北师大版中考数学模拟试题及答案(通用)

合集下载

初三数学中考试卷(北师大版,含答案)

初三数学中考试卷(北师大版,含答案)

初三数学中考试卷一、选择题(本题共10个小题,每小题4分,共40分。

请选出各题中其中一个符合题意的正确选项,不选、多选、错选均不给分)1.冬季的一天,室内温度是8℃,室外温度是-2℃,则室内外温度相差( )A、4℃B、6℃C、10℃D、16℃2.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()A、 B、 C、 D、3.右图中几何体的正视图是( )4.吋是电视机常用规格之一,1吋约为拇指上面一节的长,则7吋长相当于( )A、课本的宽度B、课桌的宽度C、黑板的高度D、粉笔的长度5.已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于( )A、15°B、20°C、25°D、30°6.如图,设M、N分别是直角梯形ABCD两腰AD、CB的中点,DE⊥AB于点E,将△ADE沿DE翻折,M与N恰好重合,则AE∶BE等于( )A、2∶1B、1∶2C、3∶2D、2∶37.不等式的解集是( )A、 B、 C、 D、8.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有( )A、2对B、3对C、4对D、6对9.小敏在某次投篮中,球的运动线路是抛物线的一部分(如图),若命中篮圈中心,则他与篮底的距离l是( )A、3.5mB、4 mC、4.5 mD、 4.6 m10.如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E 在函数的图象上,则点E的坐标是( )A、 B、C、 D、二、填空题(本题有6小题,每小题5分共30分)11.当______________时,分式的值为0.12.据媒体报道,今年“五一”黄金周期间,我市旅游收入再创历史新高,达1290000000元,用科学记数法表示为______________元.13.如图是小敏五次射击成绩的图,根据图示信息,则此五次成绩的平均数是_____________环。

北师大版九年级数学中考模拟试题

北师大版九年级数学中考模拟试题

ABCDE FMC'D'B'俯视图主(正)视图左视图初中毕业生中考数学模拟考试一.选择题:1、2--的倒数是( )A 、2B 、12 C 、12- D 、-2 2、2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。

已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A3.84×410千米 B3.84×510千米 C 、3.84×610千米 D 、38.4×410千米3、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 、5个B 、6个C 、7个 D.8个4、下列运算正确的是( )A 、2224(2)2a a a -=B 、336()a a a -⋅= C.236(2)8x x -=- D 、2()x x x -÷=- 5、下列事件中,不可能事件是( )A 、掷一枚六个面分别刻有1~6数码的均匀正方体骰子。

向上一面的点数是“5”B 、任意选择某个电视频道,正在播放动画片C 、肥皂泡会破碎D 、在平面内,度量一个三角形的内角度数,其和为360°6 、已知代数式1312a x y -与23b a b x y -+-是同类项,那么a 、b 的值分别是( )A 、21a b =⎧⎨=-⎩B 、21a b =⎧⎨=⎩C 、21a b =-⎧⎨=-⎩D 、21a b =-⎧⎨=⎩7、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°8、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。

已知车速45A 、3B 、23C 、5D 、29、为了了解汽车司机遵守交通法规的意识,小明的学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图所示。

北师大版九年级中考数学模拟考试试题(含答案)

北师大版九年级中考数学模拟考试试题(含答案)

九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。

(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。

(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。

(完整版)北师大版中考数学试题及答案

(完整版)北师大版中考数学试题及答案

A B C31 23 6 78第一部分 选择题(本部分共12小题,每小题3分,共36分。

每小题给出的4个选项中,其中只有一个是正确的)1.12-的相反数等于( )A .12- B .12 C .-2 D .22.如图1所示的物体是一个几何体,其主视图是( )A .B .C .D . 图13.今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为( ) A .5.6×103 B .5.6×104 C .5.6×105 D .0.56×105 4.下列运算正确的是( )A .x 2+x 3=x 5B .(x +y )2=x 2+y 2C .x 2·x 3=x 6D .(x 2)3=x 6 5.某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5, 则这组数据的中位数为( )A .4B .4.5C .3D .26.一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( ) A .100元 B .105元 C .108元 D .118元7.如图2,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC 相似的是( )图2 A . B . C . D . 8.如图3是两个可以自由转动的转盘,转盘各被等分成三个扇形, 并分别标上1,2,3和6,7,8这6个数字。

如果同时转动 两个转盘各一次(指针落在等分线上重转),当转盘停止后, 则指针指向的数字和为偶数的概率是( ) A .12 B .29 C .49D .139.已知a ,b ,c 均为实数,若a >b ,c ≠0。

下列结论不一定正确的是( ) A .a c b c +>+ B .c a c b ->- C .22a b c c> D .22a ab b >> 10.对抛物线223y x x =-+-而言,下列结论正确的是( )图7图5 A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标为(1,-2) 11.下列命题是真命题的个数有( )①垂直于半径的直线是圆的切线; ②平分弦的直径垂直于弦;③若12x y =⎧⎨=⎩是方程x -ay =3的一个解,则a =-1;④若反比例函数3y x=-的图像上有两点(12,y 1),(1,y 2),则y 1<y2。

北师大版中考数学模拟题

北师大版中考数学模拟题

1正面ABCD数学模拟试卷一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求。

1.3-的绝对值是( ) A .3 B .3- C .13 D .13-2.计算232(3)x x ⋅-的结果是( )A .56x - B .56x C .62x - D .62x3.已知点P (a ,a -1)在直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )A B C D 4.成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为( ) A . 59.310⨯ 万元 B . 69.310⨯万元 C .49310⨯万元 D . 60.9310⨯万元 5.如右图所示几何体的主视图是( )6.点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是( ) A .(3,4) B .(-4,-3) C .(4,-3) D .(-3,-4) 7.把不等式组⎩⎨⎧≤+->321x x 的解集表示在数轴上,下列选项正确的是( )A .B .C .D .8.用半径为12cm ,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为( )A .1.5cmB .3cmC .6cmD .12cm9.直线l :y =x +2与y 轴交于点A ,将直线l 绕点A 旋转90°后,所得直线的解析式为( )A .y =x -2B .y =-x +2C .y =-x -2D .y =-2x -110.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( ) A .80° B .50° C .40° D .20° 二、填空题(每小题3分,共15分)11.分解因式:22x y xy y -+=_________.12. 甲、乙、丙三位选手各10次射击成绩的平均数和方差统计如表:则射击成绩最稳定的选手是____________.(填“甲”、“乙”、“丙”中的一个)1 0 1-1 0 1- 1 0 1- 10 1-2. 13.方程组31x y x y +=⎧⎨-=-⎩的解是____________.14.如图,是反比例函数1=k y x和y = 2=k y x (k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若S △AOB =2,则k 2-k 1的值是_________.第14题图 第15题图15. 如图,直线y =43-x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 按顺时针方向旋转90°后得到△AO 1B 1,则点B 1的坐标是 。

