大学物理讲义(下)PPT课件
大学物理下课件(增加多场景)
![大学物理下课件(增加多场景)](https://img.taocdn.com/s3/m/59bcb3a2f9c75fbfc77da26925c52cc58bd690bc.png)
大学物理下课件一、引言大学物理是高等教育中一门重要的基础课程,旨在培养学生掌握物理学的基本概念、基本原理和基本方法,提高学生的科学素养和创新能力。
本课件将重点介绍大学物理下的主要内容,包括力学、热学、电磁学、光学和现代物理等。
二、力学力学是物理学的基础,主要研究物体的运动规律和力的作用。
在大学物理下中,我们将深入学习牛顿运动定律、动量守恒定律、能量守恒定律和角动量守恒定律等基本原理,并探讨它们在实际问题中的应用。
1.牛顿运动定律:牛顿运动定律是描述物体运动状态的三个基本定律,包括惯性定律、加速度定律和作用反作用定律。
这些定律为物体的运动提供了基本的理论框架。
2.动量守恒定律:动量守恒定律是指在不受外力作用的系统中,系统的总动量保持不变。
这个定律在碰撞、爆炸等过程中有着广泛的应用。
3.能量守恒定律:能量守恒定律是指在封闭系统中,能量不能被创造或销毁,只能从一种形式转化为另一种形式。
这个定律为热力学、电磁学和光学等领域的研究提供了重要的理论基础。
4.角动量守恒定律:角动量守恒定律是指在不受外力矩作用的系统中,系统的总角动量保持不变。
这个定律在天体物理学和量子力学等领域中有着重要的应用。
三、热学热学是研究物质的热运动和热现象的学科。
在大学物理下中,我们将学习热力学的基本概念和原理,包括温度、热量、热力学第一定律和热力学第二定律等。
1.温度和热量:温度是衡量物体热状态的物理量,热量是物体与外界交换热能的量度。
温度和热量是热学中的基本概念,对于理解热现象和热力学过程至关重要。
2.热力学第一定律:热力学第一定律是能量守恒定律在热学中的应用,表明在封闭系统中,系统的内能变化等于系统与外界交换的热量与系统对外界做的功的代数和。
3.热力学第二定律:热力学第二定律是热学中的重要原理,描述了热现象中的不可逆过程。
它表明在自然过程中,热量总是从高温物体传递到低温物体,而不会自发地从低温物体传递到高温物体。
四、电磁学电磁学是研究电荷、电场、磁场和电磁波等现象的学科。
大学物理下 总结ppt(很详细)
![大学物理下 总结ppt(很详细)](https://img.taocdn.com/s3/m/91f777ed856a561252d36fd0.png)
h
螺距h:
h v //T
一、电动势
电磁感应
小结
把单位正电荷从负极经电源内部移 到正极非静电力所作的功。
L E K dl
二、法拉第电磁感应定律
楞次定律 三、动生电动势 在稳恒磁场中,由于导体的运动 而产生的感应电动势。
i
d m dt
回路内感应电流产生的磁场总是企图阻
d m i L E感 dl dt
感生电场与变化磁场关系
d m i L E感 dl dt
B S dS t
25
五、自
感
由于回路自身电流产生的磁通量发生变化,而在 回路中激发感应电动势的现象。
自感电动势
自感系数的计算
1 2 b: 计算dV内能量 dWm m dV B dV 2 1 c: 计算总能量 W dV B dV
2 m V m V
2
27
八、位移电流
电流密度 电流强度 位移电流的提出 垂直穿过单位面积的电流强度。
I sdI S j dS
E 0
11
4.两导体板相互靠近直到静电平衡后电荷分布
Q1 Q2 Q1 Q2 1 4 2 3 2s 2s
5.处理静电场中导体问题的基本依据 (1)电荷守恒定律 (2)静电平衡条件(3)高斯定理 六、静电场中的电介质 1. 介质中的电场 2. 介质中的高斯定律
