复变函数知识点总结
复变函数总结完整版
![复变函数总结完整版](https://img.taocdn.com/s3/m/aed6b5ef844769eae009edec.png)
复变函数总结完整版第一章 复数12i =-11-=i 欧拉公式z=x+iy实部Re z 虚部Im z2运算①2121Re Re z z z z =⇔≡21Im Im z z =②()()()()()2121212121Im Im Re Re Im Re z z z z z z z z z z++±=±+±=±③()()()()1221212121122121221121y x y x i y y x x y y y ix yix x x iy x iy x z z ++-=-++=++=⋅④()()()()222221212222212122222211222121y x y x x y iy x y y x x iy x iy x iy x iy x z z z z zz+-+++=-+-+==⑤iy x z -= 共轭复数()()22y x iy x iy x z z +=-+=⋅ 共轭技巧运算律 P1页3代数,几何表示iyx z += z 与平面点()y x ,一一对应,与向量一一对应辐角 当z ≠0时,向量z 和x 轴正向之间的夹角θ,记作θ=Arg z=πθk 20+ k=±1±2±3…把位于-π<0θ≤π的0θ叫做Arg z 辐角主值 记作0θ=0arg z4如何寻找arg z例:z=1-i4π-z=i 2π z=1+i 4π z=-1 π5极坐标: θcos r x =, θsin r y =()θθsin cos i r iy x z +=+=利用欧拉公式 θθθsin cos i e i += 可得到θi re z =()21212121212121θθθθθθ+=⋅=⋅=⋅i i i i i e r r e e r r e r e r z z6 高次幂及n 次方()θθθn i n r e r z z z z z n in n n sin cos +==⋅⋅⋅⋅⋅⋅⋅⋅=凡是满足方程zn=ω的ω值称为z 的n 次方根,记作 nz=ω ()nk i re z ωπθ==+2即nr ω=nr1=ωϕπθn k =+2nk πθϕ2+=第二章解析函数1极限 2函数极限① 复变函数对于任一D Z ∈都有E ∈W 与其对应()z f =ω 注:与实际情况相比,定义域,值域变化 例 ()z z f = ②()A =→z f z z 0limz z → 称()z f 当0z z →时以A 为极限 ☆当()0z f =A 时,连续例1 证明()z z f =在每一点都连续 证:()()00→-=-=-z z z z z f z f 0z z →所以()z z f =在每一点都连续3导数()()()()000limz z z z z z df z z z f z f z f =→=--='例2()Cz f = 时有 ()0'=C证:对z ∀有()()0lim lim 0=∆-=∆-∆+→∆→∆zCC z z f z z f z z 所以()0'=C例3证明()z z f =不可导 解:令0z z -=ω()()iyx iyx z z z z z z z z z z z f z f +-==--=--=--ωω000000当0→ω时,不存在,所以不可导。
复变函数重要知识点总结
![复变函数重要知识点总结](https://img.taocdn.com/s3/m/2f98ec7a4a35eefdc8d376eeaeaad1f3469311f9.png)
复变函数重要知识点总结复变函数是数学中一个非常重要的分支,它在数学、物理、工程等领域都有着广泛的应用。
下面将对复变函数的一些重要知识点进行总结。
一、复数的基本概念复数是由实数和虚数组成的数,通常表示为$z = x + yi$,其中$x$ 称为实部,$y$ 称为虚部,$i$ 是虚数单位,满足$i^2 =-1$。
复数的模长定义为$|z| =\sqrt{x^2 + y^2}$,表示复数在复平面上的距离。
复数的辐角定义为$\theta =\arctan\frac{y}{x}$,表示复数与实轴正方向的夹角。
二、复变函数的定义复变函数是定义在复数域上的函数,通常表示为$w = f(z)$,其中$z$ 是自变量,$w$ 是因变量。
复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程:$\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y}$,$\frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}$,其中$f(z) = u(x,y) + iv(x,y)$。
三、解析函数如果一个复变函数在某点及其邻域内可导,就称该点为函数的解析点。
如果函数在一个区域内处处解析,就称该函数为解析函数。
解析函数具有很多良好的性质,如柯西定理、柯西积分公式等。
四、复变函数的积分复变函数的积分定义为沿着一条曲线对函数进行积分。
柯西定理指出,如果函数在一个单连通区域内解析,那么沿着该区域内任何一条闭合曲线的积分都为零。
柯西积分公式则给出了函数在某点的值与沿着该点周围闭合曲线的积分之间的关系。
五、级数复级数包括幂级数和 Laurent 级数。
幂级数是形如$\sum_{n=0}^{\infty} a_n (z z_0)^n$ 的级数。
收敛半径可以通过比值法或根值法求得。
Laurent 级数是在圆环域内展开的级数,包括正则部分和主要部分。
(完整版)复变函数知识点总结
![(完整版)复变函数知识点总结](https://img.taocdn.com/s3/m/6c55503ea7c30c22590102020740be1e650eccd9.png)
(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。
- 复变函数是以复数为自变量和因变量的函数,例如f(z)。
2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。
- 复变函数的乘法:使用分配律进行计算。
- 复变函数的除法:使用共轭形式并应用分配律和除法规则。
3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。
- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。
- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。
4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。
- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。
- 保角性:保持角度的变化,即函数对角度的保持。
- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。
5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。
- 工程学:用于信号处理、图像处理等领域。
- 统计学:用于数据分析、模型拟合等方面。
6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。
- 极限计算:使用洛朗级数展开或级数加和求解极限。
- 零点计算:使用代数方法或数值解法求解函数的零点。
以上是复变函数的知识点总结,希望对您有所帮助!。
复变函数知识点
![复变函数知识点](https://img.taocdn.com/s3/m/5007cc6c3868011ca300a6c30c2259010202f3c4.png)
复变函数知识点
以下是 7 条复变函数知识点:
1. 复数到底是啥玩意儿呀?就好比孙悟空有七十二变,复数就是实数加上虚数这个奇特的组合。
比如说,3+4i 就是一个复数,例子就是在研究交流电信号的时候就会用到复数呀。
2. 复变函数的极限可重要啦!这就好像跑步比赛中朝着终点冲刺的那个瞬间。
例如计算当 z 趋近于某个值时函数值的趋向,这在很多工程问题中可关键了呢!