【北师大版】初三数学下期中一模试题带答案(4)

【北师大版】初三数学下期中一模试题带答案(4)

一、选择题1.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )A .49B .112C .13D .162.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同.乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是( )A .20B .15C .10D .53.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )A .14B .12C .34D .14.我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )A .18B .38C .58D .125.设a ,b 是方程220220x x +-=的两个实数根,则22a a b ++的值为( ) A .2019 B .2020 C .2021 D .20226.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x 7.解方程2630x x -+=,可用配方法将其变形为( )A .2(3)3x +=B .2(3)6x -=C .2(3)3x -=D .2(6)3x -= 8.下列说法不正确的是( )A .打开电视剧,电视里播放《小猪佩奇》是偶然事件B .了解一批灯泡的使用寿命,适合抽样调查C .一元二次方程2210x x -+=只有一个根D .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定 9.下列说法中正确的是( )A .对角线互相垂直的四边形是菱形B .有一个角是直角的平行四边形是正方形C .有两个角相等的四边形是平行四边形D .平移和旋转都不改变图形的形状和大小10.如图,正方形ABCD ,对角线,AC BD 相交于点O ,过点D 作ODC ∠的角平分线交OC 于点G ,过点C 作CF DG ⊥,垂足为F ,交BD 于点E ,则:ADG BCE S S 的比为( )A .(21):1+B .(221):1-C .2∶1D .5∶2 11.如图所示,△ABC 是等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则四个结论正确的是( )①点 P 在∠A 的平分线上; ②AS=AR ; ③QP //AR ; ④△BRP ≌△QSP .A .全部正确B .①②正确C .①②③正确D .①③正确 12.如图,在长方形ABCD 中,AE 平分∠BAD 交BC 于点E ,连接ED ,若ED =5,EC =3,则长方形的周长为( )A .20B .22C .24D .26二、填空题13.某次考试中,每道单项选择题有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全部做对的概率是_______.14.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上各写下的数是__________.15.关于x 的一元二次方程2(21)0kx k x k -++=总有两个实数根,则常数k 的取值范围是________.16.一元二次方程x 2-4x +1=0的两根是x 1,x 2,则x 1+x 2-x 1⋅x 2=_________. 17.如果一元二次方程()()636x x x -=-的两个根是等腰三角形的两条边的长,那么这个等腰三角形的周长为__________.18.有两个全等矩形纸条,长与宽分别为11和7,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH 的周长为_______________.19.如图,在矩形ABCD 中,4cm AB =,3cm BC =,点P 为AD 上一点,将ABP 沿着BP 翻折至EBP ,PE 与CD 交于点O ,且OE OD ,则DP 的长度为______cm .20.如图,四边形ABCD 中,30,120B D ∠=︒∠=︒,且,6AB AC AD CD ⊥+=,则四边形ABCD 周长的最小值是_______________________.三、解答题21.某中学为了解九年级学生对足球、篮球、排球这三种球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)求此次调查的学生总人数,并补全条形统计图.(2)若该中学九年级共有500名学生,请你估计该中学九年级学生中喜爱篮球运动的学生有多少人?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取两名学生,确定为该校足球运动员的重点培养对象,请用列表或画树状图的方法求抽取的两名学生恰好为1名男生和1名女生的概率.22.某校七年级积极实施拓展性课程,计划开设“羽毛球”、“电影鉴赏”、“篮球”和“美食文化”等多个拓展性课程供学生选择,要求每位学生都自主选择其中一门拓展性课程,为此,随机调查了本校部分学生选择拓展性课程的意向,并将调查结果绘制成如下统计图表(不完整):选择意向羽毛球电影鉴赏篮球美食文化其他所占百分比a35%b20%5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a,b的值;(2)将条形统计图补充完整;(3)若该校七年级共有480名学生,请估算全校选择“篮球”拓展性课程的学生人数是多少?(4)现有甲、乙两位同学选拓展性课程,他们各自从羽毛球,电影鉴赏,篮球和美食文化四个拓展性课程中任意选择一门,请画出树状图或表格,并求出他们其中一位选择了电影鉴赏,另一位选择了美食文化的概率是多少?23.(1)解方程:2450x x --=(2)已知点(2,1)P x y +与点(7,)Q x y --关于原点对称,求x ,y 的值.24.解方程:(1)2210x x +-=; (2)3(1)2(1)x x x -=-.25.如图,在四边形ABCD 中,E 、F 分别是AD ,BC 的中点,G ,H 分别是BD 、AC 的中点,依次连接E ,G ,F ,H .(1)求证:四边形EGFH 是平行四边形;(2)当AB=CD 时,EF 与GH 有怎样的位置关系?请说明理由;(3)若AB=CD ,∠ABD=20°,∠BDC=70°,则∠GEF= °.26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:2163.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.2.B解析:B【分析】由频率得到红色球和黑色球的概率,用总数乘以白色球的概率即可得到个数.【详解】白色球的个数是50(127%43%)15个,故选:B.【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键. 3.C解析:C【分析】在等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,直接利用概率公式求解即可求得答案.【详解】∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:34.故选:C.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.也考查了中心对称图形的定义.4.B解析:B 【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案.【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的有3种, 则遇到两次红灯的概率是38, 故选:B .【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键.5.C解析:C【分析】由一元二次方程根与系数的关系,得到1a b +=-,然后求出22022a a +=,然后代入计算,即可得到答案.【详解】解:∵a ,b 是方程220220x x +-=的两个实数根,∴1a b +=-,22022a a +=,∴222()()a a b a a a b ++=+++2022(1)=+-2021=.故选:C .【点睛】本题考查了一元二次方程的解,根与系数的关系,解题的关键是熟练掌握运算法则,正确的进行解题.6.D解析:D【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意,得()()30220223020++=⨯⨯x x .故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.B解析:B【分析】方程两边同时加6即可配方变形,由此得到答案.【详解】解:方程两边同时加上6,得2696x x -+=,∴2(3)6x -=,故选:B .【点睛】此题考查一元二次方程的配方,掌握配方法的解题方法是解题的关键.8.C解析:C【分析】根据必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差依次判断即可.【详解】解:A. 打开电视剧,电视里播放《小猪佩奇》是偶然事件,正确,不符合题意;B. 