(4) 挖补法 (5) 高斯定理
E挖后 E整个 E补
1 SE ds 0 Σ q内
2
2. 电势
ua
电势零点
a
E dl
大学物理下PPT.ppt
![大学物理下PPT.ppt](https://img.taocdn.com/s3/m/a0fab2dbfe4733687f21aa7c.png)
原子是电中性的? 自然界中有两种电荷:正电荷、负电荷。
实验证明微小粒子带电量的变化是
不连续的,它只能是元电荷 e 的整数
倍 , 即粒子的电荷是 量子化的:
Q = n e ; n = 1, 2 , 3,…
电荷量子化是个实验规律
3
§10-1 电荷的量子化及电荷守恒定律
电场中某点的电场强度的大小,等于单位电荷在该点 所受电场力的大小;电场强度的方向与正电荷在该点所 受电场力的方向一致。
3. 单位 :在国际单位制 (SI)中
力 F的单位:牛顿(N ); 电量 q的单位:库仑(C ) 场强 E 单位(N/C ),或(V/m)。
电场是一个矢量场(vector field) 电荷在场中受到的力: F qE
C、q1=-Q/4;q2=5Q/4 D、q1=-Q/2;q2=3Q/2
2、将某一点电荷Q分成两部分,让它们相距为1米,两
部分的电量分别为q1和q2,两部分均看作点电荷,要使
两电荷之间的库仑力最大,则q1和q2的关系是:
A: q1=2q2 B: 2q1=q2 C: q1=q2 D: q1q2
11
§10-1 电荷的量子化及电荷守恒定律
在相对论中物质的质量会随其运动速率而变化,但是 实验证明一切带电体的电量不因其运动而改变,电荷是 相对论性不变量。
5
§10-1 电荷的量子化及电荷守恒定律
3.电荷特点
①电荷只有两种,即正(+)电荷和负(-)电荷; ②电荷是量子化的,任何物体所带电荷的量不可 能连续变化,只能一份一份地增加或减少,这种性质 称为电荷的量子化。电荷的最小份额称为基本电荷,
12
§10-2 电场和电场强度
大学物理下册课件第五版
![大学物理下册课件第五版](https://img.taocdn.com/s3/m/8c444f6c4a35eefdc8d376eeaeaad1f34693118e.png)
量子力学的应用与挑战
量子力学的应用
量子力学在许多领域都有广泛的应用,如半导体技术、 超导电性、量子计算机等。这些应用都基于量子力学的 基本原理,如量子隧穿效应、量子干涉和量子纠缠等。
量子力学的挑战
量子力学的解释和诠释仍存在许多未解之谜和需要进一 步研究的问题。例如,量子测量问题和量子纠缠的起源 等。这些问题仍需科学家们不断探索和深入研究。
光的衍射
1 2
衍射现象
光波在传播过程中遇到障碍物时,会绕过障碍物 的边缘继续传播,形成衍射现象。
衍射分类
根据障碍物的不同,衍射可分为菲涅尔衍射和夫 琅禾费衍射。 Nhomakorabea3
衍射公式
在夫琅禾费衍射中,衍射角θ与入射角i、波长λ 和缝宽a之间的关系为sinθ=sinia/λ。
光的偏振
01
02
03
偏振现象
光波的电矢量或磁矢量在 某一特定方向上的振动称 为偏振。
THANKS
感谢观看
详细描述
热力学是一门研究热现象的学科,主要关注热量转移 、功的转换和热力平衡等问题。在热力学中,热力学 系统是一个独立存在的物质体系,通过与外界进行热 量和物质的交换而达到一定的平衡状态。热力学状态 是指系统在某一时刻所处的平衡状态,包括系统的温 度、压力、体积等宏观物理量。热力学过程是指系统 状态随时间变化的过程,包括等温过程、等压过程、 绝热过程等。
线上。
动量与角动量
动量
物体的质量与速度的乘积定义为物体 的动量,表示物体运动的剧烈程度。
角动量
物体相对于某点转动时,其动量和位 置矢量的叉乘定义为角动量,表示物 体转动的剧烈程度。
