,∴PD⊥AC,又菱形ABCD中,两对角线垂直,即AC⊥BD,又BD∩PD=D,∴AC⊥平面PDBQ,∴AC⊥PQ.(2)解:△PAC和△QAC都是以AC为底的等腰三角形,设AC和BD的交点为O,连结OP,OQ,则∠POD是二面角P﹣AC﹣D的平面角,由tan,得二面角P﹣AC﹣B大小120°,∴点Q与点P在平面ABCD的同侧,如图所示,∴∠POQ是二面角P﹣AC﹣Q的平面角,∴∠POQ=120°,在Rt△POD中,OP=,设QB=x,则Rt△OBQ中,OQ=,在直角梯形PDBQ中,PQ==,在△POQ中,由余弦定理得PQ==6﹣4x,故6﹣4x>0,且3x2﹣16x+5=0,解得x=,即QB=.点评:本题考查异面直线垂直的证明,考查线段长的求法,是中档题,解题时要认真审题,留意空间思维力量的培育.18.甲、乙两人参与某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙只能答对其中的5道题,规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,得分低于o分时记为0分(即最低为0分),至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.考点:互斥大事的概率加法公式;相互独立大事的概率乘法公式;离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)确定乙答题所得分数的可能取值,求出相应的概率,即可得到乙得分的分布列和数学期望;(2)由已知甲、乙至少答对2题才能入选,求出甲、乙入选的概率,利用对立大事,即可求得结论.解答:解:(1)乙答题所得分数为X,则X的可能取值为0,15,30.P(X=0)=+=P(X=15)==P(X=30)==乙得分的分布列如下X 0 15 30PEX=0×+15×+30×=(2)由已知甲、乙至少答对2题才能入选,记甲入选为大事A,乙入选为大事B,则P(A)=+=+=,P ()=1﹣=由(1)知:P(B)=P(X=15)+P(X=30)=,P ()=1﹣=,所求概率为P=1﹣P ()=点评:本题考查概率的计算,考查互斥大事的概率,考查离散型随机变量的分布列与期望,确定变量的取值,计算其概率是关键.19.已知函数f(x)=lnx+cosx ﹣(﹣)x的导数为f′(x),且数列{a n}满足a n+1+a n=nf ′()+3(n∈N*).(1)若数列{a n}是等差数列,求a1的值:(2)若对任意n∈N*,都有a n+2n2≥0成立,求a1的取值范围.考点:数列与函数的综合;利用导数争辩函数的单调性;利用导数求闭区间上函数的最值.专题:点列、递归数列与数学归纳法.分析:(1)求函数的导数,得到数列的递推关系式,依据数列{a n}是等差数列的通项公式进行求解即可求a1的值:(2)求出数列{a n}的通项公式,利用不等式a n+2n2≥0恒成立.利用参数分别法进行求解即可.解答:解:f′(x)=﹣sinx ﹣+,则f ′()=4;故a n+1+a n=πf ′()+3=4n+3,(1)若数列{a n}是等差数列,则a n=a1+(n﹣1)d,a n+1=a1+nd,则a n+1+a n=a1+(n﹣1)d+a1+nd=2a1+(2n﹣1)d=4n+3,解得d=2,a1=.(2)由a n+1+a n=4n+3,a n+2+a n+1=4n+7,两式相减得a n+2﹣a n=4,故数列{a2n﹣1}是首项为a1,公差为4的等差数列,数列{a2n}是首项为a2,公差为4的等差数列,又a1+a2=7,∴a2=7﹣a1,∴a n =.①当n为奇数时,a n=2n﹣2+a1,由a n+2n2≥0成立,即2n﹣2+a1+2n2≥0,转化为a1≥﹣2n2﹣2n+2,恒成立,设f(n)=﹣2n2﹣2n+2=﹣(n+)2+,∴f(n)max=f(1)=﹣2,∴a1≥﹣2.②当n为偶数时,a n=2n+3﹣a1,由a n+2n2≥0成立,即2n+3﹣a1+2n2≥0,转化为﹣a1≥﹣2n2﹣2n﹣3,恒成立,设g(n)=﹣2n2﹣2n﹣3=﹣(n+)2﹣,∴g(n)max=g(2)=﹣15,∴﹣a1≥﹣15.即a1≤15,综上﹣2≤a1≤15,即a1的取值范围是[﹣2,15].点评:本题主要考查等差数列的通项公式的应用已经递推数列的应用,考查同学的运算和推理力量,求出数列的递推关系是解决本题的关键.20.如图,已知椭圆Γ:=1(a>b>0)的离心率e=,短轴右端点为A,M(1,0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于两点P,Q,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)依据离心率,短轴右端点为A,M(1,0)为线段OA的中点,求出几何量,即可求椭圆Γ的方程;(Ⅱ)分类争辩,设PQ的方程为:y=k(x﹣1),代入椭圆方程化简,若∠PNM=∠QNM,则k PN+k QN=0,即可得出结论.解答:解:(Ⅰ)由已知,b=2,又,即,解得,所以椭圆方程为.…(4分)(Ⅱ)假设存在点N(x0,0)满足题设条件.当PQ⊥x轴时,由椭圆的对称性可知恒有∠PNM=∠QNM,即x0∈R;…(6分)当PQ与x轴不垂直时,设PQ的方程为:y=k(x﹣1),代入椭圆方程化简得:(k2+2)x2﹣2k2x+k2﹣8=0 设P(x1,y1),Q(x2,y2),则则==…(10分)若∠PNM=∠QNM,则k PN+k QN=0即=0,整理得4k(x0﹣4)=0由于k∈R,所以x0=4综上在x轴上存在定点N(4,0),使得∠PNM=∠QNM…(12分)点评:本题考查椭圆的几何性质与标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查同学的计算力量,属于中档题.21.已知函数f(x)=ax﹣1﹣1n x.(1)若f(x)≥0对任意的x∈(0,+∞)恒成立,求实数a的取值范围;(2)求证:对任意的x∈N*,<e(其中e为自然对数的底,e≈2.71828).考点:利用导数求闭区间上函数的最值.专题:计算题;证明题;函数的性质及应用;导数的综合应用.分析:(1)f(x)≥0可化为a ≥对任意的x∈(0,+∞)恒成立,令g(x)=,x∈(0,+∞);求g′(x)=﹣,从而求最值;(2)由(1)知,lnx≤x﹣1对任意的x∈(0,+∞)恒成立,从而可得ln(1+)<对任意k∈N*成立,从而可得到kln(1+k)﹣klnk<1,从而化简求得.解答:解:(1)由f(x)≥0得,a ≥对任意的x∈(0,+∞)恒成立,令g(x)=,x∈(0,+∞);∵g′(x)=﹣,∴当x∈(0,1)时,g′(x)>0,g(x)为增函数;当x∈(1,+∞)时,g′(x)<0,g(x)为减函数;故g max(x)=g(1)=1;∴a≥1;∴实数a的取值范围是[1,+∞);(2)证明:由(1)知,lnx≤x﹣1对任意的x∈(0,+∞)恒成立,当且仅当x=1时取等号,∴ln(1+)<对任意k∈N*成立,即ln(1+k)﹣lnk<;即kln(1+k)﹣klnk<1,∴(1+k)ln(1+k)﹣klnk<1+ln(1+k);故2ln2﹣1ln1<1+ln2,3ln3﹣2ln2<1+ln3,…,(1+n)ln(1+n)﹣nlnn<1+ln(1+n);累加得,(1+n)ln(1+n)<n+ln2+ln3+…+ln(n+1),即nln(n+1)<n+ln(n!),∴ln(n+1)<1+ln(n!),即ln(n+1)﹣ln<1;∴ln<1,即<e.点评:本题考查了导数的综合应用及恒成立问题的应用,属于中档题.。
2021-2022年高三上学期第一次模拟考试数学(文)试卷 Word版含答案
2021年高三上学期第一次模拟考试数学(文)试卷 Word版含答案一、填空题(本大题共14小题,每小题5分,共70分.)1、已知集合,,若,则实数的值是.2、函数的最小正周期为.3、函数的单调增区间为.4、若函数,则.5、.6、设,,则是成立的条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一).7、已知点在函数()的图象上,则的最大值是.8、设曲线在点处的切线与曲线()上点处的切线垂直,则的坐标为.9、如图,函数的图象为折线,则不等式的解集是.10、已知函数(且)的定义域和值域都是,则.11、若函数为偶函数,则.12、已知函数,若对任意实数,总存在实数,使得,则实数的取值范围是.13、已知函数,若,则实数的取值范围是.14、已知函数,若命题“,且,使得”是假命题,则实数的取值范围是.二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15、(本小题满分14分)某同学用“五点法”画函数(,,)在某一个周期内的图将图象上所有点向左平行移动()个单位长度,得到的图象.若图象的一个对称中心为,求的最小值.16、(本小题满分14分)设函数()的最大值为,最小值为,其中,.求,的值(用表示);已知角的顶点与直角坐标系中的原点重合,始边与轴的正半轴重合,终边经过点,求的值.17、(本小题满分14分)如图,某小区有一矩形地块,其中,,单位:百米.已知是一个游泳池,计划在地块内修一条与池边相切于点的直路(宽度不计),交线段于点,交线段于点.现以点为坐标原点,以线段所在直线为轴,建立平面直角坐标系,若池边满足函数()的图象.若点到轴距离记为.当时,求直路所在的直线方程;当为何值时,地块在直路不含泳池那侧的面积取到最大,最大值时多少?18、(本小题满分16分)已知函数,,.,,求的值域;,解关于的不等式.19、(本小题满分16分)设函数,,.,,求的极大值和极小值;,,若对一切恒成立,求的最小值的表达式.20、(本小题满分16分)已知函数,.若函数在上单调递增,求实数的取值范围;若直线是函数图象的切线,求的最小值;当时,若与的图象有两个交点,,求证:.(取为,取为,取为)江苏省海头高级中学xx届高三上学期第一次模拟考试数学(文)试题参考答案一、填空题1、或2、3、4、5、6、充分不必要7、8、9、10、11、12、13、14、二、解答题。
2021年高三第一次高考模拟考试文科数学 word版含答案
数为
A.B.C.D.
2.若是虚数单位,则
A.B.C.D.
3.若变量满足约束条件,则目标函数的最小值为
A.B.C.D.
4.若,则的值为
A.B.C.D.
5.若向量的夹角为,且,则与
的夹角为
A.B.C.D.
6.若按右侧算法流程图运行后,输出的结果是,则输入的
的值为
A. B. C. D.
2021年高三第一次高考模拟考试文科数学 word版含答案
考试说明:本试卷分第 卷(选择题)和第 卷(非选择题)两部分,满分150分,考试时间120分钟.
(1)答题前,考生先将自己的姓名、准考证号码填写清楚;
(2)选择题必须使用2B铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;
13.已知角,由不等式,,
,归纳得到推广结论:
,则实数
14.甲、乙两位同学约定晚饭点到点之间在食堂见面,先到之人等后到之人十五分
钟,则甲、乙两人能见面的概率为
15.已知,动点满足,则的最大
值为
16.在中,内角所对的边长分别为,已知角为锐角,且
,则实数范围为
三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)
其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组
的人数为60.
( )请在图中补全频率分布直方图;
( )若大学决定在成绩高的第,组中用分层抽样的方法抽取名学生,并且分成组,每组人进行面试,求分(包括95分)以上的同学在同一个小组的概率.