了解一批灯泡的使用寿命,适合抽样调查,正确,不符合题意;C. 一元二次方程2210x x -+=中,24440b ac ∆=-=-=,有两个相等的实数根,故原说法错误,符合题意;D. 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是20.36S =甲,20.54S =乙,甲的射击成绩稳定,正确,不符合题意; 故选:C .【点睛】本题考查必然事件和偶然事件,抽样调查和普查,一元二次方程跟的判别式和方差,注意当0∆=时,一元二次方程有两个相等的实数根.9.D解析:D【分析】根据平行四边形,菱形,正方形的判定,依据平移旋转的性质一一判断即可.【详解】解:A 、对角线互相垂直的四边形是菱形,错误.应该是对角线互相垂直平分的四边形是菱形,本选项不符合题意.B 、有一个角是直角的平行四边形是正方形,错误.应该是有一个角是直角且邻边相等的平行四边形是正方形,本选项不符合题意.C 、有两个角相等的四边形是平行四边形,错误,可能是等腰梯形.本选项不符合题意.D 、平移和旋转都不改变图形的形状和大小,正确,故选:D .【点睛】本题考查平行四边形的判定,菱形的判定,正方形的判定,平移变换,旋转变换的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A解析:A【分析】由题意先证得DE DC =和()DOG COE ASA ∆≅∆,设2AD DC a ==,进而可用含a 的式子表示出线段AG 和BE 的长,要求:ADG BCE S S ∆∆的比值即求AG 和BE 的比值,代入即可求解.【详解】 解:正方形ABCD ,AD DC ∴=,45ODC OCD OAD ∠=∠=∠=︒,90DOC BOC ∠=∠=︒,OD OC =, DF 平分ODC ∠,22.5EDF CDF ∴∠=∠=︒,CF DG ⊥,67.5DEF DCF ∴∠=∠=︒,67.54522.5OCE ∴∠=︒-︒=︒,DE DC =,OCE ODG ∴∠=,又OD OC =,90DOC BOC ∠=∠=︒,()DOG COE ASA ∴∆≅∆,OG OE ∴=,设2AD DC a ==,则有OA OB =,2DE a =,BD =,2)BE BD DE a ∴=-=,2AG AO OG a =+=, 12ADG S AG OD ∆=,12BCE S BE OC ∆=,OD OC =,::2:2)1):1ADG BCE S S AG BE a a ∆∆∴===,故选:A .【点睛】本题主要考查了正方形的性质,角平分线的定义以及全等三角形的判定与性质,解题的关键是将两个三角形的面积比转化成两条线段的比,综合性较强.11.A解析:A【分析】因为△ABC 为等边三角形,根据已知条件可推出Rt △ARP ≌Rt △ASP ,则AR =AS ,故②正确,∠BAP=∠CAP,所以AP是等边三角形的顶角的平分线,故①正确,根据等腰三角形的三线合一的性质知,AP也是BC边上的高和中线,即点P是BC的中点,因为AQ=PQ,所以点Q是AC的中点,所以PQ是边AB对的中位线,有PQ∥AB,故③正确,又可推出△BRP≌△QSP,故④正确.【详解】解:∵PR⊥AB于R,PS⊥AC于S∴∠ARP=∠ASP=90°∵PR=PS,AP=AP∴Rt△ARP≌Rt△ASP∴AR=AS,故②正确,∠BAP=∠CAP∴AP是等边三角形的顶角的平分线,故①正确∴AP是BC边上的高和中线,即点P是BC的中点∵AQ=PQ∴点Q是AC的中点∴PQ是边AB对的中位线∴PQ∥AB,故③正确∵Q是AC的中点,∴QC=QP,∵∠C=60°,∴△QPC是等边三角形,∴PB=PC=PQ,∵PR=PS,∠BRP=∠QSP=90°,∴△BRP≌△QSP,故④正确∴全部正确.故选:A.【点睛】本题利用了等边三角形的性质:三线合一,全等三角形的判定和性质,中位线的性质,熟练掌握上述性质和判定方法是解题的关键.12.B解析:B【分析】直接利用勾股定理得出DC的长,再利用角平分线的定义以及等腰三角形的性质得出BE的长,进而得出答案.【详解】解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AB=DC,∵ED=5,EC=3,∴DC==,4则AB=4,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠BEA,∴AB=BE=4,∴长方形的周长为:2×(4+4+3)=22.故选:B.【点睛】本题考查了矩形的性质、等腰三角形的判定、勾股定理等,解题关键是把握已知,整合已知得出等腰三角形,依据勾股定理求出线段长.二、填空题13.【分析】根据题意列出树状图解答即可【详解】设每道题的四个选项分别为:ABCD且这两道题都只有A选项是正确的列树状图如下:共有16种等可能的情况其中这两道题全部做对的有1种∴该同学的这两道题全部做对的解析:1 16【分析】根据题意,列出树状图解答即可.【详解】设每道题的四个选项分别为:A、B、C、D,且这两道题都只有A选项是正确的,列树状图如下:共有16种等可能的情况,其中这两道题全部做对的有1种,∴该同学的这两道题全部做对的概率是116,故答案为:1 16.【点睛】此题考查用列表法或树状图法求概率,正确理解题意列出树状图是解题的关键.14.2335或2344【分析】首先假设这四个数字分别为:ABCD且A≤B≤C≤D进而得出符合题意的答案【详解】解:四个数只能是2335或2344理由:设这四个数字分别为:ABCD且A≤B≤C≤D故A+B解析:2,3,3,5或2,3,4,4【分析】首先假设这四个数字分别为:A ,B ,C ,D 且A≤B≤C≤D ,进而得出符合题意的答案. 【详解】解:四个数只能是2,3,3,5或2,3,4,4理由:设这四个数字分别为:A ,B ,C ,D 且A≤B≤C≤D , 故A+B=5,C+D=8, (1)当A=1时,得B=4, ∵A≤B≤C≤D ,∴B=C=D=4,不合题意舍去,所以A≠1, (2)当A=2时,得B=3, (I )当C=B=3时,D=5, (II )当C >B 时,∵A≤B≤C≤D , ∴C=D=4,故综上所述:这四个数只能是:2,3,3,5或2,3,4,4. 故答案为:2,3,3,5或2,3,4,4. 【点睛】此题主要考查了应用类问题,利用分类讨论得出是解题关键.15.且【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案【详解】解:∵关于x 的一元二次方程有两个实数根∴△=-(2k+1)2-4k k≥0且k≠0解得:且k≠0故答案为:且k≠0【点解析:14k ≥-且0k ≠ 【分析】根据一元二次方程根与判别式的关系及一元二次方程的定义即可得答案. 【详解】解:∵关于x 的一元二次方程2(21)0kx k x k -++=有两个实数根,∴△=[-(2k+1)]2-4k ⨯k≥0,且k≠0, 解得:14k ≥-且k≠0. 故答案为:14k ≥-且k≠0. 【点睛】本题考查一元二次方程根的判别式和一元二次方程的定义.一元二次方程根的情况与判别式△的关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0,方程没有实数根;注意一元二次方程的二次项系数不为0的隐含条件,避免漏解.16.3【分析】先根据根与系数的根据求得x1+x2和x1x2的值然后代入计算即可【详解】解:∵一元二次方程x2-4x +1=0的两根是x1x2∴x1+x2=4x1x2=1∴x1+x2-x1x2=4-1解析:3 【分析】先根据根与系数的根据求得x 1+x 2和x 1⋅x 2的值,然后代入计算即可. 【详解】解:∵一元二次方程x 2-4x +1=0的两根是x 1,x 2 ∴x 1+x 2=4,x 1⋅x 2=1 ∴x 1+x 2-x 1⋅x 2=4-1=3. 故答案为3. 【点睛】本题主要考查了一元二次方程根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,则x 1+x 2=b a -、x 1⋅x 2=c a. 17.15【分析】先解一元二次方程根据根的情况可知有两种方式用三角形三边关系排除一组后即可得出三角形周长【详解】解:即∵336不能构成三角形∴这个等腰三角形的三边成为663周长为15故答案为:15【点睛】解析:15 【分析】先解一元二次方程,根据根的情况可知有两种方式,用三角形三边关系排除一组后即可得出三角形周长. 【详解】解:()()636x x x -=-()(3)60x x --=,即123,6x x ==,∵3,3,6不能构成三角形,∴这个等腰三角形的三边成为6,6,3,周长为15. 故答案为:15. 【点睛】本题考查等腰三角形的定义,解一元二次方程,三角形三边关系.不要忽略了用三角形三边关系判断能否构成三角形.18.【分析】先证四边形BGDH 为平行四边形再证BG=BH 然后由勾股定理求B G四边形BGDH 的周长=4BH 即可【详解】由题意得矩形矩形∴四边形是平行四边形∴平行四边形的面积∴四边形是菱形设则在中由勾股定理 解析:34011【分析】先证四边形BGDH 为平行四边形,再证BG=BH ,然后由勾股定理求B G,四边形BGDH 的周长=4BH 即可. 【详解】由题意得矩形ABCD ≌矩形BEDF ,90,7,//,//,11A AB BE AD BC BF DE AD ︒∴∠====,∴四边形BGDH 是平行四边形,∴平行四边形BGDH 的面积BG AB BH BE =⋅=⋅,BG BH ∴=,∴四边形BGDH 是菱形, BH DH DG BG ∴===.