万有引力定律
万有引力定律
任何两个物体间都存在引力相互作用,其大小与两物体的质量乘积成正比,与两物体间距离的二次方成反比。
2024版大学物理(下)电子工业出版社PPT课件
![2024版大学物理(下)电子工业出版社PPT课件](https://img.taocdn.com/s3/m/8b73fb9f29ea81c758f5f61fb7360b4c2f3f2a10.png)
01大学物理概述与回顾Chapter01掌握物理学基本概念、原理和定律,理解物质的基本结构和基本相互作用。
020304培养科学思维能力和分析解决实际问题的能力。
了解物理学在科学技术发展中的应用和对社会发展的影响。
养成良好的学习习惯和严谨的科学态度。
大学物理课程目标与要求01020304牛顿运动定律、动量守恒定律、能量守恒定律等。
力学热力学第一定律、热力学第二定律、气体动理论等。
热学库仑定律、电场强度、电势差、磁场强度等。
电磁学光的干涉、衍射、偏振等基本概念和原理。
光学上学期知识点回顾01020304振动与波动量子力学基础电磁波的辐射与传播固体物理基础本学期学习内容预览010204学习方法与建议认真听课,做好笔记,及时复习巩固所学知识。
多做习题,加深对物理概念和原理的理解。
积极参加课堂讨论和实验活动,提高分析问题和解决问题的能力。
拓展阅读相关物理书籍和文献,了解物理学前沿动态。
0302电磁学基础Chapter静电场的定义与性质库仑定律电场强度与电势高斯定理静电场及其性质恒定电流与电路分析电流的定义与分类欧姆定律基尔霍夫定律电阻、电容和电感磁场与磁感应强度磁场的定义与性质磁感应强度的定义与计算磁场的高斯定理与安培环路定律磁场对运动电荷的作用力电磁感应定律及应用电磁感应现象与法拉第电磁感应定律描述磁场变化时产生感应电动势的规律。
楞次定律与自感、互感现象描述感应电流的方向以及自感、互感现象中感应电动势的大小和方向。
磁场的能量与磁场力做功描述磁场中储存的能量以及磁场力对电流做功的过程。
电磁感应在日常生活和科技中的应用如交流电的产生、电动机和发电机的原理、电磁炉和微波炉的工作原理等。
03振动与波动Chapter物体在平衡位置附近做周期性的往返运动,称为简谐振动。
简谐振动的定义特征量简谐振动的运动学方程简谐振动的动力学特征振幅、周期(或频率)、相位。
描述简谐振动物体位移随时间变化的规律。
满足F=-kx的回复力特征。
大学物理ppt课件完整版
![大学物理ppt课件完整版](https://img.taocdn.com/s3/m/67a8abc8e43a580216fc700abb68a98271feacae.png)
03
计算机模拟和仿真
利用计算机进行数值模拟和仿真 实验,验证理论预测和实验结果 。
2024/1/25
5
物理学的发展历史
01
02
03
古代物理学
以自然哲学为主要形式, 探讨自然现象的本质和规 律,如古希腊的自然哲学 。
2024/1/25
经典物理学
以牛顿力学、电磁学等为 代表,建立了完整的经典 物理理论体系。
固体的电子论
介绍了能带理论、金属电子论、半导体电子 论等。
30
核物理和粒子物理基础
原子核的基本性质
包括核力、核子、同位素等基本概念。
放射性衰变
阐述了α衰变、β衰变、γ衰变等放射性衰变过程及 其规律。
粒子物理简介
介绍了基本粒子、相互作用、粒子加速器等基本 概念。
2024/1/25
31
THANKS
感谢观看
19
恒定电流的电场和磁场
恒定电流:电流大小和方 向均不随时间变化的电流 。
2024/1/25
毕奥-萨伐尔定律:计算 电流元在空间任一点产生 的磁场。
奥斯特-马可尼定律:描 述电流产生磁场的规律。
磁场的高斯定理和安培环 路定理:揭示磁场的基本 性质。
