线性代数(经济数学2)_习题集(含答案)

合集下载

经济应用数学二(线性代数)

经济应用数学二(线性代数)

一、单项选择题 共 32 题1、 若A 为4阶方阵,且|A|=5,则|3A|=( )。

A . 15B . 60C . 405D . 452、 下列命题中正确的是( )。

A .任意n 个n +1维向量线性相关;B . 任意n 个n +1维向量线性无关;C . 任意n + 1个n维向量线性相关;D . 任意n + 1个n 维向量线性无关. 3、 方阵A 满足A3=0,则(E+A+A 2)(E-A)=( )。

A . EB . E-AC . E+AD . A4、A . 解向量B . 基础解系C . 通解D . A 的行向量5、 n 维向量组α1,α2,…αs (3≤ s≤ n ) 线性无关的充要条件是α1,α2,…αs 中( )。

A . 任意两个向量都线性无关B . 存在一个向量不能用其余向量线性表示C . 任一个向量都不能用其余向量线性表示D . 不含零向量6、 对于两个相似矩阵,下面的结论不正确的是 ( )。

A . 两矩阵的特征值相同;B . 两矩阵的秩相等;C . 两矩阵的特征向量相同;D . 两矩阵都是方阵。

7、 设λ=-3是方阵A 的一个特征值,则A 可逆时,A -1的一个特征值是 ( )。

A . -3B . 3C .D .8、一个四元正定二次型的规范形为()。

A .B .C .D .9、设A和B都是n阶矩阵,且|A+AB|=0,则有()。

A . |A|=0B . |E+B|=0C . |A|=0 或|E+B|=0D . |A|=0且|E+B|=010、矩阵A的秩为r,则知()。

A . A中所有r阶子式不为0;B . A中所有r+1阶子式都为0;C . r阶子式可能为0,r+1阶子式可能不为0;D . r-1阶子式都为0。

11、设A是m×k矩阵, B是m×n矩阵, C是s×k矩阵, D是s×n矩阵,且k≠n, 则下列结论错误的是()。

A .B T A是n×k矩阵B .C T D是n×k矩阵C . BD T是m×s矩阵D . D T C是n×k矩阵12、设A , B均为n 阶方阵, 下面结论正确的是()。

线性代数练习题(有答案)

线性代数练习题(有答案)

《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案大全(二)

线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。

(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。

二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。

9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。

线性代数(经济数学2)-习题集(含答案)

线性代数(经济数学2)-习题集(含答案)

线性代数(经济数学2)-习题集(含答案)第 2 页 共 34 页《线性代数(经济数学2)》课程习题集西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程《线性代数(经济数学2)》(编号为01007)共有计算题1,计算题2,计算题3,计算题4,计算题5等多种试题类型,其中,本习题集中有[计算题5]等试题类型未进入。

一、计算题11.设三阶行列式为231021101--=D 求余子式M 11,M 12,M 13及代数余子式A 11,A 12,A 13.2.用范德蒙行列式计算4阶行列式12534327641549916573411114--=D3.求解下列线性方程组:第 3 页 共 34 页⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---1111322112132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x其中 ),,2,1,,(n j i j i a aj i=≠≠4.问λ, μ取何值时, 齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?5.问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?二、计算题26.计算6142302151032121----=D 的值。

7.计算行列式5241421318320521------=D 的值。

8.计算0111101111011110=D 的值。

第 4 页 共 34 页9.计算行列式199119921993199419951996199719981999的值。

10.计算41241202105200117的值。

11.求满足下列等式的矩阵X 。

2114332X 311113---⎛⎫⎛⎫-= ⎪ ⎪----⎝⎭⎝⎭12.A 为任一方阵,证明TA A +,TAA 均为对称阵。

(完整版)线性代数试题及答案

(完整版)线性代数试题及答案

线性代数习题和答案第一部分 选择题 (共 28 分)、单项选择题(本大题共 14 小题,每小题 2 分,共 28 分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

C. 3D. 46.设两个向量组 α1,α2,⋯, αs 和β 1,β2,⋯, βs 均线性相关,则()A. 有不全为 0 的数λ 1,λ2,⋯,λs 使λ1α1+λ2α2+⋯+λs αs =0 和λ 1β 1+λ 2β 2+⋯λ s βs =0B. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ 1(α1+β1)+λ2(α2+β2)+⋯+λs ( α s + β s )=0C. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ1(α 1- β1)+λ2(α2- β2)+⋯+λs (αs - βs )=0D.有不全为 0的数λ 1,λ 2,⋯,λ s 和不全为 0的数μ 1,μ 2,⋯,μ s 使λ1α1+λ2α2+⋯+ λ s α s =0 和μ 1β1+μ2β2+⋯+μ s βs =07.设矩阵 A 的秩为 r ,则 A 中( )A. 所有 r- 1阶子式都不为 0B.所有 r- 1阶子式全为 0C.至少有一个 r 阶子式不等于 0D.所有 r 阶子式都不为 08. 设 Ax=b 是一非齐次线性方程组, η1,η2是其任意 2 个解,则下列结论错误的是( )A. m+n C. n- m a 11a 12a 13 a 11=m ,a 21a 22a 23 a 21a 11 a 12 a 13等于(2.设矩阵 A=0 ,则 A - 1 等于( 3A. 0 1 3C. 03.设矩阵 A=a 21 a 22 a 23B. - (m+n) D. m- nB.D.21 ,A *是 A 的伴随矩阵,则 A *中位于 41,2)的元素是(A. –6 C. 2 4.设 A 是方阵,如有矩阵关系式 AB=AC ,则必有( A. A =0 C. A 0 时 B=C 5.已知 3×4 矩阵 A 的行向量组线性无关,则秩( A. 1B. 6 D. –2 ) B. B D. |A| 0 时 B=C C 时 A=0 A T )等于( )B. 21.设行列式 =n ,则行列式10.设 A 是一个 n (≥3)阶方阵,下列陈述中正确的是( )A. 如存在数λ和向量 α使 A α=λα,则α是 A 的属于特征值λ的特征向量B. 如存在数λ和非零向量 α,使(λE- A )α=0,则λ是 A 的特征值C. A 的 2 个不同的特征值可以有同一个特征向量D. 如λ 1,λ 2,λ 3是A 的 3个互不相同的特征值, α1,α2,α3依次是 A 的属于λ 1,λ2, λ3的特征向量,则 α 1,α 2, α 3有可能线性相关 11. 设λ 0是矩阵 A 的特征方程的 3重根, A 的属于λ 0的线性无关的特征向量的个数为 k ,则必有( )222(a 11A 21+a 12A 22+a 13A 23) +(a 21A 21+a 22A 22+a 23A 23) +(a 31A 21+a 32A 22+a 33A 23) =.18. 设向量( 2, -3, 5)与向量( -4, 6, a )线性相关,则 a= .19. 设A 是 3×4矩阵,其秩为 3,若η1,η2为非齐次线性方程组 Ax=b 的 2个不同的解,则它 的通解为 .20. 设 A 是 m ×n 矩阵, A 的秩为 r (<n ) ,则齐次线性方程组 Ax=0 的一个基础解系中含有解的个A. η1+η2 是 Ax=0 的一个解 C. η 1-η 2是 Ax=0 的一个解 9. 设 n 阶方阵 A 不可逆,则必有(A. 秩 (A )<n C.A=0 11B.η1+ η2是 Ax=b 的一个解22D. 2 η 1-η 2 是 Ax=b 的一个解 ) B. 秩 (A)=n- 1D. 方程组 Ax=0 只有零解A. k ≤ 3C. k=312. 设 A 是正交矩阵,则下列结论错误的是(A.| A| 2必为 1 C. A - 1=A T 13. 设 A 是实对称矩阵, C 是实可逆矩阵,A.A 与 B 相似B. A 与 B 不等价C. A 与 B 有相同的特征值D. A 与 B 合同 14.下列矩阵中是正定矩阵的为()23 A.34 1 0 0C. 0 2 30 3 5第二部分B. k<3 D. k>3 )B.|A|必为 1D.A 的行(列)向量组是正交单位向量组 B=C T AC .则( ) 34 B. 26 1 1 1 D. 1 2 0102 非选择题(共 72 分)2 分,共 20 分)不写解答过程,将正确的答案写在每1 1 115. 3 569 25 361 111 2 316.设 A=B=.则 A+2B=1 111 2 417. 设 A =(a ij )3 × 3 , |A|=2 , A ij 表示 |A|中 元 素a ij 的 代 数 余 子 式 ( i,j=1,2,3 ) , 则数为.21. 设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α- β)=22.设 3阶矩阵 A 的行列式 |A |=8,已知 A 有 2个特征值 -1和 4,则另一特征值为 .0 10 6223.设矩阵 A=1 3 3 ,已知 α = 1 是它的一个特征向量,则α 所对应的特征值2 10 82为24.设实二次型 f (x 1,x 2,x 3,x 4,x 5)的秩为 4,正惯性指数为 3,则其规范形为 三、计算题(本大题共 7 小题,每小题 6分,共 42分)26.试计算行列式4 2 327.设矩阵 A= 110, 求矩阵 B 使其满足矩阵方程AB=A+2B.12321 3 028.给定向量组α 1=1,3 α2=, α=, α10 2 2 =4.3419试判断 α 4 是否为 α 1, α2,α3 的线性组合;若是, 则求出组合系数。