3. 连续性呀,那可是复变函数的一大特点哦!好比一条顺畅的道路没有任何颠簸。
想想看,一个复变函数在某个区域内连续,多干脆利落呀,比如研究弹性力学中的问题时就能体现出来。
4. 导数呢,就好像汽车的速度表,能告诉我们函数变化的快慢。
例如函数 f(z)=z^2 的导数就是 2z 呀,这在分析信号变化率的时候很有用呢!
5. 积分也是超级有趣的呢!就像是积累财富一样,一点一点地攒起来。
比如说计算沿着一条曲线对复变函数的积分,在电磁学里可常见啦。
6. 解析函数,哇哦,这可是相当厉害的角色呢!好比一个武林高手,有着非凡的能力。
像指数函数就是解析函数呀,在解决电路问题时经常能看到它的身影。
7. 柯西定理,嘿,这可是复变函数里的宝贝呀!就像一把万能钥匙。
比如利用它可以很巧妙地计算一些复杂的积分呢。
我觉得呀,复变函数虽然有点抽象,但真的超级有意思,里面充满了各种奇妙的东西等你去发现呢!。
复变函数知识点概括
![复变函数知识点概括](https://img.taocdn.com/s3/m/08788d27f111f18583d05ad4.png)
第六章
①基本概念:
共形映射
转动角,伸缩率,圆的对称点
例 试求映射 w f ( z ) z 在 z 1 i 处的 转动角和伸缩率?
②分式线性映射:
1 ( i ) w z b ( ii ) w az(a 0) ( iii )w z
称为: 平移 整线性 反演
(i)上半平面到上半平面
且满足条件 w ( 2i ) 0, arg w( 2i ) 0的分式线 性映射.
(iii)单位圆到单位圆
za we 1 az
i
( 为实数 )
例
1 求将单位圆映射为单位 圆且满足条件w 0, 2 1 w 0的分式线性映射 . 2
(iv)角形域映射成角形域
⑤
留数定理
z dz c : 正 向z 2 例 计 算c 4 z 1
z 解: c z 4 1 dz 2 i{Re s[ f ( z), 1] Re s[ f ( z),1] 1 1 1 1 Re s[ f ( z ), i] Re s[ f ( z ), i]} 2 i[ ] 0 4 4 4 4
z z0
( 4)
规则II 若z0是f ( z )的m级极点
1 d m 1 Re s[ f ( z ), z0 ] lim m 1 {( z z0 )m f ( z )} (5) ( m 1)! z z0 dz P(z) 规则III 设f ( z ) P ( z ), Q( z )在z0处解析, Q( z )
2
i
2 3
第三章
复变函数的积分
计算积分:
①利用曲线方程的表达式
x 3t 例:计算 zdz OA : (0 t 1) C y 4t C : z 3t 4ti 0 t 1 解
复变函数知识点总结
![复变函数知识点总结](https://img.taocdn.com/s3/m/68e15620a88271fe910ef12d2af90242a995ab65.png)
复变函数知识点总结复变函数是数学中重要的概念,它在分析学、微分几何、数学物理等领域都有着广泛的应用。
本文将对复变函数的基本概念、性质和常见定理进行总结,希望能够帮助读者更好地理解和掌握复变函数的相关知识。
1. 复数与复变函数。
复数是由实部和虚部组成的数,通常表示为z=x+iy,其中x为实部,y为虚部,i为虚数单位,满足i^2=-1。
复数可以用平面上的点来表示,称为复平面,实部x对应横坐标,虚部y对应纵坐标。
复变函数是定义在复平面上的函数,通常表示为f(z),其中z为复数变量。
2. 复变函数的导数与解析函数。
与实变函数类似,复变函数也有导数的概念,称为复导数。
如果一个函数在某点处可导,并且在该点的邻域内处处可导,那么称该函数在该邻域内解析。
解析函数具有很多良好的性质,比如在其定义域内可以展开成幂级数。
3. 共轭与调和函数。
对于复数z=x+iy,其共轭复数定义为z的实部不变,虚部取相反数,记为z=x-iy。
对于复变函数f(z),如果它满足柯西-黎曼方程,即满足一阶偏导数存在且连续,并且满足偏导数的连续性条件,那么称f(z)为调和函数。
4. 柯西-黎曼方程与全纯函数。
柯西-黎曼方程是复变函数理论中的重要定理,它建立了解析函数与调和函数之间的联系。
柯西-黎曼方程指出,如果复变函数f(z)=u(x,y)+iv(x,y)在某点处可导,那么它满足柯西-黎曼方程,即u和v满足一阶偏导数的连续性条件。
满足柯西-黎曼方程的函数称为全纯函数,也称为解析函数。
5. 柯西积分定理与留数定理。
柯西积分定理是复变函数理论中的重要定理之一,它指出如果f(z)在闭合区域内解析,并且沿着闭合区域的边界进行积分,那么积分结果为0。
留数定理是计算闭合曲线积分的重要方法,它将积分结果与函数在奇点处的留数联系起来,从而简化了积分的计算。
6. 应用领域。