20
电磁感应
法拉第电磁感应定律
描述变化的磁场产生感应电动势的规律。
01
又称惯性定律,表明物体在不受外力作用时,将保持静止状态
或匀速直线运动状态。
牛顿第二定律
02
又称动量定律,表明物体加速度与作用力成正比,与物体质量
成反比。
牛顿第三定律
03
又称作用与反作用定律,表明两个物体间的作用力和反作用力
总是大小相等、方向相反、作用在同一直线上。
大学物理PPT完整全套教学课件pptx(2024)
![大学物理PPT完整全套教学课件pptx(2024)](https://img.taocdn.com/s3/m/bbdbada380c758f5f61fb7360b4c2e3f57272506.png)
匀速圆周运动的实例分析
3
2024/1/29
13
圆周运动
2024/1/29
01
变速圆周运动
02
变速圆周运动的特点和性质
03
变速圆周运动的实例分析
14
相对运动
2024/1/29
01 02 03
参考系与坐标系 参考系的选择和建立 坐标系的种类和应用
15
相对运动
2024/1/29
相对速度与牵连速度 相对速度的定义和计算
2024/1/29
简谐振动的动力学特征
分析简谐振动的动力学特征,包括回复力、加速度 、速度、位移等物理量的变化规律。
简谐振动的能量特征
讨论简谐振动的能量特征,包括动能、势能 、总能量等的变化规律,以及能量转换的过 程。
32
振动的合成与分解
2024/1/29
同方向同频率简谐振动的合成
分析两个同方向同频率简谐振动的合成规律,介绍合振动振幅、合 振动相位等概念。
5
大学物理的研究方法
03
观察和实验
建立理想模型
数学方法
物理学是一门以实验为基础的自然科学, 观察和实验是物理学的基本研究方法,通 过实验可以验证物理假说和理论,发现新 的物理现象和规律。
理想模型是物理学中经常采用的一种研究 方法,它忽略了次要因素,突出了主要因 素,使物理问题得到简化。
数学是物理学的重要工具,通过数学方法 可以精确地描述物理现象和规律,推导物 理公式和定理。
2024/1/29
适用范围
适用于一切自然现象,包括力学、热学、电磁学 、光学等各个领域。
应用举例
热力学第一定律、机械能守恒定律、爱因斯坦的 质能方程等。
大学物理(下册)PPT模板
![大学物理(下册)PPT模板](https://img.taocdn.com/s3/m/0ef66a69492fb4daa58da0116c175f0e7cd119a6.png)
03
粒子的产生和湮灭
粒子可以通过相互作用产生或湮灭,这是粒子物理中重要的研究内容之
一。
宇宙射线和高能物理实验方法
宇宙射线的来源和性质
宇宙射线是来自宇宙空间的高能粒子流,其来源包括太阳、超新星遗迹、黑洞等天体。
高能物理实验方法
包括加速器实验、对撞机实验、探测器实验等,这些实验方法可以帮助我们深入了解粒子的 性质和相互作用规律。
不确定性原理的意义
不确定性原理揭示了微观世界的本质特征,即微观粒子的运动状态是不确定的、概 率性的。这一原理对量子力学的发展产生了深远影响,也是现代物理学的重要基础 之一。
04 固体物理基础
晶体结构与性质
晶体定义与分类
明确晶体概念,介绍常见晶体类型如离子晶体、 金属晶体、分子晶体等。
晶体结构描述
玻尔氢原子模型
玻尔氢原子模型
玻尔氢原子模型是指氢原子的电子只能在特定的轨道上运动, 且每个轨道上的电子具有特定的能量。当电子从一个轨道跃迁 到另一个轨道时,会吸收或发射特定频率的光子。
能量量子化
能量量子化是指氢原子的能量只能取特定的值,即能级是量子 化的。每个能级对应一个特定的电子轨道和能量值。
德布罗意波与物质波概念
能源科学
利用现代物理技术研究能源的转 换和利用过程,提高能源利用效 率并开发新能源。
