数学人教版七年级下册消元法

合集下载

人教版数学七年级下册第8章第2课消元-解二元一次方程组(加减法)教案

人教版数学七年级下册第8章第2课消元-解二元一次方程组(加减法)教案
举例:如方程组
$$\begin{cases}2x+3y=7 \\ x-4y=-3\end{cases}$$
(2)掌握加减消元法的计算步骤:引导学生遵循正确的计算步骤,包括方程的变形、乘法运算、加减运算等,确保求解过程准确无误。
(3)运用加减消元法求解二元一次方程组:培养学生将所学知识应用于实际问题的能力,掌握从问题中抽象出方程组,然后通过加减消元法求解。
(3)针对实际问题,教师可引导学生通过画图、列表等方法,将问题中的信息转化为方程组,进而求解。
(4)在讲解消元法的局限性时,可以举例说明当方程组中的系数相差较大时,使用加减消元法可能导致计算过程复杂,此时可以寻求代入法或其他解法。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“消元-解二元一次方程组(加减法)”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决两个问题的情况?”(例如:小明去商店买笔和本子,他知道自己总共花了多少钱,以及笔和本子的价格关系,如何求出笔和本子的单价?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二元一次方程组的奥秘。
人教版数学七年级下册第8章第2课消元-解二元一次方程组(加减法)教案
一、教学内容
本节课为人教版数学七年级下册第8章第2课,主题为“消元-解二元一次方程组(加减法)”。教学内容主要包括以下几点:
1.理解加减消元法的基本原理;
2.学会使用加减消元法解二元一次方程组;
3.掌握判断二元一次方程组解的过程;
4.能够灵活运用加减消元法解决实际问题。
4.在小组讨论与合作中,增强沟通与表达能力,培养团队合作精神。
在教学过程中,关注学生核心素养的提升,注重培养学生对数学知识的深入理解和灵活运用能力,为学生的终身学习和可持续发展奠定基础。

七年级数学人教版下册8.2:消元解二元一次方程组优秀教学案例

七年级数学人教版下册8.2:消元解二元一次方程组优秀教学案例
七年级数学人教版下册8.2:消元解二元一次方程组优秀教学案例
一、案例背景
本节课是人教版七年级数学下册第八章第二节的内容,主要讲解消元法解二元一次方程组。在之前的章节中,学生已经学习了二元一次方程的概念、线性方程组的解法及其应用。通过本节课的学习,让学生能够掌握消元法解二元一次方程组的方法,提高他们在实际问题中运用数学知识解决问题的能力。
3.课后总结:鼓励学生在课后总结学习收获,巩固知识,提高数学素养。
五、案例亮点
1.生活情境导入:本节课以购物问题为例,引入二元一次方程组的概念,使学生能够直观地感受到数学与实际的联系,提高他们的学习兴趣和积极性。
2.动画演示:通过多媒体动画展示二元一次方程组的解法,使抽象的数学问题形象化,有助于学生理解消元法的原理和步骤。
3.例题演示:选取典型例题,演示消元法解题过程,让学生直观地感受解题方法。
(三)学生小组讨论
1.分组讨论:将学生分成小组,让他们针对给定的方程组进行讨论。
2.交流分享:小组成员之间分享解题思路和方法,互相学习,共同进步。
3.问题解决:小组合作解决讨论过程中遇到的问题,提高他们的团队协作能力。
(四)总结归纳
(四)反思与评价
1.自我反思:让学生在学习过程中不断反思自己的学习方法和解题思路,提高他们的自我认知能力。
2.同伴评价:学生之间相互评价,给出建设性意见,促进共同进步。
3.教师评价:教师对学生的学习过程和成果进行评价,给予肯定和鼓励,激发他们的学习积极性。
四、教学内容与过程
(一)导入新课
1.生活实例:以购物问题为例,介绍二元一次方程组的实际应用,引发学生对数学问题的关注。
2.动画演示:通过多媒体动画展示二元一次方程组及其解法,激发学生的学习兴趣。