设BH DH x ==,则11AH x =-.在Rt ABH △中,由勾股定理得2227(11)x x +-=, 解得85,11x =8511BG ∴=, ∴四边形BGDH 的周长340411BG ==. 【点睛】本题考查四边形的周长问题,关键是证四边形BGDH 为菱形,用勾股定理求BH ,掌握矩形的性质,菱形的性质与判定,会用勾股定理解决问题.19.【分析】设CD 与BE 交于点GAP =x 证明△ODP ≌△OEG (ASA )根据全等三角形的性质得到OP =OGPD =GE 根据翻折变换的性质用x 表示出PDOP 根据勾股定理列出方程解方程即可【详解】解:设CD 与解析:35. 【分析】设CD 与BE 交于点G ,AP =x ,证明△ODP ≌△OEG (ASA ),根据全等三角形的性质得到OP =OG ,PD =GE ,根据翻折变换的性质用x 表示出PD 、OP ,根据勾股定理列出方程,解方程即可. 【详解】解:设CD 与BE 交于点G ,∵四边形ABCD 是矩形,∴∠D =∠A =∠C =90°,AD =BC =3cm ,CD =AB =4cm , 由折叠的性质可知△ABP ≌△EBP ,∴EP =AP ,∠E =∠A =90°,BE =AB =4cm , 在△ODP 和△OEG 中,DOP EOG OD OED E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODP ≌△OEG (ASA ), ∴OP =OG ,PD =GE , ∴DG =EP ,设AP =EP =x ,则PD =GE =3﹣x ,DG =x , ∴CG =4﹣x ,BG =4﹣(3﹣x )=1+x , 根据勾股定理得:BC 2+CG 2=BG 2, 即32+(4﹣x )2=(x +1)2, 解得:x 125=, ∴AP 125=(cm ), ∴DP 35=(cm ). 故答案为:35. 【点睛】本题考查的是翻折变换的性质,矩形的性质,全等三角形的判定与性质和勾股定理的应用,熟练掌握翻折变换的性质是解题的关键.20.【分析】延长AD 至点E 使得连接CE 过点C 作证明△CDE 为等边三角形分别求出四边形ABCD 的边长判断即可;【详解】如图所示延长AD 至点E 使得连接CE 过点C 作∵∴又∵∴△CDE 为等边三角形∴设则∵∴则∴解析:15+【分析】延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,证明△CDE 为等边三角形,分别求出四边形ABCD 的边长判断即可; 【详解】如图所示,延长AD 至点E ,使得DE CD =,连接CE ,过点C 作CH AE ⊥,∵120ADC =∠︒,∴180********EDC ADC ∠=︒-∠=︒-︒=︒, 又∵DE CD =, ∴△CDE 为等边三角形, ∴CD DE CE ==,60E ∠=︒, 设CE x =,则CD DE x ==, ∵CH DE ⊥,∴9030ECH E ∠=︒-∠=︒, 则1122EH CE x ==, ∴=+-=+-=-11622AH AD DE EH AD CD x x , 22221342CH CE EH x x x =-=-=, ∴()⎛⎫=+=-+=-+≥ ⎪⎝⎭222221363273324AC AH CH x x x ,∴当3x =时,AC 取得最小值为33此时,3AD CD x ===,∵AB AC ⊥, ∴90BAC =︒, 又30B ∠=︒,∴12AC BC =,即2BC AC =, 222243AB BC AC AC AC AC =-=-=,∴四边形ABCD 周长AD CD AB BC=+++,()32AD CD AC AC =+++,()()632632331563AC =++≥++⨯=+;∴四边形ABCD 的最小值为1563+. 故答案是1563+. 【点睛】本题主要考查了四边形综合,等边三角形的判定和性质,含30度角的直角三角形的性质,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.三、解答题21.(1)60人,画图见解析;(2)225人;(3)23【分析】(1)根据喜爱足球的人数和所占的百分比求出总人数,由总人数减去喜爱足球和篮球人数,即可求出喜爱排球的人数,并补全条形图即可; (2)由总人数乘以喜爱篮球运动的学生的百分数即可得解;(3)画树状图展示12种等可能的结果数,再找出抽取的两人恰好是一名男生和一名女生结果数,然后根据概率公式求解. 【详解】解:(1)此次调查的学生总人数为1220%60÷=(人). 喜爱排球运动的学生人数为60-12-27=21(人), 补全条形统计图如下:(2)500(135%20%)225⨯--=(人),估计该中学九年级学生中喜爱篮球运动的学生有225人.(3)画树状图如下:由图可知,所有可能出现的结果共有12种,且这些结果出现的可能性相等,其中抽取的两人恰好是1名男生和1名女生的结果有8种,P∴(抽取的两名学生恰好为1名男生和1名女生)82 123 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了条形统计图和扇形统计图.22.(1)300人,a=15%,b=25%;(2)见解析;(3)120人;(4)1 8【分析】(1)用“美食文化”对应的人数除以对应的百分比可得总人数,分别用“羽毛球”和“篮球”的人数除以总人数可得a和b的值;(2)计算出“电影鉴赏”的人数,可补全统计图;(3)用全校七年级的总人数乘以样本中“篮球”对应的百分比即可;(4)画出树状图,利用概率公式计算.【详解】解:(1)总人数为:60÷20%=300人,∴a=45÷300=15%,b=75÷300=25%;(2)35%×300=105,补全统计图入如下:(3)480×25%=120人,∴估计全校选择“篮球”拓展性课程的学生人数是120人;(4)设“羽毛球”、“电影鉴赏”、“篮球”和“美食文化”分别为A、B、C、D,画树状图如下:可知:共有16种等可能的情况,其中一位选择了电影鉴赏,另一位选择了美食文化的有2种,∴其中一位选择了电影鉴赏,另一位选择了美食文化的概率为21168=. 【点睛】本题考查的是条形统计图的综合运用,树状图法求概率,样本估计总体,从统计图中得到必要的信息是解决问题的关键. 23.(1)15=x ,21x =-;(2)23x y =⎧⎨=⎩【分析】(1)利用十字相乘法进行进行因式分解,继而求解;(2)直接利用关于原点对称点的性质得出方程组进而得出答案; 【详解】(1)解:2450x x --=,(5)(1)0x x -+=,解得:15=x ,21x =-;(2)∵点P(2x+y ,1)与点Q(-7,x-y)关于原点对称,∴27010x y x y +-=⎧⎨-+=⎩,解得23x y =⎧⎨=⎩,【点睛】本题考查了解一元二次方程和解一元二次方程组,正确掌握运算方法是解题的关键; 24.(1)112x =-212x =-;(2)11x =,223x = 【分析】(1)配方法求解可得; (2)因式分解法求解可得; 【详解】(1)解:2212x x ++=2(1)2x +=12x +=±11x ∴=-+21x =-.(2)解:3(1)2(1)0x x x ---=(1)(32)0x x --=10x -=;或320x -=11x ∴=,223x =.【点睛】本题主要考查解一元二次方程的能力,根据不同的方程选择合适的方法是解题的关键. 25.(1)见解析;(2)GH ⊥EF ,见解析;(3)25 【分析】(1)首先运用三角形中位线定理可得到EG ∥AB ,EG=12AB ,HF ∥AB ,EG=12AB ,即可得到四边形EGFH 是平行四边形;(2)再运用三角形中位线定理证明邻边相等,从而证明平行四边形EGFH 是菱形,即可证明GH ⊥EF ;(3)由EH ∥CD ,得到∠BDC=∠BPH=70°,由EG ∥AB ,得到∠EGD=∠ABD=20°,再利用三角形的外角性质和菱形的性质即可求解. 【详解】证明:(1)∵E 、G 分别是AD 、BD 的中点, ∴EG ∥AB ,且12GE AB =, 同理可证:HF ∥AB ,且12HF AB =, ∴EG ∥HF ,且EG=HF ,∴四边形EGFH 是平行四边形; (2)GH ⊥EF ,理由如下: ∵G 、F 分别是BD 、BC 的中点 , ∴12GF CD =, 由(1)知12GE AB =, 又∵AB=CD , ∴GE=GF ,又∵四边形EGFH 是平行四边形, ∴四边形EGFH 是菱形, ∴GH ⊥EF ;(3)∵E 、H 分别是AD 、AC 的中点 , ∴EH ∥CD , ∴∠BDC=∠BPH=70°,∵EG ∥AB ,∴∠EGD=∠ABD=20°,∴∠GEP=∠BPH-∠EGD=50°,∵四边形EGFH 是菱形,∴∠GEF=∠HEF=12∠GEP =25°. 故答案为:25.【点睛】本题考查了中点四边形,菱形的判定和性质,三角形中位线的性质,熟练掌握三角形中位线的判定和性质是解题的关键.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中, BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴ AD=AE=DE,即△ADE为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD≌△ACE,然后再利用三边相等证明此三角形是等边三角形.。