复变函数在物理学、工程学、经济学等领域都有着重要的应用,比如在电路分析中的传输线理论、振动理论中的阻尼比计算、流体力学中的势流与涡流等方面都需要用到复变函数的知识。
复变函数总结
![复变函数总结](https://img.taocdn.com/s3/m/c8758c0eb80d6c85ec3a87c24028915f804d84f5.png)
复变函数总结复变函数,又称为复数函数,是数学中重要的一个分支。
它在物理、工程、经济等领域具有广泛的应用。
复变函数的研究主要涉及复数、复平面、复数域的性质,以及复数函数的导数、积分等基本理论。
在本文中,我将对复变函数的基本概念、性质和常见应用进行总结。
一、复数的基本概念复数是由实数和虚数构成的数,通常表示为a+bi,其中a为实部,b为虚部,而i为虚数单位,满足i²=-1。
复数可以表示平面上的一个点,实部对应横坐标,虚部对应纵坐标。
复数的加法、减法、乘法和除法规则与实数的运算规则相似。
二、复平面与复函数复平面是由复数构成的平面,以复数的实部和虚部作为坐标轴。
复函数是定义在复数域上的函数,可以将复数作为自变量和因变量。
复函数在复平面上的图像通常是曲线、点或者区域。
三、复变函数的性质1. 解析性:复变函数在一个区域内解析,意味着它在该区域内具有连续性和光滑性,并且在该区域内无奇点。
2. 洛朗级数展开:复变函数可以用洛朗级数展开,即可以由一个主要部分和无穷个幂级数按次幂递减的项组成。
3. 共轭函数:对于复变函数f(z),其共轭函数为f*(z),实部相同,虚部取相反数。
4. 解析函数的判别:柯西-黎曼方程是判断一个函数在某一点是否解析的重要工具,同时也是复变函数的基本性质之一。
5. 调和函数:调和函数是一类特殊的复变函数,满足拉普拉斯方程。
四、复变函数的应用1. 电路分析:复变函数可以用来分析交流电路中的电流和电压,特别是在包含电感和电容的电路中,通过构造复变函数的拉普拉斯变换可以简化问题。
2. 流体力学:复变函数在描述流体的速度场、压力场和流线的分析中具有重要作用,特别是在无旋场和无散场的情况下。
3. 光学:复变函数可用于描述光波的传播和干涉现象,以及计算透镜的成像和衍射效应。
4. 统计学:复数也可应用于统计学中,如复数正态分布在处理随机变量时具有一定的优势。
5. 量子力学:复变函数是量子力学中运动状态和波函数的基础,通过复变函数可以描述粒子的行为以及能量的量子化。
复变函数重要知识点总结
![复变函数重要知识点总结](https://img.taocdn.com/s3/m/dde9e3b0bb0d4a7302768e9951e79b896802681c.png)
03 复变函数的级数与幂级数展开
幂级数展开
幂级数展开是复变函数的一种表示方法,它将一个复数函数表示为一个无 穷级数。
幂级数展开在复变函数中具有广泛的应用,例如在求解微分方程、积分方 程以及研究函数的性质等方面。
幂级数展开的收敛性是一个重要的问题,它涉及到级数的收敛范围和条件 。
洛朗兹级数展开
01
勒让德函数
01
勒让德函数是一种在复数域上的特殊函数, 它经常用于解决物理和工程问题。
03
02
勒让德函数分为两种类型:P型和Q型,每 种类型都有其特定的定义和性质。
勒让德函数的定义基于勒让德方程,该方程 是一个二阶线性常微分方程。
04
勒让德函数具有一些重要的性质,如正交性 、积分表示、零点和无穷大行为等。
洛朗兹级数展开是复变函数的一种特殊形式的幂级数展 开,它在研究函数的奇异点和分支点等方面具有重要作 用。
02
洛朗兹级数展开可以用来求解某些具有特定性质的复数 函数的积分和微分方程。
03
洛朗兹级数展开的收敛性和奇异性是一个重要的研究课 题,它涉及到级数的收敛范围和条件以及函数的奇异性 。
欧拉公式与双曲函数
复变函数在物理中的应用
波动方程
复变函数用于描述波动现象,如 电磁波、声波等。波动方程的解 是复变函数,描述了波的传播和
变化。
电路分析
在电路分析中,电压和电流可以用 复变函数表示,从而简化计算和分 析。
量子力学
在量子力学中,波函数通常可以表 示为复变函数,描述微观粒子的状 态和行为。
复变函数在工程中的应用
欧拉公式是复变函数中的一个基本公 式,它将三角函数与复数运算联系起 来,从而将实数域上的三角函数扩展 到复数域上。
复变函数知识点
![复变函数知识点](https://img.taocdn.com/s3/m/ab6e1ad46394dd88d0d233d4b14e852458fb39ac.png)
复变函数知识点复变函数是指定义在复数域上的函数。
复变函数的研究对象是复平面上的点,即复数。
复变函数具有很多独特的性质和特点,其知识点主要包括以下内容。
一、复数的定义和性质复数由实数和虚数单位i组合而成,通常用z=a+bi来表示,其中a和b分别为实数部分和虚数部分。