考研数学二(线性代数)历年真题试卷汇编8(题后含答案及解析)

考研数学二(线性代数)历年真题试卷汇编8(题后含答案及解析)

考研数学二(线性代数)历年真题试卷汇编8(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(1999年)记行列式为f(x).则方程f(x)=0的根的个数为A.1.B.2.C.3.D.4.正确答案:B解析:计算该行列式可以有多种方法.例如,为了便于降阶.先把第1列的(-1)倍分别加到第2、3、4列,得f(x)=(把第2行的(-1)倍加到第1行)故方程f(x)=0的根为x=0和x=1,于是知(B)正确.知识模块:行列式2.(2014年)行列式A.(ad-bc)2B.-(ad-bc)2C.a2d2-b2c2D.b2c2-a2d2正确答案:B解析:按第1列展开,得所求行列式D等于=ad(ad-bc)+bc(ad-bc)=-(ad-bc)2. 知识模块:行列式3.(1998年)没A是任一n(n≥3)阶方阵,A*是A的伴随矩阵.又k为常数.且k≠0.±1,则必有(kA)*=A.kA*B.kk-1A*C.knA*D.k-1A*正确答案:B解析:由于n阶行列式的每个元素的余子式都是一个n-1阶行列式,故|kA|的每个元素的代数余子式等于|A|的对应元素的代数余子式的k-1倍,于是由伴随矩阵的定义知(kA)*的每个元素等于A*的对应元素的kn-1倍,即(kA)*=kn-1A*.知识模块:矩阵4.(2004年)设A是3阶方阵,将A的第1列与第2列交换得B,再把B 的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为A.B.C.D.正确答案:D解析:记交换单位矩阵的第1列与第2列所得初等矩阵为E(1,2),记将单位矩阵第2列的k倍加到第3列所得初等矩阵为E(3,2(k)),则由题设条件,有AE(1,2)=B,BE(3,2(1))=C.故有AE(1,2)E(3,2(1))=C.于是得所求逆矩阵为Q=E(1,2)E(3,2(1))=所以只有选项(D)正确.知识模块:矩阵5.(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则A.交换AA*的第1列与第2列得BA*.B.交换AA*的第1行与第2行得BA*.C.交换AA*的第1列与第2列得-BA*.D.交换AA*的第1行与第2行得-BA*.正确答案:C解析:方法1:用排除法.以2阶方阵为例,设则由此可见,交换A*的第1列与第2列得-B*,而其它选项均不对.故只有(C)正确.方法2:记P为交换n 阶单位矩阵的第1行与第2行所得初等方阵.则由题设条件有B=PA,且|B|=-|A|,P-1=P.由A可逆知B可逆,利用B-1=|B|-1B-1.得B*=|B|B-1=-|A|(PA)-1=-(|A|A-1)P-1=-A*P或A*P==-B*因为用P右乘矩阵A*,等价于交换A*的第1列与第2列.故知选项(C)正确.知识模块:矩阵6.(2006年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则A.C=P-1AP.B.C==PAP-1.C.C=PTAP.D.C=PAPT.正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P.由初等变换与初等矩阵的关系,有B=PA.令矩阵则将E的第1列的-1倍加到第2列即得矩阵Q。

经济应用数学二(线性代数)

经济应用数学二(线性代数)
当 时,齐次方程组为 ,
解得基础解系为 所以A的属于特征值 的全部特征向量为 。
37.将二次型f(x1,x2,x3)=x12+4x1x2-4x1x3+2x22-4x2x3-x32化为标准型。
答案:解:
38.将二次型f(x1,x2,x3)=x1x2+x1x3-3x2x3化为标准型。
答案:解:由于 中无平方项,故令 ,代入二次型,得
D.AB=E(Q,P,Q均为n阶可逆方阵)
答案:C
23.当A是正交阵时,下列结论错误的是( ).
A.A-1=AT
B.A-1也是正交阵
C.AT也是正交阵
D.A的行列式值一定为1
A-5E的一个特征值是( ).
A.1
B.-9
C.-1
D.9
答案:B
计算题
25.计算行列式D= 。
39.化二次型f(x1,x2,x3)=x12-4x1x2-4x1x3+2x22+3x32为标准型。
答案:
填空题
40.行列式D= 的转置行列式DT= ______。
答案:DT=
41.8级排列36215784的逆序数在τ(36215784)=_____.
答案:10
42.若行列式 ,则x=________________。
k2+…+kt=0,
……,
kt=0,
所以k1=k2=…=kt=0矛盾。故向量组α1,α1+α2, … ,α1+α2+ …+αt线性无关。
C.若A + B可逆,则A- B可逆
D.若A + B可逆,则A, B均可逆
答案:B
14.当( )时,A = 是正交阵.

(完整版)线性代数试题和答案(精选版)

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。

错选或未选均无分。

1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。

m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。

130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。

13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。

120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。

设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。

6C。

2 D. –24。

设A是方阵,如有矩阵关系式AB=AC,则必有( )A。

A =0 B. B≠C时A=0C. A≠0时B=C D。

|A|≠0时B=C5。

已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。

2C。

3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。

有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。

有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。

设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)

《线性代数》习题集(含答案)第一章【1】填空题 (1) 二阶行列式2a ab bb=___________。

(2) 二阶行列式cos sin sin cos αααα-=___________。

(3) 二阶行列式2a bi b aa bi+-=___________。

(4) 三阶行列式xy zzx y yzx =___________。

(5) 三阶行列式a bc c a b c a bbc a+++=___________。

答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。

【2】选择题(1)若行列式12513225x-=0,则x=()。

A -3;B -2;C 2;D 3。

(2)若行列式1111011x x x=,则x=()。

A -1, B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。

A -70;B -63;C 70;D 82。

(4)行列式00000000a ba b b a ba=()。

A 44a b -;B ()222a b-;C 44b a -;D 44a b 。

(5)n 阶行列式0100002000100n n -=()。

A 0;B n !;C (-1)·n !;D ()11!n n +-•。

答案:1.D ;2.C ;3.A ;4.B ;5.D 。

【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。

【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。

答案:(1)τ(134782695)=10,此排列为偶排列。

考研数学二(线性代数)历年真题试卷汇编7(题后含答案及解析)