环境科学
利用现代物理技术研究环境污染 的成因、监测和治理方法,为环 境保护提供科学依据。
生命科学
利用现代物理技术研究生物大分 子的结构和功能,揭示生命活动
的物理机制和规律。
THANKS
感谢观看
相位等特征量。
交流电路元件
交流电路中常用的元件包括电阻、 电感、电容等,它们在交流电路中 具有不同的阻抗特性。
《大学物理下》PPT课件
![《大学物理下》PPT课件](https://img.taocdn.com/s3/m/9ff69c4b0640be1e650e52ea551810a6f424c810.png)
后续课程衔接建议
深入学习量子物理和固体 物理
建议学生继续选修量子物理和固体物理相关 课程,加深对这两个领域的理解和掌握。
拓展应用领域知识
鼓励学生选修与物理应用相关的课程,如材料科学 、光电子学、半导体器件等,以增强实际应用能力 。
培养实验和研究技能
建议学生积极参与物理实验和研究项目,提 高实验技能和独立解决问题的能力。
学科发展趋势预测
跨学科融合
未来物理学将与化学、生物学、材料科学等学科进一步交叉融合,形成新的研究领域和增 长点。
极端条件下的物理研究
随着实验技术的进步,极端条件下的物理现象和规律将成为研究热点,如高温超导、强磁 场物理等。
计算物理与数据科学
随着计算机技术的发展,计算物理和数据科学将在物理研究中发挥越来越重要的作用,为 理论和实验提供有力支持。
04
为后续专业课程学习和 科学研究打下坚实的物 理基础。
教学方法与手段
采用讲授、讨论、演示等多种教学方法相结合的方式进 行授课。
鼓励学生积极参与课堂讨论和思考,提高学生的自主学 习能力和问题解决能力。
通过案例分析、实验演示等手段帮助学生理解和掌握物 理概念和规律。
利用多媒体课件、网络资源等现代化教学手段辅助教学 ,提高教学效果和质量。
原子核的模型
包括液滴模型、壳层模 型等,用于解释原子核 的性质和行为。
放射性衰变类型及规律
1 2
放射性衰变的定义
原子核自发地放出射线并转变为另一种原子核的 现象。
衰变类型
包括α衰变、β衰变、γ衰变等,每种衰变类型有 其特定的规律和特点。
3
衰变规律
遵循指数衰变规律,即放射性原子核的数量随时 间按指数减少。
大学物理学(下册)(第二版)(李承祖主编)PPT模板
![大学物理学(下册)(第二版)(李承祖主编)PPT模板](https://img.taocdn.com/s3/m/6c7cebd9844769eae109ed80.png)
3
费衍射光栅光谱和光
栅分辨本领
第四部分振动波动电磁波和波动光学
第21章波动光学(ⅲ)
21.1光的偏振 态偏振光的获 得
21.4偏振光的 干涉
21.2双折射现 象
*21.5人工双 折射
21.3偏振棱镜 波片圆和椭圆 偏振光的产生 和检验
问题和习题
04
o
n
e
第五部分相对论物理学中的对称性
第五部分相 对论物理学 中的对称性
01
o
n
e
前言
前言
02
o
n
e
第一版前言
第一版前言
03
o
n
e
第四部分振动波动电磁波和波动光学
第四部分振动波动 电磁波和波动光学
06
第21章波动 光学(ⅲ)
01
第16章振动
05
第20章波动 光学(ⅱ)
02
第17章机械 波
04
第19章波动 光学(ⅰ)
03
第18章电磁 波
第四部分振动波动电磁波和波动光学
01 1 7 .1 机 械波的产生 02 1 7 .2 平 面简谐波
和传播
03 1 7 .3 机 械波的能量 04 1 7 .4 惠 更斯原理波
密度和能流
的衍射、反射和折射
05 1 7 .5 波 的相干叠加 06 1 7 .6 多 普勒效应
驻波
第四部分振动波动电磁波和波动光学
第17章机械波
问题和习题