复数具有加法、减法、乘法、除法等运算规则,同时满足交换律、结合律等性质。
复数还可以表示为三角形式(z=r(cosθ + isinθ)),这使得复数的运算更加方便。
二、复变函数的定义和基本性质复变函数是指将复数域上的数映射到复数域上的函数。
复变函数具有实变函数的所有性质,包括连续性、可导性、可积性等。
此外,复变函数还有一些独特的性质,如解析性(即可导)、全纯性(即处处解析)等。
三、复变函数的级数展开复变函数可以用无穷级数的形式来表示。
最常见的是泰勒级数展开和劳伦特级数展开。
泰勒级数展开将一个复变函数在某一点的邻域上近似为一个无穷多项式,而劳伦特级数展开则考虑到函数在某一点可能有奇点的情况。
四、复变函数的奇点和留数奇点是指复变函数在某点处不解析的情况。
常见的奇点类型有可去奇点、极点和本性奇点等。
留数是计算奇点处残差的一种方法,它在复积分、积分曲线闭合和复变函数的解析延拓等方面发挥重要作用。
五、复变函数的应用复变函数在数学和物理学中有广泛的应用。
在数学中,复变函数可以用于解析几何、微分方程、积分变换等领域。
在物理学中,复变函数可用于电磁场的计算、量子力学的描述等方面。
综上所述,复变函数是定义在复数域上的函数,具有独特的性质和特点。
对复变函数的研究涉及复数的定义和性质、复变函数的定义和基本性质、复变函数的级数展开、复变函数的奇点和留数以及复变函数的应用等知识点。
通过深入理解和应用这些知识点,我们能更全面地认识和研究复变函数的性质和应用。
复变函数知识点归纳
![复变函数知识点归纳](https://img.taocdn.com/s3/m/012d252c001ca300a6c30c22590102020740f232.png)
复变函数知识点归纳
本文旨在归纳复变函数的相关知识点,以下是一些主要内容:
1. 复数与复平面
复数是由实部和虚部构成的数,常用形式为`z = a + bi`,其中`a`为实部,`b`为虚部。
复平面将复数表示为在平面上的点,实部和虚部分别对应点的横坐标和纵坐标。
2. 复变函数定义
复变函数是将复数映射到复数的函数。
常见的复变函数形式包括多项式函数、指数函数、三角函数、对数函数等。
3. 解析函数与共轭函数
解析函数是在某个区域上处处可导的函数。
共轭函数是将解析函数的虚部取相反数得到的函数。
4. 复变函数的导数
复变函数的导数由实部和虚部的偏导数组成。
对于解析函数,其导数存在且连续。
5. 复变函数的积分
复变函数的积分可通过路径积分的方式计算,即沿着路径对函数进行积分。
路径可以是直线、曲线或任意闭合曲线。
以上是关于复变函数的基本知识点的简要归纳。
复变函数在数学、物理、工程等领域都扮演着重要的角色,深入理解这些知识点能够帮助我们更好地应用和解决实际问题。
需要深入研究和探索的读者可查阅相关教材和资料。
大一复变函数一知识点总结
![大一复变函数一知识点总结](https://img.taocdn.com/s3/m/1bade4c3ed3a87c24028915f804d2b160b4e86b6.png)
大一复变函数一知识点总结
1.复数的引入和初步运算:
复数可以表示为实部和虚部的和,记作z=a+bi,其中a为实部,b为虚部,i为虚数单位,i²=-1、复数有加法、减法、乘法和除法等运算规则。
复数的共轭是实部不变、虚部变号的复数。
2.复变函数的极限和连续性:
设f(z)在z₀附近有定义,如果对于任意给定的ε>0,存在δ>0,使得当z≠z₀且,z-z₀,<δ时,有,f(z)-f(z₀),<ε,则称f(z)在z₀处有极限,记作lim┬(z→z₀)f(z)=A。
复变函数的极限和连续性的性质与实函数类似,可以通过极限的性质推导出复变函数的运算和连续性。
3.复变函数的导数与导函数:
复变函数f(z)在z₀处可导的充要条件是它在z₀处连续,且存在有限的复数A,使得lim┬(Δz→0)(f(z₀+Δz)-f(z₀))/Δz=A。
复变函数的导数有和实函数类似的性质,例如导数是唯一的、导数存在的条件等。
4.全纯函数和调和函数:
在学习复变函数的过程中,还需要掌握一些基本的技巧和方法,例如利用导数和积分求解特定的问题、使用柯西-黎曼方程证明全纯函数的性质、使用拉普拉斯方程解决实际问题等等。
在实际应用中,复变函数在物理、工程、经济等领域发挥着重要作用,因此对复变函数的理解和掌握是十分必要的。
综上所述,大一复变函数一主要学习了复数的引入和初步运算、复变函数的极限和连续性、导数与导函数、全纯函数和调和函数等知识点,掌握了这些知识点可以帮助我们理解和运用复变函数在实际中的应用。
复变函数与积分变换重要知识点归纳
![复变函数与积分变换重要知识点归纳](https://img.taocdn.com/s3/m/4f19fd0087c24028915fc3d3.png)