考研数学二(线性代数)历年真题试卷汇编7(题后含答案及解析)

考研数学二(线性代数)历年真题试卷汇编7(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设A为n阶非零矩阵,E为n阶单位矩阵。

若A3=O,则( )A.E—A不可逆,E+A不可逆。

B.E—A不可逆,E+A可逆。

C.E—A可逆,E+A可逆。

D.E—A可逆,E+A不可逆。

正确答案:C解析:利用单位矩阵E,将A3=O变形为E—A3=E和A3+E=E,进一步分解为(E—A)(E+A+A2)=E一A3=E,(E+A)(E—A+A2)=E+A3=E,则E—A,E+A均可逆。

2.设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则( )A.交换A*的第1列与第2列得B*。

B.交换A*的第1行与第2行得B*。

C.交换A*的第1列与第2列得一B*。

D.交换A*的第1行与第2行得一B*。

正确答案:C解析:由题设,存在初等矩阵E12(交换n阶单位矩阵的第1行与第2行所得),使得E12A=B,由于A可逆,可知B也可逆,故B*=(E12A)*一|E12A|(E12A)-1=一|A|A-1E12-1=一A*E12-1,即A*E12=-B*,故选C。

3.设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=。

若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=( )A.B.C.D.正确答案:B解析:4.设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则( )A.当r<s时,向量组Ⅱ必线性相关。

B.当r>s时,向量组Ⅱ必线性相关C.当r<s时,向量组Ⅰ必线性相关。

D.当r>s时,向量组Ⅰ必线性相关。

正确答案:D5.设向量组,α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有( ) A.α1,α2,α3,kβ1+β2线性无关。

考研数学二(线性代数)历年真题试卷汇编4(题后含答案及解析)

考研数学二(线性代数)历年真题试卷汇编4(题后含答案及解析)

考研数学二(线性代数)历年真题试卷汇编4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.记行列式为f(x),则方程f(x)=0的根的个数为( )A.1。

B.2。

C.3。

D.4。

正确答案:B解析:=[(x一2).1一(2x一2).1]×[一6(x一2)一(一1)(x一7)]=(一x)×(一5x+5)=5x.(x—1),故f(x)=x.(5x一5)=0有两个根x1=0,x2=1,故应选B。

2.设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=( )A.kA*。

B.kn-1A*。

C.knA*。

D.k-1A*。

正确答案:B解析:对任何n阶矩阵都要成立的关系式,对特殊的n阶矩阵自然也要成立。

那么,当A可逆时,由A*=|A|A-1,有(kA)*=|kA|(kA)-1=kn|A|.A -1=kn-1|A|A-1=kn-1A*。

故应选B。

一般地,若A=(aij)m×n,有kA=(kaij)m×n,那么矩阵kA的第i行j列元素的代数余子式为即|kA|中每个元素的代数余子式恰好是|A|相应元素的代数余子式的kn-1倍,因此,按伴随矩阵的定义知(kA)*的元素是A*对应元素的kn-1倍。

3.设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的一1倍加至到第2列得C,记P=,则( )A.C=P-1AP。

B.C=PAP-1。

C.C=PTAP。

D.C=PAPT。

正确答案:B解析:由题设可得B=A,则C=,而P-1=,则有C=PAP-1。

故应选B。

4.设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs 线性表示。

下列命题正确的是( )A.若向量组Ⅰ线性无关,则r≤s。

B.若向量组Ⅰ线性相关,则r>s。

C.若向量组Ⅱ线性无关,则r≤s。

经济数学二题目及答案(2)业1

经济数学二题目及答案(2)业1

会计专业《职业技能实训》经济数学二题目及答案(2)第1题: 反常积分收,则必有. (错误)第2题: 若数项级数和绝对收敛,则级数必绝对收敛. (正确)第3题: 数项级数收敛当且仅当对每个固定的满足条件(错误)第4题: 若连续函数列的极限函数在区间I上不连续,则其函数列在区间I不一致收敛。

(正确)第5题: 若在区间上一致收敛,则在上一致收敛. (正确)第6题: 如果函数在具有任意阶导数,则存在,使得在可以展开成泰勒级数.( 错误 )第7题: 函数可导必连续,连续必可导。

(错误)第8题: 极值点一定包含在区间内部驻点或导数不存在的点之中。

(正确)第32题: 应用逻辑判断来确定每种可能的概率的方法适用于古典概率或先验概率。

(正确)第33题: 互补事件可以运用概率的加法和概率的乘法。

(错误)第34题: 泊松分布中事件出现数目的均值λ是决定泊松分布的唯一的参数。

(正确)第43题: 函数可用表格法,图像法或公式法表示。

(正确)第72题: 一个直径4cm的圆,它的面积和周长相等。

(错误)第73题: 3时15分,时针与分针成直角。

(错误)第74题: 表面积相等的两个正方体,它们的体积也一定相等。

( 正确)第75题: 两个素数的和一定是素数。

(错误)第76题: 任何自然数都有两个不同的因数。

(错误)第77题: 所有的素数都是奇数。

( 错误 )第78题: 21除以3=7,所以21是倍数,7是因数。

( 错误 )第79题: 任意两个数的最小公倍数一定大于这两个数中的任何一个数。

( 错误 ) 第80题: 8立方米和8升一样大。

( 错误 )第81题: 一台电冰箱的容量是238毫升。

( 错误 )第82题: 2010年的暑假从7月5日起至8月31日止,共有56天。

(错误 )第83题: 一年中有4个大月,7个小月。

(错误)第84题: 面积单位比长度单位大。

( 错误)第85题: 应用逻辑判断来确定每种可能的概率的方法适用于古典概率或先验概率。

线性代数(经济数学2)_习题集(含答案)

线性代数(经济数学2)_习题集(含答案)
a1(1 2 1 4)T a2(9 100 10 4)T a3(2 4 2 8)T。
四、计算题 4
26. 求线性方和组的解

x1 x1

x2 2x3 3x2 x3

3 1
2x2 x3 2
27. 求解下列线性方程组
2xx11
1 2 4 1 3 4 D 2 3 1 2 1 1 (4 分)
1 1 1 1 0 1
(1)3(3)4(1)2(1)(3+) (1)32(1)23 (6 分) 令 D0 得 0 2 或 3 于是 当 0 2 或 3 时 该齐次线性方程组有非零解 (8 分)
20
4 1 10
2 1 2
2 (1)43 (5 分)
10 5 2 0 c4 7c3 10 3 2 14 10 3 14
0 117
0 01 0
4 1 10 c2 c3 9 9 10 1 2 2 0 0 2 0 (10 分)
10
3
14
c1

1 2
c3
1 0 0
0 1 1
0
2 1

的逆。
1 2 1
20.
求矩阵

3
4
2

的逆。
5 4 1
三、计算题 3
第 3 页 共 25 页
21. 设矩阵
1 1 2 2 1
A


0 2 1
2 0 1
1 3 0
5 1 4
1 31
求矩阵 A 的秩 R(A)。
(3 分)
(10 分)
(1 分) (3 分)
第 10 页 共 25 页

经济应用数学二(线性代数)

经济应用数学二(线性代数)

1、设A和B都是n阶矩阵,且|A+AB|=0,则有()。

A . |A|=0B . |E+B|=0C . |A|=0 或|E+B|=0D . |A|=0且 |E+B|=0参考答案:C2、若A为4阶方阵,且|A|=5,则|3A|=( )。