19.(本小题满分12分)
如图,在四棱锥中中,底面为菱形,,为
7.直线截圆所得劣弧所对圆心
2021年高三上学期第一次模拟考试数学(理)试卷含解析
2021年高三上学期第一次模拟考试数学(理)试卷含解析一、选择题(共10小题,每小题5分,满分50分)1.集合A={y|y=,0≤x≤4},B={x|x2﹣x>0},则A∩B=()A.(﹣∞,1]∪(2,+∞)B.(﹣∞,0)∪(1,2)C.∅D.(1,2]2.已知复数z1=3+4i,z2=t+i,且z1•z2是实数,则实数t等于()A.B.C.﹣D.﹣3.已知命题p:∃x∈R,log2(3x+1)≤0,则()A.p是假命题;¬p:∀x∈R,log2(3x+1)≤0B.p是假命题;¬p:∀x∈R,log2(3x+1)>0C.p是真命题;¬p:∀x∈R,log2(3x+1)≤0D.p是真命题;¬p:∃x∈R,log2(3x+1)>04.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆.其中正确的是()A.①②B.②③C.③④D.①④5.已知x,y满足,且z=2x+y的最大值是最小值的4倍,则a的值是()A. B. C. D.46.运行如如图所示的程序框图,则输出的结果S为()A.1008 B.xx C.1007 D.﹣10077.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A. B.C. D.8.已知函数f(x)=,则满足f(a)≥2的实数a的取值范围是()A.(﹣∞,﹣2)∪(0,+∞) B.(﹣1,0)C.(﹣2,0)D.(﹣∞,﹣1]∪[0,+∞)9.在等腰三角形ABC中,AB=AC,D在线段AC,AD=kAC(k为常数,且0<k<1),BD=l为定长,则△ABC的面积最大值为()A. B. C. D.10.已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f′(x)+>0,若a=f(),b=﹣2f(﹣2),c=(ln)f(ln),则a,b,c的大小关系正确的是()A.a<c<b B.b<c<a C.a<b<c D.c<a<b二、填空题(共5小题,每小题5分,满分25分)11.若双曲线﹣=1(a>0)的离心率为2,则a= .12.设随机变量ξ~N(μ,ɛ2),且P(ξ<﹣2)=P(ξ>2)=0.3,则P(﹣2<ξ<0)= .13.如图,在△ABC中,若AB=1,AC=3,•=,则BC=14.学校体育组新买2个同样篮球,3个同样排球,从中取出4个发放给高一4个班,每班1个,则共有种不同的发放方法.15.圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为.三、解答题(共6小题,满分75分)16.已知函数f(x)=2asinωxcosωx+2cos2ωx﹣(a>0,ω>0)的最大值为2,且最小正周期为π.(I)求函数f(x)的解析式及其对称轴方程;(II)若f(α)=,求sin(4α+)的值.17.在如图所示的空间几何体中,平面ACD⊥平面ABC,△ACD与△ACB是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.(Ⅰ)求证:DE∥平面ABC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.18.学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):规定若满意度不低于98分,测评价该教师为“优秀”.(I)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;(Ⅱ)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记ξ表示抽到评价该教师为“优秀”的人数,求ξ的分布列及数学期望.19.已知数列{a n}中,a1=1,a n+1=(I)求证:数列{a2n﹣}是等比数列;(II)若S n是数列{a n}的前n项和,求满足S n>0的所有正整数n.20.已知函数f(x)=cos(x﹣),g(x)=e x•f′(x),其中e为自然对数的底数.(Ⅰ)求曲线y=g(x)在点(0,g(0))处的切线方程;(Ⅱ)若对任意x∈[﹣,0],不等式g(x)≥x•f(x)+m恒成立,求实数m的取值范围;(Ⅲ)试探究当x∈[,]时,方程g(x)=x•f(x)的解的个数,并说明理由.21.已知椭圆C:=1(a>b>0),其中F1,F2为左、右焦点,O为坐标原点.直线l与椭圆交于P(x1,y1),Q(x2,y2)两个不同点.当直线l过椭圆C右焦点F2且倾斜角为时,原点O到直线l的距离为.又椭圆上的点到焦点F2的最近距离为﹣1.(I)求椭圆C的方程;(Ⅱ)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积|ON|•|PQ|的最大值;(Ⅲ)若抛物线C2:y2=2px(p>0)以F2为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.xx年山东省日照市高考数学一模试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.集合A={y|y=,0≤x≤4},B={x|x2﹣x>0},则A∩B=()A.(﹣∞,1]∪(2,+∞)B.(﹣∞,0)∪(1,2) C.∅D.(1,2]考点:交集及其运算.专题:集合.分析:求出A中y的范围确定出A,求出B中不等式的解集确定出B,求出A与B的交集即可.解答:解:由A中y=,0≤x≤4,得到0≤y≤2,即A=[0,2],由B中不等式变形得:x(x﹣1)>0,解得:x<0或x>1,即B=(﹣∞,0)∪(1,+∞),则A∩B=(1,2],故选:D.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知复数z1=3+4i,z2=t+i,且z1•z2是实数,则实数t等于()A. B. C.﹣D.﹣考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由复数代数形式的乘除运算化简,然后由虚部等于0求得t的值.解答:解:∵z1=3+4i,z2=t+i,∴z1•z2=(3+4i)(t+i)=(3t﹣4)+(4t+3)i,由z1•z2是实数,得4t+3=0,即t=﹣.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.已知命题p:∃x∈R,log2(3x+1)≤0,则()A.p是假命题;¬p:∀x∈R,log2(3x+1)≤0B.p是假命题;¬p:∀x∈R,log2(3x+1)>0C.p是真命题;¬p:∀x∈R,log2(3x+1)≤0D.p是真命题;¬p:∃x∈R,log2(3x+1)>0考点:命题的否定;特称命题.专题:简易逻辑.分析:根据特称命题的否定是全称命题即可得到结论.解答:解:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;¬p:∀x∈R,log2(3x+1)>0.故选:B.点评:本题主要考查含有量词的命题的否定,比较基础.4.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆.其中正确的是()A.①② B.②③ C.③④ D.①④考点:简单空间图形的三视图.分析:本题给出了正视图与侧视图,由所给的数据知凭据三视图的作法规则,来判断侧视图的形状,由于正视图中的长与侧视图中的长不一致,此特征即是判断俯视图开关的关键,由此标准对四个可选项依次判断即可.解答:解:由题设条件知,正视图中的长与侧视图中的长不一致,对于①,俯视图是长方形是可能的,比如此几何体为一个长方体时,满足题意;对于②,由于正视图中的长与侧视图中的长不一致,故俯视图不可能是正方形;对于③,由于正视图中的长与侧视图中的长不一致,故俯视图不可能是圆形;对于④,如果此几何体是一个椭圆柱,满足正视图中的长与侧视图中的长不一致,故俯视图可能是椭圆.综上知②③是不可能的图形故选B点评:本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视5.已知x,y满足,且z=2x+y的最大值是最小值的4倍,则a的值是()A. B. C. D.4考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用z的几何意义,结合目标函数z=2x+y的最大值是最小值的4倍,建立方程关系,即可得到结论.解答:解:作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线的截距最大,此时z最大,由,解得即A(1,1),此时z=2×1+1=3,当直线y=﹣2x+z经过点B时,直线的截距最小,此时z最小,由,解得,即B(a,a),此时z=2×a+a=3a,∵目标函数z=2x+y的最大值是最小值的4倍,∴3=4×3a,即a=.故选:B点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.6.运行如如图所示的程序框图,则输出的结果S为()A.1008 B.xx C.1007 D.﹣1007考点:程序框图.专题:图表型;算法和程序框图.分析:程序运行的功能是求S=1﹣2+3﹣4+…+(﹣1)k﹣1•k,根据计算变量n判断程序终止运行时的k值,利用并项求和求得S.解答:解:执行程序框图,有k=1,S=0满足条件n<xx,S=1,k=2;满足条件n<xx,S=﹣1,k=3;满足条件n<xxS=2,k=4;满足条件n<xxS=﹣2,k=5;满足条件n<xxS=3,k=6;满足条件n<xxS=﹣3,k=7;满足条件n<xxS=4,k=8;…观察规律可知,有满足条件n<xxS=1006,k=xx;满足条件n<xxS=﹣1006,k=xx;满足条件n<xxS=1007,k=xx;满足条件n<xx,S=﹣1007,k=xx;不满足条件n<xx,输出S的值为﹣1007.故选:D.点评:本题考查了循环结构的程序框图,根据计算变量n判断程序终止运行时的k值是解答本题的关键,属于基础题.7.已知函数f(x)=x2+cosx,f′(x)是函数f(x)的导函数,则f′(x)的图象大致是()A. B.C. D.考点:函数的图象.专题:函数的性质及应用.分析:由于f(x)=x+cosx,得f′(x)=x﹣sinx,由奇函数的定义得函数f′(x)为奇函数,其图象关于原点对称,排除BD,取x=代入f′()=﹣sin=﹣1<0,排除C,只有A 适合.解答:解:由于f(x)=x+cosx,∴f′(x)=x﹣sinx,∴f′(﹣x)=﹣f′(x),故f′(x)为奇函数,其图象关于原点对称,排除BD,又当x=时,f′()=﹣sin=﹣1<0,排除C,只有A适合,故选:A.点评:本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力,同时考查导数的计算,属于中档题.8.已知函数f(x)=,则满足f(a)≥2的实数a的取值范围是()A.(﹣∞,﹣2)∪(0,+∞) B.(﹣1,0)C.(﹣2,0)D.(﹣∞,﹣1]∪[0,+∞)考点:分段函数的应用.专题:函数的性质及应用.分析:根据不等式的解法,利用分类讨论即可得到结论.解答:解:函数f(x)=则满足f(a)≥2,若a≤﹣1,则由f(a)≥2,得f(a)=2﹣2a≥2,解得a≤,可得a≤﹣1.若a>1,则由f(a)≥2,得f(a)=2a+2≥2,解得a≥0,综上a∈(﹣∞,﹣1]∪[0,+∞),故选:D.点评:本题主要考查分段函数的应用,不等式的解法,利用分类讨论是解决本题的关键,比较基础.9.在等腰三角形ABC中,AB=AC,D在线段AC,AD=kAC(k为常数,且0<k<1),BD=l为定长,则△ABC的面积最大值为()A. B. C. D.考点:正弦定理.专题:解三角形.分析:判断出AB=AC,以B为原点、BD为x轴建立平面直角坐标系,设A(x,y),y>0,根据题意得到AD=kAC,利用两点间的距离公式列出关系式,化简后表示出y2,利用二次函数的性质求出y的最大值,求出△ABD面积的最大值,由AD=kAC得出△ABC面积的最大值.