25.1对称性的概念 和描写方法
01
05
02
25.2时空 对称性和物 理量、物理 规律、物理 相互作用
04
03
*25.4动力学对称性
2024版大学物理学(全套课件下册)马文蔚
![2024版大学物理学(全套课件下册)马文蔚](https://img.taocdn.com/s3/m/7c534d4c91c69ec3d5bbfd0a79563c1ec4dad769.png)
态的变化过程。
宇宙的基本规律和演化
03
研究宇宙的大尺度结构、天体演化、宇宙起源和演化等基本问
题。
物理学的研究方法和意义
实验方法 通过实验手段观测和测量物理现象, 验证物理规律和理论。
理论方法
通过数学和物理理论,建立物理模型 和理论框架,解释和预测物理现象。
计算方法
利用计算机进行数值模拟和计算,研 究复杂物理系统的性质和行为。
物理学的意义
物理学的研究不仅有助于人类认识自 然规律,也为其他科学和工程领域提 供了基础理论和技术支持。
大学物理学的课程内容和要求
课程内容
大学物理学通常包括力学、热学、 电磁学、光学、近代物理等基础 内容,以及一些拓展内容,如相 对论、量子力学等。
课程要求
学生需要掌握基本的物理概念、 原理和定律,具备分析和解决物 理问题的能力,同时培养实验技 能和科学思维方法。
利用几何光学原理设计的仪 器,如显微镜、望远镜、照
相机等。
利用全反射原理实现光信号 在光纤中的长距离传输,具 有传输容量大、抗干扰能力
强等优点。
利用受激辐射原理产生高强 度、高单色性、高方向性的 光束,广泛应用于工业加工、
医疗、科研等领域。
利用光学系统对信息进行变 换和处理,如全息照相、光
学计算机等。
02
03
磁感应强度
描述磁场强弱和方向的物 理量。
毕奥-萨伐尔定律
计算电流元在空间中产生 磁场的定律。
磁场对电流的作用
探讨磁场对通电导线的作 用力,即安培力。
电磁感应
1 2
法拉第电磁感应定律 描述磁场变化时会在导体中产生感应电动势的定 律。
楞次定律
判断感应电流方向的定律,即感应电流的磁场总 是阻碍引起感应电流的磁通量的变化。
大学物理下册知识要点PPT课件
![大学物理下册知识要点PPT课件](https://img.taocdn.com/s3/m/e2ba8d540029bd64793e2c5a.png)
d sin k
缺级条件
asin k
k kd a
k 1,2,3,
第10页/共18页
六.光的偏振
1.马吕斯定律 I I0 cos2
I 0入射线偏振光的强度 I 为通过检偏器后的透射光的强度
α为检偏器的偏振化方向与入射线偏振光的振动方向之间的夹角
2.布儒斯特定律
tanib
n2 n1
n21
ib — 布 儒 斯
静电场总结
一.场强的计算
(一)根据场强叠加原理求场强
1.点电荷的电场
E
F q0
1
4 0
q r2
r 0
3.连续分布带电体
2.点电荷系的电场
E
k
1
4 0
qk rk2
rk0
(1)根据带电体的形状选择坐标系;
(2)
dE
1
4 0
dq r2
r 0
(3)
E
dq
4 0 r
2
r0
二.高斯定理
Ed S
1
导体表面场强垂直于导 体表面,其表面上任意 点场强数值是
E
0
第3页/共18页
恒定磁场总结
一. 比—萨定律
dB
0
4
Idl
r2
r0
二. 安培环路定理
B dl L
μ0
Ii内
载流直导线的磁场
B
0I
4a
(cos1
cos 2
)
“无限长”载流直导线 B 0I
2a
载流圆线圈圆心处 B 0 I
2R
r
R
四. 环路定理 E d l 0 L
环路定理说明静电力是保守力,静电场是保守场。
大学物理PPT完整全套教学课件
