解析几何第四版吕林根课后习题答案第五章

合集下载

解析几何第五章习题及解答

解析几何第五章习题及解答

第五章 正交变换和仿射变换习题5.1 1.证明变换的乘法适合结合律,即 123123()().σσσσσσ=证明:设:,1,2,3.i S S i σ→=,显然都是S 的变换,对任给a S ∈,有123123123[()]()[()()][(())],a a a σσσσσσσσσ== 123123123[()]()()[()][(())],a a a σσσσσσσσσ==因此 123123[()]()[()](),a a σσσσσσ= 从而 123123()().σσσσσσ= 2.求出平面上对直线y x =的反射公式。

解:在直角坐标系中,设点(,)P x y 关于直线y x =的对称点是(,)P x y ''',则,P P '的中点在直线y x =上,且PP '与直线垂直,因此有:,22()()0,x x y yx x y y ''++⎧=⎪⎨⎪''-+-=⎩ 得到,,x y y x '=⎧⎨'=⎩即平面上对直线y x =的反射公式:01.10x x y y '⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪'⎝⎭⎝⎭⎝⎭3.设平面上直线l 的方程0Ax By C ++=,求平面对于直线l 的反射的公式。

解:在直角坐标系中,设点(,)P x y 关于直线0Ax By C ++=的对称点是(,)P x y ''',则,P P '的中点在直线0Ax By C ++=上,且PP '与直线垂直,因此有:0,22()()0,x xy y A B C x x B y y A ''++⎧++=⎪⎨⎪''---=⎩ 解此方程得到平面对于直线l 的反射的公式:222222221[()22],1[2()2].x B A x ABy AC A B y ABx A B y BC A B⎧'=---⎪⎪+⎨⎪'=-+--⎪⎩+4. 设12,l l 是平面上两条平行直线,而12,σσ分别是平面对于直线12,l l 的反射,证明12σσ是一个平移。

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

第一章向量与坐标§1.1 向量的概念1.下列情形中的向量终点各构成什么图形?(1)把空间中一切单位向量归结到共同的始点;(2)把平行于某一平面的一切单位向量归结到共同的始点;(3)把平行于某一直线的一切向量归结到共同的始点;(4)把平行于某一直线的一切单位向量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在向量OA、、OC、、、OF、、BC、CD、、EF和FA中,哪些向量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的向量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对向量中,找出相等的向量和互为相反向量的向量:(1) AB、; (2) AE、; (3) 、;(4) AD、; (5) BE、.[解]:相等的向量对是(2)、(3)和(5);互为反向量的向量对是(1)和(4)。

§1.2 向量的加法1.要使下列各式成立,向量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-E(5=[解]:(1),-=+(2),+=+(3≥且,=+ (4),+=-(5),≥-=-§1.3 数量乘向量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从向量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出向量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线向量AL , BM ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线向量CN BM AL ,,构成一个三角形。

解析几何-吕林根-课后习题解答一到五

解析几何-吕林根-课后习题解答一到五

第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.解:2. 设点O是正六边形ABCDEF的中心,在矢量OA、OB、OC、OD、OE、OF、AB、BC、CD、DE、EF和FA中,哪些矢量是相等的?[解]:图1-13. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、CD; (2) AE、CG; (3) AC、EG;(4) AD、GF; (5) BE、CH.解:§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件? (1=+ (2+=+ (3-=+ (4+=- (5= 解:§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解:2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF . 解:3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 解:4 在四边形ABCD中,→→→+=baAB2,→→→--=baBC4,→→→--=baCD35,证明ABCD为梯形.解:6. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量AL, BM, CN可以构成一个三角形.7. 设L、M、N是△ABC的三边的中点,O是任意一点,证明OBOA++OC=OL+OM+ON.解:8. 如图1-5,设M是平行四边形ABCD的中心,O是任意一点,证明OA+OB+OC+OD=4OM.解:9在平行六面体ABCDEFGH(参看第一节第4题图)中,证明→→→→=++AGAHAFAC2.证明:.10.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.解11. 用矢量法证明,平行四边行的对角线互相平分.解12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0.解,13.在12题的条件下,设P 是任意点,证明 证明:§1.4 矢量的线性关系与矢量的分解1.在平行四边形ABCD 中,(1)设对角线,,b BD a AZ ==求.,,,DA CD BC AB 解(2)设边BC 和CD 的中点M 和N ,且q AN P AM ==,求CD BC ,。

1-5解析几何吕林根第四版

1-5解析几何吕林根第四版

因为M1为P2 P3的中点,故M1(
x2
+ 2
x3
,y2
+ 2
y3 ,z2
+ 2
z3
),又因为G为重心,
故有P1G 2= GM1,即重心G把中线分成定比λ 2,
P1
利用定比分点坐标公式可得
x x= 1 + x2 + x3 ,y y= 1 + y2 + y3 ,z
3
3
z1 + z2 + z3 . G 3
e1, e2 , e3 两两相互垂直的笛卡尔标架叫做笛卡尔直角标架;简称直角标架;
在一般情况下,叫做仿射标架.
P
e3 r
e1 O
e2
e3 e1 O e2
e3 e1 O e2
注: (1) 标架{O; e1, e2 , e3}中的向量 e1, e2, e3 是有顺序的,交换它们
的次序将会得到另一标架.
(2) 空间标架有无穷多个.
e3
e1 O
e2
e3
e2 O
e1
右手(旋)标架
左手(旋)标架
二、坐标
{ } 定义 1.5.2 (1)式中的 x, y, z 叫做向量 r 关于标架 O;e1, e2, e3 的
坐标或称为分量,记做 r{x, y, z} 或{x, y, z} .
{ } 定义 1.5.3 对于取定了标架 O;e1,e2,e3 的空间中任意点 P ,向量 OP { } 叫做点 P 的向径,或称点 P 的位置向量,向径 OP 关于标架 O;e1,e2,e3 的坐 { } 标 x, y, z 叫做点 P 关于标架 O;e1,e2,e3 的坐标,记做 P ( x, y, z) 或 ( x, y, z).

1-4解析几何吕林根第四版

1-4解析几何吕林根第四版
GF与 CG共线
证明: AG = λGD; BG = µGE;
CG = AG − AC = λ AD − AC
=
λ

1
(
1+ λ
AB + AC)

AC
1+λ 2
= λ AB − λ + 2 AC
2(1 + λ) 2(1 + λ)
CG = BG − BC = µ BE − BC 1+ µ
= µ • (AE − AB) − BC 1+ µ
八、共面向量的条件
定理1.4.7 三向量共面的充要条件是它们线性相关. 定理1.4.8 空间任何四个向量总是线性相关.
推论 空间四个以上向量总是线性相关.
例6
设 p = a − b + 5 − 1 b + b − 3a , q = 4a + 5b,
2
5
试证明 : p // q.
证明:
p
=
(1

5
组合,即
r = xe1 + ye2 + ze3 ,
C
并且其中系数 x, y, z 被
e1, e2, e3, r 惟一确定.
P
向量 e1, e2, e3 叫做空间向量的基底.
E3 e3 r
E1 e1 O e2 E2
B
A
例1 已知三角形OAB,其中= OA a= , OB b, 而M、N分别
是三角形OA,OB 两边上的点,且有OM= λ a (0 < λ < 1) ,
线性相关.
推论 一组向量如果含有零向量,那么这组向量必线性相关.
七、共线向量的条件

解析几何_苏大第四版 课后答案(吕林根_许子道)

解析几何_苏大第四版 课后答案(吕林根_许子道)

1 ∵ AL = ( AB + AC ) 2 1 BM = ( BA + BC ) 2 1 CN = (CA + CB) 2 1 ∴ AL + BM + CN = ( AB + AC + BA + BC + CA + CB ) = 0 2 从而三中线矢量 AL, BM , CN 构成一个三角形。
OA + OB + OC = OL + OM + ON .
PA + PB + PC = 0 . [证明]: “ ⇒ ” 若 P 为△ABC 的重心,则
CP =2 PE = PA + PB ,
从而 即
PA + PB - CP = 0 , PA + PB + PC = 0 .
图 1-9
“ ⇐ ” 若 PA + PB + PC = 0 , 则 PA + PB =- PC = CP , 取 E,F,G 分别为 AB,BC,CA 之中点,则有
1 m , μ= 1+ m 1+ m 1 m + =1. 从而 λ+μ= 1+ m 1+ m
λ=
“ ⇐ ” 设 λ+μ=1. 则有 OC =λ OA +μ OB =λ OA +(1-λ) OB = OB +λ( OA - OB ),
OC - OB =λ( OA - OB ),
所以
BC =λ BA ,
F
OF 、 AB 、 BC 、 CD 、
DE 、 EF
和 FA 中,哪些矢量是相等的? [解]:如图 1-1,在正六边形 ABCDEF 中, 相等的矢量对是:

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根课后习题答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第三章 平面与空间直线§ 平面的方程1.求下列各平面的坐标式参数方程和一般方程:(1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面;(3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。

求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ∆平面垂直的平面。

解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为:一般方程为:07234=-+-z y x(2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。

(3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为:一般方程为:0745910=-++z y x 。

(ⅱ)设平面π'通过直线AB ,且垂直于ABC ∆所在的平面∴}1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-⨯--=⨯AC AB均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:042:=+-+z y x π.解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为:1424=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-,∴ 所求平面的参数式方程为:3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为:0=++CZ BY AX . 证明: 不妨设0≠A ,则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{ACA B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为:v ,}1,0,{},0,1,{ACA B --共面⇔ ⇔ 0=++CZ BY AX .4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标.解: }5,2,3{z AB +-= 而AB 平行于0147=--+z y x 由题3知:0)5(427)3(=+-⨯+⨯-z 从而18=z .5. 求下列平面的一般方程.⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面; ⑶与平面0325=+-+z y x 垂直且分别通过三个坐标轴的三个平面;⑷已知两点()()1,2,4,2,1,321--M -M ,求通过1M 且垂直于21,M M 的平面; ⑸原点O 在所求平面上的正射影为()6,9,2-P ;⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面.解:平行于x 轴的平面方程为001011112=--+-z y x .即01=-z .同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z . ⑵设该平面的截距式方程为132=+-+-c z y x ,把点()4,2,3-M 代入得1924-=c 故一般方程为02419812=+++z y x .⑶若所求平面经过x 轴,则()0,0,0为平面内一个点,{}2,1,5-和{}0,0,1为所求平面的方位矢量,∴点法式方程为001215000=----z y x ∴一般方程为02=+z y .同理经过y 轴,z 轴的平面的一般方程分别为05,052=-=+y x z x .⑷{}2121.3,1,1M M --=M M →垂直于平面π, ∴该平面的法向量{}3,1,1--=→n ,平面∂通过点()2,1,31-M , 因此平面π的点位式方程为()()()02313=--+--z y x . 化简得023=+--z y x . (5) {}.6,9,2-=→op∴ .116cos ,119cos ,112cos -===∂γβ 则该平面的法式方程为:.011116119112=--+z y x既 .0121692=--+z y x(6)平面0138=-+-z y x 的法向量为{}3,8,1-=→n ,{}1,6,121=M M ,点从()2,1,4写出平面的点位式方程为0161381214=----z y x ,则,261638-=-=A74282426,141131,21113-=++⨯-=====D C B ,则一般方程,0=+++D Cz By Ax 即:.037713=---z y x 6.将下列平面的一般方程化为法式方程。

解析几何全册课件(吕林根版)精选全文完整版

解析几何全册课件(吕林根版)精选全文完整版
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
(2)结合律:
(3)
上一页
下一页
返回
O
A1
A2
A3
A4
An-1
An
这种求和的方法叫做多边形法则
上一页
下一页
返回
向量减法
上一页
下一页
返回
A
B
C
上一页
返回
例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.