七年级数学8.2消元——解二元一次方程组

七年级数学8.2消元——解二元一次方程组
8.2 消元——解二元一次方程组
初中数学人教版 七年级下册
教师用书
8.2 消元——解二元一次方程组
知识点一 代入消元法解二元一次方程组
定义 具体内容
消元 将未知数的个数由多化少,逐一解 多个未知数 一个未知数;二元一次方程组 一元一次方 思想 决的思想,叫做消元思想. 代入 把二元一次方程组中一个方程的 消元 一个未知数用含有另一个未知数 程. (1)变形:选定一个系数比较简单的方程进行变形,变成y=ax+b( 或x=cy+d)的形式.
)
A.①×4-②×2 B.①×2-②
17 x -8 ,再代入② 2 13 x 10 D.由②得y= ,再代入① 4
C.由①得y=
答案 B 因为两个方程中未知数的系数都不是1或-1,所以用代入消元 法较烦琐,故可选择加减消元法,又方程①中y的系数是方程②中y的系数 的一半,故选择①×2-②最简单,所以选B.
解析 (1)把①代入②,得6x+2x=8,所以x=1,
把x=1代入①,得y=2.
x 1, 所以原方程组的解为 y 2.
(2)由②得x=2y-1.③ 将③代入①中,得4y-2+3y=12. 解得y=2.
将y=2代入③,得x=3.
所以原方程组的解为
x 3, y 2.
3 2 3 x , 所以原方程组的解为 2 y 1.
把y=1代入①可得x= .
点拨
根据方程组中未知数的系数的特点灵活选择方法是解题的关键.
8.2 消元——解二元一次方程组
题型三 确定方程组中的待定系数 例3 的值. 解析 依题意有
2 x 5 y -6, ① 3 x-5 y 16,② 2 x 5 y -6, 3x-5 y 16, 已知方程组 和方程组 的解相同,求(2a+b)2 016 ax -by -4 bx ay -8

人教版数学七年级下册8.2《加减消元法》教案

人教版数学七年级下册8.2《加减消元法》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“加减消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解加减消元法的基本概念。加减消元法是一种解决二元一次方程组的方法,通过相互加减方程来消去一个未知数,从而求解方程组。它在解决实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用加减消元法解决实际问题,以及它如何帮助我们求解方程组。
-掌握在实际问题中,如何将描述问题的文字语言转化为数学语言,建立方程组。
-在进行消元操作时,如何处理可能出现的计算错误,如符号错误、计算顺序错误等。
-难点举例:当面对方程组$$\begin{cases}2x + 5y = 1\\3x + 2y = 4\end{cases}$$,学生可能会在将第一个方程乘以3,第二个方程乘以2时出现计算错误,或者在相减时忘记改变符号。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《加减消元法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(例如,两个物品的价格和数量问题)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索加减消元法的奥秘。
-理解如何从消元后的结果中恢复出方程组的解,特别是当消元后得到的是一个方程关于一个未知数的表达式时,如何找到另一个未知数的值。

人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案

人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“代入消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
a)理解代入消元法的步骤:选择一个方程解出一个变量,然后将其代入另一个方程中,从而得到一个一元一次方程,最后求解得到两个变量的值。
-举例:解方程组2x + 3y = 5和x - y = 1,先从第二个方程解出x = y + 1,然后代入第一个方程得到2(y + 1) + 3y = 5。
b)学会判断何时使用代入消元法:当一个方程已经解出了某个变量的值,或者方程中某个变量的系数为1或-1时,适合使用代入消元法。
-举例:如果问题涉及到两个人共同完成一项工作,需要根据两人的工作效率和时间来构建方程组。
d)难点4:理解代入消元法与其他消元方法的区别
-学生需要理解代入消元法与加减消元法的区别,以及何时使用哪种方法更有效。
-举例:对于方程组x + y = 3和2x - y = 1,使用加减消元法更为简便。
四、教学流程
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案
一、教学内容
人教版数学七年级下册8.2《消元-解二元一次方程组(代入消元法)》教案:
1.理解代入消元法的概念及原理;
2.学会运用代入消元法解二元一次方程组;
3.能够根据具体问题,选择合适的消元方法求解;
4.掌握代入消元法在不同类型二元一次方程组中的应用。