解答:解:由题意得AB=AC,如图所示,以B为原点,BD为x轴建立平面直角坐标系,设A(x,y),y>0,∵AB=AC,BD=l,∴D(l,0),由AD=kAC=kAB得,AD2=k2AB2,∴(x﹣l)2+y2=k2(x2+y2),整理得:y2=,当x=﹣=时,y2=取到最大值是:,∴y的最大值是,∵BD=l,∴(S△ABD)max==,∵AD=kAC,∴(S△ABC)max=(S△ABD)max=,所以△ABC的面积最大值为,故选:C.点评:本题考查坐标法解决平面几何问题,两点间的距离公式,及二次函数的性质,建立适当的坐标系是解本题的关键.10.已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f′(x)+>0,若a=f(),b=﹣2f(﹣2),c=(ln)f(ln),则a,b,c的大小关系正确的是()A.a<c<b B.b<c<a C.a<b<c D.c<a<b考点:导数的运算;利用导数研究函数的单调性.专题:导数的概念及应用.分析:利用条件构造函数h(x)=xf(x),然后利用导数研究函数h(x)的单调性,利用函数的单调性比较大小.解答:解:设h(x)=xf(x),∴h′(x)=f(x)+x•f′(x),∵y=f(x)是定义在实数集R上的奇函数,∴h(x)是定义在实数集R上的偶函数,当x>0时,h'(x)=f(x)+x•f′(x)>0,∴此时函数h(x)单调递增.∵a=f()=h(),b=﹣2f(﹣2)=2f(2)=h(2),c=(ln)f(ln)=h(ln)=h(﹣ln2)=h(ln2),又2>ln2>,∴b>c>a.故选:A.点评:本题主要考查如何构造新的函数,利用单调性比较大小,是常见的题目.本题属于中档题.二、填空题(共5小题,每小题5分,满分25分)11.若双曲线﹣=1(a>0)的离心率为2,则a= .考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:运用离心率公式,可得c=2a,结合c2=a2+b2,解方程即可得到a.解答:解:双曲线﹣=1(a>0)的离心率为2,则e==2,即c2=4a2=a2+9,解得a=,故答案为:.点评:本题考查双曲线的方程和性质,考查离心率的求法,属于基础题.12.设随机变量ξ~N(μ,ɛ2),且P(ξ<﹣2)=P(ξ>2)=0.3,则P(﹣2<ξ<0)= 0.2 .考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:随机变量ξ服从正态分布N(μ,σ2),且P(ξ<﹣2)=P(ξ>2),得到曲线关于x=0对称,利用P(ξ>2)=0.3,根据概率的性质得到结果.解答:解:因为P(ξ<﹣2)=P(ξ>2),所以正态分布曲线关于y轴对称,又因为P(ξ>2)=0.3,所以P(﹣2<ξ<0)==0.2故答案为:0.2.点评:一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.13.如图,在△ABC中,若AB=1,AC=3,•=,则BC=考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据数量积得出1×3cos∠BAC=,cos∠BAC=,运用余弦定理得出BC即可.解答:解:∵在△ABC中,若AB=1,AC=3,•=,∴1×3cos∠BAC=,∴cos∠BAC=,∴在△△ABC中根据余弦定理得出BC2=1=7,∴BC=故答案为:点评:本题考查了平面向量的数量积在求夹角中的应用,余弦定理求解边长问题,属于中档题.14.学校体育组新买2个同样篮球,3个同样排球,从中取出4个发放给高一4个班,每班1个,则共有10 种不同的发放方法.考点:排列、组合及简单计数问题.专题:排列组合.分析:根据题意,分2种情况讨论,①、将3个排球、1个篮球分给4个班,②、将2个排球、2个篮球分给4个班,分别求出每种情况的发放方法数目,由分类计数原理,计算可得答案.解答:解:根据题意,分2种情况讨论,①、将3个排球、1个篮球分给4个班,在4个班中取出3个,分得排球剩余1个班分得篮球即可,则有C43=4种情况,②、将2个排球、2个篮球分给4个班,在4个班中取出2个,分得排球剩余2个班分得篮球即可,则有C42=6种情况,则共有6+4=10种发放方法,故答案为:10点评:本题考查排列、组合的应用,注意篮球、排球之间是相同的,属于基础题.15.圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为.考点:弧长公式.专题:三角函数的求值.分析:由图可知:圆O的半径r=1,正方形ABCD的边长a=1,以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,当点A首次回到点P的位置时,正方形滚动了3圈共12次,分别算出转4次的长度,即可得出.解答:解:由图可知:∵圆O的半径r=1,正方形ABCD的边长a=1,∴以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A首次回到点P的位置时,正方形滚动了3圈共12次,设第i次滚动,点A的路程为A i,则A1=×|AB|=,A2=×|AC|=,A3=×|DA|=,A4=0,∴点A所走过的路径的长度为3(A1+A2+A3+A4)=.故答案为:.点评:本题考查了正方形与圆的性质、旋转的性质、弧长的计算公式,考查了数形结合、分类讨论的思想方法,考查了分析问题与解决问题的能力,属于难题.三、解答题(共6小题,满分75分)16.已知函数f(x)=2asinωxcosωx+2cos2ωx﹣(a>0,ω>0)的最大值为2,且最小正周期为π.(I)求函数f(x)的解析式及其对称轴方程;(II)若f(α)=,求sin(4α+)的值.考点:两角和与差的正弦函数;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:(Ⅰ)根据条件函数最值和周期,利用三角函数的公式进行化简即可求a和ω的值,即可求出函数的解析式和对称轴方程;(Ⅱ)根据f(a)=,利用余弦函数的倍角公式进行化简即可求sin(4α+)的值.解答:解:(Ⅰ)f(x)=2asinωxcosωx+2cos2ωx﹣=asin2ωx+cos2ωx=sin(2ωx+φ)∵f(x)的最小正周期为T=π∴,ω=1,∵f(x)的最大值为2,∴=2,即a=±1,∵a>0,∴a=1.即f(x)=2sin(2x+).由2x+=+kπ,即x=+,(k∈Z).(Ⅱ)由f(α)=,得2sin(2α+)=,即sin(2α+)=,则sin(4α+)=sin[2(2α+)]=﹣cos2(2α+)=﹣1+2sin2(2α+)=﹣1+2×()2=﹣.点评:本题主要考查三角函数的图象和性质,利用条件求出函数的解析式是解决本题的关键.同时也考查三角函数倍角公式的应用.17.在如图所示的空间几何体中,平面ACD⊥平面ABC,△ACD与△ACB是边长为2的等边三角形,BE=2,BE和平面ABC所成的角为60°,且点E在平面ABC上的射影落在∠ABC的平分线上.(Ⅰ)求证:DE∥平面ABC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.考点:用空间向量求平面间的夹角;直线与平面平行的判定;与二面角有关的立体几何综合题.专题:空间位置关系与距离;空间向量及应用.分析:(Ⅰ)取AC中点O,连接BO,DO,由题设条件推导出DO⊥平面ABC,作EF⊥平面ABC,由已知条件推导出∠EBF=60°,由此能证明DE∥平面ABC.(Ⅱ)法一:作FG⊥BC,垂足为G,连接EG,能推导出∠EGF就是二面角E﹣BC﹣A的平面角,由此能求出二面角E﹣BC﹣A的余弦值.法二:以OA为x轴,以OB为y轴,以OD为z轴,建立空间直角坐标系O﹣xyz,利用向量法能求出二面角E﹣BC﹣A的余弦值.解答:(本小题满分12分)解:(Ⅰ)由题意知,△ABC,△ACD都是边长为2的等边三角形,取AC中点O,连接BO,DO,则BO⊥AC,DO⊥AC,…(2分)又∵平面ACD⊥平面ABC,∴DO⊥平面ABC,作EF⊥平面ABC,那么EF∥DO,根据题意,点F落在BO上,∵BE和平面ABC所成的角为60°,∴∠EBF=60°,∵BE=2,∴,…(4分)∴四边形DEFO是平行四边形,∴DE∥OF,∵DE不包含于平面ABC,OF⊂平面ABC,∴DE∥平面ABC.…(6分)(Ⅱ)解法一:作FG⊥BC,垂足为G,连接EG,∵EF⊥平面ABC,∴EF⊥BC,又EF∩FG=F,∴BC⊥平面EFG,∴EG⊥BC,∴∠EGF就是二面角E﹣BC﹣A的平面角.…(9分)Rt△EFG中,,,.∴.即二面角E﹣BC﹣A的余弦值为.…(12分)解法二:建立如图所示的空间直角坐标系O﹣xyz,B(0,,0),C(﹣1,0,0),E(0,,),∴=(﹣1,﹣,0),=(0,﹣1,),平面ABC的一个法向量为设平面BCE的一个法向量为则,∴,∴.…(9分)所以,又由图知,所求二面角的平面角是锐角,二面角E﹣BC﹣A的余弦值为.…(12分)点评:本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.18.学校为测评班级学生对任课教师的满意度,采用“100分制”打分的方式来计分.现从某班学生中随机抽取10名,以下茎叶图记录了他们对某教师的满意度分数(以十位数字为茎,个位数字为叶):规定若满意度不低于98分,测评价该教师为“优秀”.(I)求从这10人中随机选取3人,至多有1人评价该教师是“优秀”的概率;(Ⅱ)以这10人的样本数据来估计整个班级的总体数据,若从该班任选3人,记ξ表示抽到评价该教师为“优秀”的人数,求ξ的分布列及数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(Ⅰ)设A i表示所取3人中有i个人评价该教师为“优秀”,至多1人评价该教师为“优秀”记为事件A,由P(A)=P(A0)+P(A1),能求出至多有1人评价该教师是“优秀”的概率.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列及数学期望.解答:解:(Ⅰ)设A i表示所取3人中有i个人评价该教师为“优秀”,至多1人评价该教师为“优秀”记为事件A,则P(A)=P(A0)+P(A1)==.(Ⅱ)由已知得ξ的可能取值为0,1,2,3,P(ξ=0)=()3=,P(ξ=1)==,P(ξ=2)==,P(ξ=3)=()3=,∴ξ的分布列为:ξ 0 1 2 3PEξ==0.9.点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意排列组合知识的合理运用.19.已知数列{a n}中,a1=1,a n+1=(I)求证:数列{a2n﹣}是等比数列;(II)若S n是数列{a n}的前n项和,求满足S n>0的所有正整数n.考点:数列递推式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设b n=a2n﹣,则=﹣,==,由此能证明数列{}是以﹣为首项,为公比的等比数列.(Ⅱ)由b n=a2n﹣=﹣•()n﹣1=﹣•()n,得+,从而a2n﹣1+a2n=﹣2•()n﹣6n+9,由此能求出S2n.从而能求出满足S n>0的所有正整数n.解答:(Ⅰ)证明:设b n=a2n﹣,则=()﹣=﹣,====,∴数列{}是以﹣为首项,为公比的等比数列.(Ⅱ)解:由(Ⅰ)得b n=a2n﹣=﹣•()n﹣1=﹣•()n,∴+,由a2n=+3(2n﹣1),得a2n﹣1=3a2n﹣3(2n﹣1)=﹣•()n﹣1﹣6n+,∴a2n﹣1+a2n=﹣[()n﹣1+()n]﹣6n+9=﹣2•()n﹣6n+9,S2n=(a1+a2)+(a3+a4)+…+(a2n﹣1+a2n)=﹣2[]﹣6(1+2+3+…+n)+9n==()n﹣3(n﹣1)2+2.由题意得n∈N*时,{S2n}单调递减,又当n=1时,S2=>0,当n=2时,S4=﹣<0,∴当n≥2时,S2n<0,S2n﹣1=S2n﹣a2n=﹣,故当且仅当n=1时,S2n+1>0,综上所述,满足S n>0的所有正整数n为1和2.点评:本题考查等比数列的证明,考查数列的前2n项和的求法,是中档题,解题时要认真审题,注意构造法、等比数列性质、分组求和法的合理运用.20.已知函数f(x)=cos(x﹣),g(x)=e x•f′(x),其中e为自然对数的底数.