高等代数方法在中学数学中的应用
(精品)高等代数知识在初等数学中的应用毕业设计
本科生毕业论文高等代数知识在初等数学中的应用摘要 (I)Abstract (I)第一章绪论 (1)第二章高等代数与初等数学的联系 (1)2.1知识方面的区别与联系 (2)2.2思想方法方面的区别与联系 (2)2.3观念方面的区别与联系 (4)第三章多项式理论在初等数学中的应用 (5)3.1去重因式分解多项式 (5)3.2 利用因数定理分解多项式 (5)3.3利用对称多项式与轮换多项式的性质分解多项式 (6)3.4多项式的一些应用 (6)第四章行列式在初等数学中的应用 (8)4.1应用行列式判定二元二次多项式的可分解性 (8)4.2应用行列式分解因式 (9)4.3应用行列式解决数列问题 (9)第五章线性方程组在初等数学中的应用 (12)5.1 在平面解析几何上的应用 (12)5.2在空间解析几何中的应用 (13)5.3在求解二元方程组上的应用 (14)第六章柯西不等式在初等数学中的应用 (15)6.1柯西不等式在解析几何中的应用 (15)6.2柯西不等式在解其它题方面的应用 (15)第七章结论 (18)参考文献 (19)致谢 (20)高等代数是现代数学中一个重要的分支,是在初等代数的基础上研究对象进一步的扩充.高等代数是初等数学的进化.高等代数不仅是初等数学的延拓,也是现代数学的基础,只有很好的掌握高等代数的基础知识才能适应数学发展和教材改革.高等代数知识在开阔视野,指导中学解题等方面的作用尤为突出.在许多问题中,如果我们能用高等代数知识解决一些初等数学中的问题,将命题转化为一般性的问题进行解决,往往能收到事半功倍的效果,使人耳目一新.文章一方面介绍了高等代数与初等数学的联系,从数学知识、数学思想方法、数学观念3个方面发掘一下高等数学类课程与中学数学的联系.另一方面介绍高等代数的一些知识在初等数学的应用.如多项式、行列式、线性方程组、柯西不等式在初等数学中的应用,高等代数应用于中学数学并不是简单的一题多解,而是一种知识的融会贯通和发展学生的发散和联想思维.用高等代数的观点去研究初等数学史新世纪对中学数学教师的高水平要求,教师是否具有较高的教学观点,是衡量教师数学素质的重要标准.教师具有高的观点,就能从高处看清中学教材的内在结构和本质联系,把握教材的重、难点;教师具有高观点,就能从认知的角度,在知识的各部分参透高等数学的观点,培养学生的创造性、判断性思维.关键词:高等代数多项式行列式柯西不等式初等代数应用AbstractHigher algebra is an important branch of modern mathematics, which is on the basis of the elementary algebra research object for further expansion. Advanced algebra is the evolution of elementary mathematics. Advanced algebra is not only the continuation of elementary mathematics, also is the foundation of modern mathematics, only good to master the basic knowledge of advanced algebra can adapt the mathematical development and teaching materials reform. Advanced algebra in the open field of vision of knowledge, especially the role of guiding middle school problem solving, etc. In many problems, if we can use the advanced algebra knowledge to solve some problems in the elementary mathematics, converting the proposition to general problems are solved, can often get twice the result with find everything new and fresh.Higher algebra and elementary mathematics were introduced on the one the other the application of elementary mathematics. Such as polynomial, determinant, system of linear equations, cauchy inequality in elementary mathematics, the application of advanced algebra to establish mathematics is not a simple problemsolution, but a mastery of knowledge and the development of students' divergent and associative thinking. In view of the new century of see the inner structure and the essence of the middle school teaching material from a from the perspective of cognition, in the knowledge of each part searches view of第一章绪论人类的文明进步和社会发展,无时无刻不受到数学的恩惠和影响,数学科学的应用和发展牢固地奠定了它作为整个科学技术乃至许多人文科学的基础的地位,当今时代,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,它和其他学科的交互作用空前活跃,越来越直接地为人类物质生产与日常生活作出贡献,也成为其掌握者打开众多机会大门的钥匙.在长期开设高等代数等数学类课程的实践中一直存在两方面的问题,一方面由于中学知识难以与高等代数直接衔接,使不少大学生一接触到“数学分析”、“高等代数”等课程,就对数学专业课程产生了畏惧情绪:另一方面,由于高等代数理论与中学教学需要严重脱节,许多高师毕业生对如何用高等代数知识指导初等代数教学感到茫然.通过本文的介绍,使读者都能清楚地看到:高等代数知识在初等数学的继续喝提高,在思想方法上是初等数学的延续和扩张,在观念上是初等数学的深化和发展.这样学生学习高等代数的难度就会大大降低.高等代数与中学数学在思想方法方面的联系主要体现在抽象化思想、分类思想、结构思想、类比推理思想、公理化方法等方面.高等代数与中学数学的联系对比不但可以降低高等代数课的学习难度,而且增强了高等代数课对培养中学数学教师的指导作用.马克思曾说过:“一门学科只有成功地应用了数学时,才真正达到了完善的地步”.高等代数作为一门抽象的大学学科,虽然表面上是独立的知识体系,但并没有与初等代数内容严重脱节,而是相互参透,彼此相通。
高等代数简介
高等代数简介一、高等代数的教学目的及重要性代数学是以代数结构作为研究对象的一门学科。
所谓代数结构, 就是指带有一个或多个代数运算并且满足一定运算规则的非空集合。
高等代数是代数学的基础部分,是高等学校数学学院的学生的一门专业基础课程,它既是中学代数的继续和提高,也是数学各分支的基础和工具。
高等代数这门课程概念多, 理论性强, 内容抽象, 充分体现了数学的严密逻辑性、高度抽象性、广泛应用性等特征。
通过该课程的学习, 可逐渐培养和训练学生的抽象思维能力、逻辑推理能力和空间想象能力,提高学生的数学素质。
随着科学技术的进步, 特别是计算机技术的迅速发展与普及,代数学在信息科学、计算机科学和物理学等许多领域都有着非常广泛的应用。
高等代数作为数学学院各专业的重要基础课,学习的好坏, 直接关系到多门后续课程的学习, 同时又关系到学生以后从事科学与技术研究的基本功。