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:22zx y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x >arg arctan y z x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二)复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==,则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
《复变函数》总结
![《复变函数》总结](https://img.taocdn.com/s3/m/c34d1360a76e58fafbb00336.png)
复变小结1.幅角(不赞成死记,学会分析).2argtg 20,0,0,0,arctg 0,0,20,arctg arg πππππ<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏<arg z ≤∏Arg(z1z2)=Argz1+Argz2 Arg(z1/z2)=Argz1-Argz2 2. 求根:由z=θi e =r(cos θ+isin θ)得z n =e in θ=r n (cosn θ+isinn θ) 当r=1时,)sin (cos θθi n +=)sin (cos θθn i n + (*1) 当z w n =w= (*2) z arg =θ 例: 可直接利用(*1)式求解可令z=1+i,利用(*2)式求解 3.复函数:a. 一般情况下:w=f(z),直接将z=x+iy 代换求解但遇到特殊情况时:如课本P12例1.13(3)可考虑: z=θi e =r(cos θ+isin θ)代换。
()222cos sin 0,1,2,,1k k n n k i n n n n z rer i k n θπθπθπ+++==+=-L 求方根公式(牢记!):其中。
10(sin cos )55i ππ+41i+b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式:(向量) OC=tOA+(1-t )OB=OB+tBAc.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。
d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.84.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程a.在某个区域内可导与解析是等价的。
但在某一点解析一定可导,可导不一定解析。
b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加)c.指数函数:复数转换成三角的定义。
复变知识点 总结
![复变知识点 总结](https://img.taocdn.com/s3/m/a0de7e072f3f5727a5e9856a561252d381eb2062.png)
复变知识点总结1. 复变函数的定义复变函数是指自变量为复数,因变量也为复数的函数。
一般地,复变函数可表示为f(z)=u(x,y)+iv(x,y),其中z = x+iy,u(x,y)和v(x,y)分别为实部和虚部。
2. 复数的表示复数可以用直角坐标形式z=x+iy表示,也可以用极坐标形式z=re^(iθ)表示,其中r为模,θ为幅角。
3. 复平面和复函数的几何表示复数z=x+iy可以在复平面上表示为点(x,y),复变函数f(z)可以在复平面上表示为一条曲线或曲面。
二、解析函数与全纯函数1. 解析函数的定义如果一个复变函数在某个区域内能够展开成洛朗级数,并且在该区域内收敛,那么称该函数在该区域内是解析的。
2. 全纯函数的定义如果一个解析函数的导数处处存在且连续,那么该函数就是全纯函数。
3. 解析函数的充要条件一个函数在某个区域内解析的充要条件是它在该区域内连续,并且满足柯西-黎曼方程。
三、柯西-黎曼方程1. 柯西-黎曼方程的定义对于复变函数f(z)=u(x,y)+iv(x,y),如果它满足下面的条件:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x那么称它满足柯西-黎曼方程。
2. 柯西-黎曼方程的意义柯西-黎曼方程是解析函数的充要条件,它描述了解析函数的实部和虚部之间的关系,是研究解析函数性质的基本工具。
四、共形映射1. 共形映射的概念如果一个复变函数在一个区域内保持角度和方向不变,那么就称它为共形映射。