上一页
下一页
返回


为直线上的点,
6、线段的定比分点坐标
上一页
下一页
返回
由题意知:
上一页
下一页
返回
定理1.5.4 已知两个非零向量
7、其它相关定理

共线的充要条件是
定理1.5.6 已知三个非零向量
,则
共面的充要条件是
上一页
返回
空间一点在轴上的投影(Projection)
§1.6 向量在轴上的射影

根据题意有
所求方程为
上一页
下一页
返回
根据题意有
化简得所求方程

上一页
下一页
返回
例4 方程 的图形是怎样的?
根据题意有
图形上不封顶,下封底.

以上方法称为截痕法.
上一页
下一页
返回
以上几例表明研究空间曲面有两个基本问题:
线为
的连
的中点
对边
一组
设四面体

e
e
e
AP
e
AD
e
AC
e

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

解析⼏何第四版吕林根课后习题答案第五章第五章⼆次曲线⼀般的理论§5.1⼆次曲线与直线的相关位置1. 写出下列⼆次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y .(1)22221x y a b +=;(2)22221x y a b -=;(3)22y px =;(4)223520;x y x -++=(5)2226740x xy y x y -+-+-=.解:(1)22100100001a A b ?? ?= - ;121(,)F x y x a =221(,)F x y y b=3(,)1F x y =-;(2)22100100001a A b ?? ?=- -;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -??= ? ?-??;1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020305022A ?? ?=-;15(,)2F x y x =+;2(,)3F x y y =-;35(,)22F x y x =+;(5)1232171227342A ??-- ? ? ?=---;11(,)232F x y x y =--;217(,)22F x y x y =-++;37(,)342F x y x y =-+-. 2. 求⼆次曲线22234630x xy y x y ----+=与下列直线的交点.(1)550x y --=(2)220x y ++=;(3)410x y +-=;(4)30x y -=;(5)2690x y --=.提⽰:把直线⽅程代⼊曲线⽅程解即可,详解略(1)15(,),(1,0)22-;(2??,??;(3)⼆重点(1,0);(4)11,26??;(5)⽆交点.3. 求直线10x y --=与222210x xy y x y -----=的交点. 解:由直线⽅程得1x y =+代⼊曲线⽅程并解⽅程得直线上的所有点都为交点. 4 .试确定k 的值,使得(1)直线50x y -+=与⼆次曲线230x x y k -+-=交于两不同的实点;(2)直线1,{x kt y k t=+=+与⼆次曲线22430x xy y y -+-=交于⼀点;(3)10x ky --=与⼆次曲线22(1)10xy y k y -+---=交于两个相互重合的点;(4)1,{1x t y t=+=+与⼆次曲线222420x xy ky x y ++--=交于两个共轭虚交点.解:详解略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4)4924k >. §5.2⼆次曲线的渐进⽅向、中⼼、渐进线1. 求下列⼆次曲线的渐进⽅向并指出曲线属于何种类型的(1)22230xxy y x y ++++=;(2)22342250x xy y x y ++--+=;(3)24230xy x y --+=.解:(1)由22(,)20X Y X XY Y φ=++=得渐进⽅向为:1:1X Y =-或1:1-且属于抛物型的;(2)由22(,)3420X Y X XY Y φ=++=得渐进⽅向为:(2:3X Y =-且属于椭圆型的;(3)由(,)20X Y XY φ==得渐进⽅向为:1:0X Y =或0:1且属于双曲型的.2. 判断下列曲线是中⼼曲线,⽆⼼曲线还是线⼼曲线.(1)22224630x xy y x y -+--+=;(2)22442210x xy y x y -++--=;(3)2281230y x y ++-=;(4)2296620x xy y x y -+-+=.解:(1)因为2111012I -==≠-,所以它为中⼼曲线;(2)因为212024I -==-且121241-=≠--,所以它为⽆⼼曲线;(3)因为200002I ==且004026=≠,所以它为⽆⼼曲线;(4)因为293031I -==-且933312--==-,所以它为线⼼曲线; 3. 求下列⼆次曲线的中⼼.(1)225232360x xy y x y -+-+-=;(2)222526350x xy y x y ++--+=;(3)22930258150x xy y x y -++-=.解:(1)由510,3302x y x y --=-++=??得中⼼坐标为313(,)2828-;(2)由5230,2532022x y x y ?+-=+-=??得中⼼坐标为(1,2)-;(3)由91540,15152502x y x y -+=??-+-=知⽆解,所以曲线为⽆⼼曲线. 4. 当,a b 满⾜什么条件时,⼆次曲线226340x xy ay x by ++++-=(1)有唯⼀中⼼;(2)没有中⼼;(3)有⼀条中⼼直线.解:(1)由330,2302x y b x ay ?++=++=??知,当9a ≠时⽅程有唯⼀的解,此时曲线有唯⼀中⼼;(2)当9,9a b =≠时⽅程⽆解,此时曲线没有中⼼;(3)当9a b ==时⽅程有⽆数个解,此时曲线是线⼼曲线.5. 试证如果⼆次曲线22111222132333(,)2220F x y a x a xy a y a x a y a =+++++= 有渐进线,那么它的两个渐进线⽅程是Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=式中00(,)x y 为⼆次曲线的中⼼.证明:设(,)x y 为渐进线上任意⼀点,则曲线的的渐进⽅向为00:():()X Y x x y y =--,所以Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=.6. 求下列⼆次曲线的渐进线.(1)226310x xy y x y --++-=;(2)2232340x xy y x y -++-+=;(3)2222240x xy y x y ++++-=.解:(1)由1360,2211022x y x y ?-+=--+=??得中⼼坐标13(,)55-.⽽由2260X XY Y --=得渐进⽅向为:1:2X Y =或:1:3X Y =-,所以渐进线⽅程分别为210x y -+=与30x y += (2)由310,22332022x y x y ?-+=-+-=??得中⼼坐标13(,)55-.⽽由22320X XY Y -+=得渐进⽅向为:1:1X Y =或:2:1X Y =,所以渐进线⽅程分别为20x y -+=与210x y --=(3)由10,10x y x y ++=??++=?知曲线为线⼼曲线,.所以渐进线为线⼼线,其⽅程为10x y ++=.7. 试证⼆次曲线是线⼼曲线的充要条件是230I I ==,成为⽆⼼曲线的充要条件是230,0I I =≠. 证明:因为曲线是线⼼曲线的充要条件是131112122223a a a a a a ==也即230I I ==;为⽆⼼曲线的充要条件是131112122223a a a a a a =≠也即230,0I I =≠. 8. 证明以直线1110A x By C ++=为渐进线的⼆次曲线⽅程总能写成111()()0A x By C Ax By C D +++++=. 证明:设以1110A x By C ++=为渐进线的⼆次曲线为 22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,则它的渐进线为Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=,其中00(,)x y 为曲线的中⼼,从⽽有Φ00(,)x x y y --=111()()0A x By C Ax By C ++++= ,⽽Φ00(,)x x y y --=0 因为00(,)x y 为曲线的中⼼,所以有11012013a x a y a +=-,12022023a x a y a +=- 因此Φ000033(,)(,)(,)x x y y F x y x y a φ--=+-,令0033(,)x y a D φ-=-,代⼊上式得即111(,)()()F x y A x By C Ax By C D =+++++,所以以1110A x By C ++=为渐进线的⼆次曲线可写为111()()0A x By C Ax By C D +++++=.9.求下列⼆次曲线的⽅程.(1)以点(0,1)为中⼼,且通过(2,3),(4,2)与(-1,-3);(2)通过点(1,1),(2,1),(-1,-2)且以直线10x y +-=为渐进线. 解:利⽤习题8的结论即可得:(1)40xy x --=;(2)2223570x xy y x ---+=.§5.3⼆次曲线的切线1. 求以下⼆次曲线在所给点或经过所给点的切线⽅程.(1)曲线223457830x xy y x y ++---=在点(2,1);(2)曲线曲线223457830x xy y x y ++---=在点在原点;(3)曲线22430x xy y x y +++++=经过点(-2,-1);(4)曲线225658x xy y ++=经过点();(5)曲线222210x xy y x y -----=经过点(0,2).解:(1)910280x y +-=;(2)20x y -=;(3)10,30y x y +=++=;(4)1150,0x y x y +-=-+=;(5)0x =.2. 求下列⼆次曲线的切线⽅程并求出切点的坐标.(1)曲线2243530x xy y x y ++--+=的切线平⾏于直线40x y +=;(2)曲线223x xy y ++=的切线平⾏于两坐标轴.解:(1)450x y +-=,(1,1)和480x y +-=,(4,3)-;(2)20y ±=,(1,2),(1,2)--和20x ±=,(2,1),(2,1)--. 3. 求下列⼆次曲线的奇异点.(1)22326410x y x y -+++=;(2)22210xy y x +--=;(3)2222210x xy y x y -+-++=.解:(1)解⽅程组330,220x y +=??-+=?得奇异点为(1,1)-;(2)解⽅程组10,0y x y -=??+=?得奇异点为(1,1)-.4.试求经过原点且切直线4320x y ++=于点(1,-2)及切直线10x y --=于点(0,-1)的⼆次曲线⽅程. 解:利⽤(5.3-5)可得226320x xy y x y +-+-=.5.设有共焦点的曲线族2222221x y a h b h+=++,这⾥h 是⼀个变动的参数,作平⾏于已知直线y mx =的曲线的切线,求这些切线切点的轨迹⽅程. 解:设切点坐标为00(,)x y ,则由(5.3-4)得曲线的切线为0022221x x y ya hb h+=++,因为它平⾏与y m x =,所以有2220000x b my a h x my +=-+,代⼊220022221x y a h b h +=++整理得222220000(1)()0m x m x y m y m a b +----=,所以切点的轨迹为22222(1)()0mx m xy my m a b +----=.§5.4⼆次曲线的直径1. 已知⼆次曲线223754510x xy y x y +++++=.求它的(1)与x 轴平⾏的弦的中点轨迹;(2)与y 轴平⾏的弦的中点轨迹;(3)与直线10x y ++=平⾏的弦的中点轨迹.