2024年中考数学模拟考试试卷-带答案(北师大版)

2024年中考数学模拟考试试卷-带答案(北师大版)

2024年中考数学模拟考试试卷-带答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图中六棱柱的左视图是()2.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种.3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为()A.14x107B.1.4x108C.0.14x109D.1.4x1093.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示的方式放置,其中∠A=30°,∠ACB=90°,若∠1=45°,则∠2的度数为()A.30°B.25°C.20°D.15°4.下列运算错误的是( )A.(a2)³=a6B.a7÷a³=a4C.a³·a6=a9D.a2+a3=a55.下列运动项目图标中,既是轴对称图形又是中心对称图形的是( )6.若点(-2,y1)、(-1,y2)、(3,y3)在反比例函数y=kx(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.为了缓解中考备考压力,增加学习兴趣,李老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字"中""考""必""胜";转盘二被三等分,分别写有汉字"我""必""胜",将两个转盘转动一次(当指针指向区域分界线时,不作数,重新转动),若得到"必""胜"两字,则获得游戏一等奖,请求出获得游戏等奖的概率()A.12B.14C.16D.1129.如图,在半径为10的扇形AOB中,∠AOB=90°,C是AB上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π9.如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在△ABC的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠ADB的度数为( )A.36°B.54°C.72°D.108°10.定义:将平面直角坐标系中中横坐标与纵坐标均为整数的点叫作格点,如(-2,1),(2,0)等均为格点.如图,在平面直角坐标系xOy中,直线l:y=a(x+2)(a>0)与x轴交于点A,与抛物线E:y=ax2(a>0)交于B,C两点(B在C的左边).直线l与抛物线E所围成的封闭图形即阴影部分(不包含边界)中的格点数恰好是26个,则a的取值范围是()A.132<a≤7 B.193<a≤203C.132<a≤203或a=7 D.a=7二.填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:x2+6x+9= .12.一个不透明的盒子中装有若干个红球和6个白球,这些球除颜色外均相同.经多次摸球试验后发现,摸到白球的频率稳定在0.25左右,则盒子中红球的个数约为.13.若√7<a<√10,且a为整数,则a的值为.14.如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为(结果保留π).15.如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,分别将Rt△ABC的三边分别沿箭头方向平移2个单位长度并适当延长,得到△A1B1C1,则△A1B1C1的面积为。