(Ⅰ)求曲线y=g(x)在点(0,g(0))处的切线方程;(Ⅱ)若对任意x∈[﹣,0],不等式g(x)≥x•f(x)+m恒成立,求实数m的取值范围;(Ⅲ)试探究当x∈[,]时,方程g(x)=x•f(x)的解的个数,并说明理由.考点:利用导数求闭区间上函数的最值;函数的零点与方程根的关系;利用导数研究曲线上某点切线方程.专题:计算题;函数的性质及应用;导数的概念及应用;导数的综合应用.分析:(Ⅰ)化简f(x)=sinx,g(x)=e x cosx,g(0)=e0cos0=1;从而由导数的几何意义写出切线方程;(Ⅱ)对任意x∈[﹣,0],不等式g(x)≥x•f(x)+m恒成立可化为m≤[g(x)﹣x•f (x)]min,x∈[﹣,0],从而设h(x)=g(x)﹣x•f(x),x∈[﹣,0],转化为函数的最值问题求解.(Ⅲ)设H(x)=g(x)﹣x•f(x),x∈[,];从而由函数的单调性及函数零点的判定定理求解函数的零点的个数.解答:解:(Ⅰ)由题意得,f(x)=sinx,g(x)=e x cosx,g(0)=e0cos0=1;g′(x)=e x(cosx﹣sinx),g′(0)=1;故曲线y=g(x)在点(0,g(0))处的切线方程为y=x+1;(Ⅱ)对任意x∈[﹣,0],不等式g(x)≥x•f(x)+m恒成立可化为m≤[g(x)﹣x•f(x)]min,x∈[﹣,0],设h(x)=g(x)﹣x•f(x),x∈[﹣,0],则h′(x)=e x(cosx﹣sinx)﹣sinx﹣xcosx=(e x﹣x)cosx﹣(e x+1)sinx,∵x∈[﹣,0],∴(e x﹣x)cosx≥0,(e x+1)sinx≤0;故h′(x)≥0,故h(x)在[﹣,0]上单调递增,故当x=﹣时,h min(x)=h(﹣)=﹣;故m≤﹣;(Ⅲ)设H(x)=g(x)﹣x•f(x),x∈[,];则当x∈[,]时,H′(x)=e x(cosx﹣sinx)﹣sinx﹣xcosx=(e x﹣x)cosx﹣(e x+1)sinx,由=tanx≥1,=1﹣<1,即有>,即有H′(x)<0,故H(x)在[,]上单调递减,故函数H(x)在[,]上至多有一个零点;又H()=(﹣)>0,H()=﹣<0;且H(x)在[,]上是连续不断的,故函数H(x)在[,]上有且只有一个零点.点评:本题考查了导数的几何意义的应用及导数的综合应用,同时考查了恒成立问题及函数的最值问题,还考查了零点的个数的判断,属于难题.21.已知椭圆C:=1(a>b>0),其中F1,F2为左、右焦点,O为坐标原点.直线l与椭圆交于P(x1,y1),Q(x2,y2)两个不同点.当直线l过椭圆C右焦点F2且倾斜角为时,原点O到直线l的距离为.又椭圆上的点到焦点F2的最近距离为﹣1.(I)求椭圆C的方程;(Ⅱ)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为时,求平行四边形OQNP的对角线之积|ON|•|PQ|的最大值;(Ⅲ)若抛物线C2:y2=2px(p>0)以F2为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:(I)直线l过椭圆C右焦点F2且倾斜角为时,可得直线l的方程为:y=x﹣c.由原点O到直线l的距离为,可得,解得c.又椭圆上的点到焦点F2的最近距离为﹣1,可得﹣1,解得a,b2=a2﹣c2.即可得出椭圆C的方程.(II)设P(x1,y1),Q(x2,y2).当直线l的斜率不存在时,x1=x2,y1=﹣y2,由=1,|2x1•2y1|=,可得|ON|•|PQ|=.当直线l的斜率存在时,设直线l的方程为y=kx+m,与椭圆方程联立可得(2+3k2)x2+6kmx+3m2﹣6=0,由△>0,解得3k2+2>m2.利用根与系数的关系可得|PQ|=,原点到直线l的距离d=,利用S△POQ==,化为3k2+2=2m2,满足△>0.设M(x0,y0)为PQ的中点,可得=,|PQ|2=,可得|OM|2|PQ|2=,利用基本不等式的性质即可得出.(III)由题意可得抛物线C2:y2=4x,由以OS为直径作圆,交抛物线C2于另一点R,可得∠ORS=90°.可得=0.设S(x3,y3),R(x4,y4),可得y4(y4﹣y3)=﹣16.利用基本不等式的性质可得y3≥8,或y3≤﹣8,x3≥16.即可得出.解答:解:(I)直线l过椭圆C右焦点F2且倾斜角为时,∴直线l的方程为:y=x﹣c.∵原点O到直线l的距离为,∴,解得c=1.又椭圆上的点到焦点F2的最近距离为﹣1,∴﹣1,解得a=,∴b2=a2﹣c2=2.∴椭圆C的方程为.(II)设P(x1,y1),Q(x2,y2).①当直线l的斜率不存在时,x1=x2,y1=﹣y2,由=1,|2x1•2y1|=,解得,|y1|=1.∴|ON|•|PQ|=.②当直线l的斜率存在时,设直线l的方程为y=kx+m,联立,化为(2+3k2)x2+6kmx+3m2﹣6=0,由△>0,解得3k2+2>m2.∴x1+x2=﹣,x1x2=,∴|PQ|==,原点到直线l的距离d=,∴S△POQ===,化为3k2+2=2m2,满足△>0.设M(x0,y0)为PQ的中点,则x0==,y0=kx0+m=.∴==,|PQ|2=,∴|OM|2|PQ|2=,当且仅当m=时取等号.∴|OM||PQ|的最大值为.∴|ON|•|PQ|=2|OM||PQ|的最大值为5.综上可得:ON|•|PQ|的最大值为5.(III)由题意可得抛物线C2:y2=4x,∵以OS为直径作圆,交抛物线C2于另一点R,∴∠ORS=90°.∴=0.设S(x3,y3),R(x4,y4),则=x4(x4﹣x3)+y4(y4﹣y3)=+y4(y4﹣y3)=0.∵y4(y4﹣y3)≠0,∴y4(y4﹣y3)=﹣16.∴≥8,或y3≤﹣8x3≥=16.∴该圆面积最小时点S的坐标为(16,±8).点评:本题考查了椭圆与抛物线的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得△>0及其根与系数的关系、弦长公式、点到直线的距离公式、三角形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于难题.529388 72CC 狌35108 8924 褤* 35555 8AE3 諣20905 51A9 冩m33769 83E9 菩831983 7CEF 糯。
2021年高三数学第一次摸底考试 理(含解析)
2021年高三数学第一次摸底考试理(含解析)【试卷综评】本试卷试题主要注重基本知识、基本能力、基本方法等当面的考察,覆盖面广,注重数学思想方法的简单应用,试题有新意,符合课改和教改方向,能有效地测评学生,有利于学生自我评价,有利于指导学生的学习,既重视双基能力培养,侧重学生自主探究能力,分析问题和解决问题的能力,突出应用,同时对观察与猜想、阅读与思考等方面的考查。
一、选择题:本大题共12题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求.【题文】1.计算:=()A. i+1 B.i﹣1 C.﹣i+1 D.﹣i﹣1【知识点】复数代数形式的乘除运算.L4【答案解析】C 解析:化简可得===1﹣I,故选:C【思路点拨】分子分母同乘以分母的共轭复数﹣i﹣1,化简可得.【题文】2.已知A⊆B,A⊆C,B={1,2,3,5},C={0,2,4,8},则A可以是()A. {1,2} B.{2,4} C.{2} D.{4}【知识点】集合的包含关系判断及应用.A1【答案解析】C 解析:∵A⊆B,A⊆C,∴A⊆(B∩C),∵B={1,2,3,5},C={0,2,4,8},∴B∩C={2},而A⊆(B∩C)则A={2}或∅,故选C。
【思路点拨】先根据A⊆B,A⊆C可知A⊆(B∩C),然后求出B∩C,最后求出所求满足条件的A,最后得到结论.【题文】3.已知条件p:x2﹣2ax+a2﹣1>0,条件q:x>2,且q是p的充分而不必要条件,则a的取值范围是()A.a≥1B.a≤1C.a≥﹣3 D.a≤﹣3【知识点】必要条件、充分条件与充要条件的判断。
A2【答案解析】B 解析:∵条件p:x2﹣2ax+a2﹣1>0,条件q:x>2,且q是p的充分而不必要条件,∴q⊊p,即a≤2且4﹣4a+a2﹣1≥0,解不等式组可得:a≤1,故选:B。
【思路点拨】把充分性问题转化为结合关系,再利用不等式求解.【题文】4.某程序图如图所示,该程序运行后输出的结果是()A. 3 B. 4 C. 5 D. 6【知识点】程序框图.L1【答案解析】C 解析:当S=1时,满足进入循环的条件,执行完循环体后,S=2,k=2;当S=2时,满足进入循环的条件,执行完循环体后,S=22,k=3;当S=22时,满足进入循环的条件,执行完循环体后,S=24,k=4;当S=24时,满足进入循环的条件,执行完循环体后,S=216,k=5;当S=216时,不满足进入循环的条件,故输出结果为:5,故选:C【思路点拨】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量k 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【题文】5.已知某几何体的正视图与侧视图都是边长为1的正方形,且体积为.则该几何体的俯视图可以是()【知识点】简单空间图形的三视图.G2【答案解析】A 解析:由题意可知当俯视图是A时,即每个视图是变边长为1的正方形,那么此几何体是立方体,显然体积是1,注意到题目体积是,知其是立方体的一半,可知选A.【思路点拨】结合选项,正方体的体积否定C,推出正确选项A即可.【题文】6.将函数f(x)=2sin(+)的图象向左平移个单位,再向下平移1个单位,得到函数g(x)的图象,则g(x)的解析式为()A. g(x)=2sin(+)﹣1 B. g(x)=2sin(﹣)+1C. g(x)=2sin(﹣)+1 D. g(x)=2sin(﹣)﹣1【知识点】函数y=Asin(ωx+φ)的图象变换.C4【答案解析】A 解析:函数y=2sin(+)的图象先向左平移个单位,可以得到函数y=2sin[(x+)+]=2sin(+)的图象再向下平移1个单位后可以得到y=2sin(+)﹣1的图象故选:A.【思路点拨】根据平移变换的法则﹣﹣“左加右减,上加下减”,我们先求出将函数y=2sin (+)的图象先向左平移个单位的图象对应的函数的解析式,再求出再向下平移1个单位后得到图象的解析式即可得到答案.【题文】7.已知等差数列{an}的公差为2,若前17项和为S17=34,则a12的值为()A. 8 B. 6 C. 4 D. 2【知识点】等差数列的前n项和;等差数列的通项公式.D2【答案解析】A 解析:∵等差数列{an}的前17项和为S17=34,∴=34∴a1+a17=4,∵a1+a17=2a9,∴a9=2,,等差数列{an}的前17项和为S17=34∴a12=a9+(12﹣9)×2,∴a12=8,故答案选A。
2021届高三数学上学期第一次摸底试题(含解析)