2. 共形映射的性质共形映射保持圆周和直线的相交角度不变,它在复平面上的几何性质与保持形状不变,是复变函数理论中的重要概念。
五、留数定理1. 留数的概念对于解析函数f(z),如果z=a是f(z)的孤立奇点,那么f(z)在z=a处的留数定义为Res(f;a)=1/(2πi)∫f(z)dz,积分路径沿着一个围绕z=a的简单闭合曲线C。
2. 留数定理如果f(z)在复平面上有限个孤立奇点,那么它在整个有限区域内的积分等于所有孤立奇点的留数和,即∮f(z)dz=2πiΣRes(f;a)。
复变函数知识点总结
![复变函数知识点总结](https://img.taocdn.com/s3/m/29611085fc0a79563c1ec5da50e2524de518d0b0.png)
复变函数知识点总结1. 复数及复平面- 复数由实部和虚部组成,形式为 `z = a + bi`,其中 `a` 为实部,`b` 为虚部,`i` 为虚数单位。
- 复平面将所有复数表示为二维平面上的点,实轴表示实部,虚轴表示虚部。
- 复数可用极坐标和指数形式表示。
2. 复变函数的定义与性质- 复变函数是将复数域映射到复数域的函数。
- 复变函数的导数称为复导数,由极限定义及柯西—黎曼方程求得。
- 复变函数的连续性与分析性与实变函数类似。
3. 元素函数- 复指数函数:`exp(z) = e^z`,其中 `e` 为自然对数的底数。
- 复对数函数:`Log(z) = ln|z| + i(arg(z) + 2πn)`,其中 `arg(z)` 是复数 `z` 的辐角。
- 复正弦函数:`sin(z) = (e^(iz) - e^(-iz))/(2i)`。
- 复余弦函数:`cos(z) = (e^(iz) + e^(-iz))/2`。
4. 复变函数的级数展开- 柯西—黎曼方程可推导出复变函数的泰勒级数展开。
- 复变函数的泰勒级数展开在某一区域内收敛于该函数。
5. 复积分- 路径积分:沿曲线的积分,路径可用参数方程表示。
- 狭义路径积分与宽义路径积分分别对应于可积与不可积的情况。
- 围道积分:路径围成的图形内积分。
6. 复变函数的解析性- 柯西—黎曼方程刻画了函数在一个区域内的解析性。
- 解析函数满足柯西—黎曼方程,其导函数也是解析函数。
7. 复变函数的应用- 复变函数在电路分析、流体力学、量子力学等领域具有广泛应用。
以上是对复变函数的一些知识点的总结,希望能为您提供参考。
复变函数知识点总结
![复变函数知识点总结](https://img.taocdn.com/s3/m/b990494ef342336c1eb91a37f111f18583d00ca4.png)
复变函数知识点总结复变函数是数学中的一门重要学科,它涉及复数域上的函数理论及其应用。
复变函数的研究有助于解决许多实际问题,例如电磁学、流体力学和量子力学等领域中的问题。
本文将总结一些复变函数的基本知识点。
一、复数与复平面复数由实部和虚部组成,形如a + bi,其中a和b均为实数,i为虚数单位。
复数可以用复平面上的点表示,实轴表示实部,虚轴表示虚部。
复数的加法和乘法遵循相应的规则,即复数加法满足交换律和结合律,复数乘法满足交换律和分配律。
二、复变函数的定义复变函数可以看作是从复数集合到复数集合的映射。
若f(z) = u(x, y) + iv(x, y),其中z = x + iy为自变量,u(x, y)和v(x, y)为实函数,则f(z)为复变函数。
其中,u(x, y)称为f(z)的实部,v(x, y)称为f(z)的虚部。
三、解析函数解析函数是复变函数中的重要概念。
如果一个复变函数在某个域内处处可微,并且导数连续,那么它被称为解析函数。
根据小柯西—黎曼方程,解析函数必须满足一定的条件,如实部和虚部的一阶偏导数必须满足哈密顿方程。
四、柯西—黎曼条件柯西—黎曼条件是复变函数解析性的重要判据。
设f(z) = u(x, y) + iv(x, y),若f(z)在某个域内可导,则必须满足柯西—黎曼条件:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x五、共轭函数复变函数的共轭函数是指将函数的虚部取负得到的新函数。
共轭函数在许多问题的求解中起到重要的作用,例如求解共轭系数和计算实部虚部等。
六、积分与留数定理在复变函数中,积分的概念与实变函数存在差异。
复变函数的积分可以沿任意路径进行,且路径不同,积分结果可能不同。
留数定理是复变函数积分的重要定理之一,它将函数的留数与曲线上的积分联系在一起。
通过计算留数,我们可以简化复杂的积分运算。
七、级数展开在复变函数中,级数展开是一种常见的分析工具。
泰勒级数是最常用的级数展开形式,它可以将函数在某点展开为幂级数。
复变函数重点知识点总结