二、高等代数简要发展史代数学是一门古老的数学学科,最简单的代数运算—正整数和有理数的算术运算及这些运算的代数性质在古代就知道了,17-18世纪“代数学”被理解为在代数符合上进行运算的科学,即对由字母组成的公式的“恒等”变换、解代数方程等,到18世纪中叶,代数学或多或少地相当于现在的“初等代数”。
18世纪和19世纪的代数学处理的主要内容是多项式。
历史上,首要的问题是求解一个未知数的代数方程即求解下述类型的方程1010n n n a x a x a -+++=其目的是推导出由方程的系数经加、减、乘、除及开方所构成的公式来表示方程的根。
事实上,人们很早就已经知道了一元一次和一元二次方程的求解方法。
16世纪意大利数学家发现了解三次方程和四次方程的求解公式。
这就很自然地促使数学家们继续努力寻求五次及五次以上的高次方程的求解公式。
遗憾的是这个问题虽然耗费了许多数学家大量的时间和精力,但一直持续了长达三个多世纪都没有解决。
同时,这个时期对于任意复系数代数方程的复根的存在性就成为数学家的主要兴趣,在18世纪和19世纪交替的时候,德国数学家高斯证明了代数方程有解存在的基本定理即代数基本定理。
浅谈高师高等代数课程对中学数学教学的指导作用
iu ta e ha h i r vng ef c fh g rag b a o id e s h o ah mais ta h n .urh r r , i p p r l sr td t tt e mp o i fe to ihe l e r n m d l c o lm t e tc e c i gF t e mo et s a e l h
Ab ta tB n lzn h o n cin o ihe le r o o ma o lg n i de s h o ah m aist i p p r sr c : y a ay ig t e c n e t fh g rag b a f rn r lc l e a d m d l c o lm t e t , s a e o e c h
数学专业毕业论文选题 (1)
数学专业毕业论文选题一、计算机1.数据库图书查询管理设计2.最优轧板成品率的VFP6编程3.基于VFP6的通讯录设计4.基于Mathematicn的课件设计5.用Mathematica帮助理解中数问题6.基于VFP6的成绩统计7.实用的网上共享数据库录入程序8.通用答卷统计系统的总体设计方案9.通用答卷统计系统的录入编程10.通4用答卷统计系统的统计编程11.通用答卷统计系统的报表设计12.通用答卷统计系统的帮助系统设计二、常微分方程1.一阶常微分方程的奇解的求法(或判定)1.微分方程中的补助函数3.关于奇解的运用4.曲线的包络与微分方程的奇解5.用微分方程定义初等函数6.常微分方程唯一性定理及其应用7.求一阶显微分方程积分因子的方法8.二阶线性微分方程另几种可积类型9.满足某些条件黎卡提方程的解法10.一阶常微分方程方向场与积分曲线11.变换法在求解常微分方程中用应用12.通解中任意常数C的确定及意义13.三阶常系数线笥齐次方程的求解14.三维线性系统15.二阶常系数线性非齐次方程新解法探讨16.非线性方程的特殊解法17.可积组合法与低阶方程(方程组)三、数学分析1.多元函数连续、偏导数存在及可微之间的关系2.费尔马最后定理初探3.求极值的若干方法4.关于极值与最大值问题5.求函数极值应注意的几个问题6.n元一次不定方程整数解的矩阵解法7.导数的运用8.泰勒公式的几种证明法及其应用9.利用一元函数微分性质证明超越不等式10.利用柯西——施瓦兹不等式求极值11.函数列的各种收敛性及其相互关系12.复合函数的连续性初探13.关于集合的映射、等价关系与分类14.谈某些递推数列通项公式的求法15.用特征方程求线性分式递推数列的通项16.谈用生成函数法求递归序列通项17.高级等差数列18.组合恒等式证明的几种方法19.斯特林数列的通项公式20.一个递归数列的极限21.关于隶属函数的一些思考22.多元复合函数微分之难点及其注意的问题23.由数列递推公式求通项的若干方法24.定积分在物理学中的应用25.一个极限不等式的证明有及其应用26.可展曲面的几何特征27.再谈微分中值公式的应用28.求极限的若干方法点滴29.试用达布和理论探讨函数可积与连续的关系30.不定积分中的辅助积分法点滴四、复变函数1.谈残数的求法2.利用复数模的性质证解某些问题3.利用复函数理论解决中学复数中的有关问题3.谈复数理论在中学教学中的运用4.5.谈解析函数五、实变函数1.可测函数的等价定义2.康托分集的几个性质3.可测函数的收敛性4.用聚点原理推证其它实数基本定理5.可测函数的性质及其结构6.6.凸函数性质点滴7.凸(凹)函数在证明不等式中的应用8.谈反函数的可测性9.Lebesgue积分与黎曼广义积分关系点滴10.试用Lebesgue积分理论叙达黎曼积分的条件11.再谈CANTOR集六、高等几何1.二阶曲线渐近线的几种求法2.笛沙格定理在初等数学中的运用3.巴斯加定理在初等数学中的运用4.布里安香定理在初等数学中的运用5.二次曲线的几何求法6.二维射影对应的几何定义、性质定义、代数定义的等价性7.用巴斯加定理证明锡瓦一美耐劳斯定理8.仿射变换初等几何中的运用9.配极理论在初等几何中的运用10.二次曲线的主轴、点、淮线的几种求法11.关于巴斯加线和布利安香点的作图12.巳斯加和布利安香定理的代数证明及其应用13.关于作第四调和点的问题14.锡瓦一美耐劳斯定理的代数证明及应用15.关于一维几何形式的对合作图及应用七、概率论1.态分布浅谈3.用概率思想计算定视分的近似值3.欧拉函数的概率思想证明4.利用概率思想证明定积分中值定理5.关于均匀分布的几个问题6件概率的几种类型解题浅析7.概率思想证明恒等式8.古典概率计算中的模球模型9.独立性问题浅谈八、近世代数①集合及其子集的概念在不等式中的作用②论高阶等差数列②谈近世代数中与素数有关的重点结论④商集、商群与商环⑤关于有限映射的若干计算方法⑥关于环(Z2×2,+,、)⑦关于环(ZP2×2,+,、)(这里Zp是模p的剩余环,p为素数)⑧关于环(Z23×3,+,、)⑨关于环(zPQ2×2,+,、)(这里p、q是两个素数)⑩关于环(Znxn, +、)九、高等代数1.关于循环矩阵2.行列式的若干应用3.行列式的解法技巧4.欧氏空间与柯两不等式5.《高等代数》在中学数学中的指导作用6.关于多项式的整除问题7.虚根成对定理的又一证法及其应用8.范德蒙行列式的若干应用9.几阶行列式的一个等价定义10.反循环矩阵及其性质11.矩阵相似及其应用12.矩阵的迹及其应用13.关于整数环上的矩阵14.关于对称矩阵的若干问题15.关于反对称短阵的性质16.关于n阶矩阵的次对有线的若干问题17.关于线性映射的若干问题18.线性空间与整数环上的矩阵十、教学法1.关于学生能力与评价量化的探索2.浅谈类比在教学中的若干应用3.浅谈选择题的解法4.谈谈中学数学课自学能力的培养5.怎样培养学生列方程解题的能力6.谈通过平面几何教学提高学生思维能力7.谈数列教学与培养学生能力的体会8.创造思维能力的培养与数学教学9.数学教学中的心理障碍及其克服10.关于启发式教学11.浅谈判断题的解法12.对中学数学教学中非智力因素的认识13.数学教学中创新能力培养的探讨14.计算机辅助数学教学初探15.在数学课堂教学中运用情感教育16.在数学教学中恰当进行数学实验17.数学语言、思维及其教学18.在平面几何教学中渗透为类比、猜想、归纳推理的思想方法19.试论数学学习中的迁移20.数学例题教学应遵循的原则十一、初等数学1.数学证题中的等价变换与充要条件2.关于充要条件的理解和运用3.参数方程的运用4.极坐标方程的运用5.怎样证明条件恒等式6.不等式证明方法7.极值与不等式8.证明不等式的一种重要方法9.谈中学二次函数解析式的求法10.二元二次方程组的解11.谈数列求和的若干12.谈立体几何问题转化为平面几何问题的方法13.求异面直线距离的若干方法14.利用对称性求平面几何中的极值15.浅谈平面几何证明中的辅助线16.浅谈对称性在中学数学解题中的运用17.浅谈韦达定理的运用18.论分式方程的增根19.数列通项公式的几种推导方法20.函数的周期及其应用21.数学归纳法的解题技巧22.等价关系的几种判定方法23.数学归纳法及其推广和变形24.浅谈用几何方法证明不等式25.浅谈初等数学中的不等式与极值26.几个不等式的推广27.函数的概念及发展28.组合恒等式的初等证明法29.谈用生成函数计算组合与排列30.试论一次函数的应用。