A . 15B . 60C . 405D . 45参考答案:C3、若C=AB,则()。

A . A与B的阶数相同;B . A与B的行数相同;C . A与B的列数相同;D . C与A的行数相同。

参考答案:D二、填空题共 6 题,完成 0 题-1、排列36i15j84在i=_____,j=______时是奇排列。

参考答案:7,22、 8级排列36215784的逆序数为τ(36215784)=______。

参考答案:103、参考答案:44、若行列式,则x=______。

参考答案:-55、若,则x=______。

参考答案:56、行列式D=的转置行列式D T=______ 。

参考答案:D T=三、计算题共 4 题,完成 0 题-1、计算行列式D=。

2、计算行列式D = 。

参考答案:解:3、计算4阶行列式。

参考答案:4、计算行列式。

四、证明题共 1 题,完成 0 题-1、计算行列式:参考答案:1、设 A是m×k矩阵, B是m×n矩阵, C是s×k矩阵, D是s×n矩阵,且k≠n, 则下列结论错误的是()。

A .B T A是n×k矩阵B .C T D是n×k矩阵C . BD T是m×s矩阵D . D T C是n×k矩阵参考答案:B2、设A是sxt矩阵,B是m×n矩阵,如果AC T B有意义,则C应是()矩阵。

A . s×nB . s×mC . m×tD . t×m参考答案:C3、下列命题中正确的是()。

A . 任意n个n +1维向量线性相关;B . 任意n个n +1维向量线性无关;C . 任意n + 1个n 维向量线性相关;D . 任意n + 1个n 维向量线性无关.参考答案:C4、A*是A的n阶伴随矩阵,且A可逆,则|A*|=()。