解:(1)因为x 轴的⽅向为:1:0X Y =代⼊(5.4-3)得中点轨迹⽅程6740x y ++=;(2)因为y 轴的⽅向为:0:1X Y =代⼊(5.4-3)得中点轨迹⽅程71050x y ++=;(3)因为直线10x y ++=的⽅向为:1:1X Y =-代⼊(5.4-3)得中点轨迹⽅程310x y ++=. 2.求曲线224260x xy x y +---=通过点(8,0)的直径⽅程,并求其共轭直径. 解:(1)把点(8,0)代⼊(2)(21)0X x Y y -+-= 得:1:6X Y =,再代⼊上式整理得直径⽅程为1280x y +-=,其共轭直径为122230x y --=.3.已知曲线22310xy y x y --+-=的直径与y 轴平⾏,求它的⽅程,并求出这直径的共轭直径. 解:直径⽅程为10x -=,其共轭直径⽅程为230x y -+=.4.已知抛物线28y x =-,通过点(-1,1)引⼀弦使它在这点被平分. 解:430x y ++=.5. 求双曲线22164x y -=⼀对共轭直径的⽅程,已知两共轭直径间的⾓是45度. 解:设直径和共轭直径的斜率分别为',k k ,则'23kk =.⼜因为它们交⾓45度,所以''11k k kk -=+,从⽽13k =-或2,'2k =-或13,故直径和共轭直径的⽅程为30x y +=和20x y -=或20x y +=和30x y -=.6.求证:通过中⼼曲线的直线⼀定为曲线的直径;平⾏于⽆⼼曲线渐进⽅向的直线⼀定为其直径. 证明:因为中⼼曲线直径为中⼼线束,因此过中⼼的直线⼀定为直径;当曲线为⽆⼼曲线时,它们的直径属于平⾏直线束,其⽅向为渐进⽅向,所以平⾏于⽆⼼曲线渐进⽅向的直线⼀定为其直径. 7.求下列两条曲线的公共直径.(1)223234440x xy y x y -+++-=与2223320x xy y x y --++=;(2)220x xy y x y ----=与2220x xy y x y ++-+=. 解:(1)210x y -+=;(2)5520x y ++=.8.已知⼆次曲线通过原点并且以下列两对直线 320,5540x y x y --=??--=?与530,210y x y +=??--=?为它的两对共轭直径,求该⼆次曲线的⽅程. 解:设曲线的⽅程为22111222132333(,)2220F x y a x a xy a y a x a y a=+++++=,则由(5.4-3)和(5.4-5)可得1112221323331111,,1,,,0222a a a a a a ==-=-=-=-=,所以曲线的⽅程为220x xy y x y ----=.§5.5⼆次曲线的主直径与主⽅向1.分别求椭圆22221x y a b +=,双曲线22221x y a b-=,抛物线22y px =的主⽅向与主直径.解:椭圆的主⽅向分别为1:0和0:1,主直径分别为0,0x y ==;双曲线的主⽅向分别为1:0和0:1,主直径分别为0,0x y==;抛物线的主⽅向分别为0:1和1:0,主直径分别为0y =. 2.求下列⼆次曲线的主⽅向与主直径. (1)22585181890x xy y x y ++--+=;(2)22210xy x y -+-=;(3)229241618101190x xy y x y -+--+=.解:(1)曲线的主⽅向分别为1:(-1)和1:1,主直径分别为0,20x y x y -=+-=;(2)其主⽅向分别为1:1和1:(-1),主直径分别为0,20x y x y +=-+=;(3)其主⽅向分别为3:(-4)和4:3,主直径分别为3470x y -+=;(4)任何⽅向都是其主⽅向,过中⼼的任何直线都是其主直径.3.直线10x y ++=是⼆次曲线的主直径,点(0,0),(1,-1),(2,1)在曲线上,求该曲线的⽅程.解:设⼆次曲线⽅程为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,把点坐标(0,0),(1,-1),(2,1)分别代⼊上⾯⽅程同时利⽤直线10x y ++=为其主直径可得111222132333774,,4,,4,022a a a a a a ==-==-==,所以所求曲线⽅程为22474780x xy y x y -+-+=.4.试证⼆次曲线两不同特征根确定的主⽅向相互垂直.证明:设12,λλ分别曲线的两不同特征根,由它们确定的主⽅向分别为11:X Y 与22:X Y 则1111211112122111,,a X a Y X a X a Y Y λλ+=??+=?与1121222212222222,a X a Y X a X a Y Y λλ+=??+=?,所以11211211112121212212()()X X YY a X a Y X a X a Y Y λλ+=+++11212211222221221221()(),a X a Y X a X a Y X X X Y Y λλ=+++=+从有121212()()0X X YY λλ-+=,因为12λλ≠,所以12120X X YY +=,由此两主⽅向11:X Y 与22:X Y 相互垂直.§5.6⼆次曲线⽅程的化简与分类1. 利⽤移轴与转轴,化简下列⼆次曲线的⽅程并写出它们的图形.(1)225422412180x xy y x y ++--+=;(2)222410x xy y x y ++-+-=;(3)25122212190x xy x y +---=;(4)222220x xy y x y ++++=. 解(1)因为⼆次曲线含xy 项,我们先通过转轴消去xy ,设旋转⾓为α,则324ctg α=,即21324tg tg αα-=,所以12tg α=或-2.取2tg α=-,那么sin α=,cos α=,所以转轴公式为''''2),2).x x y y x y ?=+??=-+代⼊原⽅程化简再配⽅整理得新⽅程为''2''26120x y +-=;类似的化简可得(2)''2''250y +=;(3)''2''294360x y --=;(4)''2210x -=.2.以⼆次曲线的主直径为新坐标轴,化简下列⽅程,并写出的坐标变换公式与作出它们的图(1)22845816160x xy y x y +++--=;(2)22421040x xy y x y --++=;(3)22446830x xy y x y -++-+=;(4)2244420x xy y x y -++-=. 解:(1)已知⼆次曲线的距阵是 8242584816?? ?- ? ?--??, 18513I =+=,2823625I ==,所以曲线的特征⽅程为213360λλ-+=,其特征根为14λ=,29λ=,两个主⽅向为11:1:2X Y =-,22:2:1X Y =;其对应的主直径分别为8200x y -+=,7740x y +-=. 取这两条直线为新坐标轴得坐标变换公式'''')1,2) 2.x x y y x y ?=--??=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为 '2'294360x y +-=.(2)已知⼆次曲线的距阵是 225222520-?? ?- ? ???坐标变换公式''''2)1,) 2.x x y y x y ?=--??=++代⼊已知曲线⽅程并整理得曲线在新坐标系⽅程为'2'23210-+-=. (3)已知⼆次曲线的距阵是423214343----,坐标变换公式''''92),101).5 x x yy x y=--=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为'2' 50-=. (4)坐标变换公式''''22),51).5x x yy x y=--=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为'2510y-=.3.试证在任意转轴下,⼆次曲线的新旧⽅程的⼀次项系数满⾜关系式'2'222 13231313a a a a+=+.证明:设旋转⾓为α,则''131323cos sina a aαα=-,''231323sin cosa a aαα=+,两式平⽅相加得'2'22213231313a a a a+=+.4.试证⼆次曲线222ax hxy ay d++=的两条主直径为220x y-=,曲线的两半轴的长分别为. 证明:求出曲线的两主直径并化简即可得.§5.7应⽤不变量化简⼆次曲线的⽅程1. 利⽤不变量与半不变量,判断下列⼆次曲线为何种曲线,并求出它的化简⽅程与标准⽅程. (1)22 66210x xy y x y++++-=;(2)223234440x xy y x y-+++-=;(3)2243220x xy y x y-++-=;(4)22442210x xy y x y-++--=;(5)222246290x xy y x y-+--+=;(6);(7)22 22240x xy y x y++++-=;(8)22 4412690x xy y x y-++-+=.解:(1)因为12I=,213831I==-,13331116311=-,322II=-,⽽特征⽅程2280λλ--=的两根为124,2λλ==-,所以曲线的简化⽅程(略去撇号)为224220x y --=曲线的标准⽅程为 2221012x y --=,曲线为双曲线;类似地得下⾯:(2)曲线的简化⽅程(略去撇号)为 222480x y +-=,曲线的标准⽅程为 22142x y +=,曲线为椭圆;(3)曲线的简化⽅程(略去撇号)为22(2(20x y +=,曲线的标准⽅程为22011x y -=,曲线为两相交直线;(4)曲线的简化⽅程(略去撇号)为250y -=,双曲线的标准⽅程为2y =,曲线为抛物线;(5)曲线的简化⽅程(略去撇号)为2233((022x y +=,曲线的标准⽅程为220x y +=,曲线为⼀实点或相交与⼀实点的两虚直线;(6)曲线的简化⽅程(略去撇号)为220,0,0)y x a y a -=≤≤≤≤(,曲线的标准⽅程为2y =,0,0)x a y a ≤≤≤≤(曲线为抛物线的⼀部分;(7)曲线的简化⽅程(略去撇号)为 2250y -=,曲线的标准⽅程为 252y =,曲线为两平⾏直线;(8)曲线的简化⽅程(略去撇号)为 250y =,曲线的标准⽅程为 20y =,曲线为两重合直线.2. 当λ取何值时,⽅程 2244230x xy y x y λ++---= 表⽰两条直线.解:⽅程 2244230x xy y x y λ++---=表⽰两条直线当且仅当3222110213I λ-=-=---,即4λ=.3. 按实数λ的值讨论⽅程2222250x xy y x y λλ-+-++= 表⽰什么曲线.解:因为12I λ=,2(1)(1)I λλ=-+,3(53)(1)I λλ=+-,12(51)K λ=-,所以当λ的值变化时,1231,,,I I I K 也随着变化,它们的变化关系如下表:4. 设221112221323332220a x a xy a y a x a y a +++++= 表⽰两条平⾏直线,证明这两条直线之间的距离是d = . 证明:曲线的⽅程可简化为:这⾥当曲线表⽰两条平⾏的实直线时,10K <.所以这两条直线之间的距离是d =5. 试证⽅程 221112221323332220a x a xy a y a x a y a +++++= 确定⼀个实圆必须且只须212124,0I I I I =<.证明:当曲线 221112221323332220a x a xy a y a x a y a +++++=表⽰⼀个实圆的充要条件是其特征⽅程2120I I λλ-+=有相等实根且120I I <,即21240I I ?=-=且120I I <,从⽽⽅程确定⼀个实圆必须且只须212124,0I I I I =<.6. 试证如果⼆次曲线的10I =,那么20I <. 证明:因为111220I a a =+=即1122a a =-,所以1112222211221211121222()a a I a a a a a a a==-=-+,⽽11122,,a a a 不全0,所以有20I <. 7. 试证如果⼆次曲线的230,0I I =≠,那么10I ≠,⽽且120I I <.证明:当230,0I I =≠时,由5.2节习题7知,曲线为⽆⼼曲线,从⽽有10I ≠,⽽且120I I <.。