浅谈高等数学在初等数学中的应用
浅谈高等数学在初等数学中的应用初等数学是学习高等数学基础,高等数学是初等数学的继续和提高,它不但解释了许多初等数学未能说清楚的问题,并使许多初等数学束手无策的问题,至此迎刃而解了。
本文从三个方面探讨高等数学在初等数学中的作用。
高等数学是在初等数学的基础上发展起来的,与初等数学有着紧密的联系。
站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。
运用高等数学的知识可以解决一些用初等方法难以解决的初等数学问题,以便使学生了解到高等数学对于初等数学的指导作用。
标签:初等数学;高等数学;联系;应用数学是一门科学性、概括性、逻辑性很强的学科。
它源自于古希腊,是研究数量、结构、变化以及空间模型等概念。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
问题的提出许多学生经常提出这样的问题:我们为什么要学这么多高等数学?这些问题长期以来困扰着我们。
本文通过讨论初等与高等数学的联系,使他们真正觉得高等数学对初等数学教学有向导性意义,帮助他们用高等数学知识去分析和理解初等数学教材,从而站得更高,对中学数学的来龙去脉看得更清楚。
一、初等数学初等数学时期从公元前五世纪到公元十七世纪,延续了两千多年、由于高等数学的建立而结束。
这个时期最明显的结果就是系统地创立了初等数学,也就是现在中小学课程中的算术、初等代数、初等几何(平面几何和立体几何)和平面三角等内容。
二、高等数学内容包括函数与极限、一元函数微积分、向量代数与空间解析几何、多元函数微积分、级数、常微分方程等。
其中极限论是基础:微分、积分是是核心,是从连续的侧面揭示和研究函数变化的规律性,微分是从微观上揭示函数的局部性质,积分是从宏观上揭示函数的整体性质:级数理论是研究解析函数的主要手段:解析几何为微积分的研究提供了解析工具,為揭示函数的性质提供了直观模型:微分方程又从方程的角度把函数、微分、积分犹记得联系起来,揭示了它们之间内在的依赖转化关系。
高等数学与初等数学的联系及一些应用
高等数学与初等数学的联系及一些应用摘要:众所周知,初等数学是高等数学的基础,高等数学是初等数学的延伸和发展。
由于现阶段数学数字化时代的发展,中学教师要是掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。
因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。
关键词:高等数学;初等数学;应用1.引言数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。
因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。
这些都是基于这种认识和理解,是有一定的道理的。
中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次的研究只能在大学进行。
只有通过大学高等数学各门必修课程和选修课程的学习和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的理论,才能认识到数学区别于其他学科的三种特性:抽象性、严谨性和高度的概括性。
2.国内外研究现状大学课程学习的思维单向性很强。
大学的学习给学生的感觉是用中学知识去学习大学课程中的内容,学生几乎感觉不到能用大学知识解决中学数学中的问题或对解中学数学问题有什么帮助。
“用”的观念淡薄了,“学”的热情自然而然的就少了。
抓住高等数学与初等数学之间的联系,加强高等数学对初等数学的指导作用及高等数学在初等数学中的一些应用是本课题研究的重点和关键问题。
中学数学教材中的教学难点经常让新教师费劲口舌,但学生仍然晕头转向,不知其意。
比如极限定义、集合和函数等。
一位新数学教师在解释从非空数集A到数集B的映射是函数时常常讲不清楚函数的值域到底是不是B。
高等数学在中学数学中的应用----毕业论文
【标题】高等数学在中学数学中的应用【作者】丁海云【关键词】高等数学中学数学联系应用【指导老师】陈强【专业】数学与应用数学【正文】1 引言近几年来,高等师范院校数学系的不少大学生对学习高等数学存在不少看法,如“现在学的高等数学好像与初等数学没有多大联系”,“学习高等数学对今后当中学数学教师作用不大”,有的甚至提出“高等数学在中学教学里根本用不上”等等.这些看法正如著名数学家克莱因早已指出的那样:“新的大学生一入学就发现,他面对的问题好像和中学里学过的东西一点也没有联系似的,当然他很快就忘了中学学的知识.但是毕业以后当了老师,他们又突然发现,要他们按老师的教法来教传统的初等数学,由于缺乏指导,他们很难辨明当前数学内容和所受大学数学训练之间的联系,于是很快坠入相沿成习的教学方法,而他们所受的大学训练至多成为一种愉快的回忆,对他们对教学毫无影响”.然而在新的数学教材中已经出现了一些基础的高等数学知识,可以说是数学发展的一种必然.现在的中学数学教师必须掌握高等数学的基础知识以适应数学发展和教材改革,而高等数学知识在开阔视野、指导数学解题、指导数学教学、对初等数学问题加以诠释等方面的作用就尤为突出了.本文探讨一些高等数学知识和方法在初等数学中的应用.2 初等数学与高等数学的联系一般说来,数学史家把数学的发展分成四个阶段(萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期)或五个时期(再加上“当代时期”).无论何种方法,都把第二发展时期叫做“初等数学时期”,这个时期的数学知识和经验就是“初等数学”,而把第三、第四或第三、四、五阶段叫做“高等数学时期”,这些阶段的数学知识和经验就是“高等数学”.理论意义下的初等数学和高等数学是按照恩格斯(Engles)的经典分法:所谓初等数学就是指常量数学,高等数学就是指变量数学,并把笛卡尔(R?Descartes)1637年发明的解析几何看成为出现高等数学或进入高等数学时期的标志.而教育意义下的初等数学和高等数学是依据教育的发展历程和教育的等级加以区分的,即视普通初等、中等教育(即中、小学教育)阶段的数学主要内容为初等数学,视高等教育阶段的数学主要内容为高等数学.当然,由于社会和教育的思想、方法、手段尤其是教育内容都在不断发展,“初等数学”和“高等数学”也是一个变化的客体对象,两者没有严格的概念区别.事实上,数学科学是一个不可分割的整体,它的生命力在于各部分之间的有机联系,只从学科表面上看,难以看清两者之间的内在联系,这就需要深入研究初等数学,理清其中最基本的思想和方法,努力寻求初等数学和高等数学的结合点.2.1 知识方面的联系高等代数在知识上是中学数学的继续和提高.它能解释许多中学数学未能说清楚的问题,如多项式的根及因式分解理论、线性方程组理论等.从以下几个方面说明:首先,中学代数讲多项式的加、减、乘、除运算法则.高等代数在拓宽多项式的含义,严格定义多项式的次数及加法、乘法运算的基础上,接着讲多项式的整除理论及最大公因式理论;中学代数给出了多项式因式分解的常用方法.高等代数首先用不可约多项式的严格定义解释了“不可再分”的含义,接着给出了不可约多项式的性质、唯一因式分解定理及不可约多项式在三种常见数域上的判定;中学代数讲一元一次方程、一元二次方程的求解方法及一元二次方程根与系数的关系.高等代数接着讲一元n次方程根的定义,复数域上一元n次方程根与系数的关系及根的个数,实系数一元n次方程根的特点,有理系数一元n次方程有理根的性质及求法,一元n次方程根的近似解法及公式解简介;中学代数讲二元一次、三元一次方程组的消元解法.高等代数讲线性方程组的行列式解法和矩阵消元解法、讲线性方程组解的判定及解与解之间的关系.中学代数学习的整数、有理数、实数、复数为高等代数的数环、数域提供例子;中学代数学习的有理数、实数、复数、平面向量为高等代数的向量空间提供例子.中学代数中的坐标旋转公式成为高等代数中坐标变换公式的例子.其次,中学几何的内容体系主要是由平面几何、立体几何和平面解析几何三部分构成.平面几何研究由点的集合而形成的平面几何图形的性质;立体几何研究空间几何图形的性质诸如直线、平面及旋转体;平面解析几何研究形与数结合的问题,重点是二次曲线理论的研究.侧重研究直线间的合同、相似极度量关系,就二次曲线而言也侧重于定义的直观描述和各自所具有的性质.