经济数学线性代数第二章习题答案

经济数学线性代数第二章习题答案

习题二参考答案(A)1.设⎪⎪⎪⎭⎫ ⎝⎛=543212132131A ,⎪⎪⎪⎭⎫ ⎝⎛------=424222242242B ,求(1) B A 32+;(2) 若X 满足X B X A +=-2,求X .解:(1)⎪⎪⎪⎭⎫ ⎝⎛------+⎪⎪⎪⎭⎫ ⎝⎛=+42422224224254321213213132B A⎪⎪⎪⎭⎫ ⎝⎛----=2221824281828184. (2) 由X B X A +=-2得,B A X -=22,所以B A X 21+=⎪⎪⎪⎭⎫ ⎝⎛-------⎪⎪⎪⎭⎫ ⎝⎛=42422224224221543212132131⎪⎪⎪⎭⎫⎝⎛=351323013012.2.计算解:(1)⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--24317421432231321.(2)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--86164233241121123.(3)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛963642321)321(321.(4)10321)123(=⎪⎪⎪⎭⎫⎝⎛.(5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x()⎪⎪⎪⎭⎫⎝⎛++++++=321333223113323222121313212111x x x x a x a x a x a x a x a x a x a x a 322331132112233322222111222x x a x x a x x a x a x a x a +++++=.3.已知两个线性变换⎪⎩⎪⎨⎧+-=-+=-=3213321231123232y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=-=213212211323zz y z z y z z y ,(1)试把这两个线性变换分别写成矩阵形式;(2)用矩阵乘法求连续施行上述变换的结果. 解:(1) 写成矩阵形式为⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321321213121302y y y x x x ,⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛21321311231z z y y y .(2)连续施行上述变换有⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛21213214146155311231213121302z z z z x x x .4.某企业在一月份出口到三个国家的两种货物的数量以及两种货物的积各为多少?解:设矩阵⎪⎪⎭⎫ ⎝⎛=6001300100088012002000A ,⎪⎪⎭⎫ ⎝⎛=2.03.0P ,⎪⎪⎭⎫⎝⎛=05.0012.0W , ⎪⎪⎭⎫⎝⎛=6.012.0V ,则该企业出口到三个地区的货物总价值为()()384720080060013001000880120020002.03.0=⎪⎪⎭⎫⎝⎛=A P T ;总重量为()()6.1354.7974600130010008801200200005.0012.0=⎪⎪⎭⎫⎝⎛=A W T ; 总体积为()()6.46530084060013001000880120020006.012.0=⎪⎪⎭⎫⎝⎛=A V T .5.计算下列矩阵(其中n 为正整数).(1) n ⎪⎪⎭⎫ ⎝⎛0011; (2) n⎪⎪⎭⎫⎝⎛101λ; (3)nc b a ⎪⎪⎪⎭⎫⎝⎛000000; (4)n⎪⎪⎪⎪⎪⎭⎫⎝⎛------------1111111111111111.解: 2=n 时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00110011001100112, 假设当k n =时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛001100110011k成立,则当1+=k n 时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛001100110011k ,有归纳法有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛00110011n. (2) 2=n 时,⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛10211011011012λλλλ,假设当k n =时,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101101λλk k 成立,则 当1+=k n 时,⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+10)1(11011011011λλλλk kk , 有归纳法有⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛101101λλn n.(3) 2=n 时,⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛222200000000000000000000000c b a c b a c b a c b a , 假设当k n =时,⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛k k k kc b a c b a 000000000000成立,则 当1+=k n 时, ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛++++1111000000000000000000000000k k k kk c b ac b a c b a c b a , 有归纳法有⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛n n n nc b a c b a 00000000000. (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=1111111111111111A , 2=n 时,⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------=4000040000400004111111111111111111111111111111112AE 22=,3=n 时,A A A A 2232==,于是,当k n 2=(k 为正整数)时,E E A A n k k n 2)2()(22===,当12+=k n (k 为正整数)时,A A E A A A A n k k k n 122122)2(-+====, 因此得⎩⎨⎧=-为奇数)(为偶数)n En EA n n n12(2.6.设0111)(a x a xa x a x f n n nn ++++=-- ,记E a A a A a A a A f n n nn 0111)(++++=-- ,称)(A f 为方阵A 的n 次多项式.现设1)(2+-=x x x f ,⎪⎪⎪⎭⎫ ⎝⎛-=211012113A ,求)(A f .解: E A A A f +-=2)(⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=1000100012110121132110121132⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=100010001211012113527218538⎪⎪⎪⎭⎫ ⎝⎛--=416216426. 7.设矩阵A 、B 是可交换的,试证: (1) 22))((B A B A B A -=-+; (2) 2222)(B AB A B A ++=+.证明:因为矩阵A 、B 是可交换的,所以BA AB =,因此有(1) 22))((B AB BA A B A B A --+=-+22B A -=,(2) 222_)(B AB BA A B A +++=+222B AB A ++=. 8.设A 、B 是同阶矩阵,且)(21E B A +=,证明:A A =2的充分必要条件是E B =2.证明:必要性 如果 A A =2,则)(21)](21[2E B E B +=+, 由于矩阵B 与E 是可交换的,由上式得)(21)2(412E B E B B +=++ 整理得 E B =2.充分性 如果E B =2,则A EB E B B E B A =+=++=+=)(21)2(41)](21[222.9.设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------=a bcd b a d c c d a bd c b aA d c b a ,,,(均为实数), (1)计算TAA ;(2)利用(1)的结果,求A .解:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛------⎪⎪⎪⎪⎪⎭⎫⎝⎛------=a b cdb a dc cd a b d c b a a bcd b a d c c d a b d c b aAA T⎪⎪⎪⎪⎪⎭⎫ ⎝⎛++++++++++++=2222222222222222000000000000d c b a d c b a d c b a d c b a(2)由(1)有422222)(d c b a A A A AA T T +++===,所以22222)(d c b a A +++=.10. 证明题:(1)对于任意的n m ⨯矩阵A ,则T AA 和A A T 均为对称矩阵. (2) 对于任意的n 阶矩阵A ,则T A A +为对称矩阵;而-A T A 为反对称矩阵.证明:(1) 因为TTTTTTAA A A AA ==)()(,所以T AA 为对称矩阵;又因为A A A A A A TTTTTT==)()(,所以A A T为对称矩阵.(2) 因为TTTTTTA A A A A A +=+=+)()(,所以TA A +为对称矩阵;又因为)()()(TTTTTTTA A A A A A A A --=-=-=-,所以T A A +为反对称矩阵.11.如果A 、B 是同阶对称阵,则AB 是对称阵的充分必要条件是AB BA =.证明:必要性 如果AB 是对称阵,则AB AB T=)(,即AB A B TT =,由已知有 B B A A TT==,,所以BA AB =.充分性 如果BA AB =,则AB BA A B AB T T T ===)(,所以AB 是对称阵.12.设n 阶矩阵A 的伴随矩阵为*A ,证明(1) 若 0=A ,则 0=*A ; (2) 1-*=n AA .证明:(1)假设0≠*A ,则E A A =-**1)(,由此得 O A E A A AA A ===-*-**11)()(,所以 O A =*,这与0≠*A 相矛盾,故0=A 时,有0=*A .(2) 由E A AA =*得,nA A A =*,若0≠A 时,有1-*=n AA ,若0=A 时,由(1)知0=*A ,等式也成立,故有1-*=n AA ,13.设n 阶矩阵A ,B ,C 满足E ABC =,则下列各式中哪一个必定成立?简述理由.(1)E ACB =,(2)E CBA =,(3)E BAC =,(4)E BCA =.解:由E ABC =可改写为E BC A =)(,即BC 是A 的逆矩阵,所以有E A BC =)(,即(4) 必定成立.类似可得(1)、(2)、(3)未必成立. 14.设A ,B 均为n 阶可逆矩阵,下列各式一定成立的有哪些?简述理由.(1) 1111])[(])[(----=TTA A ;(2) T T T A A ])[(])[(111---=;(3) k k A A )()(11--= (k 为正整数);(4) 111)(---+=+B A B A ; (5) T T TB A AB )()(])[(111---=; (6) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---O B A O O B A O 111. 解: (1)由于TTA A =--])[(11,T TA A =--11])[(,所以1111])[(])[(----=T T A A ,即(1)式一定成立.(2) 由于11])[(--=A A T T,T T A A =--])[(11,即(2)式不一定成立.(3) k kk A A A A A AA A )()()(111111------===,(3)式一定成立.(4)设⎪⎪⎭⎫⎝⎛=1001A ,⎪⎪⎭⎫ ⎝⎛--=1001B ,显然A 、B 都可逆,但是 O B A =+不可逆,故(4)式不成立.(5) 由于T T T T T T T B A B A A B AB )()()())()(])[(111111------===,即(5)式一定成立.(6) 由于⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----1111BA O O AB O BA OO B A O 但是11--BA AB 和不一定等于E ,故(6) 式不一定成立15.设A 是n 阶矩阵,满足O A k=k (是正整数),求证:A E -可逆, 并且121)(--++++=-k A A A E A E .证明:因为))((12-++++-k A A A E A Ek A E -= E =,所以A E -可逆,并且121)(--++++=-k A A A E A E .16.设A 是可逆矩阵,证明:其伴随矩阵*A 也可逆,且*--*=)()(11A A .证明:因为A 是可逆矩阵,所以0≠A ,由于E A AA =*,有E AA A=*1, 因此,伴随矩阵*A 也可逆. 由上述证明可知A AA 1)(1=-*, 又因为 E A A A 111))((-*--=,所以 A AA A A 1)(1)(111==--*-, 故 *--*=)()(11A A .17.设A 、B 和B A +均是可逆矩阵,试证:11--+B A 也可逆,并求其逆矩阵.解:11111-----+=+AB A A B A)(11--+=AB E A )(111---+=AB BB A11)(--+=B A B A ,由于A 、B 和B A +均是可逆矩阵,它们的乘积也可逆,所以有=+---111)(B A 111])([---+B A B A11111)()()(-----+=A A B B A A B B 1)(-+=.18.设A 为三阶矩阵,*A 是矩阵A 的伴随矩阵,已知21=A ,求 *--A A 2)3(1.解:因为21=A ,所以有A 可逆,且有211==--A A .而E A AA =*,于是1121--*==A A A A ,因此有*--A A 2)3(11131---=A A 132--=A 1278--=A 2716-=.19.用分块矩阵的乘法计算.(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1102012124221011110200100001;(2)⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--020222202010111101.解:(1) 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---B A O E 1011110200100001, ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---F E D C110201212422, 则⎪⎪⎭⎫⎝⎛B A O E ⎪⎪⎭⎫ ⎝⎛F E D C⎪⎪⎭⎫⎝⎛++=BF AD B AC DC而 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=+4433101112221102B AC , BF AD +⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=+35121011241102BF AS ,于是⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---3445332124221102012124221011110200100001. (2)设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--321010111101A A A ,()321020222202B B B =⎪⎪⎪⎭⎫⎝⎛--,则()⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛332313322212312111321321B A B A B A B A B A B A B A B A B A B B B A A A , 而()202210111=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()222010121-=⎪⎪⎪⎭⎫⎝⎛--=B A ,()202210131-=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()002211112=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()422011122=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()402211132-=⎪⎪⎪⎭⎫ ⎝⎛--=B A ,()202201013=⎪⎪⎪⎭⎫ ⎝⎛=B A ,()222001023-=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,()202201033=⎪⎪⎪⎭⎫ ⎝⎛-=B A ,于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--222440222020222202010111101. 20.求分块矩阵的逆矩阵.(1) ⎪⎪⎪⎪⎪⎭⎫⎝⎛--4300110000110032; (2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----2000133412121211. 解:(1)记⎪⎪⎭⎫ ⎝⎛=1132A ,⎪⎪⎭⎫ ⎝⎛--=4311B ,则 11132-==A ,14311-=--=B ,所以A 、B 都可逆,且有⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=--2131113211A ,⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--=--1314431111B ,于是⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫⎝⎛---130014000021003143001100001100321.(2)记⎪⎪⎪⎭⎫ ⎝⎛----=334212211A ,)2(=B ,⎪⎪⎪⎭⎫⎝⎛-=111C ,因为04334212211≠=----=A ,022≠==B ,所以A 、B 均是可逆矩阵,且有 ⎪⎪⎪⎭⎫ ⎝⎛------=-3722524931A,)21(1=-B ,根据例2.17的结论有⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛-----11111B O CB A A B OC A , -=---11CB A ⎪⎪⎪⎭⎫ ⎝⎛------372252493⎪⎪⎪⎭⎫ ⎝⎛-111⎪⎪⎪⎪⎭⎫ ⎝⎛-=4255)21(,所以=⎪⎪⎭⎫⎝⎛-1B OC A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------210004372252525493. 21.设A 为三阶矩阵,2-=A ,把A 按列分块为),,(321A A A A =, 其中j A )3,2,1(=j 为A 的第j 列,求(1) 231,2,A A A -; (2) 1213,2,3A A A A -. 