消元-解二元一次方程组(共28张ppt)七年级下册数学人教版

消元-解二元一次方程组(共28张ppt)七年级下册数学人教版
组 500x+250y=22 500 000
2
消去 y
= 22 500 000
5 = 2 ,
500 + 250 = 22 500 000 .
解这个方程组时,可以先消去 x 吗?
解:设这些消毒液应该分装 x 大瓶、y 小瓶.
根据大、小瓶数的比,以及消毒液分装量与总产量的数
5 = 2,

x=16-3y
3(16-3y)+y=20
y=3.5
x=5.5
2x+2y=
18
x y
18元
x+3y=16
3x+y=20
2x+2y=?
2.如图,在长为 15,宽为 12 的长方形中,有形状、
大小完全相同的 5 个小长方形,则图中阴影部分的面
积为( B )
15×12-5xy=180-135=45
A.35
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
瓶装(250 g)两种产品的销售数量(按瓶计算)比为 2︰5.
某厂每天生产这种消毒液 22.5 t,这些消毒液应该分装
大、小瓶两种产品各多少瓶?
例题中有哪些未知量?
未知量有消毒液应该分装的大瓶数和小瓶数.
例2 根据市场调查,某种消毒液的大瓶装(500 g)和小
B.45
C.55
2 + = 15,
= 3.
D.65
y=9
2x+3x=15
x=3
x
2x+y=15
y
y=3x
3.篮球联赛中,每场比赛都要分出胜负,胜一场得 2
分.负一场得 1 分,某队为了争取较好的名次,想在全

数学人教版七年级下册消元法

数学人教版七年级下册消元法

8.2 消元(二)(第一课时)庐江第四中学束仁武一、知识与技能目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组,将解方程组的技能训练与实际问题的解决融为一体,•进一步提高解方程组的技能.二、过程与方法目标1.通过探索二元一次方程组的解法的过程,•了解二元一次方程组的“消元”思想,培养学生良好的探索习惯.2.通过对具体实际问题分解,组织学生自主交流、探索,去发现列方程建模的过程,培养学生用数学的意识.三、情感态度与价值观目标1.在学生了解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,增强学习数学的信息。

2.培养学生合作交流,自主探索的良好习惯,体验数学的实用性,提高学习数学的兴趣。

新授课:一、创设情境,导入新课甲、乙、丙三位同学是好朋友,平时互相帮助。

甲借给乙10元钱,•乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少?组织学生讨论。

设计意图:加强思想教育,增强团结和互相帮助意识。

二、师生互动,课堂探究(一)提高问题,引发讨论我们知道,对于方程组22240x yx y+=⎧⎨+=⎩可以用代入消元法求解。

这个方程组的两个方程中,y的系数有什么关系?•利用这种关系你能发现新的消元方法吗?(二)导入知识,解释疑难1.问题的解决上面的两个方程中未知数y的系数相同,②-①可消去未知数y,得(2x+y)-(x+y)=40-22 即x=18,把x=18代入①得y=4。

引导学生再思考:由①-②也能消去未知数y,•得(x+y)-(2x+y)=22-40 即-x=-18,x=18,把x=18代入①得y=4.教师示范,强调加减法解二元一次方程组的解题格式:一变二加三解四联立。