作为高等几何而言,侧重于对直线形的结合关系、顺序关系及二次曲线一般理论的研究,具有普适性、全面性.中学几何学习的向量的长度和夹角为欧氏空间向量的长度和夹角提供模型,三角形不等式为欧氏空间中两点间距离的性质提供模型,线段在平面上的投影为欧氏空间中向量在子空间的投影提供模型.第三,高等数学分支之一数学分析的形成和发展体现了数学发展的每个新时期,不仅内容上更加丰富,更在思想方法上发生了根本性的变化.它的形成是深深扎根于初等数学基础之上,它的一些基本概念如导数、积分、无穷级数的收敛等,都是在初等数学有关问题的基础上发展起来的.如导数是在运用代数运算求直线斜率这一问题的基础上,发展成为运用极限方法求曲线上的点的斜率而形成的.可以这样讲,数学分析的形成是初等数学发展到一定阶段的必然结果.第四,集合论是关于无穷集合和超穷数的数学理论.它的建立是数学发展史上的一个里程碑,它给数学奠下了坚实的基础,其思想已渗透到数学的各个领域.它是整个数学的基础,它是数学的基本语言,同时也树立了现代数学的传统.我国中学数学中已经渗透了集合论的内容,如集合、映射及分类的思想,并使用了点集、解集合等集合论语言.综上所述可知,高等代数在知识上的确是中学数学的继续和提高.它不但解释了许多中学数学未能说清楚的如多项式的根及因式分解理论、线性方程组理论等问题,而且以整数、实数、复数、平面向量为实例,引入了数环、数域、向量空间、欧氏空间等代数系统.这对用现代数学的观点、原理和方法指导中学数学教学是十分有用的.2.2 思想方面的联系中学数学思想和方法主要体现为三个层次,第一层次指数学各分科的具体解题方法和解题模式,如代数中的加减消元法、代入消元法、韦达法、判别式法、公式法、非负数法、放缩法、错位相消法、复数法、数学归纳法等等;几何中的平移、旋转、对称、相似、辅助线及辅助面的作法、面积方法、体积方法、图形及几何体的割补方法、三角形奠基法等等;还有在解题教学中教师概括出来的具体解题模式、教科书给出的各种具体的解题程序和模式.第二层次指适用面很广的一些“通法”,如配方法、换元法、待定系数法、分离系数法、消元法、降次法、数形结合法、一般化与特殊化法、参数法、反证法、同一法、观察与实验、比较与分类、分解与组合、分析与综合、归纳与演绎、类比与联想、抽象与概括等等.第三层次指数学观念,即人们对数学的基本看法和概括认识,如推理意识、整体意识、抽象意识、化归意识、数学美的意识等等.在高等数学教育活动中,上述数学思想和方法将得到进一步强化,高等数学各分支学科中几乎渗透了三个层次的思想和方法,在空间解析几何、高等几何、微分几何等学科中明显渗透着第一层次的思想和方法,第二、第三层次的思想和方法是数学学习和研究的重要方法,在各层次的数学教学活动中都应该重视这些思想和方法的训练.除上述所举的思想和方法外,高等数学各分支学科中也渗透着许多新的思想和方法,如分析中的极限法、微分法、积分法等等;代数中的求公因式法、线性方程组的矩阵解法、二次型的正负判定法、线性变换法等等.现代中学数学和高等数学教学的一个显著特征就是注重知识形成过程的教学,形成和发展学生的数学思想和方法,会用数学思想和方法来解决问题.3 高等数学在中学数学中的应用用高等数学的观点、原理和方法,认识、理解和解决中学数学问题是我们大多数人的共同目的,也是高等数学价值的一种体现,尤其是在指导教学、指导解题、诠释初等数学问题等方面,体现非常明显.3.1 高等数学在中学数学教学中的作用我们知道,初等数学与高等数学之间无论在观点上还是在方法上都有着很大的区别.正因为这个原因,有许多学者就认为:学生不需要懂得什么高等数学知识,教师只要能照本本讲下去就可以了,其实这是一种误解.诚然,我们在课堂上不能把高等数学知识传授给学生,但我们作为一名教师倘若仅仅停留在本本上,那是很不够的,有时甚至连自己对一些初等数学问题也可能会感到费解,这是因为:一方面,高等数学是初等数学的继续和提高;另一方面,初等数学里很多理论遗留问题必须在高等数学中才能得以澄清.因此,我们对高等数学在初等数学教学中的作用不能掉以轻心,下面就这个问题谈谈笔者的一些初浅的体会.3.1.1 高等数学原理与中学数学教学首先,注重高等数学对初等数学的指导作用,运用原理,把握本质.多数教育工作者实践中认识到:教师只有深人研究高等数学,才能深刻把握初等数学的本质,使数学课堂教学不失科学性,做到居高临下,把课教活.如有这样一道题目:例1 解方程.解此题若按三次方程求解相当困难.但若将“”看作“未知数”,看作常量,则是一个关于“”的“一元二次方程”,,解之得= .所以原方程的解为,.可以看出,该题很好的把握了题目的主旨—变量和函数的观点.虽然变量与函数是数学分析研究的对象,中学数学中以常量问题为主,但有时若将这些问题中的字母,甚至常数看作变量,而将字母间的关系看作函数关系,运用变量和函数的观点去考察它,会使一些问题变得容易或为解题提示一种可行的思路.另外,中学数学教材中的数学知识,由于充分考虑到数学的社会性原则和学生的可接受性原则,往往是以教育形态(不是学术形态)的呈现,因此中学数学教材中的一些知识内容不可能严谨透彻,例如高中代数中的指数函数(a> 0且a≠1),由于中学阶段指数概念仅推广到有理数,而指数函数的定义域是实数集.然而要在中学阶段讲清这个问题是不大容易的,需要涉及极限理论.事实上,指数函数是群(R, +)到群(R+, )的同构映射,且保持序结构.同时,一些重要的数学基本定理,根据其在中学数学中的地位与作用,大都以“公理”的形式直接加以肯定,并予以直观的描述,严格的证明需通过高等数学的知识加以证明和完善.可以说,运用高等数学的知识能将中学数学中不能或很难彻底解决的基本理论加以严格地证明;反过来,中学数学中的问题也为高等数学的理论提供可靠的背景和模型.因此,教师学习和运用高等数学知识可以加深理解中学数学教学内容的安排意图,更利于提高高师生数学解题能力.其次,在教学中讲解高等数学在初等数学中的渗透,深化对中学知识的掌握高等数学中的概念、思想、方法很多已渗透到中学数学中,在教学中注意这方面的讲解,就能使学生充分地认识到高等数学对中学数学教学的指导意义,也说明教师充分认识到了“居高临下”的重要性.另外在中学数学中,对有些概念和方法没有加以解释和说明,就交给学生应用,虽然使用时能解决问题,但深入理解是不可能的.而作为未来的中学数学教师,对这些概念的理解与掌握就不能只停留在中学时的水平上,而应该更清楚和深刻.如:中学数学中把“形如a+bi(a,b都是实数)的数”叫作复数.这里的“+”是什么意思?a与bi是两个不同单位的元素,怎么可以相加?因此,这里的“+”只能看作是将a与bi连结成一个整体的符号.那么,能不能把这个符号理解为普通实数的加法符号呢?为此,就必须学习了近世代数中复数的构造性理论后才能解答.C是复数集,+,分别表示复数的加法与乘法,则(C;+,)是一个域,叫复数域.在对应关系:(a,0) a之下可证集合与实数域同构,故可把(a,0)看成实数a,即(a,0)=a,从而复数域就是实数域的一个扩域.由复数乘法的定义得.因此复数(0,1)和的性质相同.它是方程的一个根,令(0,1)=i,i为虚数单位.故任意复数(a,b)就可以写成(a,b)=(a,0)+(0,b)=a+bi中的“+”不仅是形式上的符号,它与实数算术运算中的“+”完全一致.3.1.2 高等数学观点与中学数学教学中学数学教学以渗透高等数学思想、观点,使它们相结合.现代高等数学的新思想、新理念、新观点及许多美妙而诱人的技巧和方法,使它更具有魅力.3.1.2.1 数学分析的辩证观点与中学数学教学数学分析不仅继承了初等数学的方法,而且又引进新的思想方法———极限法.运用极限方法,“常量”与“变量”、“直”与“曲”、“均匀”与“非均匀”等可实现相互转化.所以,从方法论的角度来讲,数学分析的有关知识和方法对理解和解决一些中学数学问题会起导向作用.例2 设有三次函数y= (p、q∈R),用微分方法求函数极值.解所以当>0时,无驻点,因而也无极值点;当=0时,驻点=0,但此时在=0两侧不变号,故=0不是极值点,即=0时无极值点;当 0时,有二驻点,又所以函数在处取得极大值在处取得极小值.这从思想、方法上更有指导性的是数学分析中的辩证观点,运用这样的方法,将会使我们中学数学问题的解决思路大为开阔,方法更加灵活有效,从而摆脱对问题束手无策或盲目乱试的困境.另外高等数学知识进一步探讨和学习,可增强学生的求知欲,达到培养学生的学习兴趣.