解: (1) 231231,,2,2,A A A A A A -=- 321,,2A A A =A 2=4-=.(2) 1213,2,3A A A A -123,2,A A A =3212,,A A A = 1232,,A A A =- 2A =-4=.22.设A 为n 阶矩阵,把A 按列分块为),,,(21n A βββ =,j β),,2,1(n j =为A 的第j 列,试用n βββ,,,21 表示A A T .解:),,,(2121n T N T T T A A ββββββ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=n Tn T n T n n TT T n T T T ββββββββββββββββββ21222121211123.设A 为三阶可逆矩阵,若A 按行分块为⎪⎪⎪⎭⎫⎝⎛=321A A A A ,按列分块为),,(321B B B A =,试判断下列分块矩阵是否可逆.(1) ⎪⎪⎪⎭⎫ ⎝⎛+++133221A A A A A A ; (2) ),,(133221B B B B B B ---.解:(1)利用行列式的性质计算分块矩阵的行列式133232113323211332212)(2A A A A A A A A A A A A A A A A A A A A ++++=++++=+++133212A A A A A ++=33212A A A A +=3212A A A =02≠=A ,从而⎪⎪⎪⎭⎫⎝⎛+++133221A A A A A A 可逆.(2) 0,,,,1332133221=--=---B B B B O B B B B B B , 从而),,(133221B B B B B B ---不可逆.24.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B , ⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则下列各式中哪一个必定成立?简述理由.(1)B P AP =21;(2)B P AP =12;(3)B A P P =21;(4)B A P P =12.解:因为A 的第一行加到第三行,再交换的第一行和第二行,从而得得到B ,故用2P 左乘A ,再左乘1P ,即B A P P =21,(3)式必定成立.25.求下列矩阵的等价标准形.(1)⎪⎪⎪⎭⎫ ⎝⎛--021123211; (2)⎪⎪⎪⎭⎫⎝⎛---433221; (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛-34624216311230211111.解:(1)⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--210550001210550211021123211⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---→100010001300010001210110001. (2)⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---201001201021433221⎪⎪⎪⎭⎫ ⎝⎛→001001. (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫⎝⎛-1022010520105201111134624216311230211111⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→0070000000105200000110220105201052000001⎪⎪⎪⎪⎪⎭⎫⎝⎛→00000001000001000001. 26.用初等行变换求下列矩阵的逆矩阵.(1)⎪⎪⎪⎭⎫ ⎝⎛--121322011; (2)⎪⎪⎪⎭⎫⎝⎛300420531; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------111111*********1; (4)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000000000000000121nn a a a a ),,2,1(,0n i a i =≠.解:(1)⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--101110012340001011100121010322001011 ⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--→416100101110001011012340101110001011 ⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛--→416100315010314001416100101110001011,所以1121322011-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-----=416315314.(2)⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛3100100010420001531100300010420001531⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→310010032210010350103131001000210210001531 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--→31001003221001031231001, 所以=⎪⎪⎪⎭⎫ ⎝⎛-1300420531⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--31003221031231. (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------→⎪⎪⎪⎪⎪⎭⎫⎝⎛------1001022001012020001122000001111110001111010011110010111100011111⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------→1111400000112200010120200001111111002200001122000101202000011111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-------→⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------→414141411000414********0414********0414141410001414141411000212121210200212121210020414141430111,所以=⎪⎪⎪⎪⎪⎭⎫⎝⎛-------11111111111111111⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------41414141414141414141414141414141. (4) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-0100000000010000000000100000000010000121nn a a a a⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛→-01000000000100000000010000100000000121n n a a a a⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛→-----000100000000001000000000100000000011112111n n a a a a, 所以=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1121000000000000000 nn a a a a ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----0000000000000001112111n n a a a a. 27.解下列矩阵方程.(1) ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛3211024311X ; (2) ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛120311*********X ;(3) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫⎝⎛--101311122131X ; (4) 设⎪⎪⎪⎭⎫ ⎝⎛---=101110011A ,且AX A X =+2,求X . 解:(1)因为14311=,所以矩阵⎪⎪⎭⎫⎝⎛4311可逆,在方程的两边左乘该矩阵的逆矩阵,得⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=-32110243111X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--=3211021314 ⎪⎪⎭⎫ ⎝⎛--=025127.(2) 因为1311211401=,所以矩阵⎪⎪⎪⎭⎫ ⎝⎛311211401可逆,在方程的两边右乘该矩阵的逆矩阵,得1311211*********-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎭⎫⎝⎛=111211********* ⎪⎪⎭⎫ ⎝⎛--=532100. (3) 设⎪⎪⎭⎫⎝⎛--=2131A ,⎪⎪⎭⎫⎝⎛--=1112B ,则1-=A ,1=B , 故矩阵B A ,都可逆,在方程的两边左乘1-A ,右乘1-B ,得11111210132131--⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=211110131132 ⎪⎪⎭⎫ ⎝⎛----=3345. (4)由AX A X =+2得,A X E A =-)2(,而⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-10111001110001000121011100112E A ,且02≠-E A ,所以E A 2-可逆,在A X E A =-)2(两边左乘1)2(--E A 得,A E A X 1)2(--=,又⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=--212121212121212121)2(1E A , 故⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=101110011212121212121212121X ⎪⎪⎪⎭⎫ ⎝⎛---=011101110. 28.求下列矩阵的秩.(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013;(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030116030242201211.解:(1) ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛---443120131211443112112013 ⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----→000056401211564056401211, 所以该矩阵的秩是2.(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎪⎪⎭⎫⎝⎛---1003014030000000121110030116030242201211⎪⎪⎪⎪⎪⎭⎫⎝⎛--→00000040001003001211, 所以该矩阵的秩是3.29.已知n 阶矩阵A 满足O E A A =--422,证明:E A +为可逆矩阵;并求1)(-+E A .解:由O E A A =--422得,E E A A =--322,即E E A E A =+-))(3(,所以E A +为可逆矩阵,E A E A 3)(1-=+-.30.已知n 阶矩阵A ,B 满足AB B A =+,(1) 证明:E B -为可逆矩阵;(2) 已知⎪⎪⎪⎭⎫ ⎝⎛-=200012031A ,求矩阵B .证明:(1)由AB B A =+得, )(E B A B -=, 即E E B A E B --=-)(, 整理的E E B E A =--))((, 因此E B -可逆,且E A E B -=--1)(.解:(2)由(1)得,1)(--=-E A E B , 即1)(--+=E A E B1100002030100010001-⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=20001310211.(B)1.若A 、B 是n 阶方阵,且AB E +可逆,则BA E +也可逆,且 A AB E B E BA E 11)()(--+-=+.证明:])()[(1A AB E B E BA E -+-+A AB E BAB A AB E B BA E 11)()(--+-+-+=A AB E E AB E B A AB E B BA E 11))(()(--+-+-+-+=E =,所以BA E +也可逆,且A AB E B E BA E 11)()(--+-=+.2. 设B 为可逆矩阵,A 、B 是同阶方阵,且O B AB A =++22,证明:A 和B A +都为可逆矩阵.证明:由O B AB A =++22得,22B AB A -=+,即2)(B B A A -=+, 由于B 为可逆矩阵,所以0≠B ,因而有 02≠-=+B B A A ,于是00≠+≠B A A ,所以A 和B A +都为可逆矩阵.3.已知实矩阵33)(⨯=ij a A 满足 (1) ij ij A a =)3,2,1,(=j i ,其中ij A 是ij a 的代数余子式;(2)011≠a ,计算A .解:由ij ij A a =)3,2,1,(=j i 得, E A AA AA T==*,于是 32A AAA T==,从而0=A 或1=A , 但由于011≠a 得,0213212211131312121111>++=++=a a a A a A a A a A , 因此 1=A .4.设A 、B 为同阶可逆矩阵,证明:***=A B AB )(. 证明:因为A 、B 为同阶可逆矩阵,所以有0≠=B A AB ,即AB 也可逆,而E AB AB AB =*))((, 于是AB AB AB 1)()(-*=B A A B 11--=))((11A A B B--=**=A B . 5.设矩阵B 的伴随矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=*8031010100100001B , 且E AB BAB311+=--,求A .解:由题有E B B B =*,4B B B =*,所以 83==*BB ,即2=B .又E AB BAB 311+=--从而E ABE B 3)(1=--,B A E B 3)(=-,即 E A B E 3)(1=--于是 E A B B E 3)1(=-*,E A B E 3)21(=-*,E A B E 6)2(=-*, 故⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=-=-*1031060100600006)2(61B E A6.已知⎪⎪⎪⎭⎫ ⎝⎛---=111111111A , 且矩阵X 满足X AX A 21+=-*,其中*A 是A 的伴随矩阵,求矩阵X .解:由E A A A =*,X A X A 21+=-* 有AX E X A 2+=,于是 E X A E A =-)2(,所以 1)2(--=A E A X . 而4111111111=---=A ,于是⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛=-22222222211111111124000400042A E A ,所以⎪⎪⎪⎭⎫⎝⎛=-=-10111001141)2(1A E A X . 7.已知A 、B 都是n 阶矩阵,且满足E B B A 421-=-.其中E 为n 阶单位矩阵.(1) 证明:E A 2-可逆,并求1)2(--E A ;(2) 若⎪⎪⎪⎭⎫ ⎝⎛-=200021021B ,求矩阵A . 证明:(1) 由于E B B A 421-=-,因此A AB B 42-=, 于是E E A B AB 8842=+--, 即E E B E A 8)4)(2(=--,从而E A 2-可逆,且有)4(81)2(1E B E A -=--. 由(1)得1)4(82--=-E B E A ,即1)4(82--+=E B E A , 而11400040004200021021)4(--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-=-E B1200021023-⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=21000838104141, 所以 ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----+⎪⎪⎪⎭⎫ ⎝⎛=2100083810414181000100012A ⎪⎪⎪⎭⎫ ⎝⎛---=200011020. 8.设n 阶矩阵A 满足A A =2,E 是n 阶单位矩阵,证明:n E A r A r =-+)()(.证明:因为A A =2,因此A A =2,即O E A A =-)(, 从而n E A r A r ≤-+)()(,又)()(A E r E A r -=-, 所以)()()()(A E r A r E A r A r -+=-+ )(A E A r -+≥n =,故 n E A r A r =-+)()(.9.设*A 是)2(≥n n 阶方阵A 的伴随矩阵,证明:⎪⎩⎪⎨⎧-<-===*1)(01)(1)()(n A r n A r n A r n A r 若若若.证明:(1) 因为n A r =)(,所以A 可逆,于是0≠A .而E A A A =*,因此*A 也可逆,故n A r =*)(.(2) 因为1)(-=n A r ,所以0=A ,于是0==*E A A A ,从而n A r A r ≤+*)()(,又 1)(-=n A r ,所以 1)(≤*A r .又1)(-=n A r 知A 中至少有一个1-n 阶子式不为零,所以1)(≥*A r ,从而1)(=*A r .(3) 因为1)(-<n A r ,所以A 中的任一1-n 阶子式为零,故0=*A ,所以0)(=*A r .10. 设A 为n 阶非奇异矩阵,α为n 维列向量,b 是常数.记分块矩阵⎪⎪⎭⎫ ⎝⎛-=*A A O EP T α,⎪⎪⎭⎫⎝⎛=b A Q T αα, 其中*A 是矩阵A 的伴随矩阵,E 为n 阶单位矩阵. (1)计算并化简PQ ;(2)证明:矩阵Q 可逆的充分必要条件是b A T ≠-αα1. 解:(1) 因为E A A A =*,所以⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-=*b A A A O EPQ T T ααα⎪⎪⎭⎫⎝⎛+-+-=**A b A A A A A T T T ααααα⎪⎪⎭⎫⎝⎛+-=-A b A A O A T ααα1 ⎪⎪⎭⎫⎝⎛-=-)(1αααA b A O A T . 证明:(2) 由(1)得 )(1ααα--=A b A OAPQ T ,即 )(12αα--⋅=A b A Q P T,而0≠==-=*A A E AA O E P T α,所以)(1αα--⋅=A b A Q T,由此可知,矩阵0≠Q 的充分必要条件是01≠--ααA b T,即矩阵Q 可逆的充分必要条件是b A T≠-αα1.。