![大学物理PPT完整全套教学课件](https://img.taocdn.com/s3/m/8079c63b03768e9951e79b89680203d8ce2f6aed.png)
温标的选择
在热力学中,常用的温标有摄氏 温标、华氏温标和热力学温标。 其中,热力学温标以绝对零度为 起点,与热量传递的方向无关, 因此更为科学。
热力学第一定律
01
热力学第一定律的表述
热量可以从一个物体传递到另一个物体,也可以与机械能 或其他能量互相转换,但是在转换过程中,能量的总值保 持不变。
02
质点运动的描述
01 位置矢量与位移
02
位置矢量描述质点在空间中的位置,位移是质点位置
的变化量
03
位移是矢量,具有大小和方向,其方向与从初位置指
向末位置的有向线段一致
质点运动的描述
速度与加速度 速度是质点运动的快慢程度,加速度是速度变化的快慢程度 速度和加速度都是矢量,具有大小和方向
圆周运动
圆周运动的描述
能量守恒定律
能量守恒定律的表述
能量既不会凭空产生,也不会凭空消失,它只会从一种形式转化为另一种形式,或者从 一个物体转移到其它物体,而能量的总量保持不变。
能量守恒定律的适用范围
无论是宏观世界还是微观世界,无论是低速运动还是高速运动,能量守恒定律都适用。
能量守恒定律的数学表达式
ΔE = W + Q,其中ΔE表示系统内能的增量,W表示外界对系统做的功,Q表示系统吸 收的热量。
通过牛顿运动定律可以预测物体 在受力后的运动状态,为物理学 研究提供基础。
非惯性系中的力学问题
01
非惯性系定义
02
惯性力概念
相对于地面做加速或减速运动的参考 系称为非惯性系。
在非惯性系中,为了解释物体的运动 ,需要引入一种假想的力,即惯性力 。
03
非惯性系中牛顿运动 定律的应用
在非惯性系中,牛顿运动定律仍然适 用,但需要考虑惯性力的影响。例如 ,在旋转的参考系中,物体受到的惯 性力会导致其偏离原来的运动轨迹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
F
q0
三. 电场强度叠加原理
点电荷的电场
F
1
40
qr2q0 r0
点电荷系的电场
E qF 0410rq2r0
F k
Ek q0 k
E k
k
4 10q rk2 krk0
点电荷系在某点P 产生的电场强度等于各点电荷单独在该 点产生的电场强度的矢量和。这称为电场强度叠加原理。
连续分布带电体
二 理解静电场的两条基本定理——高斯定理和 环路定理,明确认识静电场是有源场和保守场.
三 掌握用点电荷的电场强度和叠加原理以及高 斯定理求解带电系统电场强度的方法.
9-0 教学基本要求
四 掌握静电平衡的条件,掌握导体处于静电平 衡时的电荷、电势、电场分布.
五 理解电场能量密度的概念,掌握电场能量的 计算.
r
RO dq
Ex
1
40
drq2 coθs
r0
dq
例 已知两杆电荷线密度为,长度为L,相距L
求 两带电直杆间的电场力。
解 dqdx
dq
dqdx
Ox
L
dF4d0(xxdxx)2
dq
2L x 3L x
F23L Ldx0L40(2xdxx)2
2 4 0
ln
4 3
9.2 静电场 电场强度
一. 静电场
早期:电磁理论是超距作用理论 后来: 法拉第提出场的概念
电场的特点 (1) 对位于其中的带电体有力的作用 (2) 带电体在电场中运动,电场力要作功
二. 电场强度
场源电荷 产生电场的电荷
在电场中任一位置处: F1 =
q1
检验电荷
F2
=E
q2
带电量足够小 点电荷
定义: 电场中某点的电场强度的大小等于单 位电荷在该点受力的大小,其方向为 正电荷在该点受力的方向。
9.1 电荷 库仑定律
三. 电q3场受力的力的:叠加F f1f2
对n个点电荷:
q2
q1
F F 1 F 2 .. . F n ...