教师运用高等数学知识可以提高对学生提出的一些问题的回答的正确性及敏捷性.3.1.2.2 高等几何思想与中学数学教学高等几何对教材内容的安排一般不同于中学几何,它是先给出定义、定理而后直观解释和证明,中学几何一般是先通过实例描述而后给出重要的概念和定理.前者训练抽象思维,后者训练形象思维,出发点不同,对同一问题得出的结论相同.全面了解欧氏几何、仿射几何、射影几何的联系与区别,从本质上认识,从整体上把握,又从局部上深入,才能深刻认识动与静、特殊与一般的辩证关系.就内容而言,高等几何比中学几何丰富,而且分析问题、处理问题的观点新颖,方法独特.如对偶原则,在研究点几何的同时,也研究了线几何的内容,对二次曲线的定义,既有几何定义,又有代数定义,开拓了认识眼界.从方法论来看,高等几何对具体问题处理的方法独特,而且灵活,对解决中学几何的有关命题提供了一种新的模式,也为中学几何的有关问题提供了知识背景.如利用中心射影投影一直线到无穷远来证明中学几何问题:若在平面上给定一个与直线有关的本质上是射影性质的几何命题,则只要恰当选择射影中心和向平面,总可以使直线的象直线是上的无穷远直线.由于无穷远直线的特殊性,有时可以将原命题化成上容易证明的新命题.既然射影变换保持射影性质不变,那么只要证明了新命题,则原命题也得到了证明.3.1.2.3 集合论的观点和方法与中学数学教学集合论是整个数学的基础,它不仅是数学的基本语言,而且树立了现代数学的传统.它蕴含着极其深刻的数学思想和丰富的数学方法,对分析和理解中学数学具有指导意义.映射是集合论的有力研究工具,也是数学中十分重要的化归方法,利用映射可以把不容易研究的集合上的问题转化到容易研究的集合上去,从而实现由未知(难、复杂)到已知(易、简单)的转化.映射方法的基本思想是:当处理某问题甲有困难时,可联想适当的映射,把问题甲及关系结构R映成与它有一一对应关系且易于考察的问题及关系结构;在新的关系结构中对问题处理完毕后,再把所得结果通过逆映射反演到R,求得关于问题甲所需的结果.这样启发了解题思路,又可用来指导数学发现.如:数学模型方法. 数学模型方法是指把所考察的实际问题化为数学问题,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决的一种数学方法.中学数学中的解应用题是最简单的数学模型方法.过程如下图:图1:运用数学模型方法解题过程框图3.2 高等数学在中学数学解题过程中的作用初等数学是高等数学的基础,二者有本质的联系.将高等数学的理论应用于初等数学,使其内在的本质联系得以体现,进而去指导初等数学的教学工作,是一个值得研究的课题.俗话说,站得高才能看得远.因此,笔者认为,作为中学教师,除掌握中学数学各种类型题的已熟知的初等方法外,还应善于用高等数学方法解决中学数学问题,特别是一些用初等数学方法难以解决或虽能解决但显得难、繁,而用高等数学方法则易于解决的中学数学问题,从而拓广解题思路和技巧,提高教师专业水平,促进中学数学教学.下面略几举例说明之:3.2.1 变换角度,化繁为简例3 求满足方程.解如果从中学数学考虑的话那颇费周折.但换种思路从变量和函数的观点来看是两个变量,上面的方程只能确定之间的函数关系,而不能求出其具体的值.茅盾的根源在于:中学数学中求未知数总是方程的个数和未知数的个数相同才能求出,但题目里面却是两个未知数一个方程.可以得出启发:应当设法构造出两个关于的方程.在实数范围内,将一个等式分成几个等式,最常见的方法是利用非负数,即若几个非负数之和为零,则其中每个必须为零.根据此思路,可将方程变形为进而变为,由是锐角知,上式中两项均为负,故都都等于零.从而解得.另外,许多初等数学中的问题,往往蕴含着数学中的较高层次理论的再实践的问题.如能在教学中有意将高等数学的原理、方法应用于一些初等数学的证明、计算,不仅可以开拓学生的视野,而且可使学生体会到教师所使用的高等数学的原理、方法在解决初等数学问题时的驾轻驭熟的感觉,进而更加有兴趣学习数学.3.2.2 利用函数的单调性证明不等式不等式是数学中不可缺少的工具之一,有许多不等式在数学研究中有着重要的作用.但用初等数学知识证明一些不等式比较困难,下面利用高等数学的原理和方法,就不等式的证明给出证法以帮助理解.我们知道对定义在区间(a,b)内的函数,若>0(或<0),则函数在(a,b)内严格增加(或严格减少),根据函数的单调性,可证明不等式.例4 证明不等式(其中x>0).证明:先证:.设,则在[0,+ )单调增加,又,当时,,即:.再证:.设,则, 当时,,即:.以上方法体现了用初等数学知识证明比较难的不等式时,可充分利用高等数学的原理和方法思考,进而收到很好的效果.3.2.3 利用高等几何思想解初等几何问题在中学数学教学中往往会碰到一些初等几何问题,欲用传统的综合证法,苦于找不到解决问题的思路,而用解析法却轻而易举,可又不能将此法告知学生,面临如何将它转化为纯几何的证明方法的问题,往往十分棘手.但利用高等几何知识进行思考,可收到很好的效果.例5 过一圆的弦AB的中点M引任意两弦CD和EF,连结CF和ED交AB弦于P、Q.求证:PM=MQ. (蝴蝶定理)分析:如图2,此题若局限在平面几何范围内去研究,虽能找到多种不同的证法,如:为使、是全等三角形的对应边,宜将沿直线翻折至,则有, ,故知.这样,又将线段相等归结为角的相等,而角的相等关系在圆上又可利用圆周角定理进行转化,即因,故内接于圆.再由内接于圆和、对称得出结论.但以上结论的得出来之不易,如果我们利用高等几何的交比来证明,就非常容易了.证明:如图,E(AF,DB)=C(AF,DB) (1)E(AF,DB)=(AM,QB) (2)E(AF,DB)=(AP,MB) (3)由(1)、(2)、(3)式得(AM,QB)=(AP,MB)(AM,QB)=(AP,MB)即亦即(4)因为 AM=BM,设PM=x,MQ=y,AM=BM=a,则由(4)式得图2所以故 PM=MQ这种证法不仅简单地证明了结论,而且还把结论推广到了二次曲线的情形.即如果把“蝴蝶定理”中的园换成椭圆、双曲线、抛物线,一对平行线或一对相交直线,结论仍成立.高等数学的许多方法和技巧都能直接应用于中学数学解题,常能起到以简驭繁,并能使问题得以深化和拓广的作用.以上只是给出两个实例说明高等数学能指导中学数学解题(初等代数和初等几何),且收到了很好的效果.在教学过程中,结合具体内容,不失时机地介绍给学生,对于丰富学生的解题方法,特别是作为教师在将来的数学教学中用它来预测答案,确定初等解法的路线,构造习题,检验结果都有重要的作用.3.2.4 微积分在中学数学解题中的指导作用微积分在高等数学里占有非常高的地位,它之所以能解决初等数学不能解决的问题,其根本原因是在初等数学的基础上它引进了一种新的思想方法——极限法.俗话说,站得高才能看得远.笔者认为,作为中学数学教师,利用微积分思想解决中学数学问题特别是一些用初等数学方法难以解决或虽能解决但显得难、繁,而用微积分思想则易于解决的中学数学问题,从而拓广解题思路和技巧,提高教师专业水平.例6 分解因式.解把看作变量,看作常量.令,求对的导数得。
浅谈高等数学在中学数学中的应用
浅谈高等数学在中学数学中的应用摘要本文探讨了初等数学和高等数学在知识体系上的差别以及应用上的联系,同时也探讨了他们地位上的差别和各自的重要性。
通过讨论可以得知,高等数学在很大程度上是初等数学的扩展。
本文第三部分重点介绍了微积分,不等式,行列式,以及高等几何等在初等数学中的应用,探讨了应用高等数学的思想方法解决初等数学的有关问题。
另外还探讨了高等数学在高考试题上体现的情况和如何解决相应的问题。