经济应用数学二线性代数

经济应用数学二线性代数

2065 - 经济应用数学二(线性代数)单项选择题1.设A和B都是n阶矩阵,且|A+AB|=0,则有()A.|A|=0B.|E+B|=0C.|A|=0 或|E+B|=0D.|A|=0且 |E+B|=0答案:C2.A.1B.-1C.2D.-2答案:C3.若C=AB,则()A.A与B的阶数相同;B.A与B的行数相同;C.A与B的列数相同;D.C与A的行数相同。

答案:D4.A*是A的伴随矩阵,且|A|≠0,刚A的逆矩阵A-1=()。

A.AA*B.|A|A*C.;D.A'A*答案:C5.矩阵A的秩为r,则知()A.A中所有r阶子式不为0;B.A中所有r+1阶子式都为0;C.r阶子式可能为0,r+1阶子式可能不为0;D.r-1阶子式都为0。

答案:B6.A*是A的n阶伴随矩阵,且A可逆,刚|A*|=()。

A.|A| ;B.1;C.|A|n-1D.|A|n+1答案:C7.设A,B,C为同阶矩阵,若AB=AC,必推出B=C,则A应满足条件()A.|A|≠0B.A=OC.|A|=0D.A≠0答案:A8.设A是sxt矩阵,B是同m×n矩阵,如果AC T B有意义,则C应是()矩阵。

A.s×nB.s×mC.m×tD.t×m答案:C9.设 A、B为n阶矩阵,A可逆,k≠0,则运算()正确.A.B.C.D.答案:D10.设A为3阶方阵,且|A|=2,则|A|-1=()。

A.2B.-2C.D.答案:C11.设A是m×k矩阵, B是m×n矩阵, C是s×k矩阵, D是s×n矩阵,且k≠n, 则下列结论错误的是().A.B T A是n×k矩阵B.C T D是n×k矩阵C.BD T是m×s矩阵D.D T C是n×k矩阵答案:B12.设 A、B为n阶方阵,则().A.B.C.D.AB = O时,A = O或B = O答案:A13.设A , B均为n 阶方阵, 下面结论正确的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数(经济数学2)》课程习题集西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程《线性代数(经济数学2)》(编号为01007)共有计算题1,计算题2,计算题3,计算题4,计算题5等多种试题类型,其中,本习题集中有[计算题5]等试题类型未进入。

一、计算题11. 设三阶行列式为231021101--=D 求余子式M 11,M 12,M 13及代数余子式A 11,A 12,A 13.2. 用范德蒙行列式计算4阶行列式12534327641549916573411114--=D3. 求解下列线性方程组:⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---1111322112132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x其中 ),,2,1,,(n j i j i a a j i =≠≠4. 问λ, μ取何值时, 齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?5. 问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?二、计算题26. 计算6142302151032121----=D 的值。

7. 计算行列式5241421318320521------=D 的值。

8. 计算0111101111011110=D 的值。

9. 计算行列式199119921993199419951996199719981999的值。

10. 计算4124120210520117的值。

11. 求满足下列等式的矩阵X 。

2114332X 311113---⎛⎫⎛⎫-=⎪ ⎪----⎝⎭⎝⎭12. A 为任一方阵,证明T A A +,T AA 均为对称阵。

13. 设矩阵⎪⎪⎭⎫⎝⎛-=212321A ⎪⎪⎪⎭⎫ ⎝⎛-=103110021B 求AB .14. 已知⎪⎪⎭⎫⎝⎛--=121311A ⎪⎪⎪⎭⎫ ⎝⎛--=212211033211B 求T )(AB 和T T A B15. 用初等变换法解矩阵方程 AX =B 其中⎪⎪⎪⎭⎫ ⎝⎛--=011220111A ⎪⎪⎪⎭⎫⎝⎛-=121111B16. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛--=2100430000350023A求1-A17. 求⎪⎪⎪⎭⎫⎝⎛=311121111A 的逆。