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

PA1 PO PA2 PO PAn PO 0






PA1 PA2 PAn n PO
§1.4 向量的线性关系与向量的分解
1.在平行四边形 ABCD 中, (1)设对角线 AZ a, BD b, 求 AB, BC , CD, DA. 解: AB
解?a?b?b?a?b?a?b?a?b?a?b?a?b?a?????????????????yxyyxxyyxxyxyx22?e?e?e?e?e?e?e?e?b?a?????????3132132142232?e?e?e?e?e?e?e?e?e?b?a???????????3213213213422232?e?e?e?e?e?e?e?e?e?b?a???????????321321321710322322323
OA OB + OC = OL + OM + ON .
7. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明 [证明] OA OL LA
OB OM MB OC ON NC OA OB OC OL OM ON ( LA MB NC )
1 1 1 1 b a , BC b a , CD b a , DA b a .设边 BC 和 CD 的 2 2 2 2






(2)中点 M 和 N,且 AM P, AN q 求 BC , CD 。 解: AC
1 1 q P , BC 2MC 2 q P P q 3P 2 2








解析几何 第四版 课后答案

解析几何 第四版 课后答案
本文档为解析几何第四版课后答案的汇总,主矢量终点构成的图形,如单位球面、单位圆等。对于正六边形中的矢量相等问题,给出了详细的解答。在四边形中点连线矢量的证明题中,证明了平面和空间四边形中点的连线矢量关系。此外,还涉及了平行六面体中的矢量相等与相反关系的判断。在数量乘矢量部分,解答了使各式成立的矢量条件,如矢量垂直、同向、反向等。同时,提供了三角形中线矢量构成三角形的证明,以及平行四边形对角线互相平分的矢量法证明。最后,解答了关于平行四边形中心和任意一点矢量关系的问题。这些答案详细、准确,可供学习者对照检查自己的解题过程和结果,有助于加深对解析几何知识的理解。

解析几何版吕林根课后习题答案

解析几何版吕林根课后习题答案

第四章 柱面、锥面、旋转曲面与二次曲面§ 4.1柱面1、已知柱面的准线为:⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。

解:(1)从方程⎩⎨⎧=+-+=-+++-0225)2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(222=-+++--z y y z 即:0235622=----+z y yz z y 此即为要求的柱面方程。

(2)取准线上一点),,(0000z y x M ,过0M 且平行于直线⎩⎨⎧==c z yx 的直线方程为:⎪⎩⎪⎨⎧=-=-=⇒⎪⎩⎪⎨⎧=+=+=z z t y y tx x zz t y y tx x 000000 而0M 在准线上,所以⎩⎨⎧=+--+=-++-+--02225)2()3()1(222t z y x z t y t x 上式中消去t 后得到:02688823222=--+--++z y x xy z y x 此即为要求的柱面方程。

2、设柱面的准线为⎩⎨⎧=+=z x z y x 222,母线垂直于准线所在的平面,求这柱面的方程。

解:由题意知:母线平行于矢量{}2,0,1- 任取准线上一点),,(0000z y x M ,过0M 的母线方程为:⎪⎩⎪⎨⎧+==-=⇒⎪⎩⎪⎨⎧-==+=t z z y y tx x tz z y y tx x 2200000而0M 在准线上,所以:⎩⎨⎧+=-++=-)2(2)2(22t z t x t z y t x 消去t ,得到:010*******22=--+++z x xz z y x 此即为所求的方程。

3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过原点且垂直于已知三直线的平面为0=++z y x :它与已知直线的交点为())34,31,31(),1,0,1(,0,0,0--,这三点所定的在平面0=++z y x 上的圆的圆心为)1513,1511,152(0--M ,圆的方程为: ⎪⎩⎪⎨⎧=++=-++++07598)1513()1511()152(222z y x z y x 此即为欲求的圆柱面的准线。

5-7解析几何吕林根第四版

5-7解析几何吕林根第四版

a '13 a '23 a '33
a11
a12
a11x0 a12 y0 a13
a12 a22 a12 x0 a22 y0 a23
a11 x0 a12 y0 a13 a12 x0 a22 y0 a23
F ( x0 , y0 )
a11
a12
a12
a22
a11x0 a12 y0 a13 a12 x0 a22 y0 a23
方程的常数项不变,所以又有a '33 a33,因此
I '3
a1' 3
a '12 a '22
a '13 a '23
a2' 3
a '13 a '23
a '11 a '12
a33
a11 a12
a12 , a22
将(5.6-7)代入
a a
'12 '22
a '13 ,化简整理得 a '23
a '12 a '13 a12 a '22 a '23 a13
F( x, y) 2xy ,它的 K1 0 ,而通过移轴(5.6-1), F ( x, y) 变为
F '( x ', y ') 2x ' y' 2 y0 x ' 2 x0 y' 2 x0 y0,
而这时
0 K '1 y0
y0
0
2 x0 y0 x0
x0 2 x0 y0
( x02
y02 ) 0.
a11 a12 a13 I3 a12 a22 a23

解析几何第四版吕林根 期末复习 课后习题(重点)详解

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标§ 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21AC AB AL +=Θ )(21+=)(21CB CA CN +=0)(21=+++++=++∴7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL ++.[证明] LA OL OA +=Θ MB OM OB += NC ON OC +=)(OM +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++ ON OM OL OC OB OA ++=++∴ 从而三中线矢量,,构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB ++OD =4OM .[证明]:因为OM =21(OA +), OM =21(OB +OD ), 所以 2=21(OA +OB +OC +) 所以OA +OB ++OD =4OM .10、用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§ 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =(-1),O 是空间任意一点,求证:OP =λλ++1[证明]:如图1-7,因为=-OA ,PB =OB -,所以 -OA = (OB -),(1+)OP =+,从而 OP =λλ++1OB.4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将分解为21,e e 的线性组合 解:(1)()12123131,e e e e -==-=-=Θ, 2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为||||TC ||11e e , 且 BT 与方向相同, 所以 BT ||21e e .由上题结论有AT ||||1||212211e e e e e +||||212112e e e e e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

第一章向量与坐标§1.1 向量的概念1.下列情形中的向量终点各构成什么图形?(1)把空间中一切单位向量归结到共同的始点;(2)把平行于某一平面的一切单位向量归结到共同的始点;(3)把平行于某一直线的一切向量归结到共同的始点;(4)把平行于某一直线的一切单位向量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在向量OA、、OC、、、OF、、BC、CD、、EF和FA中,哪些向量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的向量对是:图1-1.DEOFCDOEABOCFAOBEFOA和;和;和;和;和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在∆BAC中,21AC. KL与AC方向相同;在∆DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对向量中,找出相等的向量和互为相反向量的向量:(1) AB、; (2) AE、; (3) 、;(4) AD、; (5) BE、.[解]:相等的向量对是(2)、(3)和(5);互为反向量的向量对是(1)和(4)。

§1.2 向量的加法1.要使下列各式成立,向量ba,应满足什么条件?(1-=+(2+=+(3-=+(4+=-E(5=[解]:(1),-=+(2),+=+(3≥且,=+ (4),+=-(5),≥-=-§1.3 数量乘向量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从向量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出向量→x ,→y . 解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线向量AL , BM ,可 以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线向量CN BM AL ,,构成一个三角形。

解析几何(第四版吕林)-根课后答案

解析几何(第四版吕林)-根课后答案

第一章 矢量与坐标§ 矢量的概念1.下列情形中矢量终点各构成什么图形(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.[解]:(1)单位球面; (2)单位圆(3)直线;(4)相距为 2 的两点AF2. 设点 O 是正六边形 ABCDEF 的中心,在矢量 OA 、 OB 、 OC 、 OD 、 OE 、 OF 、 AB 、 BC 、 CD 、 DE 、 EF 和 FA 中,哪些矢量是相等的BEOC[解]:如图 1-1,在正六边形 ABCDEF 中,相等的矢量对是:图 1-1OA和EF;OB和FA;OC和AB;OE和CD;OF和DE. 3. 设在平面上给了一个四边形 ABCD,点 K、L、M、N 分别是边AB、BC、CD、DA的中点,求证: KL = NM . 当 ABCD 是空间四边形时,这等式是否也成立[证明]:如图 1-2,连结 AC, 则在 BAC 中,DAC 中,NM 1 AC. NM 与 AC 方向相同, 2从而 KL=NM 且 KL 与 NM 方向相同,所以 KL = NM .KL 1 AC. KL 与 AC 方向相同;在 24. 如图 1-3,设 ABCD-EFGH 是一个平行六面体, 在下列各对矢量中,找出相等的矢量和互为相 反矢量的矢量:(1) AB 、 CD ; (2) AE 、 CG ; (3) AC 、 EG ;(4) AD 、 GF ;(5) BE 、 CH .[解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。