关键词高等数学中学数学微积分行列式AbstractThis study of elementary mathematics and higher mathematics in knowledge on the difference between system and application links, also discussed their differences on the status and importance of each. Through discussion can see that higher mathematics is to a large extent is an extension of elementary mathematics. This article focuses on the second part of calculus, inequality, determinants, as well as the application of higher geometry in elementary mathematics, explored the application of higher mathematics thought method to solve problems of elementary mathematics. Discussion also reflected on the college entrance examination in higher mathematics and how to solve the problemKey words advanced mathematics Mathematics calculus目录摘要 (I)Abstract (II)第一章前言 (1)1.1 研究背景 (1)1.2 课题研究意义 (1)1.3 文献综述 (2)1.4 研究方法 (2)1.5 创新之处 (2)第二章高等数学与初等数学的地位与联系 (3)2.1 初等数学与高等数学的定位 (3)2.2 高等数学与中学数学的联系 (4)2.2.1 中学数学与大学数学的统一性 (4)2.2.2 中学数学与大学数学的连贯性 (4)2.3 高等数学对初等数学的拓展 (5)2.3.1 代数方面 (5)2.3.2 几何方面 (6)第三章高等数学在初等数学中的应用 (8)3.1 高等代数在中学数学中的应用 (8)3.2.1 行列式的应用 (8)3.2.2 柯西—施瓦兹不等式应用 (9)3.2 微积分方法在中学数学的应用 (9)3.2.1 微积分方法在求函数的极值、最值中的应用 (10)3.2.2 用微积分知识直接用来处理初等数学的问题而达到简便的目的 (10)3.2.3 积分在空间立体体积与表面积中的应用 (12)3.2.4 积分在求曲线弧长中的应用 (14)3.3 高等几何在初等几何的应用 (14)3.3.1 仿射变换的应用 (14)3.3.2 射影几何观点在初等几何中的应用 (15)3.3.2.1 仿射变换的应用 (15)3.3.2.2 笛沙格定理的应用 (16)3.3.2.3 点列中四点的交比 (17)3.3.2.4 线束中四条直线的交比的应用 (18)第四章高考试题中的微积分在解题中的应用 (20)4.1 拉格朗日中值定理 (20)4.2 有关级数的应用 (23)总结 (26)参考文献............................................................ 错误!未定义书签。
高等代数在中学数学中的应用
高等代数在中学数学中的应用
高等代数在中学数学中的应用是非常广泛的。
它可以帮助学生在更高的数学水平上思考问题,学习解决看似复杂的数学问题。
高等代数也可以帮助学生扩展对函数、曲线、图像等基础概念的理解。
高等代数在中学数学中的主要应用包括:求解方程和不等式,分析几何图形的性质,计算几何变换的特性,学习和研究多元一次方程和不等式,学习一元和二元多项式,分析一元二次方程的解法,学习余弦法、反余弦法以及正弦法和指数函数等。
还可以利用高等代数对抛物线、三角函数和双曲线等常见函数进行分析,分析极限、贝塞尔和Tayor定理等特性,学习矩阵、向量、行列式以及进行积分和微分等科学计算。
高等代数在中学数学中的一些应用
高等代数在中学数学中的一些应用
高等代数是一门研究变量、函数和关系的数学,用于探索和解决复杂的问题,主要涉及分析、几何和代数的基本原理,是应用数学的有效工具之一。
高等代数在中学数学中有着广泛的应用。
高等代数在中学数学中最广泛的应用是分析函数。
函数是一种多变量表示内容,这种表示可以帮助学生更好地理解结构和语义,从而用来求解问题。
使用高等代数可以更好地应用函数。
例如,中学学生可以使用高等代数的技术来求函数的导数和定义域,以及了解函数的性质和行为。
此外,高等代数在中学数学中还有广泛的应用。
当学生学习几何时,可以使用高等代数的技术求解凸包和若干几何问题,进而推导几何变换。
在解非线性方程组问题时,学生也可以运用高等代数的技巧,有助于理解抽象性和复杂性道理。
另外,高等代数还可以让学生更好地理解统计和概率。
其中,概率理论是有多变量分布等复杂模型的数学建模,可以用线性代数和高等代数解决复杂问题。
此外,学生还可以学习多元分析中的多项式,从而帮助他们了解数据的方差和相关性等。
总之,高等代数是中学数学的重要组成部分,它的应用场景非常广泛,能够为学生解决许多问题。
当学生要求解复杂的函数、凸包或分析多变量分布时,都能使用高等代数的基本原理,有效的解决问题,辅助理解抽象性和复杂性的道理。
现代数学中代数与中小学数学的发展与联系-th
14
3.2:理 解 高 等代 数理 论 的 基本 概 念
1、 n维线性 空 间 的定义
2、 正交变换概念的理解
3 、 n阶行列式的定义和性质
4 、 克兰姆法则与线性方程组的解
15
3.3:大 学代数对中学数学的深入
1: 欧氏空间中柯西--布涅柯夫斯基不等式应用
2:现代数学中,集合、映射是最基本的概念,中学教材 中的每一个函数都是映射的具体例子 3:欧氏空间中向量到平面的距离以垂线最短引申到子空 间的情况,从而得出利用最小二乘法得到一般实系数线
类比
1:知识方面 2:思想方法方面 3:观念方面
6
2.1.1: 知识方面 中学代数讲二元一次、三元一次方程组的消元 解法;而线性代数讲线性方程组的行列式解法和矩 阵消元解法 ,讲线性方程组解的判定及解与解之间 的关系。 中学代数学习的有理数、实数、复数、平面 向量为线性代数的向量空间提供例子 ,坐标旋转公 式成为线性代数中坐标变换公式的例子。 中学几何学习的向量的长度和夹角为欧氏空间向量的 长度和夹角提供模型 ,三角形的不等式为欧氏空间中两 点间距离的性质提供模型。
现代数学中代数与中小学数学的发展与
联系
Tu Huan / December 28, 2016
内容:
1:现代数学的简要介绍
2:现代数学与中学数学的联系
3:现代数学与中学数学的有机结合 4:对教学的建议以及个人的理解和观点
2
1:现代数学的简要介绍
现代数学:现代数学时期,大致从19世纪上期叶开始。 数学发展的现代阶段的开端,以其所有的基础-------代数、几何、分析中的深刻变化为特征。这一时期数 学主要研究的是最一般的数量关系和空间形式,数和 量仅仅是它的极特殊的情形,通常的一维、二维、三 维的几何形象也仅仅是特殊情形。代数学,拓扑学、 分析学,是整个现代数学科学的主体部分。它们是大 学数学专业的课程,非数学专业也要具备其中某些知 识。变量数学时期新兴起的许多学科,蓬勃地向前发 展,内容和方法不断地充实、扩大和深入。
高等代数对中学数学的指导意义
高等代数对中学数学的指导意义
高等代数对中学数学的指导意义主要体现在以下几个方面:
1. 培养抽象思维能力:高等代数是数学中的一个重要分支,它通过抽象的符号和概念,研究代数结构及其性质。
学习高等代数可以培养学生的抽象思维能力,帮助他们建立起抽象概念和符号的联系,从而更好地理解和应用数学知识。
2. 深化对数学概念的理解:高等代数中的概念和理论往往是中学数学的深化和延伸,通过学习高等代数可以更深入地理解中学数学中的一些概念,如向量、矩阵等,并且为后续学习提供更加坚实的基础。
3. 培养逻辑思维和证明能力:高等代数中的定理和证明是数学思维的重要组成部分,学习高等代数可以培养学生的逻辑思维和证明能力。
通过解决高等代数中的问题和证明定理,学生可以锻炼自己的推理和证明能力,提高解决问题的能力。
4. 拓宽数学应用领域:高等代数是应用数学的重要工具,在物理、工程、计算机科学等领域有广泛的应用。
学习高等代数可以帮助学生了解和掌握一些数学工具和方法,为将来的学习和职业发展打下基础。
总之,高等代数对中学数学的指导意义主要体现在培养学生的抽象思维能力、深化数学概念的理解、培养逻辑思维和证明能力以及拓宽数学应用领域等方面。
通过学习高等代数,学生可以更好地理解和应用数学知识,为将来的学习和职业发展奠定坚实的基础。
高等代数在中学数学解题中的若干应用的论文