18. 设n 阶方阵A 可逆,试证明A 的伴随矩阵A *可逆,并求1*)(-A 。

19. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A的逆。

20. 求矩阵121342541-⎛⎫ ⎪- ⎪ ⎪-⎝⎭的逆。

三、计算题3 21. 设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1401131********12211A求矩阵A 的秩R (A )。

22. 求向量组4321,αααα,,的秩。

其中,)1,0,1(1-=α,)1,3,2(2-=α,)1,1,2(3-=α,)4,2,3(4-=α。

23. 设向量组1β,2β,3β可由向量组1α,2α,3α线性表示。

⎪⎩⎪⎨⎧++-=-+=+-=321332123211αααβαααβαααβ试将向量1α,2α,3α 由 1β,2β,3β线性表示。

24. 问a 取什么值时下列向量组线性相关?a 1=(a , 1, 1)T, a 2=(1, a , -1)T, a 3=(1, -1, a)T.25. 求下列向量组的秩, 并求一个最大无关组:a 1=(1, 2, -1, 4)T, a 2=(9, 100, 10, 4)T, a 3=(-2, -4, 2, -8)T。

四、计算题4 26. 求线性方和组的解⎪⎩⎪⎨⎧=+-=-+-=+-22133232321321x x x x x x x x27. 求解下列线性方程组⎪⎩⎪⎨⎧=+-+--=++-+=++-+432636242232543215432154321x x x x x x x x x x x x x x x28. 当a 、b 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++2334562203235432154325432154321x x x x x b x x x x x x x x x ax x x x x 有解,当其有解时,求出其全部解。

29. 求解齐次线性方程组⎪⎩⎪⎨⎧=+-=+-+=+-+0750532025242143214321x x x x x x x x x x x30. 求非齐次方程组的一个解及对应的齐次线性方程组的基础解系:1212341234522153223x x x x x x x x x x +=⎧⎪+++=⎨⎪+++=⎩31. 试用正交变换法将下列二次型化为标准形,并求出变换阵.32212221321442),,(x x x x x x x x x f --+= 32. 设矩阵⎪⎪⎪⎭⎫⎝⎛=211110101A求A 的正交相似对角阵,并求出正交变换阵P 。

33. 求一个正交变换将二次型f =2x 12+3x 22+3x 33+4x 2x 3化成标准形。

34. 求一个正交变换将二次型f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4化成标准形。

35. 试求一个正交的相似变换矩阵, 将对称阵220212020-⎛⎫ ⎪-- ⎪ ⎪-⎝⎭化为对角阵。

五、计算题5 (略)……答案一、计算题1 1. 解: 1120432M == 111111(1)4A M +=-=,(3分) 121212M ==- 121212(1)2A M +=-=-,(6分) 1312513M ==- 131313(1)5A M +=-=,(8分) 2. 解: 对照范德蒙行列式,此处a 1=4,a 2=3,a 3=7,a 4=-5 (3分)所以有441()i j i j D a a ≥>≥=∏- (5分)213141324243()()()()()()a a a a a a a a a a a a =------ (34)(74)(54)(73)(53)(57)=--------- =10368 (8分)3. 解:写出系数行列式D211112122221111n n n nn n a a a a a a D a a a ---=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ (3分)D 为n 阶范德蒙行列式,据题设()i j a a i j ≠≠ 1()0i j i j nD a a ≤<≤=∏-≠ (5分)由克莱姆法则知方程组有唯一解。

易知 12,0,...,0n D D D D ===121,0n x x x ∴==⋅⋅⋅== (8分)4. 解 系数行列式为1111121D λμμμλμ==-. (4分) 令D =0, 得μ=0或λ=1. (6分)于是, 当μ=0或λ=1时该齐次线性方程组有非零解. (8分)5. 解 系数行列式为12413423121111111D λλλλλλλ----+=-=---(4分) =(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3+λ) =(1-λ)3+2(1-λ)2+λ-3. (6分) 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解. (8分)二、计算题2 6. 解:(4分)(8分)(10分)7.解(2分)(4分)(6分)(8分)=-60(10分)8.解:(5分)(10分)9. 解:对于行列式,使用性质进行计算。

有 199119921993199419951996199719981999(第3列减第2列)(3分)119981997119951994119921991=(第2列减第1列)(6分) 111997111994111991=(由于2,3列对应相等)(8分) =0(10分)10. 解4124120210520011723434121012021032147010c c c c ---======--434110122(1)10314+--=⨯--(5分) 411012210314-=-23113299100020171714c c c c +======-=+.(10分)11. 解 将上述等式看成2A X B -= (2分)由矩阵的加法及数乘矩阵的运算规律,得 2A B X -= ∴1()2X A B =-(4分) =2114331[]3111132---⎛⎫⎛⎫- ⎪ ⎪----⎝⎭⎝⎭(6分)=62214042-⎛⎫⎪-⎝⎭(8分)=311202-⎛⎫⎪-⎝⎭(10分)12.证:对称阵:(20分)(4分)∴ 是对称阵. (6分)(8分)∴ 是对称阵(10分)13.解 AB(2分)(6分)(8分)(10分)14.解(3分)∴(6分)而(10分)15.解(1分)(3分)(5分)(7分)(9分)∴ X=A -1B(10分)16. 解:132153A -==-(2分)234212A == (4分)113232153531A ---⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭(6分)12122411313222A --⎛⎫-⎛⎫⎪== ⎪ ⎪--⎝⎭⎝⎭(8分)于是11112320053000012130022A A A ----⎛⎫⎪- ⎪⎛⎫== ⎪- ⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭(10分)17. 解:(3分)(7分)∴ (10分)18. 证: 因为A 可逆,所以|A|≠0,(1分)且11*A A A-= 于是有 A *=|A|A -1 (3分)对上式两边取行列式,并由方阵行列式性质(2)(注意|A|是一个数)得|A *|=||A|A -1| =|A|n |A -1| (5分)又因|A -1|≠0 (∵A 可逆,由定义知A -1可逆)∴|A *|≠0所以A *是可逆的. (6分)因为(8分) 可知(10分)19. 解:令125212,2111A A -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,(2分)于是1200A A A ⎛⎫= ⎪⎝⎭ 则111111220000A A A A A ----⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭(4分) 用伴随矩阵极易写出1112,A A --111225A --⎛⎫= ⎪-⎝⎭(6分)1212121331111333A -⎛⎫⎪⎛⎫== ⎪ ⎪- ⎪⎝⎭- ⎪⎝⎭ (8分)(10分)20. 解 121342541A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭. |A |=2≠0, 故A -1存在. (2分)因为112131122232132333420*136132142A A A A A A A A A A -⎛⎫⎛⎫ ⎪ ⎪==-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, (6分) 所以 11*||A A A -=2101313221671-⎛⎫ ⎪ ⎪=-- ⎪ ⎪--⎝⎭. (10分)三、计算题321. 解:对A 作初等行变换,将它化为阶梯形,有(2分)(4分)(6分)(8分)最后阶梯形矩阵的秩为3,所以R(A)=3 (12分)22.解:把排成的矩阵A(2分)(8分)这是一个"下三角形"矩阵(12分)23.解:由上视为的线性方程组,解出来。

相关文档
最新文档