2024年中考数学模拟考试试卷-附答案(北师大版)

2024年中考数学模拟考试试卷-附答案(北师大版)

2024年中考数学模拟考试试卷-附答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列立体图形中,俯视图是三角形的是( )2."两岸猿声啼不住,轻舟已过万重山."2023年8月29日,某手机共售出约160万台,将数据1600000用科学记数法表示应为( )A.0.16x107B.1.6x106C.1.6x107D.16x1063.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35,则∠2的度数为( )A.35°B.55°C.65°D.70°4.如图,数轴上点A,B,C分别表示数x,x+y,y,且AB<BC,则下列结论正确的是()A.x+y>0B.xy>0C.|x|-y>0D.|x|<|y|5.下列图形中,既是轴对称图形又是中心对称图形的是( )6.下列计算正确的是( )A.3a+2b=5abB.-5y+3y=2yC.7a+a=8D.3x2y-2yx2=x2y7.我校举办的"强基计划五大学科展示汇"吸引了众多学生前来参观,如图所示的是该展览馆出入口的示意图,A,B是入口,C,D,E是出口.小颖从A入口进,从C出口出的概率为()A.15B.16C.12D.138.在同一平面直角坐标系中,函数y=-k(x-1)(k≠0)与y=kx(k≠0)的图象可能是( )9.如图,在△ABC中,∠A=36°,AB=AC,以点B为圆心任意长为半径画弧,分别交AB、BC于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点O ,连接BO ,并延长交AC 于点D .若AB=2,则CD 的长为( )A.√5-1B.3-√5C.√5+1D.3+√510.约定:若函数图象至少存在不同的两点关于原点对称,则把该函数称为"黄金函数",其图象上关于原点对称的两点叫做一对"黄金点".若点A(1,m),B(n ,-4)是关于x 的"黄金函数"y=ax 2+bx+c(a ≠0)上的一对"黄金点",且该函数的对称轴始终位于直线x=2的右侧,则有结论:①a+c=0;②b=4;③14a+12b+c<0:④-1<a<0.其中结论正确的是( )A.①②③B.①③④C.①②④D.②③④ 二.填空题:本题共6小题,每小题4分,共24分. 11.因式分解:4m 2-9= .12.江豚素有"水中大熊猫"之称,为了解洞庭湖现有江豚数量,考察队先从湖中捕捞10头江豚并做上标记,然后放归湖内.经过一段时间与群体充分混合后,再从中多次捕捞全部计数后放回,并算得平均每32头江豚中有2头有标记,则估计洞庭湖现有江豚数量约为 头.13.根据物理学规律,如果把一个物体从地面以10m/s 的速度竖直上抛(如图所示),那么物体经过x s 离地面的高度(单位:m )为10x -4.9x 2.根据上述规律,该物体落回地面所需要的时间x 约为 s.(结果保留整数)14.如图,已知正六边形ABCDEF,⊙O 是此正六边形的外接圆.若AB=2,则阴影部分的面积 为 .15.11月10日晚,"深爱万物"--2023深圳人才嘉年华活动正式启动,千余架无人机在深圳人才公园上空上演"天空之舞",为人才喝彩、向人才致敬.如图所示的平面直角坐标系中,线段OA ,BC 分别表示1号、2号无人机在队形变换中飞行高度y 1,y 2(米)与飞行时间x (秒)的函数关系,其中y 2=-4x+150,线段OA 与BC 相交于点P ,AB ⊥y 轴于点B ,点A 的横坐标为25,则在第 秒时1号和2号无人机在同一高度.16.如图所示,正方形ABCD 的边长为3,点E 在AD 上(不与点A ,D 重合),连接BE ,交对角线AC 于点H ,将△ABE 沿BE 折叠,点A 的对应点为F ,延长EF 交CD 于点G ,连接BG 和CH ,则以下结论中:①∠EBG=45°;②当AE=1时,DG=CG;③S △BED =12S 正方形ABCD ;④GH=BH. 所有正确结论的序号是 。

(北师大版)中考数学模拟考试卷-带答案

(北师大版)中考数学模拟考试卷-带答案

(北师大版)中考数学模拟考试卷-带答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.2023年济南(泉城)马拉松于10月29日成功举办.图①是此次泉城马拉松男子组颁奖现场示意图.图②是领奖台的示意图,则此领奖台的主视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。

可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.如图:AD∥BC、BD平分∠ABC,若∠ADB=35°,则∠4的度数为()A.35°B.70°C.110°D.120°5.我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.若0<m<n,则直线y=-5x+m直线y=-x+n的交点()A.第一象限B.第二象限C.第三象限(x-2)D.第四象限8.某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,弧AB、弧CD所在圆的圆心为点O,点C、D分别在OA和OB上.已知消防车道宽AC=4m,∠AOB=120°,则弯道外边缘AB的长与内边缘CD的长的差为()A.4π3m B.8π3m C.16π3m D.32π3m9.反比例函数y=ax(a≠0)与一次函数y=ax﹣a在同一坐标系中的图象可能是()A. B. C. D.10.如图,在正方形ABCD中,AB=√2,点E、F分别是DC和BC边上的动点,且始终保持EF=BF+DE,连接AE与AF,分别交DB干点N、M,过点A作AH⊥EF于点M.下列结论:①∠EAF45°:② ∠BAF=∠HAF;③AH=√2;④∠DNE=67.5°;⑤DN2+BM2=NM2,其中结论正确的序号是()A.①③④B.①②③⑤C.②④⑤D.①②③④二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式a2-4b2= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.13.已知一元二次方程x2-5x+2m=0有一个根为2,则另一根为.14.我国是世界上最早制造使用水车的国家,如图是水车舀水灌溉示意图,水车轮的辐条(圆的半径)将圆平均分为12个格,半径04长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次昌满河水在点/处离开水面,逆时针旋转上升至轮子上方8处时,斗口开始翻转向下,将水倾入木樁,由木槽导入水果,进而灌溉,那么水斗从4处(舀水)转动到B处(倒水)所经过的路程是米,(结果保留π)15.如图的曲边三角形可按下述方法作出:作等边三角形ABC,以三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是曲边三角形,若等边三角形ABC的边长为2,则这个曲边三角形的面积是。