§ 矢量的加法1.要使下列各式成立,矢量 a, b 应满足什么条件 (1) a b a b; (2) a b a b ; (3) a b a b ; (4) a b a b ; (5) a b a b. [解]:(1) a, b 所在的直线垂直时有 a b a b ;(2) a,b 同向时有 a b a b ; (3) a b , 且 a,b 反向时有 a b a b ; (4) a,b 反向时有 a b a b ; (5) a,b 同向,且 a b 时有 a b a b.图 1—3§ 数量乘矢量1 试解下列各题.⑴ 化简 (x y) (a b) (x y) (a b) . ⑵ 已知 a e1 2 e2 e3 , b 3e1 2 e2 2 e3 ,求 a b , a b 和 3 a 2 b .⑶从矢量方程组3 x4ya,解出矢量x,y.2 x 3 y b解⑴ (x y) (a b) (x y) (a b) x a x b y a y b x a x b y a y b 2x b 2y a⑵ a b e1 2 e2 e3 3e1 2 e2 2 e3 4 e1 e3 , a b e1 2 e2 e3 (3e1 2 e2 2 e3 ) 2 e1 4 e2 3e3 ,3 a 2 b 3(e1 2 e2 e3 ) 2(3e1 2 e2 2 e3 ) 3e1 10 e2 7 e3 . 2 已知四边形 ABCD中, AB a 2 c , CD 5 a 6 b 8 c ,对角线 AC 、 BD 的中点分别为 E 、 F ,求 EF .解EF1CD1AB1(5 a6 b 8 c)1(a2 c)3a3b5c.2222 3 设 AB a 5 b , BC 2 a 8 b , CD 3(a b) ,证明: A 、 B 、 D 三点共线. 证明 ∵ BD BC CD 2 a 8 b 3(a b) a 5 b AB∴ AB 与 BD共线,又∵ B 为公共点,从而 A 、 B 、 D 三点共线. 4 在四边形 ABCD中,AB a 2 b ,BC 4 a b ,CD 5 a 3b ,证明 ABCD为梯形.证明∵ AD AB BC CD (a 2 b) (4 a b) (5 a 3 b) 2(4 a b) 2 BC∴ AD ∥ BC ,∴ ABCD为梯形.6. 设 L、M、N 分别是ΔABC 的三边 BC、CA、AB 的中点,证明:三中线矢量 AL , BM , CN可 以构成一个三角形.[证明]: AL 1 (AB AC) 2BM 1 (BA BC) 2CN 1 (CA CB) 2 AL BM CN 1 (AB AC BA BC CA CB) 0 2从而三中线矢量 AL, BM ,CN 构成一个三角形。