![复变函数重点知识点总结](https://img.taocdn.com/s3/m/5feb1f220a1c59eef8c75fbfc77da26924c59659.png)
复变函数重点知识点总结复变函数是数学分析中的一门重要课程,主要研究复数域上的函数。
复变函数具有许多特殊性质和重要应用,在数学、物理学等领域有广泛的运用。
以下是复变函数的一些重点知识点总结。
1.复变函数的定义及运算法则:-复变函数是定义在复数域上的函数,可以表示为f(z)=u(x,y)+i*v(x,y),其中z=x+i*y为复数,u(x,y)和v(x,y)为实函数,分别称为f的实部和虚部。
-复变函数的加法、减法、乘法和除法运算法则与实数类似,可以进行复数的加减乘除运算。
-复变函数可以表示为级数形式,如幂级数、三角级数等。
2.复变函数的解析性:- 解析函数是指在其定义域内可导的函数,复变函数的解析性与其实部和虚部的连续性及Cauchy-Riemann条件密切相关。
- Cauchy-Riemann条件是解析函数必须满足的条件,即函数的实部和虚部的偏导数满足一定的关系。
-如果一个复变函数在其定义域内解析,则其在该域内无穷次可导,并且导数处处存在。
3.高阶导数及全纯函数:-复变函数的高阶导数可以通过对复变函数的导数进行重复求导得到。
-如果一个复变函数在其定义域内高阶导数均存在,则称该函数为全纯函数。
-全纯函数具有许多优良性质,如解析、无奇点等。
4. 路径积分及Cauchy定理:-路径积分是指沿着一条曲线对复变函数进行积分的操作,复变函数的路径积分与路径无关。
- Cauchy定理是复分析中的重要定理之一,它指出如果一个函数在一个简单连通区域内解析,那么它在该区域中的曲线积分等于零。
5.解析延拓及解析函数的唯一性定理:-解析延拓是指将一个函数的定义域扩展到更大的区域上,使得该函数在扩展后的区域内解析。
-解析函数的唯一性定理是指如果两个解析函数在一些区域内相等,那么它们在该区域内处处相等。
-解析函数的唯一性定理是复分析中的一个重要定理,它可以用于证明解析函数的存在性、奇点的性质等。
6.高阶亚纯函数及留数计算:-亚纯函数是指解析函数和有限阶极点函数的叠加,亚纯函数可以表示为f(z)=P(z)+Q(z),其中P(z)为解析函数,Q(z)为有限阶极点函数。
复变函数 知识点
![复变函数 知识点](https://img.taocdn.com/s3/m/f974b9ea690203d8ce2f0066f5335a8102d266a7.png)
复变函数知识点一、复数的基本概念。
1. 复数的定义。
- 设x,y∈ R,称z = x+iy为复数,其中i为虚数单位,满足i^2=- 1。
x称为复数z的实部,记作x = Re(z);y称为复数z的虚部,记作y = Im(z)。
2. 复数的相等。
- 两个复数z_1=x_1+iy_1和z_2=x_2+iy_2相等,当且仅当x_1=x_2且y_1=y_2。
3. 复数的共轭。
- 对于复数z = x + iy,其共轭复数¯z=x-iy。
共轭复数具有性质:z¯z=x^2+y^2,Re(z)=frac{z + ¯z}{2},Im(z)=frac{z-¯z}{2i}等。
二、复数的四则运算。
1. 加法与减法。
- 设z_1=x_1+iy_1,z_2=x_2+iy_2,则z_1± z_2=(x_1± x_2)+i(y_1± y_2)。
2. 乘法。
- z_1z_2=(x_1+iy_1)(x_2+iy_2)=x_1x_2-y_1y_2+i(x_1y_2+x_2y_1)。
3. 除法。
- frac{z_1}{z_2}=frac{x_1+iy_1}{x_2+iy_2}=frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2-iy_2)}=frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+ifrac{x_2y_1-x_1y_2}{x_2^2+y_2^2}(z_2≠0)。
三、复数的几何表示。
1. 复平面。
- 复数z = x+iy可以用复平面上的点(x,y)来表示,其中x轴称为实轴,y轴称为虚轴。
2. 复数的模与辐角。
- 复数z = x + iy的模| z|=√(x^2)+y^{2},它表示复数z在复平面上对应的点到原点的距离。
- 复数z≠0的辐角θ满足z=| z|(cosθ + isinθ),辐角不唯一,Arg(z)=θ + 2kπ,k∈ Z,其中θ∈(-π,π]称为z的主辐角,记作θ = arg(z)。
复变函数知识点总结
![复变函数知识点总结](https://img.taocdn.com/s3/m/fad32b1583c4bb4cf7ecd1a1.png)
2、
2 i, 1 d z n (zz0) 0 , zz0 r
n1 , n1 (包括 n0 ).