高等代数在中学数学解题中的若干应用的论文人们常有一种片面的观点,认为高校里所学的专业知识在中学数学中几乎无用,其理由是从初等数学到高等数学,在研究问题和处理问题的方式上存在着较大的区别.其实这是一种误解,正因为有这样的区别,才使我们从中学数学的解题思维定式中走出来,用一种更深远的眼光来看中学数学问题.高等代数不仅是初等数学的延拓,也是现代数学的基础,只有很好的掌握高等代数的基础知识才能适应数学发展和教材改革.高等代数知识在开阔视野,指导中学解题等方面的作用尤为突出.下面就来探讨一些高等代数知识在中学数学解题中的应用.初等数学中的某些问题看起来比较复杂,甚至难以下手,但用线性相关的方法却显得比较简单,通过从多方面多角度的思考能提高分析问题解决问题的能力.2.1求代数式的取值范围初等数学中某些线性相关问题,若采用一般的初等解题方法不相关地去看待,则会使计算繁难,且容易出错;利用高等数学中线性相关的思想方法来处理,则会使问题简单明了,易于解决.运用线性相关知识研究函数性质的问题,研究对象常以复合函数的形式出现,解决这一类型的问题往往采用新旧结合,或以新方法解决旧问题.2.2解决某些二元不定方程例3利有甲、乙、丙三种货物,若购甲3件,购乙7件,丙1件,共需315元,若购甲4件,乙10件,丙4件,共需420元,现购甲、乙、丙各1件,共需多少元?答:甲乙丙各购1件,共需105元.中学数学中有很多题涉及到了对一些因式的分解,虽然中学数学中有很多方法可以解决.但对于某些问题如果构造与之对应的行列式,然后用行列式的性质去解决,会起到事半功倍的效果.3.1应用于因式分解从上面两个例子可以看出,解此类数学问题的关键是构造行列式,以行列式为桥梁,把原型变形为不同的行列式,再利用行列式的性质加以解题.利用矩阵的性质和定理,可以很好的解决某些数列问题.在此例题中引入矩阵作为工具使用了矩阵的性质,轻而易举地求出了通项公式.从上例可知,使用柯西—施瓦兹不等式重要的是构造一个合适的欧氏空间,特别是构造内积运算,并找到两个合适的向量.高等代数在中学数学解题中的应用远不止上述几个方面,但通过上述问题的解决不难看出高等代数完全可以作为一种工具来解决中学数学中的问题,从而为解决中学数学问题提供了别开生面的思路.但我们也要了解高等代数应用于中学数学并不是简单的一题多解,而是一种知识的融会贯通.只有我们掌握好高等代数的课程,才能将它更好的用于将来所从事的中学数学教学工作中.内容仅供参考。
浅析高等代数与中学数学的关联
一
明显 , 常借 助于图形 。而高等代数在数学基本知识技 能方面的
培养 上是承上启下 的 , 一般先 给出严格 的定义 , 然 后从定义 出
因式 分解的存在 和唯一性定理 , 分别给 出了复数 系 、 实数系
的研究 ; 通过选定基 , 将 向量之 间的关系转化 为向量坐 标之间 的关 系; 将 线性变换 的研 究转化为矩 阵的研 究等 ; 同时按元素
的讲解 , 提高学 生的学 习兴趣 。 这样 , 高等数学类课程 的学 习难
度就会大大降低 。
一
、
高等数学类课程与中学数学在知识方面的联 系
间的关系进行分类 , 如用等价关 系、 相似关 系 、 合 同关系对矩 阵 分类 ; 利用 同构关 系对线 性空 间分类 、 用维数 对欧 氏空间分类 等, 这都用到归一化思想。 总之 , 中学数学 教学 中, 由于受 中学 生理解能 力和所学 知
新 校 园 X i n X i a o Y u a n
科研 教学
浅析高等代数与中学数学的关联
方 次 军 文分析 了高等代数与 中学数 学在知识 方面的联
武汉
4 3 0 0 6 8 )
的仅仅是向量元素 的一种特殊情形。 可见 ,高等代数在知识上 的确是 中学数学的继续和提高 。
发, 通 过严 密的逻辑推理得 出性质 、 定理 、 推论 , 直至建立 完整 的理论体 系 , 同时具备抽象性 和归一性 , 应用更广泛 , 从而能解
决更复杂的问题 。
参考文献 :
和有理数系 的因式分解
高等代数选讲课程中学生数学素质和数学能力的培养
我在多年 的教 学实践 中, 一 直引 用正 六边 形 图形 把三 角
以上是本人在 长期 的教学 实践 中积 累 的点滴 经验 , 鉴于高等职业院校 招生数 量与 质量 的下 降, 怎样 利用基 础课 有限的课时 , 在执行正 常教学计划 过程 中, 穿插进行 给学生 补
因此 , 给学生补全三角 函数知识 是高职数学教师必做的功课 。 函数 的基本关系表示 出来 , 收到事 半功倍 的效果 , 图形 把 中学
一 ”
+
“ — - 卜一 — — 卜n + ” — ・ 卜n - 4 - . - — - 卜“ - 4 - . - + ” +
- + ” +
一 + ” — + _ ” +
” +
- . +
” — — 卜 n +
” — - 卜“ +
- . — ・ 卜” — + ~
+
“ +
” + “ +
” +
“ + ” + ・ ・ +
定 的兴趣 。所以在本 科大 四的这一 阶段 , 在 高等 代数 选 讲课
中, 针对这些学生 , 培养其数学 素养 , 提高数学 能力 , 可 以为他
们将来从 事数学研究打下 良好基 础 。 但在 高等代数选讲 课 程 中怎样培 养学 生 的数 学素 养 , 提 高他们 的理论创新能力 ?如果仅 仅针对 他们考研 究生这 一 目
把六 边形分成 6个三角形 , 其 中, 3 个 倒置 的三 角形涂 黑 , 6 个 三角 函数 放置在六边形 的 6个定点 。对 角线上 的 2个 三角 函
共 同探讨 , 使学生 在有 限的时 间 内学 到系统 、 连贯、 完整 的数
高等代数教学对中小学数学教师数学素养培养的意义及教学策略
高等代数教学对中小学数学教师数学素养培养的意义及教学策略随着新一轮基础教育课程改革的不断深入,新《课程标准》教材的实施,特别是有效教学的不断尝试和实践,对中小学教师素养提出了更高要求。
高等师范院校数学专业的学生既是未来的数学工作者,更是未来的数学教育工作者。
因此,使其在数学专业课程的学习阶段得到数学理性思维的严格训练,养成良好的数学素养,是高师数学教育的重要任务,也是义不容辞的责任。
如何改变传统的数学专业的陈旧的教学观念,恰当的采用新的教育教学手段,科学的设计课堂教学策略,使传统的数学“三基”课程:高等代数、解析几何、数学分析教学在培养学生的数学素养方面发挥应有的作用是我们研究的课题。
本文就以笔者任教的高等代数课程为例,谈谈高等代数教学对小学数学教师数学素养培养的意义及教学策略。
1.高等代数能促进数学师范类学生必备的数学教师素养形成和发展国家提出“素质教育以来”,中小学开展了一系列的课程改革,特别是新课改背景下,《小学数学新课程标准(2016版)》提出数学教育的总目标,可将其概括为十大核心素养:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型、应用意识和创新意。
相应的我们未来的数学教师必须具备对应的相对高的数学素养。
高等代数课程的课程内容和教学目标对于学生的这些数学素养的形成和发展具有不可替代的作业。
1.1高等代数能促进学生高等抽象的数学思维的发展和符号运算的能力要培养学生的抽象思维和符号意识,教师就应该有较高的抽象思维和符号运算能力,而高等代数可以说是符号数学,代数符号语言是高等代数的基本语言,运算性和可平面摆布性是这些符号的基本特征。
例如多项式,就是中学多项式的形式化,也就是不再把它看成一个数或函数,而仅仅是一个数学符号,而这里引入的运算也只规定的符号之间的运算。
在教学中,要着重强调,在多项式的运算和相关结论的证明过程中,不能把它当然的看成数,一切都要按照规定的运算规则来推导,使学生逐步的习惯符号化的抽象的数学运算。
高等代数在中学数学中的一些应用
1 行列式的应用
111 应用于因式分解
因式分解是中学数学的一个重要内容 ,虽然在中学数学中有很多方法可以解决因式分解问题 ,但对
于某些因式分解问题如果构造与之对应的行列式 ,然后使用行列式的性质去解决 , 会起到事半功倍的效
果。 例 1 对 a3 + b3 + c3 - 3 abc 因式分解。
ui + 1
1
,A=
1 ,则有 U i = AUi - 1 ,且 U0 =
u1
= 1 ,于是 , U1 = AU0 , U2 = AU1 = A2 U0 , …,
ui
10
u0
1
Un = AnU0 ,
因为
1+ 5 2
A= P
1
1+ 5 1- 5
P - 1 ,其中 P = 2
2 , P- 1 =
5
- 1- 5 25 ,
Jul. 2006 Vol. 27 Suppl .