(完整)北师大版中考数学模拟试题及答案,推荐文档

(完整)北师大版中考数学模拟试题及答案,推荐文档

九年级中考模拟测试题(一)一、填空题(每题3分,共24分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,xy 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q ,则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(每题3分,共24分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r2+π B 、r c r +π C 、r c r +2π D 、22rc r+π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a的取值范围是( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A 、12-πB 、41π- C 、13-π D 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是( )A 、51<<x B 、135<<x C 、513<<xD 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( ) A 、%2x B 、%21x + C 、%%)1(x x •+ D 、%%)2(x x •+ 三、解答题17.(6分)化简:2222111x x x x x x-+-÷-+18. (6分)解分式方程:2412-=+-x x x19.(10分)如图,在梯形纸片ABCD 中,AD//BC ,AD >CD ,将纸片沿过点D的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C ′E .求证:四边形CDC ′E 是菱形.20、(10分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及A DEB C C ′ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。

(北师大版)中考数学模拟考试试卷-含答案

(北师大版)中考数学模拟考试试卷-含答案

(北师大版)中考数学模拟考试试卷-含答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________(满分150分时间120分钟)一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.图中立体图形的俯视图是( )2.如图,平行于主光轴MN的光线AB和CD经过凹透镜的折射后,折射光线BE、DF的反向延长线交于主光轴MN上一点P.若∠ABE=160°,∠CDF=150°,则∠EPF的度数是()A.20°B.30°C.50°D.70°3."燕山雪花大如席,片片吹落轩辕台."这是诗仙李白眼里的雪花,单个雪花的重量其实很轻,只有0.00003kg左右,0.00003用科学记数法可表示为( )A.3×10﹣5B.3x10-4C.0.3x10-4D.0.3x10-54.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°5.下列校徽的图案是轴对称图形的是()6.实数a、b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是()A.|a|<|b|B.2a>2bC.ab>0D.a<-17.春节期间,琪琪和乐乐分别从A,B,C三部春节档片中随机选择一部观看,则琪琪和乐乐选择的影片相同的概率为()A.12B.13C.16D.19 8.小明在化简分式3nm -2n +2m -n2n -m的过程中,因为其中一个步骤的错误,导致化简结果是错误的,小明开始出现错误的那一步编号是( )A.①B.②C.③D.④9.如图,在平行四边形ABCD 中,BC=2AB=8,连接BD ,分别以点B 、D 为国心,大于12BD 长为半径作弧,两弧交于点E 和点F ,作直线EF 交AD 于点I ,交BC 于点H 、点H 恰为BC 的中点,连接AH ,则AH 的长为( )A.4√3B.6C.7D.4√510.二次函数y=ax 2+bx+c(a,b,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:且当x=-12时,与其对应的函数值y>0,有下列结论:①abc<0;②m=n;③-2和3是关于x 的方程ax 2+bx+c=t 的两个根;④a<83,其中正确结论的个数是( )A.1B.2C.3D.4二.填空题(本大题共6个小题,每小题4分,共24分) 11.分解因式:xy -y 2= .12.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 、GH 过点O ,且点E 、H 在边AB 上,点G 、F 在边CD 上,向平行四边形ABCD 内部投掷飞镖,飞镖恰好落在阴影区域的概率为 。

北师大版九年级中考数学模拟考试试题(含答案)

北师大版九年级中考数学模拟考试试题(含答案)

九年级中考数学二模考试试题满分150分时间:120分钟一、单选题。

(每小题4分,共40分)1.2023的相反数是()A.2023B.﹣2023C.﹣12023 D.120232.如图是由8个完全相同的小正方体组成的几何体,从正面看到的形状图是()3.我国自主研发的北斗系统技术世界领先,在西昌卫星发射中心成功发射最后一颗北斗三号卫星,该卫星发射升空的速度约7100米/秒,其中“7100”用科学记数法表示为()A.7100B.0.71×104C.7.1×103D.71×1024.将一副三角板按如图所示的方式放置,则∠AOB=()A.75°B.45°C.30°D.80°(第4题图)(第6题图)(第9题图)5.古钱币是我国悠久的历史文化遗产,以下是在《中国古代钱币》特种邮票中选取的部分图形,下列既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图数轴上A,B两点表示的数分别为a,b,下列结论中,错误的是()A.a+b <0B.a -b <0C.ab <0D.ab <07.二十四节气是中华上古农耕文明的智意结晶,小明购买了二十四节气主题邮票,他要将立春,立夏,秋分,大寒四张邮票中的两张送给小鹏,小明将它们背面朝上放在桌面上,让小鹏从中随机抽取一张,(不放回),再从中随机抽取一张,则小鹏抽到的两张恰好是立夏和秋分的概率是( )A.12 B.16 C.13 D.34 8.函数y=ax 与y=ax -a 在同一坐标系中的大致图象是( )9.如图,在△ABC 中,∠C=90°,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ,已知CE=3,BE=5,则AC 的长为( )A.8B.7C.6D.510.已知函数y=x 2-2ax+5,当x ≤2时,函数值随x 增大而减小,且对任意的1≤x 1≤a+1和1≤x 2≤a+1,x 1,x 2相对应的函数值为y 1,y 2,总满足|y 1-y 2|≤4,则实数a 的取值范围是( ) A.﹣1≤a ≤3 B.﹣1≤a ≤2 C.2≤a ≤3 D.2≤a ≤4 二.填空题。

(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)

(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)

(北师大版)初中九年级数学下学期中考复习模拟考试试题卷(含答案详解)(满分150分 时间:120分钟)一.单选题。

(共40分) 1.16的算术平方根是( )A.±2B.2C.4D.±4 2.下面四个几何体中,左视图为圆的是( )A. B. C. D.3.据5月17日消息,全国各地约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为( )A.0.426×105B.4.26×105C.42.6×104D.4.26×1044.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A.50°B.70°C.80°D.110°(第4题图) (第9题图) (第10题图) 5.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.6.化简a 2a -1-1-2a 1-a的结果为( )A.a+1a -1B.a ﹣1C.aD.17.从甲、乙、丙、丁四人中抽调两人参加“寸草心”志愿服务队,恰好抽到甲和乙的概率是( )A.112 B.18 C.16 D.128.在同一直角坐标系中,函数y=kx 和y=kx ﹣3的图象大致是( )A. B. C. D.9.在直角坐标系中,等腰直角三角形AOB 在如图所示的位置,点B 的横坐标为2,将△AOB 绕点O 按逆时针方向旋转90°,得到△A’OB’,则点A’的坐标为( ) A.(1,1) B.(√2,√2) C.(﹣1,1) D.(﹣√2,√2)10.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线y =12x+12上,若抛物线y =ax 2﹣x+1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( ) A.a ≤﹣2 B.a <98 C.1≤a <98或a ≤﹣2 D.﹣2≤a <98 二.填空题。