2021届高三数学上学期第一次摸底试题(含解析)注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2、回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3、考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B.C. D.【答案】B【解析】【分析】解一元二次不等式可得集合,再求交集即可.【详解】因为,,所以,故选:B.【点睛】本题主要考查集合的交集运算,涉及一元二次不等式的解法,属于基础题.2. 若复数z满足,则()A. B. C. D. 2【答案】B【解析】【分析】根据复数z满足,利用复数的除法得到,再利用求模公式求解.【详解】因为复数z满足,所以,所以,故选:B【点睛】本题主要考查复数的运算和复数的模,属于基础题. 3. 特岗教师是中央实施的一项对中西部地区农村义务教育的特殊政策.某教育行政部门为本地两所农村小学招聘了6名特岗教师,其中体育教师2名,数学教师4名.按每所学校1名体育教师,2名数学教师进行分配,则不同的分配方案有()A. 24B. 14C. 12D. 8【答案】C【解析】【分析】先把4名数学教师平分为2组,再把2名体育教师分别放入这两组,最后把这两组教师分配到两所农村小学,即可计算出结果.【详解】先把4名数学教师平分为2组,有种方法,再把2名体育教师分别放入这两组,有种方法,最后把这两组教师分配到两所农村小学,共有种方法.故选:C.【点睛】本题考查计数原理和排列组合应用,属于基础题.4. 居民消费价格指数是反映一定时期内城乡居民所购买的生活消费品和服务项目价格变动趋势和程度的相对数,是对城市居民消费价格指数和农村居民消费价格指数进行综合汇总计算的结果.通过该指数可以观察和分析消费品的零售价格和服务项目价格变动对城乡居民实际生活费支出的影响程度.如图,是疫情期间我国的居民消费价格指数与食品类居民消费价格指数折线图,据此图,下列分析中不合理的是()A. 居民消费价格指数变化幅度相对不大B. 食品类居民消费价格指数变化幅度相对较大C. 食品类居民消费价格指数高于居民消费价格指数D. 食品类居民消费价格指数与居民消费价格指数的变化趋势很不一致【答案】D【解析】【分析】根据折线图,逐个分析选项即可得选项合理,选项不合理.【详解】对于选项:由折线图可知,居民消费价格指数线比较平缓,所以居民消费价格指数变化幅度相对不大,所以选项合理;对于选项:由折线图可知,食品类居民消费价格指数线起伏较大,所以品类居民消费价格指数变化幅度相对较大,所以选项合理;对于选项:由折线图可知,食品类居民消费价格指数线一直在居民消费价格指数线上方,所以食品类居民消费价格指数高于居民消费价格指数,所以选项合理;对于选项:食品类居民消费价格指数与居民消费价格指数的变化趋势大致一致,所以选项不合理,故选:D【点睛】本题主要考查了对统计折线图的分析和理解能力,意在考查学生对该知识的理解掌握水平..5. 下图是一个正方体的展开图,则在该正方体中()A. 直线与直线平行B. 直线与直线相交C. 直线与直线异面垂直D. 直线与直线异面且所成的角为60°【答案】D【解析】【分析】首先画出正方体的展开图的立体图,从而得到直线与直线为异面直线,再求异面直线所成角即可得到答案.【详解】正方体的展开图的立体图形如图所示:由图知:直线与直线为异面直线,故A,B错误;连接,,因为,所以或其补角为异面直线与所成角.又因为为等边三角形,所以.所以直线与直线异面且所成的角为60°,故C错误,D正确.故选:D【点睛】本题主要考查异面直线成角问题,属于简单题.6. 已知,若,则()A. B. C. D.【答案】A【解析】【分析】根据增函数加增函数是增函数和奇函数定义可知函数是增函数且是奇函数,即有,得到,即可解得.【详解】因为均为增函数,所以是增函数,又因为,所以函数是奇函数,化为,所以即.故选:A【点睛】本题考查了判断函数的单调性、奇偶性,解题中需要根据增函数加增函数是增函数和奇函数定义判断,属于基本题型,关键是要准确掌握基本初等函数的单调性和指数的运算性质.7. 已知,都是单位向量,满足,则()A. B. C. D.【答案】A【解析】【分析】首先根据得到,从而得到,,再计算即可.【详解】因为,所以,得到.因为,,所以.故选:A【点睛】本题主要考查平面向量的夹角公式,熟记公式为解题关键,属于简单题.8. 已知,则()A. 的值域为B. 在上单调C. 为的周期D. 为图像的对称中心【答案】D【解析】【分析】化为分段函数,根据三角函数的性质进而逐一分析各个答案的正误,可得结论.【详解】∵,函数的值域为,故A错误;在区间上单调递增,在上单调递减,故B错误;的周期为,故C错误;因为,,所以为图象的对称中心,故D正确;故选:D.【点睛】本题主要以命题的真假判断与应用为载体,考查了三角函数的图象和性质,属于中档题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 设,,则()A. B. C. D.【答案】CD【解析】【分析】根据指数函数,对数函数,幂函数的单调性可判断.【详解】对于A,当时,单调递减,所以由可得,故A错误;对于B,当时,单调递减,所以由可得,故B错误;对于C,当时,在单调递增,由可得,故C正确;对于D,当时,单调递减,所以由可得,则,即,故D正确.故选:CD.【点睛】本题考查利用指数函数、对数函数、幂函数的单调性判断大小,属于基础题.10. 若的展开式中的系数是,则()A. B. 所有项系数之和为1C. 二项式系数之和为D. 常数项为【答案】ABC【解析】【分析】首先根据展开式中的系数是得到,从而判断A正确,令得到所有项系数之和为,从而判断B正确,根据二项式系数之和为,从而判断C正确,根据的常数项为,从而判断D错误.【详解】对选项A,的展开式中项为,所以,解得,故A正确;由A知:,令,所有项系数之和为,故B正确;对选项C,二项式系数之和为,故C正确;对选项D,的常数项为,故D错误.【点睛】本题主要考查二项式的定理的各项系数之和,项的系数之和,常数项,属于中档题.11. 已知双曲线的一条渐近线,设,是C的左右焦点,点P在l上,且,O为坐标原点,则()A. C的虚轴长为B.C. D. 的面积为【答案】ABD【解析】【分析】求出双曲线的标准方程和基本量,根据双曲线的定义及直角三角形的有关性质逐一选择..【详解】由渐近线,可得,,,所以虚轴长,A正确;由,为直角三角形,B正确;因为点P不在双曲线上,根据双曲线的定义,C不正确;由渐近线,知,,,D正确.【点睛】本题考查由根据渐近线方程确定双曲线的基本量,同时考查双曲线的定义,属于基础题.12. 已知.()A. 的零点个数为4B. 的极值点个数为3C. x轴为曲线的切线D. 若,则【答案】BC【解析】【分析】首先根据得到,分别画出和的图像,从而得到函数的单调性和极值,再依次判断选项即可得到答案.【详解】,令,得到.分别画出和的图像,如图所示:由图知:有三个解,即有三个解,分别为,,.所以,,为增函数,,,为减函数,,,为增函数,,,为减函数.所以当时,取得极大值为,当时,取得极小值为,当时,取得极大值为,所以函数有两个零点,三个极值点,A错误,B正确.因为函数的极大值为,所以轴为曲线的切线,故C正确.因为在为增函数,为减函数,所以存在,满足,且,显然,故D错误.故选:BC【点睛】本题主要考查导数的综合应用,考查利用导数研究函数的零点,极值点和切线,属于难题.三、填空题:本题共4小题,每小题5分,共20分.13. 已知x,y满足约束条件,则的最小值为_______.【答案】2【解析】【分析】作出不等式组对应的平面区域,利用的几何意义即可得到结论.【详解】由,得,作出不等式组对应的平面区域如图:由图象可知当直线过点时,直线的在轴的截距最小,此时最小,由,解得,此时,故答案为:2【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.14. 已知等差数列的公差不为零,若,,成等比数列,则______.【答案】0【解析】【分析】设等差数列的公差为,,根据,,成等比数列,得到,再根据等差数列的通项公式可得结果.【详解】设等差数列的公差为,,因为,,成等比数列,所以,所以,整理得,因为,所以,所以.故答案为:0.【点睛】本题考查了等比中项,考查了等差数列通项公式基本量的运算,属于基础题.15. F是抛物线的焦点,P是C上且位于第一象限内的点,点P在C的准线上的射影为Q,且,则外接圆的方程为_____.【答案】【解析】【分析】由题可判断为直角三角形,即外接圆的圆心为中点,求出圆心和半径即可写出圆的方程.【详解】由抛物线方程可知焦点,准线方程为,,,即,则,,,即为直角三角形,外接圆的圆心为中点,即圆心为,半径为,外接圆的方程为.故答案为:.【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.16. 己知四棱台中,上、下底面都是正方形,下底面棱长为2,其余各棱长均为1,则该四棱台的外接球的表面积为____________.【答案】【解析】【分析】画出如图的图形,根据直角三角形计算出相关量,由此计算出外接球的半径,即可求出球表面积.【详解】如图,在四棱台中,连接,设,,连接并延长到点O,设O为四棱台外接球心,连接,在平面中,作,垂足为,则,在直角三角形中,,,在直角三角形中,,在直角三角形中,,,,解得,,该四棱台的外接球的表面积为.故答案为:【点睛】本题考查几何体外接球问题,属于中档题.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 在中,角的对边分别为,.有以下3个条件:①;②;③.请在以上3个条件中选择一个,求面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.【答案】答案见解析.【解析】【分析】若选择①:利用正弦定理得到,再利用以及两角和与差的正弦公式得到,最后利用三角形的面积公式求解即可;若选择②:利用正弦定理得到,再利用以及两角和的正弦公式得到,再利用余弦定理以及三角形的面积公式求解即可;若选择③:先利用基本不等式得到,再利用余弦定理得到,最后利用三角形的面积公式求解即可.【详解】若选择①:由正弦定理得:可将化为:,又,所以,所以,即,,,,所以(当时取到等号),所以面积的最大值为2.若选择②:由正弦定理可将化:,又,所以,所以,即,,又,,又由余弦定理可得:(当且仅当时取等号),,所以面积的最大值为.若选择③:因为,所以,(当且仅当时取等号),又由余弦定理得:(当且仅当时取等号),,(当且仅当时取等号),所以面积的最大值为.【点睛】本题主要考查了利用正弦定理和余弦定理以及三角形的面积公式解三角形.属于中档题.18. 在数列中,,,.(1)证明为等比数列;(2)求.【答案】(1)证明见解析;(2).【解析】【分析】(1)由,构造出的关系,然后利用等比数列的通项公式即可求解.(2)由(1)得,利用累加法求解通项即可【详解】解:(1)由得,又,所以是以1为首项,以2为公比等比数列.(2)由(1)得,所以,.所以时,..因此,.当时,也满足上式,故.【点睛】本题考查利用构造法和累加法求数列的通项公式问题,属于一般题19. 在四棱锥中,底面,底面是边长为2的菱形,,E是的中点.(1)求证:平面平面;(2)直线与平面所成角为45°,求二面角的余弦值.【答案】(1)证明详见解析;(2).【解析】【分析】(1)利用线面垂直证明面面垂直;(2)建立空间直角坐标系,用两个平面的法向量求面面角即可.【详解】(1)连接,由题意可知是等边三角形,又E 是的中点,所以;由底面,底面,所以,且,所以,平面,且平面,所以平面平面.(2)由(1)可知,在平面上的射影为,所以直线与平面所成角为.在中,.所以,在中,,.以E为原点,的方向为x轴正方向,的方向为y轴正方向,为单位长,建立如图所示的空间直角坐标系.由题设可得,,,所以,.设是平面的法向量,则,得,可取.由(1)知是平面的一个法向量,则.所以二面角的余弦值为.【点睛】本题考查了面面垂直的判断方法,考查了利用空间向量求面面角的问题.20. 田忌赛马的故事出自《史记》中的《孙子吴起列传》.齐国的大将田忌很喜欢赛马,有一回,他和齐威王约定,要进行一场比赛.双方各自有三匹马,马都可以分为上,中,下三等.上等马都比中等马强,中等马都比下等马强,但是齐威王每个等级的马都比田忌相应等级的马强一些,比赛共三局,每局双方分别各派一匹马出场,且每匹马只赛一局,胜两局或三局的一方获得比赛胜利,在比赛之前,双方都不知道对方马的出场顺序.(1)求在第一局比赛中田忌胜利的概率:(2)若第一局齐威王派出场的是上等马,而田忌派出场的是下等马,求本场比赛田忌胜利的概率;(3)写出在一场比赛中田忌胜利的概率(直接写出结果).【答案】(1);(2);(3).【解析】【分析】(1)首先将田忌的三匹马按照上、中、下三等分别记为、、,齐威王的三匹马按照上、中、下三等分别记为、、,列出第一局双方参赛的马匹的全部情况,再找到田忌胜利的情况,即可得到答案.(2)首先设事件“第一局齐威王派出场的是上等马,而田忌派出场的是下等马”,事件“田忌获得本场比赛胜利”,列举出事件,的个数,利用条件概率公式即可的得到答案.(3)根据题意直接写出答案即可.【详解】将田忌的三匹马按照上、中、下三等分别记为、、,齐威王的三匹马按照上、中、下三等分别记为、、,并且用马的记号表示该马上场比赛.(1)设事件“第一局双方参赛的马匹”,事件“在第一局比赛中田忌胜利”,由题意得,,则在第一局比赛中田忌胜利的概率是.(2)设事件“第一局齐威王派出场的是上等马,而田忌派出场的是下等马”,事件“田忌获得本场比赛胜利”,由题意得,,则本场比赛田忌胜利的概率是.(3)【点睛】本题主要考查古典概率的求法,同时考查了条件概率,考查学生分析问题的能力,属于中档题.21. 已知椭圆的离心率为,直线交于,两点;当时,.(1)求E的方程;(2)设A在直线上的射影为D,证明:直线过定点,并求定点坐标.【答案】(1);(2)证明见解析,定点.