i
Fi
i
410qr0iq 2i ri0
r1 q 3 r2
f1
f2
对电荷连续分布的带电体
dF
dF
q0dq
r0
40r2
r
q0
Q
F
Q4q0d0qr2
整体 概述
一 请在这里输入您的主要叙述内容
二
请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
教学计划
第五版教材下册(58+机动2)
内容
章节
课时
第九章
14+2
电磁学
34+6
第十章
12+2
第十一章
8+2
狭义相对论 4
第十四章
4
量子物理
8
第十五章
8
固体物理
4+2
第十六章
4+2
《电磁学》绪论
F12
kqr1q22
r102
9.1 电荷 库仑定律
q1 F12
q2
r
r12
k 1
4 0
0 真空中的电容率(介电常数)
0 8 .85 14 8 8 7 1 2 1 0 2 F/m
F
1
40
q1q2 r2
r0
讨论:
(1) 库仑定律适用于真空中的点电荷; (2) 库仑力满足牛顿第三定律;
(3) 一般 F电F万
dE
1
40
drq2 r0
E
dq
40r2
r0
r dq
dE
PLeabharlann dq dl (线分) 布
dS (面分布) dV (体分布)
: 线密度 : 面密度 : 体密度
例 求电偶极子在延长线上和中垂线上一点产生的电场强度。
解 在E E E E 中 垂E 42 4 E 线4 0 上cE (0 (x2 0xo 2(qxE x pq sll42 l24)E 22)0 )i2(2q xEi224 xl2l04(q4r)q P220 irOl3l2令4):q电EE偶Eq极P E矩lEPrpxqql
dEx 40acosd
dEy
sind 40a
Ex
dEx
θ2 θ1
coθsdθ
40a
40a(sθ in 2siθn1)
Ey
dEy
θ2 θ1
40asinθdθ
40a(cθ o1 scoθ2s)
讨论
(1) a >> L 杆可以看成点电荷
Ex 0
Ey
λL
40a2
(2) 无限长直导线
θ1 0 θ2
1e 3
2e 3
3. 守恒性
在一个孤立系统中总电荷量是不变的。即在任何时刻系统
中的正电荷与负电荷的代数和保持不变,这称为电荷守恒
定律。
4. 相对论不变性 电荷的电量与它的运动状态无关
二. 库仑定律
9.1 电荷 库仑定律
1. 点电荷 当带电体的大小、形状 与带电体间的距离相比可以忽略时,
就可把带电体视为一个带电的几何点。 (一种理想模型)
六 了解电介质的极化机理,掌握电位移矢量和 电场强度的关系.理解电介质中的高斯定理,并会用 它来计算电介质中对称电场的电场强度.
9.1 电荷 库仑定律
一.电荷
1. 正负性
2. 量子性
Qne e ( 1 .61 02 8 2 0 .0 90 06 0 ) 0 1 4 1 C 0 9
盖尔—曼提出夸克模型 :
2. 库仑定律 处在静止状态的两个点电荷,在真空(空气)中的相互作用 力的大小,与每个点电荷的电量成正比,与两个点电荷间距 离的平方成反比,作用力的方向沿着两个点电荷的连线。
电荷q1 对q2 的作用力F21
F21
k
q1q2 r2
F21kqr1q22 r201
q1
r
r21
q2 F21
电荷q2对q1的作用力F12
电磁学是研究电磁运动的一门科学。 感生电场
电荷和电场
位移电流
基 本 关 系
电流和磁场 二条基本假设 麦克斯韦 电荷和电流 三个实验基础 方程组
电场和磁场
库仑定律
毕奥—萨伐尔定律
法拉第电磁感应定律
第9章 静电场
图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器
9-0 教学基本要求
强度和一电掌势握的描概述念静,电理场解的电两场个强基度本E物是理矢量量—点—函电数场, 而电势V 则是标量点函数.
Ex 0
2
Ey
λ 2ε 0a
x
y
dE
dE y
P
dEx
r
a1
dq O
例 半径为R 的均匀带电细圆环,带电量为q
求 圆环轴线上任一点P 的电场强度
解
dqdl
dE
1
EdE410
40
dqr0 r2
drq2 r0
dE dEsiθn dExdEcoθs
圆环上电荷分布关于x 轴对称 E 0
x dE
dEx
P dE
例 长为L的均匀带电直杆,电荷线密度为
求 它在空间一点P产生的电场强度(P点到杆的垂直距离为a)
解 dqdx
dE
1
40
dx
r2
y
dE
dE y
dExdEcosdEydEsin
P
dEx
由图上的几何关系
2
xataθn ()aco θt x 2
r
a1
dq O
d xac2 sθd c θ
r2 a 2 x 2 a 2 c2 sc