处理积分的三大类方法 : 3、 A 、闭合曲线上积分:
判断函数在曲线上及曲 线所围成的区域内解析 否? 柯西积分定理 若解析, 0; 若不解析,挖掉奇点, 转化成小圈圈上积。 复合闭路定理(唯一可处理多个奇点)
1、孤立奇点的分类 2、三类孤立奇点的性质 3、极点与零点的关系 4、无穷远点的性质 5、留数的定义(有限点处是 c 1 ) 留数定理
C
i Re s [f (z ), z] f (z)dz 2
k 1 k n k 1
n
( C 里面的奇点 )
2 i Re s [f (z ), C 外面的奇点 ) . k] (
B 、牛顿 - 莱布尼茨公式: 分部积分、凑微分元 C 、处理闭合曲线上,分 母为 ( z z 0 ) n 1 形式的积分:
1 f (z ) f (z dz . 0) 2 i C zz 0
n ! f (z ) f (z dz (n 1 ,2 ,... ) 0) n 1 2 i C(zz 0)
n
2 3 n z z z z 1 z ( |z | ) 6、 e 2 !3 ! n !
n 2 ( 1 ) zn cos z ,(| z| ); 2 n )! n 0 (
偶函数,偶次
( 1 )z sin z ,(| z| ). 奇函数,奇次 2 n 1 )! n 0 (
6、计算留数的办法(m级极点)
m 1 1 d m Re s [ f ( z ), z ] lim {( z z ) ( z )} 0 0 f m 1 z z 0 ( m 1 )! dz
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析、可逐项求导、逐项积分
4、幂级数 cnzn ,求收敛半径的方法: n0
比值法、根值法 5、特例:等比级数
zn
1
, | z|1
n0
1z
6、 e z 1 z z2 z3 zn (|z| )
2 ! 3 ! n !
(1)nz2n
cozs
,(|z| );
偶函数,偶
n0 (2n)!
sinz
1、孤立奇点的分类 2、三类孤立奇点的性质 3、极点与零点的关系 4、无穷远点的性质 5、留数的定义(有限点处是 c1 )
留数定理
n
f(z)dz 2iRes[f(z),zk] (C里面的)奇点
C
k1
n
2iRes[f(z),k] (C外面的)奇 . 点 k1
6、计算留数的办法(m级极点)
R s[fe (z)z,0 ] (m 1 1 )z l !iz0d m d m m 1 1 z{z (z0 )m f(z)}
F1()F2()LFn()
3. f(t)(t)f(t).
单位脉冲函数,卷积中的单位1
应用:解方程
象原函数 取Fourier逆变换 (方程的解)
象函数 解代数方程
微分、积 取Fourier变换 分方程
开始
象函数的 代数方程
F(s) f(t)estdt 0
函数 f ( t ) 的Laplace变换式
2
1.f(z)在 z 0 处可导的定义? 2.f(z)在 z 0 处解析的定义?
3. f(z)uiv解析的充要条件?
(C-R方程? f’=? )
4. 指数函数、对数函数的定义
e z ?
L n ?lz z n ?
3
1、积分的定f义 连, 续则 f 必可积;
调和函数定义, 析构 函.造 数解
2、
1
2i, n1,
zz0r (zz0)n dz理积分的三大: 类方法
A、闭合曲线上积分:
•判断函数在曲线线 上所 及围 曲成的区域否 内? 解
•若解析0;, 柯西积分定理
若不解析,挖掉转 奇化 点成 ,小圈圈上积。 复合闭路定理(唯一可处理多个奇点)
B、牛顿 - 莱布尼茨公式:
2. 位移:f(tt0)F()ejt0 f(t)ej0t F(0)
3. 导 数 :f(t) j F () dd nnF()(j)nF[tnf(t)]
4. 积 分: tf(t)dtj 1F()
∗ ∗ ∗ ∗
卷积
1. f1 (t) f2 (t) f1 ()f2 (t)d
2. Ff1(t) f2(t) L fn(t)
实 数→复 数 1.表示,运算,函数,极限&连续性 2.解析函数(由导数来定义,充要性) 3.积分(定义,存在,计算,性质) 4.级数(复数列,收敛) 5.留数
1、复数的标准表示式、三角表示 式、
指数表示式 2、求模,辐角的主值 3、三角不等式,直角三角形 4、共轭的性质 5、乘法、除法、求方根 6、简单(闭)曲线(Jordan) 7、函数连续的概念、充要条件
分部积分、凑微分元
C、处理闭合曲线上,分 母为(z z0 )n1形式的积分:
f
(z0)21iC
f(z)dz. zz0
f(n)(z0)2n!iC(zf(zz0))n1dz (n1,2,..).
总之: 先判断解析性,画图!
1、复数列收敛的充要条件(实部、虚部) 2、复数项级数收敛(绝对收敛)的充要条件 3、级数的性质:收敛圆内
(1)nz2n1,(|z| )奇 .
函
数
,
奇
次
n0 (2n1)!
7、泰勒展开
f(z)n 0f(n n )( !z0)(z z0)n,|z z0|R .
8、洛朗展开
f( z ) n n 2 1 iC ( f( z 0 ) ) n 1 d ( z z 0 ) n ,R 1 |z z 0 | R 2 .
11 Rs[e f(z) ,]Rs[e z2f(z)0 ,].
Fourier变换的概念
F ( )f(t)ejtdt f(t)的Fourier变换
f(t)1 F()ejtd 2π F()的Fourier逆变换
Fourier变换的性质
1.线 性 :f ( t ) g ( t ) F () G ()