【解析】【分析】(1)首先根据题意得到,椭圆过点,从而得到,,即可得到椭圆的标准方程.(2)首先设,,则,联立椭圆与直线得到,利用根系关系得到,再写出直线,利用根系关系即可得到定点.【详解】(1)由题意得,整理得,由时,,得到椭圆过点,得.因此,,故的方程是.(2)设,,则.将代入得,,,.从而①.直线,设直线与x轴的交点为,则,.所以,将①式代入上式可得.故直线过定点.【点睛】本题第一问考查椭圆的标准方程,第二问考查直线与椭圆的位置关系,同时考查学生的计算能力,属于中档题. 22. 已知,函数.(1)求函数的最小值;(2)若,证明,.(提示:)【答案】(1);(2)证明见解析.【解析】【分析】(1)利用导数分析函数的单调性,进而可求得函数的最小值;(2)构造函数,利用导数证得,由此可证得所证不等式成立.【详解】(1),该函数的定义域为,则,.当时,,函数单调递减;当时,,函数单调递增,因此,函数的最小值为;(2)令,则.由(1)得,当时,,即,即,所以,当时,,函数单调递减;当时,,函数单调递增,所以的最小值为.由(1)得时,,所以,等号当且仅当时成立,所以当,时,有,即,所以.故原不等式得证.【点睛】本题考查利用导数求解函数的最值,同时也考查了利用导数证明函数不等式,考查计算能力与推理能力,属于中等题.2021届高三数学上学期第一次摸底试题(含解析)注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2、回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3、考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B.C. D.【答案】B【解析】【分析】解一元二次不等式可得集合,再求交集即可.【详解】因为,,所以,故选:B.【点睛】本题主要考查集合的交集运算,涉及一元二次不等式的解法,属于基础题.2. 若复数z满足,则()A. B. C. D. 2【答案】B【解析】【分析】根据复数z满足,利用复数的除法得到,再利用求模公式求解.【详解】因为复数z满足,所以,所以,故选:B【点睛】本题主要考查复数的运算和复数的模,属于基础题.3. 特岗教师是中央实施的一项对中西部地区农村义务教育的特殊政策.某教育行政部门为本地两所农村小学招聘了6名特岗教师,其中体育教师2名,数学教师4名.按每所学校1名体育教师,2名数学教师进行分配,则不同的分配方案有()A. 24B. 14C. 12D. 8【答案】C【解析】【分析】先把4名数学教师平分为2组,再把2名体育教师分别放入这两组,最后把这两组教师分配到两所农村小学,即可计算出结果.【详解】先把4名数学教师平分为2组,有种方法,再把2名体育教师分别放入这两组,有种方法,最后把这两组教师分配到两所农村小学,共有种方法.故选:C.【点睛】本题考查计数原理和排列组合应用,属于基础题.4. 居民消费价格指数是反映一定时期内城乡居民所购买的生活消费品和服务项目价格变动趋势和程度的相对数,是对城市居民消费价格指数和农村居民消费价格指数进行综合汇总计算的结果.通过该指数可以观察和分析消费品的零售价格和服务项目价格变动对城乡居民实际生活费支出的影响程度.如图,是疫情期间我国的居民消费价格指数与食品类居民消费价格指数折线图,据此图,下列分析中不合理的是()A. 居民消费价格指数变化幅度相对不大B. 食品类居民消费价格指数变化幅度相对较大C. 食品类居民消费价格指数高于居民消费价格指数D. 食品类居民消费价格指数与居民消费价格指数的变化趋势很不一致【答案】D【解析】【分析】根据折线图,逐个分析选项即可得选项合理,选项不合理.【详解】对于选项:由折线图可知,居民消费价格指数线比较平缓,所以居民消费价格指数变化幅度相对不大,所以选项合理;对于选项:由折线图可知,食品类居民消费价格指数线起伏较大,所以品类居民消费价格指数变化幅度相对较大,所以选项合理;对于选项:由折线图可知,食品类居民消费价格指数线一直在居民消费价格指数线上方,所以食品类居民消费价格指数高于居民消费价格指数,所以选项合理;对于选项:食品类居民消费价格指数与居民消费价格指数的变化趋势大致一致,所以选项不合理,故选:D【点睛】本题主要考查了对统计折线图的分析和理解能力,意在考查学生对该知识的理解掌握水平..5. 下图是一个正方体的展开图,则在该正方体中()A. 直线与直线平行B. 直线与直线相交C. 直线与直线异面垂直D. 直线与直线异面且所成的角为60°【答案】D【解析】【分析】首先画出正方体的展开图的立体图,从而得到直线与直线为异面直线,再求异面直线所成角即可得到答案.【详解】正方体的展开图的立体图形如图所示:由图知:直线与直线为异面直线,故A,B错误;连接,,因为,所以或其补角为异面直线与所成角.又因为为等边三角形,所以.所以直线与直线异面且所成的角为60°,故C错误,D正确.故选:D【点睛】本题主要考查异面直线成角问题,属于简单题.6. 已知,若,则()A. B. C. D.【答案】A【解析】【分析】根据增函数加增函数是增函数和奇函数定义可知函数是增函数且是奇函数,即有,得到,即可解得.【详解】因为均为增函数,所以是增函数,又因为,所以函数是奇函数,化为,所以即.故选:A【点睛】本题考查了判断函数的单调性、奇偶性,解题中需要根据增函数加增函数是增函数和奇函数定义判断,属于基本题型,关键是要准确掌握基本初等函数的单调性和指数的运算性质.7. 已知,都是单位向量,满足,则()A. B. C. D.【答案】A【解析】【分析】首先根据得到,从而得到,,再计算即可.【详解】因为,所以,得到.因为,,所以.故选:A【点睛】本题主要考查平面向量的夹角公式,熟记公式为解题关键,属于简单题.8. 已知,则()A. 的值域为B. 在上单调C. 为的周期D. 为图像的对称中心【答案】D【解析】【分析】化为分段函数,根据三角函数的性质进而逐一分析各个答案的正误,可得结论.【详解】∵,函数的值域为,故A错误;在区间上单调递增,在上单调递减,故B错误;的周期为,故C错误;因为,,所以为图象的对称中心,故D正确;故选:D.【点睛】本题主要以命题的真假判断与应用为载体,考查了三角函数的图象和性质,属于中档题.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 设,,则()A. B. C. D.【答案】CD【解析】【分析】根据指数函数,对数函数,幂函数的单调性可判断.【详解】对于A,当时,单调递减,所以由可得,故A错误;对于B,当时,单调递减,所以由可得,故B错误;对于C,当时,在单调递增,由可得,故C正确;对于D,当时,单调递减,所以由可得,则,即,故D正确.故选:CD.【点睛】本题考查利用指数函数、对数函数、幂函数的单调性判断大小,属于基础题.10. 若的展开式中的系数是,则()A. B. 所有项系数之和为1C. 二项式系数之和为D. 常数项为【答案】ABC【解析】【分析】首先根据展开式中的系数是得到,从而判断A正确,令得到所有项系数之和为,从而判断B正确,根据二项式系数之和为,从而判断C正确,根据的常数项为,从而判断D错误.【详解】对选项A,的展开式中项为,所以,解得,故A正确;由A知:,令,所有项系数之和为,故B正确;对选项C,二项式系数之和为,故C正确;对选项D,的常数项为,故D错误.故选:ABC【点睛】本题主要考查二项式的定理的各项系数之和,项的系数之和,常数项,属于中档题.11. 已知双曲线的一条渐近线,设,是C的左右焦点,点P在l上,且,O为坐标原点,则()A. C的虚轴长为B.C. D. 的面积为【答案】ABD【解析】【分析】求出双曲线的标准方程和基本量,根据双曲线的定义及直角三角形的有关性质逐一选择..【详解】由渐近线,可得,,,所以虚轴长,A正确;由,为直角三角形,B正确;因为点P不在双曲线上,根据双曲线的定义,C不正确;由渐近线,知,,,D正确.故选: ABD【点睛】本题考查由根据渐近线方程确定双曲线的基本量,同时考查双曲线的定义,属于基础题.。
2021年高三第一次高考模拟考试数学理试题 含答案
2021年高三第一次高考模拟考试数学理试题含答案考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证号码填写清楚;(2)选择题必须使用2B铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 某学校有男学生400名,女学生600名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取男学生40名,女学生60名进行调查,则这种抽样方法是A.抽签法B.随机数法C.系统抽样法D.分层抽样法2. 已知,集合,集合,若,则A.1 B.2 C.4 D.83. 若,,若,则A.B.C. D.4. 已知P(B|A)= , P(A) =, 则P(AB) =A.B.C.D.5.已知数列是等比数列,是1和3的等差中项,则=A.B.C.D.6. 一个锥体的正视图和左视图如下图,下面选项中,不可能是该锥体的俯视图的是正视图左视图A.B.C. D.7. 如果函数的图像关于点中心对称,那么的最小值为A.B.C.D.8.设点为双曲线上一点,,分别是左右焦点,是的内心,若的面积,,满足,则双曲线的离心率为A. B. C. D.9. 已知()是函数的两个零点,若,,则A.,B.,C.,D.,10. 已知函数,则不等式的解集为A. B.C. D.11. 直线与抛物线交于两点,为坐标原点,若直线的斜率,满足,则一定过点A. B.C. D.12. 正方体ABCD—A1B1C1D1的棱长为,在正方体表面上与点A距离是的点形成一条封闭的曲线,这条曲线的长度是A.B.C. D.xx年哈尔滨市第三中学第一次高考模拟考试数学试卷(理工类)第Ⅱ卷(非选择题, 共90分)二、填空题(共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13. 如图,在边长为1的正方形中随机撒1000粒豆子,有380粒落到阴影部分,据此估计阴影部分的面积为.14.的二项展开式中,各项系数和为.15.下列命题:①已知表示两条不同的直线,表示两个不同的平面,并且,则“”是“//”的必要不充分条件;②不存在,使不等式成立;③“若,则”的逆命题为真命题;④,函数都不是偶函数. 正确的命题序号是.16.在中,角,,所对边的长分别为,,,为边上一点,且,又已知,,则角.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)数列满足,.(Ⅰ)求证数列是等比数列;(Ⅱ)证明:对一切正整数,有.18.(本小题满分12分)一个盒子里装有大小均匀的8个小球,, 其中有红色球4个, 编号分别为1, 2, 3, 4; 白色球4个, 编号分别为2, 3, 4,5. 从盒子中任取4个小球(假设取到任何一个小球的可能性相同).(Ⅰ) 求取出的4个小球中, 含有编号为4的小球的概率.(Ⅱ) 在取出的4个小球中, 小球编号的最大值设为X, 求随机变量X的分布列.19.(本小题满分12分)边长为4的菱形中,满足,点E,F分别是边CD和CB的中点,AC交BD于点H,AC 交EF于点O,沿EF将翻折到的位置,使平面,连接P A,PB,PD,得到如图所示的五棱锥.(Ⅰ) 求证:;(Ⅱ) 求二面角的正切值.20.(本小题满分12分)已知椭圆的焦距为4,设右焦点为,过原点的直线与椭圆交于两点,线段的中点为,线段的中点为,且.(Ⅰ) 求弦的长;(Ⅱ) 若直线的斜率为, 且, 求椭圆的长轴长的取值范围.21.(本小题满分12分)已知函数,.(Ⅰ)若,求函数的单调区间;(Ⅱ)若对任意都有恒成立,求实数的取值范围;(Ⅲ)设函数,求证:().请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)如图, 是⊙上的两点,为⊙外一点,连结分别交⊙于点,且,连结并延长至,使. (Ⅰ) 求证:; (Ⅱ) 若,且,求.23.(本小题满分10分)在直角坐标系xOy 中,直线的参数方程为(t 为参数).在极坐标系 (与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴) 中,圆C 的方程为.(Ⅰ) 求圆C 的直角坐标方程;(Ⅱ) 设圆C 与直线交于点A 、B ,若点P 的坐标为,求|PA |+|PB |.24.