2.想一想:联系上面的解法,想一想应怎样解方程组410 3.6 15108 x yx y+=⎧⎨-=⎩教师引导学生分析:这两个方程中未知数y的系数互为相反数,•因此由①+②可消去未知数y,从而求出未知数x的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程: /excel/ PPT课件下载:/kejian/ 试卷下载: /shiti/ PPT论坛:
x 3 y 2
加减消元法解方程组基本思路是什么? 主要步骤有哪些? 基本思路: 加减消元: 二元 一元 主要步骤:
变形
加减 求解 写解 同一个未知数的系 数相同或互为相反数 消去一个元 分别求出两个未知数的值 写出方程组的解
反馈矫正 激励评价
2、用加减法解下列方程组:
(1)
5x+2y=25 3x+4y=15
x 1 时,小张正确的解是 ,小李由于看错 y 2
了方程组中的c得到方程组的解为
x 3 ,试求方程组中的a、b、c的值. y 1
拓展延伸
4.用加减消元法解方程组:
x 1 y 1 ① 3 2 x 1 y2 ② 2 4
由③-④得: y= -1
解:①×6,得 2x+3y=4 ③ ②×4,得
2x - y=8 ④
把y= -1代入② ,得 7 x 2 ∴原方程组的解是
7 x 2 y 1
小结:学习了本节课你有哪些收获?
1、加减消元法:两个二元一次方程中同一未知 数的系数相反或相等时,将两个方程的两边分 别相加或相减,就能消去这个未知数,得到一 个一元一次方程,这种方法叫做加减消元法, 2、加减消元法解方程组的主要步骤: 变形 同一个未知数的系 数相同或互为相反数 加减 消去一个元 求解 写解 分别求出两个未知数的值 写出方程组的解
① + ②
① ②
4x 5 y 3 2 x 5 y 1
① - ②
① ②
感悟规律 揭示本质
两个二元一次方程中同一未知数的
系数相反或相等时,将两个方程的两边
分别相加或相减,就能消去这个未知数,
得到一个一元一次方程,这种方法叫做
加减消元法,简称加减法.
例1、解方程组
2x-5y=7
分析:
例2 、用加减法解方程组:
2 x 3 y 12 ① ② 3 x 4 y 17
解: ①×3,得 6x+9y=36 ③ ②×2,得 6x+8y=34 ④ ③-④得: y=2 把y =2代入①,得 x= 3
用加减法先 消去未知数y 该如何解? 解得的结果 与左面的解 相同吗?
∴原方程组的解是
解下面的二元一次方程组
3x 5 y 21 2 x 5 y 11
把②变形得:
① ②
标准的代 入消元法
代入①,消去 x 了!
5 y 11 x 2
还有别的方法吗?
3x 5 y 21 2 x 5 y 11


认真观察此方程组中各个未知数 的系数有什么特点,并分组讨论看 还有没有其它的解法.并尝试一下能 否求出它的解
可以在下列情况使用
不限次数的用于您个人/公司、企业的商业演示。
拷贝模板中的内容用于其它幻灯片母版中使用。
不可以在以下情况使用
用于任何形式的在线付费下载。
收集整理我们发布的免费资源后,刻录光碟销售。
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载: /ziliao/ 范文下载: /fanwen/ 教案下载: /jiaoan/
x= 1
y=-1
做一做
1、解二元一次方程组

3x-2y=5 ① X+3y=9 ②
6x+5y=25 ①

3x +4y=20 ② 2x+3y=-1 ① (4) 4x -9y=8 ②
(3)
3s+4t=7 ① 3t-2s=1 ②
运用新知 拓展创新
3x-2y= -1 6x+7y=9 ① ②
分析:1、要想用加减法解二元一次方程组 必须具备什么条件? 2、此方程组能否直接用加减法消 元?
8.2 二元一次方程组的解法
加减消元法
第一PPT模板网
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解方程组的主要步骤是什么?
1.变
2.代 3.解 用含有一个未知数的代数式 表示另一个未知数
消去一个元
分别求出两个未知数的值 写出方程组的解
4.写
师生互动 理解新知
5 y和 5 y
3x 5y 21 2 x 5 y -11
①左边 + ② 左边 =
互为相反 数……
① ②
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
① 右边 + ②右边
3x+5y +2x - 5y=10 5x =10 x=2
3x 5y 21 2 x 5 y -11


2x+3y=-1
观察方程组中的两个方程,未知数x的 系数相等,都是2。把两个方程两边分别 相减,就可以消去未知数x,同样得到一 个一元一次方程。
2x-5y=7

2x+3y=-1 ②
解:②-①,得: 8y=-8 y=-1 把y =-1代入①,得: 2x-5×(-1)=7
解得:x=1
∴原方程组的解是

② ① ②
(2)
2x+3y=6
3x-2y=-2
例3:解方程组
3、练一练
⑴ 2X-3y=4
m n 13 2 3 m n 3 3 4
0.6x-0.5y=0.4
x y 2 (2) 3 4
3X-4y=-7
x y 3x y 8 3 (3) 2
X-2y=-1
探索与思考
ax by 2 3、在解方程组 cx 3 y 5
解:①+②,得: 5x=10
Байду номын сангаас
① ②
解得,x=2
把x=2代入①,得
y=3
x 3 ∴原方程组的解是 y 2
联系上面的解法,想一想怎样解方程组 4x+5y=3 ①
2x+5y=-1 ②
联系上面的解法,想一想怎样解方程组 4x+5y=3 ①
2x+5y=-1 ②
3x 5 y 21 2 x 5 y 11
相关文档
最新文档