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章第五章 二次曲线一般的理论§5.1二次曲线与直线的相关位置1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y .(1)22221x y a b +=;(2)22221x y a b -=;(3)22ypx=;(4)223520;x y x -++=(5)2226740xxy y x y -+-+-=.解:(1)22100100001a A b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭;121(,)F x y x a =221(,)F x y y b=3(,)1F x y =-;(2)22100100001a A b ⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪- ⎪ ⎪⎝⎭;121(,)F x y x a =221(,)F x y y b=-;3(,)1F x y =-.(3)0001000p A p -⎛⎫⎪= ⎪⎪-⎝⎭;1(,)F x y p=-;2(,)F x y y =;3(,)F x y px =-;(4)51020305022A ⎛⎫ ⎪ ⎪=- ⎪⎪ ⎪⎝⎭;15(,)2F x y x =+;2(,)3F x y y=-;35(,)22F x y x =+;(5)1232171227342A ⎛⎫-- ⎪ ⎪ ⎪=-⎪ ⎪ ⎪-- ⎪⎝⎭;11(,)232F x y x y =--;217(,)22F x y x y =-++;37(,)342F x y x y =-+-.2. 求二次曲线22234630x xy y x y ----+=与下列直线的交点.(1)550x y --=(2)220x y ++=;(3)410x y +-=;(4)30x y -=;(5)2690x y --=.提示:把直线方程代入曲线方程解即可,详解略(1)15(,),(1,0)22-;(242267226i i --+⎝⎭,42267226i i +--⎝⎭;(3)二重点(1,0);(4)11,26⎛⎫⎪⎝⎭;(5)无交点.3. 求直线10x y --=与222210x xy y x y -----=的交点.解:由直线方程得1x y =+代入曲线方程并解方程得直线上的所有点都为交点. 4 .试确定k 的值,使得(1)直线50x y -+=与二次曲线230x x y k -+-=交于两不同的实点; (2)直线1,{x kt y k t=+=+与二次曲线22430xxy y y -+-=交于一点;(3)10x ky --=与二次曲线22(1)10xy yk y -+---=交于两个相互重合的点;(4)1,{1x t y t=+=+与二次曲线222420x xy ky x y ++--=交于两个共轭虚交点.解:详解略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4)4924k >. §5.2二次曲线的渐进方向、中心、渐进线1.求下列二次曲线的渐进方向并指出曲线属于何种类型的(1)22230x xy y x y ++++=;(2)22342250x xy y x y ++--+=;(3)24230xy x y --+=.解:(1)由22(,)20X Y XXY Y φ=++=得渐进方向为:1:1X Y =-或1:1-且属于抛物型的; (2)由22(,)3420X Y X XY Y φ=++=得渐进方向为:(22):3X Y i =-且属于椭圆型的; (3)由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的.2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)22224630x xy y x y -+--+=;(2)22442210xxy y x y -++--=;(3)2281230yx y ++-=;(4)2296620xxy y x y -+-+=.解:(1)因为2111012I -==≠-,所以它为中心曲线; (2)因为21224I-==-且121241-=≠--,所以它为无心曲线;(3)因为20002I ==且004026=≠,所以它为无心曲线; (4)因为29331I-==-且933312--==-,所以它为线心曲线;为二次曲线的中心.证明:设(,)x y 为渐进线上任意一点,则曲线的的渐进方向为00:():()X Y x x y y =--,所以Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=. 6. 求下列二次曲线的渐进线. (1)226310x xy y x y --++-=;(2)2232340x xy y x y -++-+=;(3)2222240xxy y x y ++++-=.解:(1)由1360,2211022x y x y ⎧-+=⎪⎪⎨⎪--+=⎪⎩得中心坐标13(,)55-.而由2260X XY Y --=得渐进方向为:1:2X Y =或:1:3X Y =-,所以渐进线方程分别为210x y -+=与30x y += (2)由310,22332022x y x y ⎧-+=⎪⎪⎨⎪-+-=⎪⎩得中心坐标13(,)55-.而由22320X XY Y -+=得渐进方向为:1:1X Y =或:2:1X Y =,所以渐进线方程分别为20x y -+=与210x y --= (3)由10,10x y x y ++=⎧⎨++=⎩知曲线为线心曲线,.所以渐进线为线心线,其方程为10x y ++=.7. 试证二次曲线是线心曲线的充要条件是230I I ==,成为无心曲线的充要条件是230,0II =≠.证明:因为曲线是线心曲线的充要条件是131112122223a a a a a a ==也即230I I ==;为无心曲线的充要条件是131112122223a a a a a a =≠也即230,0II =≠.8. 证明以直线1110A x By C ++=为渐进线的二次曲线方程总能写成111()()0A x By C Ax By C D +++++=.证明:设以1110A x By C ++=为渐进线的二次曲线为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,则它的渐进线为Φ0(,)x x y y --=221101200220()2()()()0ax x a x x y y a y y -+--+-=,其中00(,)x y 为曲线的中心, 从而有Φ00(,)x x y y --=111()()0A x By C Ax By C ++++= ,而Φ00(,)x x y y --=0 因为0(,)x y 为曲线的中心, 所以有11012013a x a y a +=-,12022023a x a y a +=-因此Φ000033(,)(,)(,)x x y y F x y x y a φ--=+-, 令033(,)x y a Dφ-=-,代入上式得 即111(,)()()F x y A x By C Ax By C D=+++++, 所以以1110A x By C ++=为渐进线的二次曲线可写为111()()0A x By C Ax By C D +++++=.9.求下列二次曲线的方程.(1)以点(0,1)为中心,且通过(2,3),(4,2)与(-1,-3); (2)通过点(1,1),(2,1),(-1,-2)且以直线10x y +-=为渐进线.解:利用习题8的结论即可得: (1)40xy x --=;(2)2223570xxy y x ---+=.§5.3二次曲线的切线1. 求以下二次曲线在所给点或经过所给点的切线方程. (1)曲线223457830x xy y x y ++---=在点(2,1); (2)曲线曲线223457830x xy y x y ++---=在点在原点; (3)曲线22430x xy y x y +++++=经过点(-2,-1); (4)曲线225658x xy y ++=经过点2); (5)曲线222210x xy y x y -----=经过点(0,2).解:(1)910280x y +-=; (2)20x y -=; (3)10,30y x y +=++=;(4)1151020,220x y x y +-=-+=; (5)0x =.2. 求下列二次曲线的切线方程并求出切点的坐标. (1)曲线2243530xxy y x y ++--+=的切线平行于直线40x y +=; (2)曲线223xxy y ++=的切线平行于两坐标轴.解:(1)450x y +-=,(1,1)和480x y +-=,(4,3)-; (2)20y ±=,(1,2),(1,2)--和20x ±=,(2,1),(2,1)--.3. 求下列二次曲线的奇异点. (1)22326410xy x y -+++=; (2)22210xy yx +--=; (3)2222210x xy y x y -+-++=.解:(1)解方程组330,220x y +=⎧⎨-+=⎩得奇异点为(1,1)-; (2)解方程组10,y x y -=⎧⎨+=⎩得奇异点为(1,1)-. 4.试求经过原点且切直线4320x y ++=于点(1,-2)及切直线10x y --=于点(0,-1)的二次曲线方程.解:利用(5.3-5)可得226320x xy y x y +-+-=.5.设有共焦点的曲线族2222221x y a h b h +=++,这里h 是一个变动的参数,作平行于已知直线y mx =的曲线的切线,求这些切线切点的轨迹方程. 解:设切点坐标为0(,)x y ,则由(5.3-4)得曲线的切线为 0022221x x y ya hb h+=++, 因为它平行与y mx =,所以有2220000x b my a h x my +=-+, 代入220022221x y a h b h+=++整理得222220000(1)()0mx m x y my m a b +----=, 所以切点的轨迹为22222(1)()0mx m xy my m a b +----=.§5.4二次曲线的直径1. 已知二次曲线223754510xxy y x y +++++=.求它的(1)与x 轴平行的弦的中点轨迹; (2)与y 轴平行的弦的中点轨迹; (3)与直线10x y ++=平行的弦的中点轨迹.解:(1)因为x 轴的方向为:1:0X Y =代入(5.4-3)得中点轨迹方程6740x y ++=; (2)因为y 轴的方向为:0:1X Y =代入(5.4-3)得中点轨迹方程71050x y ++=; (3)因为直线10x y ++=的方向为:1:1X Y =-代入(5.4-3)得中点轨迹方程310x y ++=. 2.求曲线224260xxy x y +---=通过点(8,0)的直径方程,并求其共轭直径.解:(1)把点(8,0)代入(2)(21)0X x Y y -+-= 得:1:6X Y =,再代入上式整理得直径方程为1280x y +-=,其共轭直径为122230x y --=. 3.已知曲线22310xy yx y --+-=的直径与y 轴平行,求它的方程,并求出这直径的共轭直径. 解:直径方程为10x -=,其共轭直径方程为230x y -+=.4.已知抛物线28y x=-,通过点(-1,1)引一弦使它在这点被平分. 解:430x y ++=.5. 求双曲线22164x y -=一对共轭直径的方程,已知两共轭直径间的角是45度.解:设直径和共轭直径的斜率分别为',k k ,则'23kk=.又因为它们交角45度,所以''11k k kk -=+,从而13k =-或2,'2k =-或13,故直径和共轭直径的方程为30x y +=和20x y -=或20x y +=和30x y -=.6.求证:通过中心曲线的直线一定为曲线的直径;平行于无心曲线渐进方向的直线一定为其直径. 证明:因为中心曲线直径为中心线束,因此过中心的直线一定为直径;当曲线为无心曲线时,它们的直径属于平行直线束,其方向为渐进方向,所以平行于无心曲线渐进方向的直线一定为其直径. 7.求下列两条曲线的公共直径. (1)223234440x xy y x y -+++-=与2223320x xy y x y --++=;(2)220x xy y x y ----=与2220x xy y x y ++-+=.解:(1)210x y -+=;(2)5520x y ++=.8.已知二次曲线通过原点并且以下列两对直线320,5540x y x y --=⎧⎨--=⎩与530,210y x y +=⎧⎨--=⎩为它的两对共轭直径,求该二次曲线的方程. 解:设曲线的方程为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,则由(5.4-3)和(5.4-5)可得1112221323331111,,1,,,0222aa a a a a ==-=-=-=-=,所以曲线的方程为220x xy y x y ----=.§5.5二次曲线的主直径与主方向1.分别求椭圆22221x y a b+=,双曲线22221x y a b-=,抛物线22y px=的主方向与主直径.解:椭圆的主方向分别为1:0和0:1,主直径分别为0,0x y ==;双曲线的主方向分别为1:0和0:1,主直径分别为0,0x y ==;抛物线的主方向分别为0:1和1:0,主直径分别为0y =. 2.求下列二次曲线的主方向与主直径. (1)22585181890x xy y x y ++--+=; (2)22210xy x y -+-=; (3)229241618101190x xy y x y -+--+=.解:(1)曲线的主方向分别为1:(-1)和1:1,主直径分别为0,20x y x y -=+-=; (2)其主方向分别为1:1和1:(-1),主直径分别为0,20x y x y +=-+=; (3)其主方向分别为3:(-4)和4:3,主直径分别为3470x y -+=; (4)任何方向都是其主方向,过中心的任何直线都是其主直径.3.直线10x y ++=是二次曲线的主直径,点(0,0),(1,-1),(2,1)在曲线上,求该曲线的方程. 解:设二次曲线方程为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=, 把点坐标(0,0),(1,-1),(2,1)分别代入上面方程同时利用直线10x y ++=为其主直径可得111222132333774,,4,,4,022a a a a a a ==-==-==,所以所求曲线方程为22474780xxy y x y -+-+=.4.试证二次曲线两不同特征根确定的主方向相互垂直.证明:设12,λλ分别曲线的两不同特征根,由它们确定的主方向分别为11:X Y 与22:XY 则1111211112122111,,a X a Y X a X a Y Y λλ+=⎧⎨+=⎩与1121222212222222,a X a Y X a X a Y Y λλ+=⎧⎨+=⎩,所以11211211112121212212()()X X YY a X a Y X a X a Y Y λλ+=+++11212211222221221221()(),a X a Y X a X a Y X X X Y Y λλ=+++=+从而有121212()()0X XYY λλ-+=,因为12λλ≠,所以12120X XYY +=,由此两主方向11:X Y 与22:XY 相互垂直.§5.6二次曲线方程的化简与分类1. 利用移轴与转轴,化简下列二次曲线的方程并写出它们的图形. (1)225422412180xxy y x y ++--+=;(2)222410xxy y x y ++-+-=;(3)25122212190xxy x y +---=;(4)222220xxy y x y ++++=.