高等代数在中学数学中的一些应用
曹福桃
(南宁外国语学校 ,广西 南宁 530006)
[ 摘 要 ] 以几个例子说明了高等代数作为一种工具在中学数学中的一些应用 。 [ 关键词 ] 高等代数 ;中学数学 ;构造法 [ 中图分类号 ] G63316 [ 文献标识码 ] A [ 文章 编号 ] 1002 - 5227(2006) S - 0135 - 03
在标准内积下 ,有 :
( a1 b1 +
a 2 b2 +
…+
a n bn )
2
≤(
a
2 1
+
a
2 2
+
…+ a2n)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(
)
⎛ a 11 a 12 ⎜ ⎜ a 21 a 22 A=⎜ " " ⎜ ⎜ a n1 a n 2 ⎝
" a 1n " a 2n " " " a nn
从而可求得:
2k 2 +1− 1+ 4k 2 k2 2k 2 +1+ 1+ 4k 2 k2
这个结论的应用较为广泛,参考文献[3]作了较好的 总结。下面我们看看它的另一个应用。
4
分析:结论显然。下面通过例题说明如何利用上述 结论证四点共圆问题。 例 1 设 P ( 0 , a ) 为平面上一点,过点 P 做抛物线
x
2
由上述定理可知 P 、 A 、 F 、 B 四点共圆。 同理可证另一种情形,故上述结论成立。 例 2 (2004 年重庆高考题)如图 1 设 p > 0 是一常 数,过点 Q ( 2 p , 0) 的直线与抛物线 y 2 = 2 p x 交于相异
1+ 1+ 4k 2 k yA + yB 2 =
p, 1 p。 k
⎧ a x0 + b y 0 − z0 = 0 ⎛ a b −1 ⎞ ⎛ x ⎞ ⎜ ⎟⎜ ⎟ ⎪ 0 + − = b x y z , 即 ⎜ b 1 − 1 ⎟ ⎜ y ⎟ = 0 有非 ⎨ 0 0 0 ⎜ 1 a −1 ⎟⎜ z ⎟ ⎪ x +ay −z =0 0 0 ⎝ ⎠⎝ ⎠ ⎩ 0 ⎛ x0 ⎞ a b −1 ⎜ ⎟ 0 解 ⎜ y 0 ⎟ ,所以由上述结论有 b 1 − 1 = 0 ,展开整 ⎜ ⎜ z0 ⎟ ⎟ 1 a −1 ⎝ ⎠
2 2 xH + yH =
两点 A 、 B ,以线段 AB 为直径做圆 H ( H 为圆心) , 试证明抛物线的顶点在圆 H 的圆周上;并求圆 H 的面 积最小时直线 AB 的方程。
y
4+ 4k 2 + 2 k4 p, 故要使
B
只需 k → ∞ , 此时直线 AB 的方程为: 圆 H 的面积最小,
H o A Q C x
82
=0
例 4 五一长假,自驾车游客很多,某高速公路收费 站前的车辆排起了长龙。设车辆均匀地来到本站,窗口 收费的速度是固定的。如果开放 1 个收费窗口,30 分钟
0
邵远夫
肖金戈:高等代数方法在中学数学中的应用
x1 , x 2 ,", x n ≥ 0 ,证明对任意 n ≥ 4 ( n ∈ N ) ,有:
x=2p。
当然,利用上述结论证明该题运算比较烦琐,要求 对行列式的计算很熟练,但方法简单、思路清晰且易于 掌握。
图1
分析:设圆 H 交 x 轴于点 C ,只需证 O 、 A 、 C 、
B 四点共圆方可。而这四点的坐标容易求出,从而可用
2.利用齐次线性方程组的解的理论解应用题
我们知道,齐次线性方程组
上述结论证明。至于第二问,求出其半径表达式,讨论 方可。 证明:依题意,设直线 AB 的方程为 y = k ( x − 2 p )
(
)
= x1 + x 2 + " + x n
为半正定二次型,即
(
)2 − 4 ( x1 x 2 + x 2 x 3 + " + x n x1 )
解之得 n = 5 。所以 n ≥ 5 方可,即至少应开放 5 个 窗口。 注:齐次线性方程组解的理论的应用范围很广,大 家应多多总结。若应用得当,会收到“柳安花明、事半 功倍”的效果。
1 ⎞ ⎟ " 1 ⎟ 的一切 k 级 " "⎟ ⎟ " 1 ⎟ ⎠ "
= x1 + x 2 + " + x n
(
= x 1 , x 2 ," , x n
(
)
将 x 0 、 y 0 、 z 0 看作上述对应齐次方程组
⎧ x 0 + 30 y 0 − 30 z 0 = 0 ⎪ ⎪ ⎨ x 0 + 20 y 0 − 2 • 20 z 0 = 0 的非 0 解, ⎪ ⎪ x 0 + 10 y 0 − n • 10 z 0 ≤ 0 ⎩
理得:
a + b − a 2 − b 2 + a b = −1 。
xA + xB 2
2k 2 +1
p 、y H =
由 CH = AH 可得 x C =
2 x2 A + yA 2 2 + yB xB 2 xC
4k 2 + 2 k2
p 。代入计算可得:
xA xB xC 0
yA 1 yB 1
0 0 1 1
分析:可以采用上述同样方法来证明(略) 。 例 7 问 t 取何值时,下列不等式总成立?
x 2 + y 2 + 5z 2 > 2x z −t x y − 4 y z
如果对任意一组不全为 0 的实数 c1 、c 2 、 ……、c n 来说,都有 f c1 , c 2 ,"c n > 0 ,则称之为正定二次型, 对应的矩阵 A 叫做正定矩阵;如果对任意一组不全为 0 的实数 c1 、 c2 、 ……、 c n 来说, 都有 f c1 , c 2 ,"c n ≥ 0 , 则称之为半正定二次型,对应的矩阵 A 叫做半正定矩 阵。有关矩阵正定和半正定的判定见参考文献 [4] 的
⎧ a 11 x1 + a 12 x 2 + " + a 1n x n = 0 ⎪ ⎪ a 21 x 1 + a 22 x 2 + " + a 2 n x n = 0 ⎨ """"""""""" ⎪ ⎪ a n1 x 1 + a n 2 x 2 + " + a n n x n = 0 ⎩
有非 0 解的充分必要条件是
(
)
解:设 f ( x , y , z )
= x2 + y 2 + 5z 2 − (2xz −t x y − 4 y z )
(
)
(
)
=(x
y
231~237 页。
正定和半正定矩阵是高等代数的重要内容。在中学 数学中,我们也可以用正定和半正定矩阵的知识证明一 些不等式,且证明思路清晰,容易掌握。下面举例说明 这方面的应用。 例 5 ( 参 考 文 献 [5]30 页 第 12 题 ) 设
p
xA =
例 3 设 a x 0 + b y 0 = y 0 + b x 0 = x 0 + a y 0 = z 0 ,其中
z 0 ≠ 0 ,求 a + b − a 2 − b 2 + a b 的值。
xB = p
解:将已知条件变形为
所以 y A = 从而 x H =
1− 1+ 4k 2 k
= k2
p 、 yB =
2 x1 2 x2 2 x3 2 x4
将 y = 0 代入上述方程可得 A 、 B 两点的坐标分别为
⎛ A⎜ − ⎜ ⎝
− 2a p 2
⎛ ⎞ ,0 ⎟ 、 B ⎜ ⎜ ⎟ ⎝ ⎠
− 2a p 2
⎞ , 0 ⎟ ,又点 P 、 F 的 ⎟ ⎠
(
) ( i = 1, 2 , 3, 4 ) 共圆的
p ⎞ 坐标为: P ( 0 , a ) 、 F ⎛ ⎜ 0 , 2 ⎟ ,而 ⎝ ⎠
+ + + +
2 y1 2 y2 2 y3 2 y4
x1 x2 x3 x4
y1 1 y2 1 y3 1 y4 1 =0。
−a p −a p a p2
2
2 2
−
− 2a p 2 − 2a p 2 0 0
0 0 a p 2
1 1 = 1 1 − 2a p 2 −a p a2 p2 4 0 a p 2 2 1 =0 1
(x1 + x 2 + " + x n )2 ≥ 4 ( x1 x 2 + x 2 x 3 + " + x n x1 ) ,
结论得证。 例 6 (参考文献[5]113 页第 14 题) 已知 x, y, z ∈ R ,
3.利用正定和半正定矩阵证明不等式
对于实二次型 f x 1 , x 2 ," x n = X A X ′ 而言,其中
( k ≠ 0 ) ,点 A 、 B 、 C 、 H 的坐标分别为 A ( x A , y A ) ,
B x B , y B , C xC , yC , H x H , y H 。
则由 k
2
(
)
(
)
(
)
A = 0 。其中 ⎞ ⎟ ⎟ ⎟。 ⎟ ⎟ ⎠
(x−2p)
2
= 2 p x ,有
k 2 x 2 − 4 k 2 p + 2 p x + 4k 2 p 2 = 0
( x1 + x 2 + " + x n )2 ≥ 4 ( x1 x 2 + x 2 x 3 + " + x n x1 ) 。
证明:设
f x 1 , x 2 , ", x n
(
) )2 − 4 ( x1 x 2 + x 2 x 3 + " + x n x1 )
" 1 ⎞⎛ x1 ⎞ ⎟ ⎟⎜ " 1 ⎟⎜ x 2 ⎟ ⎜ ⎟, " " ⎟⎜ # ⎟ ⎟ ⎜ ⎟ " 1 ⎟ ⎠⎝ x n ⎠