(本小题满分10分)关于的不等式的整数解有且仅有一个值为 (为整数) . (Ⅰ)求整数的值; (Ⅱ)已知,若, 求的最大值.一模理科数学答案选择题DABDD CCACC AD 填空题13. 14 . 1 15. ① 16. 三.解答题ABP17.(1)由有, ,又,所以是以3位首相,3为公比的等比数列…………………..5分 (2)由(1)知, ……………………………………..6分 又, ……………………………………9分 故232123212121123123111111322221<⎪⎭⎫ ⎝⎛-=++++<-++-+=+++nn n n n a a a……………………………….12分 18.(1) …………………………….4分 (2)X 的可取值为3,4,5 ……………………..5分 ……………………………………………………..7分 ………………………………………………...9分……………………………………………….11分 X 的分布列为…………………12分19.(1) 因为平面,平面ABDPO PEF PO EF ABD PEF ⊥∴⊂=⋂,,平面则,又APO BD APO PO APO AO O PO AO BD AO ⊥∴⊂⊂=⋂⊥,,,, ………………………………….6分(2)以为原点, 建立坐标系,则)0,2,3(),3,0,0(),0,0,33(),0,0,0(B P A O , ……………………………8分设则,的一个法向量,为平面ABP z y x m ),,(=则 …….10分 …………………………..12分 20.(1)设)2,22(),2,22(),,(),,(00000000y x N y x M y x B y x A --+--则 …………….2分 ,则, …………………….4分所以的长为 ……………………………5分(2)设方程为,和椭圆方程联立消元整理得 …………………7分又,则23)9()4)(5(,54)1)(4(22222222222≥---==-++-a a a a k k a a k a a ………….10分则,长轴长范围是 …………………….12分 21. (1) 解: ,令,则,则当时, 单调递减,当时, 单调递增. 所以有,所以 …………………4分 (2) 当时,,令,则,则单调递增, 当即时, ,成立;当时,存在,使,则减,则当时, ,不合题意.综上 ………………………….8分 (3),22)()(21212121212121)()(21+>++>+++=∴++-++--+-+x x x x x x x x x x x x x x e e e e e e e x F x F ,…… . 由此得,n n e F n F n F F n F F n F F F )2()]1()([)]1()2([)]()1([)]()2()1([12+>⋅⋅-⋅=+故(). ……………………….12分 22. (1)连结, 因为, , 又因为, 所以 ,所以.·················3分 由已知, , 所以, 且,所以, 所以.················5分 (2) 因为, 所以∽, 则, 所以)(22BD PD PD PB PD PC AP AB AP+=⋅=⋅=-又因为, , 所以,················8分 所以.所以 .················10分23. (1)求圆C 的直角坐标方程 ……………….3分(2)设点A 、B 对应的参数分别为,将代入整理得,则, …………………..5分 又|PA|+|PB|=144)(212212121=-+=-=+t t t t t t t t ……………………..10分 24.(1)由有, ……………………….2分关于的不等式的整数解有且仅有一个值为,则,即,又为整数,则 ……………………..5分ABP(2)由有,由柯西不等式有()()()29)()()(1112222222222222=++++≤++c b a cb a 当且仅当时,等号成立, ……………..8分所以的最大值为 …………………10分32164 7DA4 綤20471 4FF7 俷737969 9451 鑑eSkR35205 8985 覅L.i33950 849E 蒞36545 8EC1軁22341 5745 坅。
2021年高三上学期第一次模拟考试数学试题 Word版含答案
2021年高三上学期第一次模拟考试数学试题 Word 版含答案锥体的体积公式:,其中为底面积,为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合,,则= ▲ .2.已知复数(是虚数单位),则 ▲ .3.书架上有本数学书,本物理书,从中任意取出本, 则取出的两本书都是数学书的概率为 ▲ . 4.运行如图所示的伪代码,其结果为 ▲ . 5.某校高一年级有学生人,高二年级有学生人, 现采用分层抽样的方法从全校学生中抽出人,其中 从高一年级学生中抽出人,则从高三年级学生中抽 取的人数为 ▲ .6.在平面直角坐标系中,已知抛物线的顶点在坐标原点,焦点在轴上,若曲线经过点,则其焦点到准线的距离为 ▲ .7.已知实数满足则目标函数的最小值为 ▲ .8.设一个正方体与底面边长为,侧棱长为的正四棱锥的体积相等,则该正方体的棱长为 ▲ .9.在中,设分别为角的对边,若,,,则边= ▲ . 10.设是等比数列的前项和,,若 ,则的最小值为 ▲ .11.如图,在中,,,,则的值为 ▲ .12.过点的直线与圆相交于两点,若点恰好是线段的中点,则直线的方程为 ▲ .13.设是定义在上的奇函数,且,设 若函数有且只有一个零点,则实数的取值范围是S ←1For I From 1 To 7第4题ABCD第11题图▲ .14.设函数的图象上存在两点,使得是以为直角顶点的直角三角形(其中为坐标原点),且斜边的中点恰好在轴上,则实数的取值范围是 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)设函数()sin()(0,0,,)22f x A x A x R ππωϕωϕ=+>>-<<∈的部分图象如图所示.(1)求函数的解析式; (2)当时,求的取值范围.16.(本小题满分14分)如图,已知直三棱柱的侧面是正方形,点是侧面的中心,,是棱的中点. (1)求证:平面; (2)求证:平面平面.17.(本小题满分14分)如图所示,是两个垃圾中转站,在的正东方向千米处,的南面为居民生活区. 为了妥善第15题图ACBMOA 1C 1B 1第16题图处理生活垃圾,政府决定在的北面建一个垃圾发电厂. 垃圾发电厂的选址拟满足以下两个要求(可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大). 现估测得两个中转站每天集中的生活垃圾量分别约为吨和吨,问垃圾发电厂该如何选址才能同时满足上述要求?18.(本小题满分16分)如图,在平面直角坐标系中,设点是椭圆上一点,从原点向圆作两条切线分别与椭圆交于点,直线的斜率分别记为.(1)若圆与轴相切于椭圆的右焦点,求圆的方程; (2)若.①求证:; ②求的最大值.B A ··居民生活区 第17题图北第18题图19.(本小题满分16分)已知函数在处的切线方程为.(1)求的值;(2)若对任意的,都有成立,求的取值范围;(3)若函数的两个零点为,试判断的正负,并说明理由.20.(本小题满分16分)设数列共有项,记该数列前项中的最大项为,该数列后项中的最小项为,.(1)若数列的通项公式为,求数列的通项公式;(2)若数列满足,,求数列的通项公式;(3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.南京市、盐城市xx届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.(在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A.(选修4—1:几何证明选讲)如图,为⊙的直径,直线与⊙相切于点,,,、为垂足,连接. 若,,求的长.CDB.(选修4—2:矩阵与变换)设矩阵的一个特征值为,若曲线在矩阵变换下的方程为,求曲线的方程.C.(选修4—4:坐标系与参数方程)在极坐标系中,已知点的极坐标为,圆的极坐标方程为,试判断点和圆的位置关系.D.(选修4—5:不等式选讲)已知正实数满足.(第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内)22.(本小题满分10分)直三棱柱中,,,,,.(1)若,求直线与平面所成角的正弦值;(2)若二面角的大小为,求实数的值.23.(本小题满分10分)设集合,记的含有三个元素的子集个数为,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为. (1)求,,,的值;(2)猜想的表达式,并证明之.南京市、盐城市xx 届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.解:(1)由图象知,, …………2分又,,所以,得. …………4分 所以,将点代入,得,即,又,所以. …………6分B ACDB 1A 1C 1第22题图所以. …………8分(2)当时,,…………10分所以,即. …………14分16.证明:(1)在中,因为是的中点,是的中点,所以. ..............4分又平面,平面,所以平面. ..............6分(2)因为是直三棱柱,所以底面,所以,又,即,而面,且,所以面. (8)分而面,所以,又是正方形,所以,而面,且,所以面. (12)分又面,所以面面. ..............14分17.解法一:由条件①,得. (2)分设,则222(5)16(3)8cos2165105x x xPABx x+-∠==+⨯⨯, ..............6分所以点到直线的距离, ...............10分所以当,即时,取得最大值15千米.即选址应满足千米,千米. ...............14分解法二:以所在直线为轴,线段的中垂线为轴,建立平面直角坐标系. (2)分则.由条件①,得. ...............4分设,则,化简得,,即点的轨迹是以点()为圆心、为半径的圆位于轴上方的半圆. 则当时,点到直线的距离最大,最大值为千米.所以点的选址应满足在上述坐标系中其坐标为即可. ...............14分18.解:(1)因为椭圆右焦点的坐标为,所以圆心的坐标为, ...............2分从而圆的方程为. …………4分 (2)①因为圆与直线相切,所以,即, …………6分 同理,有,所以是方程的两根, …………8分 从而222000122220001545(1)1451444545454x x y k k x x x ---+-====----. …………10分②设点,联立,解得, …………12分同理,,所以222212222211224444()()14141414k k OP OQ k k k k ⋅=+⋅+++++ 22221211222212114(1)4(1)4411614141414k k k k k k k k ++++=⋅=⋅++++ ……………14分, 当且仅当时取等号. 所以的最大值为. ……………16分 19. 解:(1)由题意得,因函数在处的切线方程为,所以,得. ……………4分 (2)由(1)知对任意都成立,所以,即对任意都成立,从而. ……………6分 又不等式整理可得,令,所以22(1)()2(1)(1)(2)0x xe x e g x x x x x-'=+-=-+=,得, ……………8分当时,,函数在上单调递增, 同理,函数在上单调递减,所以,综上所述,实数的取值范围是. ……………10分(3)结论是. ……………11分证明:由题意知函数,所以,易得函数在单调递增,在上单调递减,所以只需证明即可. ……12分 因为是函数的两个零点,所以,相减得, 不妨令,则,则,所以,,即证,即证, ……………14分 因为,所以在上单调递增,所以,综上所述,函数总满足成立. ……………16分 20.解:(1)因为单调递增,所以,,所以,. ……………4分 (2)根据题意可知,,,因为,所以可得即,又因为,所以单调递增, ……………7分则,,所以,即,,所以是公差为2的等差数列,,. ……………10分(3)构造,其中,. ……………12分下证数列满足题意.