解(1)因为二次曲线含xy 项,我们先通过转轴消去xy ,设旋转角为α,则324ctg α=,即21324tg tg αα-=,所以12tg α=或-2.取2tg α=-,那么sin 5α=,cos 5α=,所以转轴公式为''''2),52).5x x y y x y ⎧=+⎪⎪⎨⎪=-+⎪⎩代入原方程化简再配方整理得新方程为''2''26120x y +-=;类似的化简可得(2)''2''22250x y +=;(3)''2''294360xy --=;(4)''2210x-=.2.以二次曲线的主直径为新坐标轴,化简下列方程,并写出的坐标变换公式与作出它们的图形. (1)22845816160xxy y x y +++--=;(2)22421040xxy y x y --++=;(3)22446830xxy y x y -++-+=;(4)2244420xxy y x y -++-=.解:(1)已知二次曲线的距阵是8242584816⎛⎫ ⎪- ⎪ ⎪--⎝⎭,18513I =+=,2823625I==, 所以曲线的特征方程为213360λλ-+=,其特征根为14λ=,29λ=,两个主方向为11:1:2XY =-,22:2:1XY =; 其对应的主直径分别为8200x y -+=,7740x y +-=. 取这两条直线为新坐标轴得坐标变换公式'''')1,52) 2.5x x y y x y ⎧=--⎪⎪⎨⎪=++⎪⎩代入已知曲线方程并整理得曲线在新坐标系下的方程为'2'294360x y +-=.(2)已知二次曲线的距阵是225222520-⎛⎫ ⎪- ⎪ ⎪⎝⎭坐标变换公式 ''''2)1,5) 2.5x x y y x y ⎧=--⎪⎪⎨⎪=++⎪⎩代入已知曲线方程并整理得曲线在新坐标系方程为'2'23210x y -+-=.(3)已知二次曲线的距阵是423214343-⎛⎫⎪-- ⎪ ⎪-⎝⎭, 坐标变换公式 ''''92),1051).55x x y y x y ⎧=--⎪⎪⎨⎪=++⎪⎩代入已知曲线方程并整理得曲线在新坐标系下的方程为'2'505y x =.(4)坐标变换公式''''22),551).55x x y y x y ⎧=--⎪⎪⎨⎪=++⎪⎩代入已知曲线方程并整理得曲线在新坐标系下的方程为'2510y -=.3.试证在任意转轴下,二次曲线的新旧方程的一次项系数满足关系式'2'22213231313aa a a +=+.证明:设旋转角为α,则''131323cos sin a a a αα=-,''231323sin cos a a a αα=+,两式平方相加得'2'22213231313aa a a +=+.4.试证二次曲线 222axhxy ay d++=的两条主直径为220x y -=,曲线的两半轴的长分别为d a h+da h-.证明:求出曲线的两主直径并化简即可得.§5.7应用不变量化简二次曲线的方程1. 利用不变量与半不变量,判断下列二次曲线为何种曲线,并求出它的化简方程与标准方程.(1)2266210x xy yx y ++++-=; (2)223234440xxy y x y -+++-=; (3)2243220xxy y x y -++-=; (4)22442210xxy y x y -++--=;(5)222246290xxy y x y -+--+=; (6x y a(7)2222240x xy y x y ++++-=; (8)224412690x xy y x y -++-+=. 解:(1)因为12I =,213831I==-,13331116311=-,322II =-,而特征方程2280λλ--=的两根为124,2λλ==-,所以曲线的简化方程(略去撇号)为224220xy --=曲线的标准方程为2221012x y --=,曲线为双曲线; 类似地得下面: (2)曲线的简化方程(略去撇号)为 222480x y +-=,曲线的标准方程为22142x y +=,曲线为椭圆;(3)曲线的简化方程(略去撇号)为22(25)(25)0x y +=,曲线的标准方程为 220112552x y -=+-, 曲线为两相交直线;(4)曲线的简化方程(略去撇号)为 225505y x =,双曲线的标准方程为 22525yx =,曲线为抛物线; (5)曲线的简化方程(略去撇号)为 223535()()022xy +-+=,曲线的标准方程为220113535x y +=+-, 曲线为一实点或相交与一实点的两虚直线;(6)曲线的简化方程(略去撇号)为22220,0,0)y ax x a y a -=≤≤≤≤(,曲线的标准方程为 22yax=,0,0)x a y a ≤≤≤≤( 曲线为抛物线的一部分;(7)曲线的简化方程(略去撇号)为 2250y -=,曲线的标准方程为 252y=,曲线为两平行直线;(8)曲线的简化方程(略去撇号)为 250y =,曲线的标准方程为 2y =, 曲线为两重合直线.2. 当λ取何值时,方程 2244230xxy y x y λ++---=表示两条直线. 解:方程 2244230x xy y x y λ++---=表示两条直线当且仅当3222110213Iλ-=-=---,即4λ=.3. 按实数λ的值讨论方程2222250x xy y x y λλ-+-++=表示什么曲线.解:因为12Iλ=,2(1)(1)Iλλ=-+,3(53)(1)Iλλ=+-,12(51)Kλ=-,所以当λ的值变化时,1231,,,I I I K 也随着变化,它们的变化关系如下表: λ (,1)-∞--1 3(1,)5-- 35- 3(,0)5- 0 1(0,)5 15 1(,1)51(1,+∞ 1I - - - - - 0 + + + + + 2I + 0 - - - - - - - 0 + 3I + + + 0 - - - - -0 +1K- - - - - - + 0 + + +所以有对应于下面的结果:1λ<- 2130,0I I I ><椭圆 1λ=-230,0I I =≠ 抛物线 315λ-<<-230,0I I <≠ 双曲线 35λ=-230,0I I <= 一对相交直线315λ-<<230,0I I <≠双曲线1λ=2310,0,0I I K ==>一对平行的虚直线1λ<<+∞2130,0I I I >>虚椭圆 4. 设221112221323332220ax a xy a y a x a y a +++++= 表示两条平行直线,证明这两条直线之间的距离是1214K d I =-.证明:曲线的方程可简化为: 这里当曲线表示两条平行的实直线时,1K <.所以这两条直线之间的距离是1214K d I =-5. 试证方程221112221323332220a x a xy a y a x a y a +++++= 确定一个实圆必须且只须212124,0I I I I =<.证明:当曲线 221112221323332220a x a xy a y a x a y a +++++=表示一个实圆的充要条件是其特征方程2120I I λλ-+=有相等实根且12I I<,即21240II ∆=-=且12I I<,从而方程确定一个实圆必须且只须212124,0I I I I =<. 6. 试证如果二次曲线的10I =,那么20I <.证明:因为111220I a a =+=即1122a a =-,所以1112222211221211121222()a a I a a a a a a a ==-=-+,而111222,,aa a 不全0,所以有20I <.7. 试证如果二次曲线的230,0II =≠,那么1I≠,而且120I I <.证明:当230,0II =≠时,由5.2节习题7知,曲线为无心曲线,从而有1I≠,而且12I I<.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 二次曲线一般的理论§5.1二次曲线与直线的相关位置1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y .(1)22221x y a b +=;(2)22221x y a b -=;(3)22y px =;(4)223520;x y x -++=(5)2226740x xy y x y -+-+-=.解:(1)22100100001a A b ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪- ⎪ ⎪⎝⎭;121(,)F x y x a =221(,)F x y y b=3(,)1F x y =-;(2)22100100001a A b ⎛⎫ ⎪⎪ ⎪=- ⎪ ⎪- ⎪ ⎪⎝⎭;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -⎛⎫⎪= ⎪ ⎪-⎝⎭;1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020305022A ⎛⎫ ⎪⎪=- ⎪ ⎪ ⎪⎝⎭;15(,)2F x y x =+;2(,)3F x y y =-;35(,)22F x y x =+;(5)1232171227342A ⎛⎫-- ⎪ ⎪ ⎪=-⎪ ⎪ ⎪-- ⎪⎝⎭;11(,)232F x y x y =--;217(,)22F x y x y =-++;37(,)342F x y x y =-+-. 2. 求二次曲线22234630x xy y x y ----+=与下列直线的交点.(1)550x y --=(2)220x y ++=;(3)410x y +-=;(4)30x y -=;(5)2690x y --=.提示:把直线方程代入曲线方程解即可,详解略(1)15(,),(1,0)22-;(2⎝⎭,⎝⎭;(3)二重点(1,0);(4)11,26⎛⎫⎪⎝⎭;(5)无交点.3. 求直线10x y --=与222210x xy y x y -----=的交点. 解:由直线方程得1x y =+代入曲线方程并解方程得直线上的所有点都为交点. 4 .试确定k 的值,使得(1)直线50x y -+=与二次曲线230x x y k -+-=交于两不同的实点; (2)直线1,{x kt y k t=+=+与二次曲线22430x xy y y -+-=交于一点; (3)10x ky --=与二次曲线22(1)10xy y k y -+---=交于两个相互重合的点;(4)1,{1x t y t=+=+与二次曲线222420x xy ky x y ++--=交于两个共轭虚交点.解:详解略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4)4924k >. §5.2二次曲线的渐进方向、中心、渐进线1. 求下列二次曲线的渐进方向并指出曲线属于何种类型的(1)22230xxy y x y ++++=;(2)22342250x xy y x y ++--+=;(3)24230xy x y --+=.解:(1)由22(,)20X Y X XY Y φ=++=得渐进方向为:1:1X Y =-或1:1-且属于抛物型的; (2)由22(,)3420X Y X XY Y φ=++=得渐进方向为:(2:3X Y =-且属于椭圆型的; (3)由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的.2. 判断下列曲线是中心曲线,无心曲线还是线心曲线.(1)22224630x xy y x y -+--+=;(2)22442210x xy y x y -++--=;(3)2281230y x y ++-=;(4)2296620x xy y x y -+-+=.解:(1)因为2111012I -==≠-,所以它为中心曲线; (2)因为212024I -==-且121241-=≠--,所以它为无心曲线; (3)因为200002I ==且004026=≠,所以它为无心曲线; (4)因为293031I -==-且933312--==-,所以它为线心曲线; 3. 求下列二次曲线的中心.(1)225232360x xy y x y -+-+-=;(2)222526350x xy y x y ++--+=;(3)22930258150x xy y x y -++-=.解:(1)由510,3302x y x y --=⎧⎪⎨-++=⎪⎩得中心坐标为313(,)2828-; (2)由5230,2532022x y x y ⎧+-=⎪⎪⎨⎪+-=⎪⎩得中心坐标为(1,2)-; (3)由91540,15152502x y x y -+=⎧⎪⎨-+-=⎪⎩知无解,所以曲线为无心曲线. 4. 当,a b 满足什么条件时,二次曲线226340x xy ay x by ++++-=(1)有唯一中心;(2)没有中心;(3)有一条中心直线.解:(1)由330,2302x y b x ay ⎧++=⎪⎪⎨⎪++=⎪⎩知,当9a ≠时方程有唯一的解,此时曲线有唯一中心;(2)当9,9a b =≠时方程无解,此时曲线没有中心;(3)当9a b ==时方程有无数个解,此时曲线是线心曲线.5. 试证如果二次曲线22111222132333(,)2220F x y a x a xy a y a x a y a =+++++= 有渐进线,那么它的两个渐进线方程是Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=式中00(,)x y 为二次曲线的中心.证明:设(,)x y 为渐进线上任意一点,则曲线的的渐进方向为00:():()X Y x x y y =--,所以Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=.6. 求下列二次曲线的渐进线.(1)226310x xy y x y --++-=;(2)2232340x xy y x y -++-+=;(3)2222240x xy y x y ++++-=.解:(1)由1360,2211022x y x y ⎧-+=⎪⎪⎨⎪--+=⎪⎩得中心坐标13(,)55-.而由2260X XY Y --=得渐进方向为:1:2X Y =或:1:3X Y =-,所以渐进线方程分别为210x y -+=与30x y += (2)由310,22332022x y x y ⎧-+=⎪⎪⎨⎪-+-=⎪⎩得中心坐标13(,)55-.而由22320X XY Y -+=得渐进方向为:1:1X Y =或:2:1X Y =,所以渐进线方程分别为20x y -+=与210x y --=(3)由10,10x y x y ++=⎧⎨++=⎩知曲线为线心曲线,.所以渐进线为线心线,其方程为10x y ++=.7. 试证二次曲线是线心曲线的充要条件是230I I ==,成为无心曲线的充要条件是230,0I I =≠. 证明:因为曲线是线心曲线的充要条件是131112122223a a a a a a ==也即230I I ==;为无心曲线的充要条件是131112122223a a a a a a =≠也即230,0I I =≠. 8. 证明以直线1110A x By C ++=为渐进线的二次曲线方程总能写成111()()0A x By C Ax By C D +++++=. 证明:设以1110A x By C ++=为渐进线的二次曲线为 22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,则它的渐进线为Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=,其中00(,)x y 为曲线的中心, 从而有Φ00(,)x x y y --=111()()0A x By C Ax By C ++++= ,而Φ00(,)x x y y --=0 因为00(,)x y 为曲线的中心, 所以有11012013a x a y a +=-,12022023a x a y a +=- 因此Φ000033(,)(,)(,)x x y y F x y x y a φ--=+-, 令0033(,)x y a D φ-=-,代入上式得 即111(,)()()F x y A x By C Ax By C D =+++++, 所以以1110A x By C ++=为渐进线的二次曲线可写为111()()0A x By C Ax By C D +++++=.9.