证明:因为,所以数列单调递增,所以,, ……………14分 所以,,因为2121111[1()][1()]()0222i i i i i r r ++++-=-----=>,所以数列单调递增,满足题意. ……………16分(说明:等差数列的首项任意,公差为正数,同时等比数列的首项为负,公比,这样构造的数列都满足题意.)附加题答案21. A 、解:因为与相切于,所以, …………2分又因为为的直径,所以.又,所以,所以,所以. …………4分 又,,所以.所以,所以, ………… 6分 又,所以. …………10分 B 、由题意,矩阵的特征多项式,因矩阵有一个特征值为2,,所以. …………4分 所以,即,代入方程,得,即曲线的方程为. ………10分C 、解:点的直角坐标为, …………2分圆的直角坐标方程为, …………6分 则点到圆心的距离, 所以点在圆外. …………10分 D、解:因24(12121212)a b c d ≤+++++++, (6)分又,所以224≤,即≤…………10分22.解:分别以所在直线为轴建立空间直角坐标系.则,,,,, …………2分(1)当时,为的中点,所以,,,,设平面的法向量为则,所以取,又111111cos ,||||3DB n DB n DB n ⋅<>===,所以直线与平面所成角的正弦值为. …………6分(2),,,,设平面的法向量为,则,所以取. …………8分又平面的一个法向量为,由题意得,所以,解得或(不合题意,舍去),所以实数的值为. …………10分23.解:(1),,,. ……………4分(2)猜想. (5)分下用数学归纳法证明之.证明:①当时,由(1)知猜想成立;②假设当时,猜想成立,即,而,所以得. ……6分则当时,易知,而当集合从变为时,在的基础上增加了1个2,2个3,3个4,…,和个,……………8分所以,即.所以当时,猜想也成立.综上所述,猜想成立. ……………10分(说明:未用数学归纳法证明,直接求出来证明的,同样给分.)uN28193 6E21 渡s;32489 7EE9 绩 y620602 507A 偺40526 9E4E 鹎30425 76D9 盙29979 751B 甛。
2021年高三数学上学期第一次模拟考试试题 理(含解析)
2021年高三数学上学期第一次模拟考试试题理(含解析)第Ⅰ卷(共60分)【试卷综析】本试题是一份高三一模考试的好题,涉及范围广,包括集合、不等式、简易逻辑、函数、导数、程序框图、平面向量、三角函数等高考核心考点,又涉及了集合与简易逻辑、基本函数、三角向量、导数应用的方方面面等必考解答题型。
本题难易程度设计比较合理,梯度分明;既有考查基础知识的经典题目,如17,18,19,20又有考查能力的创新题目,如21,22;从10,12,16等题能看到在创新方面的努力,从1,2,3,4,5,6,7,8,9,11,13,14,15等题可以看出考基础,考规范;从22题可以看出考融合,考拓展,考创新。
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.若集合,且,则集合可能是A. B. C. D.【知识点】集合及其运算A1【答案解析】A 解析:,易知A对【思路点拨】转化是关键。
【题文】2.已知,则下列结论错误的是A. B. C. D.【知识点】不等式的概念与性质E1【答案解析】C 解析:由易得两边都乘,且,所以,故C错。
【思路点拨】不等式的性质要娴熟运用。
尤其倒数不等式的性质。
【题文】3.若不等式对一切实数都成立,则的取值范围为A. B. C. D.【知识点】不等式 E8【答案解析】 D 解析:显然时满足题意,故排除A、B;时,不满足题意。
故选D【思路点拨】恒成立问题是高考特别能考的问题,一定要掌握。
含参数的二次不等式恒成立主要要讨论。
【题文】4.规定,若,则函数的值域A. B. C. D.【知识点】函数及其表示B1【答案解析】A 解析:由得,【思路点拨】新定义关键是会“套”模式,套的合适,准确。
【题文】5. 设命题函数在定义域上为减函数;命题,当时, ,以下说法正确的是A.为真B.为真C.真假D.,均假【知识点】命题及其关系函数单调性不等式的性质A2 B3 E1【答案解析】 D 解析:因为的定义域是,知道假;而由,得,故也假。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高三第一次摸底考试数学试题 Word 版含答案
一、填空题:本大题共14小题,每小题5分,共70分。
1、若}1log |{},822|{2>∈=≤≤∈=x R x B Z x A x ,则=__________。
2、设,若是的充分不必要条件,则实数的取值范围是_______________。
3、已知复数,,那=______________。
4、若角的终边落在射线上,则=____________。
5、在数列中,若,,,则该数列的通项为 。
6、甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表
(单位:环)
如果甲、乙两人中只有1人入选,则入选的最佳人选应是 。
7、在闭区间 [-1,1]上任取两个实数,则它们的和不大于1的概率是 。
8、已知对称中心为原点的双曲线与椭圆有公共的焦点,且它们的离心率互为倒数,则该椭圆的标准方程为___________________。
9、阅读下列程序:
Read S1
For I from 1 to 5 step 2
SS+I
Print S
End for
End
输出的结果是 。
10、给出下列四个命题,其中不正确命题的序号是 。
①若;②函数的图象关于x=对称;③函数为偶函数,④函数是周期函数,且周期为2。
11、若函数在上是增函数,则的取值范围是____________。
12、设,则的最大值是_________________。
13、棱长为1的正方体中,若E 、G 分别为、的中点,F 是正方
形的中心,则空间四边形BGEF 在正方体的六个面内射影的面积的最大值为 。
14、已知平面上的向量、满足,,设向量,则的最小值是 。
二、解答题:本大题共6小题,共90分。
请在答题卡指定区域.......
内作答,解答时应写出文字说明、证明过程或演算步骤。
15、设函数,其中向量R x x x n x m ∈==),2sin 3,(cos ),1,cos 2(,
(1)求的最小正周期;
(2)在中,分别是角的对边,求的值。
16、已知某几何体的三视图如下图所示,其中左视
图是边长为2的正三角形,主视图是矩
形,且 ,设为的中点。
(1)作出该几何体的直观图并求其体积;
(2)求证:平面平面;
(3)边上是否存在点,使平面?若不存在,说明理
由;若存在,证明你的结论。
17、某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税 务部门上交元(为常数,2≤a ≤5 )的税收。
设每件产品的售价为x 元(35≤x ≤41), 根据市场调查,日销售量与(e 为自然对数的底数)成反比例。
已知每件产品的日售价为40 元时,日销售量为10件。
(1)求该商店的日利润L (x )元与每件产品的日售价x 元的函数关系式;
(2)当每件产品的日售价为多少元时,该商品的日利润L (x )最大,并求出L (x )的最大值。
18、已知椭圆的离心率为,直线与以原点为圆心、椭圆的短半轴长为半径的圆相切。
(1)求椭圆的方程;
(2)设椭圆 的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于直线,垂足为点,线段的垂直平分线交于点,求点的轨迹的方程;
(3)设与轴交于点,不同的两点在上,且满足,求的取值范围。
19、已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)若函数(),2,1111)(321≥∈++++++++=n N n a n a n a n a n n f n
且 求函数的最小值; (3)设表示数列的前项和。
试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由。
20、已知()()x
x x g e x x ax x f )ln()(),0,(,ln --=-∈--=,其中是自然常数, (1)讨论时, 的单调性、极值;
(2)求证:在(1)的条件下,;
(3)是否存在实数,使的最小值是3,如果存在,求出的值;如果不存在,说明理由。
必做题答案 一、填空题:
1、 2、 3、 4、0 5、 6、甲
7、 8、 9、2,5,10 10、1,2,4 11、
12、1 13、 14、2
二、解答题:
15、解:(1)1)62sin(22sin 3cos 2)(2++=+=π
x x x x f 3分
6分
(2) 9分
余弦定理可得 12分
又∵
∴ 14分
16、
17、解(1)设日销售量为4040,10,10,.x k k k e e e =∴=40
x 10e 则则日售量为件e
-------2分 则日利润40
401030()(30)10x x
e x a L x x a e e e --=--=----------------------------4分 (2)-------------------------------------------------7分
①当2≤a ≤4时,33≤a +31≤35,当35 <x<41时,
∴当x =35时,L (x )取最大值为-----------------------------------10分
②当4<a ≤5时,35≤a +31≤36,
易知当x=a +31时,L (x )取最大值为-----------------------------------13分 综合上得---------- ------------------------15分
18、解:(1)由得,又由直线与圆相切,得,,∴椭圆的方程为:. 4分
(2)由得动点的轨迹是以为准线,为焦点的抛物线,∴点的轨迹的方程为. 8分
(3),设,
∴,
由,得,∵
∴化简得, 10分
∴(当且仅当时等号成立), ∵64)8(4
1)4(||22222222-+=+=y y y , 又∵,∴当,即时,
∴的取值范围是 15分
19、解:(1)由点P 在直线上,
即, 2分
且,数列{}是以1为首项,1为公差的等差数列
,同样满足,所以---------------4分
(2) 2
21121413121)1(+++++++++=
+n n n n n n f ---------------------6分 01122122111221121)()1(=+-++>+-+++=-+n n n n n n n f n f 所以是单调递增,故的最小值是---------------10分
(3),可得,-------12分
,
……
113211-+++++=--n S S S S S nS n n
)1(1321-=-=++++-n n n S n n nS S S S S ,n ≥2------------------14分
故存在关于n 的整式g (x )=n ,使得对于一切不小于2的自然数n 恒成立----16分
20、解(1) ------------2分
当时,,此时为单调递减
当时,,此时为单调递增
的极小值为-----------------------------------4分
(2)的极小值,即在的最小值为1
令
又 ---------------------------------------6分 当时
在上单调递减
()()()min max 12
121211x f e e h x h ==+<+=-= ---------------7分 当时,------------------------------8分
(3)假设存在实数,使有最小值3,
①当时,由于,则
函数是上的增函数
解得(舍去) ---------------------------------12分 ②当时,则当时,
此时是减函数
当时,,此时是增函数
解得 16分
附加卷答案
选做1: 选做2: 选做3:弦长为
选做4:
三式相加得证。
必做1:(1)略,(2)
必做2:(1) (2)120
64)5(,12036)4(,12016)3(,1204)2(=======
=ξξξξP P P P ;
39901 9BDD 鯝26229 6675 晵Y|37584 92D0 鋐30525 773D 眽_ 29716 7414 琔)25251 62A3 抣'%33566 831E 茞V。