求下列二次曲线的方程.(1)以点(0,1)为中心,且通过(2,3),(4,2)与(-1,-3); (2)通过点(1,1),(2,1),(-1,-2)且以直线10x y +-=为渐进线. 解:利用习题8的结论即可得: (1)40xy x --=; (2)2223570x xy y x ---+=.§5.3二次曲线的切线1. 求以下二次曲线在所给点或经过所给点的切线方程.(1)曲线223457830x xy y x y ++---=在点(2,1); (2)曲线曲线223457830x xy y x y ++---=在点在原点; (3)曲线22430x xy y x y +++++=经过点(-2,-1); (4)曲线225658x xy y ++=经过点(); (5)曲线222210x xy y x y -----=经过点(0,2).解:(1)910280x y +-=; (2)20x y -=; (3)10,30y x y +=++=; (4)1150,0x y x y +-=-+=; (5)0x =.2. 求下列二次曲线的切线方程并求出切点的坐标.(1)曲线2243530x xy y x y ++--+=的切线平行于直线40x y +=; (2)曲线223x xy y ++=的切线平行于两坐标轴.解:(1)450x y +-=,(1,1)和480x y +-=,(4,3)-; (2)20y ±=,(1,2),(1,2)--和20x ±=,(2,1),(2,1)--. 3. 求下列二次曲线的奇异点.(1)22326410x y x y -+++=; (2)22210xy y x +--=; (3)2222210x xy y x y -+-++=.解:(1)解方程组330,220x y +=⎧⎨-+=⎩得奇异点为(1,1)-; (2)解方程组10,0y x y -=⎧⎨+=⎩得奇异点为(1,1)-.4.试求经过原点且切直线4320x y ++=于点(1,-2)及切直线10x y --=于点(0,-1)的二次曲线方程. 解:利用(5.3-5)可得226320x xy y x y +-+-=.5.设有共焦点的曲线族2222221x y a h b h+=++,这里h 是一个变动的参数,作平行于已知直线y mx =的曲线的切线,求这些切线切点的轨迹方程. 解:设切点坐标为00(,)x y ,则由(5.3-4)得曲线的切线为0022221x x y ya hb h+=++, 因为它平行与y m x =,所以有2220000x b my a h x my +=-+, 代入220022221x y a h b h +=++整理得222220000(1)()0m x m x y m y m a b +----=, 所以切点的轨迹为22222(1)()0mx m xy my m a b +----=.§5.4二次曲线的直径1. 已知二次曲线223754510x xy y x y +++++=.求它的(1)与x 轴平行的弦的中点轨迹; (2)与y 轴平行的弦的中点轨迹; (3)与直线10x y ++=平行的弦的中点轨迹.解:(1)因为x 轴的方向为:1:0X Y =代入(5.4-3)得中点轨迹方程6740x y ++=; (2)因为y 轴的方向为:0:1X Y =代入(5.4-3)得中点轨迹方程71050x y ++=; (3)因为直线10x y ++=的方向为:1:1X Y =-代入(5.4-3)得中点轨迹方程310x y ++=. 2.求曲线224260x xy x y +---=通过点(8,0)的直径方程,并求其共轭直径. 解:(1)把点(8,0)代入(2)(21)0X x Y y -+-= 得:1:6X Y =,再代入上式整理得直径方程为1280x y +-=,其共轭直径为122230x y --=.3.已知曲线22310xy y x y --+-=的直径与y 轴平行,求它的方程,并求出这直径的共轭直径. 解:直径方程为10x -=,其共轭直径方程为230x y -+=.4.已知抛物线28y x =-,通过点(-1,1)引一弦使它在这点被平分. 解:430x y ++=.5. 求双曲线22164x y -=一对共轭直径的方程,已知两共轭直径间的角是45度. 解:设直径和共轭直径的斜率分别为',k k ,则'23kk =.又因为它们交角45度,所以''11k k kk -=+,从而13k =-或2,'2k =-或13,故直径和共轭直径的方程为30x y +=和20x y -=或20x y +=和30x y -=.6.求证:通过中心曲线的直线一定为曲线的直径;平行于无心曲线渐进方向的直线一定为其直径. 证明:因为中心曲线直径为中心线束,因此过中心的直线一定为直径;当曲线为无心曲线时,它们的直径属于平行直线束,其方向为渐进方向,所以平行于无心曲线渐进方向的直线一定为其直径. 7.求下列两条曲线的公共直径.(1)223234440x xy y x y -+++-=与2223320x xy y x y --++=; (2)220x xy y x y ----=与2220x xy y x y ++-+=. 解:(1)210x y -+=;(2)5520x y ++=.8.已知二次曲线通过原点并且以下列两对直线 320,5540x y x y --=⎧⎨--=⎩与530,210y x y +=⎧⎨--=⎩为它的两对共轭直径,求该二次曲线的方程. 解:设曲线的方程为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,则由(5.4-3)和(5.4-5)可得1112221323331111,,1,,,0222a a a a a a ==-=-=-=-=,所以曲线的方程为220x xy y x y ----=.§5.5二次曲线的主直径与主方向1.分别求椭圆22221x y a b +=,双曲线22221x y a b-=,抛物线22y px =的主方向与主直径.解:椭圆的主方向分别为1:0和0:1,主直径分别为0,0x y ==;双曲线的主方向分别为1:0和0:1,主直径分别为0,0x y ==;抛物线的主方向分别为0:1和1:0,主直径分别为0y =. 2.求下列二次曲线的主方向与主直径. (1)22585181890x xy y x y ++--+=; (2)22210xy x y -+-=; (3)229241618101190x xy y x y -+--+=.解:(1)曲线的主方向分别为1:(-1)和1:1,主直径分别为0,20x y x y -=+-=; (2)其主方向分别为1:1和1:(-1),主直径分别为0,20x y x y +=-+=; (3)其主方向分别为3:(-4)和4:3,主直径分别为3470x y -+=; (4)任何方向都是其主方向,过中心的任何直线都是其主直径.3.直线10x y ++=是二次曲线的主直径,点(0,0),(1,-1),(2,1)在曲线上,求该曲线的方程.解:设二次曲线方程为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=, 把点坐标(0,0),(1,-1),(2,1)分别代入上面方程同时利用直线10x y ++=为其主直径可得111222132333774,,4,,4,022a a a a a a ==-==-==,所以所求曲线方程为22474780x xy y x y -+-+=.4.试证二次曲线两不同特征根确定的主方向相互垂直.证明:设12,λλ分别曲线的两不同特征根,由它们确定的主方向分别为11:X Y 与22:X Y 则1111211112122111,,a X a Y X a X a Y Y λλ+=⎧⎨+=⎩与1121222212222222,a X a Y X a X a Y Y λλ+=⎧⎨+=⎩,所以11211211112121212212()()X X YY a X a Y X a X a Y Y λλ+=+++11212211222221221221()(),a X a Y X a X a Y X X X Y Y λλ=+++=+从而有121212()()0X X YY λλ-+=,因为12λλ≠,所以12120X X YY +=,由此两主方向11:X Y 与22:X Y 相互垂直.§5.6二次曲线方程的化简与分类1. 利用移轴与转轴,化简下列二次曲线的方程并写出它们的图形.(1)225422412180x xy y x y ++--+=;(2)222410x xy y x y ++-+-=;(3)25122212190x xy x y +---=;(4)222220x xy y x y ++++=. 解(1)因为二次曲线含xy 项,我们先通过转轴消去xy ,设旋转角为α,则324ctg α=,即21324tg tg αα-=,所以12tg α=或-2.取2tg α=-,那么sin α=,cos α=,所以转轴公式为''''2),2).x x y y x y ⎧=+⎪⎪⎨⎪=-+⎪⎩代入原方程化简再配方整理得新方程为''2''26120x y +-=;类似的化简可得 (2)''2''250y +=;(3)''2''294360x y --=;(4)''2210x -=.2.以二次曲线的主直径为新坐标轴,化简下列方程,并写出的坐标变换公式与作出它们的图形.(1)22845816160x xy y x y +++--=;(2)22421040x xy y x y --++=;(3)22446830x xy y x y -++-+=;(4)2244420x xy y x y -++-=. 解:(1)已知二次曲线的距阵是 8242584816⎛⎫ ⎪- ⎪ ⎪--⎝⎭, 18513I =+=,2823625I ==, 所以曲线的特征方程为213360λλ-+=,其特征根为14λ=,29λ=,两个主方向为11:1:2X Y =-,22:2:1X Y =;其对应的主直径分别为8200x y -+=,7740x y +-=. 取这两条直线为新坐标轴得坐标变换公式'''')1,2) 2.x x y y x y ⎧=--⎪⎪⎨⎪=++⎪⎩代入已知曲线方程并整理得曲线在新坐标系下的方程为 '2'294360x y +-=.(2)已知二次曲线的距阵是 225222520-⎛⎫ ⎪- ⎪ ⎪⎝⎭坐标变换公式''''2)1,) 2.x x y y x y ⎧=--⎪⎪⎨⎪=++⎪⎩代入已知曲线方程并整理得曲线在新坐标系方程为'2'23210x y-+-=. (3)已知二次曲线的距阵是423214343-⎛⎫⎪--⎪⎪-⎝⎭,坐标变换公式''''92),101).5 x x yy x y⎧=--⎪⎪⎨⎪=++⎪⎩代入已知曲线方程并整理得曲线在新坐标系下的方程为'2'50y x-=. (4)坐标变换公式''''22),51).5x x yy x y⎧=--⎪⎪⎨⎪=++⎪⎩代入已知曲线方程并整理得曲线在新坐标系下的方程为'2510y-=.3.试证在任意转轴下,二次曲线的新旧方程的一次项系数满足关系式'2'22213231313a a a a+=+.证明:设旋转角为α,则''131323cos sina a aαα=-,''231323sin cosa a aαα=+,两式平方相加得'2'22213231313a a a a+=+.4.试证二次曲线222ax hxy ay d++=的两条主直径为220x y-=,曲线的两半轴的长分别为. 证明:求出曲线的两主直径并化简即可得.§5.7应用不变量化简二次曲线的方程1. 利用不变量与半不变量,判断下列二次曲线为何种曲线,并求出它的化简方程与标准方程. (1)2266210x xy y x y++++-=;(2)223234440x xy y x y-+++-=;(3)2243220x xy y x y-++-=;(4)22442210x xy y x y-++--=;(5)222246290x xy y x y-+--+=;(6);(7)2222240x xy y x y++++-=;(8)224412690x xy y x y-++-+=.解:(1)因为12I=,213831I==-,13331116311=-,322II=-,而特征方程2280λλ--=的两根为124,2λλ==-,所以曲线的简化方程(略去撇号)为224220x y --=曲线的标准方程为 2221012x y --=,曲线为双曲线; 类似地得下面:(2)曲线的简化方程(略去撇号)为 222480x y +-=,曲线的标准方程为 22142x y +=,曲线为椭圆; (3)曲线的简化方程(略去撇号)为22(2(20x y +=,曲线的标准方程为22011x y -=, 曲线为两相交直线;(4)曲线的简化方程(略去撇号)为250y -=, 双曲线的标准方程为2y =, 曲线为抛物线; (5)曲线的简化方程(略去撇号)为2233((022x y +=, 曲线的标准方程为220x y +=, 曲线为一实点或相交与一实点的两虚直线;(6)曲线的简化方程(略去撇号)为220,0,0)y x a y a -=≤≤≤≤(, 曲线的标准方程为2y =,0,0)x a y a ≤≤≤≤( 曲线为抛物线的一部分;(7)曲线的简化方程(略去撇号)为 2250y -=, 曲线的标准方程为 252y =,曲线为两平行直线;(8)曲线的简化方程(略去撇号)为 250y =,曲线的标准方程为 20y =, 曲线为两重合直线.2. 当λ取何值时,方程 2244230x xy y x y λ++---= 表示两条直线.解:方程 2244230x xy y x y λ++---=表示两条直线当且仅当3222110213I λ-=-=---, 即4λ=.3. 按实数λ的值讨论方程2222250x xy y x y λλ-+-++= 表示什么曲线.解:因为12I λ=,2(1)(1)I λλ=-+,3(53)(1)I λλ=+-,12(51)K λ=-,所以当λ的值变化时,1231,,,I I I K 也随着变化,它们的变化关系如下表:4. 设221112221323332220a x a xy a y a x a y a +++++= 表示两条平行直线,证明这两条直线之间的距离是d =. 证明:曲线的方程可简化为:这里当曲线表示两条平行的实直线时,10K <.所以这两条直线之间的距离是d =5. 试证方程 221112221323332220a x a xy a y a x a y a +++++= 确定一个实圆必须且只须212124,0I I I I =<.证明:当曲线 221112221323332220a x a xy a y a x a y a +++++=表示一个实圆的充要条件是其特征方程2120I I λλ-+=有相等实根且120I I <,即21240I I ∆=-=且120I I <,从而方程确定一个实圆必须且只须212124,0I I I I =<.6. 试证如果二次曲线的10I =,那么20I <. 证明:因为111220I a a =+=即1122a a =-,所以1112222211221211121222()a a I a a a a a a a==-=-+,而11122,,a a a 不全0,所以有20I <. 7. 试证如果二次曲线的230,0I I =≠,那么10I ≠,而且120I I <.证明:当230,0I I =≠时,由5.2节习题7知,曲线为无心曲线,从而有10I ≠,而且120I I <.。

相关文档
最新文档