2024年中考数学模拟考试试卷-有答案(北师大版)

2024年中考数学模拟考试试卷-有答案(北师大版)

2024年中考数学模拟考试试卷-有答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.一个立体图形的三视图如图所示,则该立体图形是()A.圆柱B.圆锥C.长方体D.三棱柱2.某软件是人工智能技术驱动的自然语言处理工具,它能够基于在预训练阶段所见的模式和统计规律,来生成回答,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写论文、邮件、脚本、文案、翻译、代码等任务,功能非常强大.有研究发现,该软件是20000000000参数量的模型,将数据20000000000用科学记数法表示为()A.0.2x1011B.20x109C.2x1010D.2x10113.如图,已知直线AB∥CD,EG平分∠BEF,∠1=40°,则∠2的度数为()A.70°B.50°C.40°D.140°4.实数a,b,c在数轴上对应点的位置如图所示,下列式子正确的是()A.c(b﹣a)<0B.b(c﹣a)<0C.a(b﹣c)>0D.a(c+b)>05.如图书写的四个汉字中,既是轴对称图形又是中心对称图形的是()6.下列运算正确的是( )A.a2·a2=a6B.a4÷a2=a2C.(a³)2=a5D.2a2+3a2=5a47.某校在举办数学节活动中,需选拔讲题大赛环节的主持人,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是( )A.12B.13C.14D.168.在反比例函数y=4-kx的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则k的取值范围是()A.k<0B.k>0C.k<4D.k>49.如图,在△ABC中,∠ABC=90°,∠C=30°,以点A为圆心,以AB的长为半径作弧交AC于点D,连接BD,再分别以点B,D为圆心,大于12BD的长为半径作弧,两弧交于点P,作射线AP交BC于点E,连接DE,则下列结论中不正确的是()A.BE=DEB.DE垂直平分线段ACC.S△CDES△CBA =√33D.BD2=BC·BE10.已知抛物线P:y=x2+4ax-3(a>0).将抛物线P绕原点旋转180°得到抛物线P’,当1≤x≤3时,在抛物线P’上任取一点M,设点M的纵坐标为t,若t≤3,则a的取值范围是( )A.0<a≤14B.0<a≤34C.14≤a<34D.a≥34二.填空题:本题共6小题,每小题4分,共24分.11.因式分解:ax2-4ay2= .12.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中有个红球.13.若关于x的方程x2+mx-12=0的一个根是2,则此方程的另一个根是.14.如图,正五边形ABCDE内接于⊙O,其半径为1,作OF⊥BC交⊙O于点F,则图中阴影部分的面积为.15.一条笔直的路上依次有M,P,N 三地,其中M,N两地相距1000米.甲、乙两台机器人从M,N两地同时出发,匀速而行去目的地N,M.图中OA,BC分别表示甲、乙机器人离M的距离y(米)与行走时间x(分钟)的函数关系图象.当甲机器人到P地后,再经过1分钟机器人也到P地,求P,M两地间的距离为.16.如图,在矩形ABCD中,AB=2,AD=√7,动点P在矩形的边上沿B→C→D→A运动.当点P不与点A,B重合时,将△ABP沿AP对折,得到△AB'P,连接B'C,则在点P的运动过程中,线段B'C的最小值为.三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:(√3)0+2﹣1+√2cos45°-|﹣12|18.(6分)解不等式组{2x -1≤﹣x +2x -12x <13+2x,并写出它的非负整数解。

2024年中考数学模拟考试试卷-含答案(北师大版)

2024年中考数学模拟考试试卷-含答案(北师大版)

2024年中考数学模拟考试试卷-含答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求. 1.如图是由5个完全相同的小正方体搭成的几何体,这个几何体的左视图是( )2.2024年1月17日,搭载天舟七号货运飞船的长征七号遥八运载火箭,在我国文昌航天发射场点火发射,发射取得圆满成功,将与在轨运行的空间站组合体进行交会对接.空间站距离地球约为400000米,400000用科学记数法可表示为( ) A.400x103 B.40x104 C.4x105 D.4x1063.若a 与5互为相反数,则a+1的值为( ) A.6 B.4 C.-4 D.-64.实数a ,b 互为相反数,其在数轴上对应的点的位置如图所示,下列结论中,正确的是( )A.|a |<|b |B.a -b=0C.a<-1D.ab>05.简笔画通常利用对称构图,体现对称美.下面四个图案既是轴对称图形又是中心对称图形的是( )6.下列计算正确的是( )A.(a -b)(-a -b)=a 2-b 2B.2a ³+3a ³=5a 6C.6x 3y 2+3x=2x 2y 2D.(-2x 2)³=-6x 67.有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是2的倍数的概率为( )A.56 B.34 C.23 D.128.下列计算正确的是( )A.2m+n=2mnB.-a 2·(-a)4=-a 6 °C.(-2x ³)³=-6x 9D.(4x -3)2=16x 2-12x+99.把一条线段分割为两部分,使较长部分与全长的比值等于较短部分与较长部分的比值,则这个比值为黄金分割比,比值为√5-12,是公认的最能引起美感的比例,如图1为世界名画蒙娜丽莎.如图2,点E 是正方形ABCD 的边AB 上的黄金分割点,且AE>BE ,以AE 为边作正方形AEHF ,延长EH 交CD 于点I ,连接BF 交EI 于点G ,连接BI ,则S △BCI :S △FGH 为( )A.1:1B.√5+13C.√5-12D.√5+1210.若一个点的坐标满足(k ,2k),我们将这样的点定义为"倍值点".若关于x 的二次函数y=(t+1)x 2+(t+2)x+s(s ,t 为常数,t ≠-1)总有两个不同的倍值点,则s 的取值范围是( ) A.s<-1 B.s<0 C.0<s<1 D.-1<s<0二.填空题:本题共6小题,每小题4分,共24分.直接填写答案. 11.因式分解:2a 2-12a+18= .12.在一个不透明的口袋中装有3个红球和若干个白球,它们除颜色外完全相同.多次摸球试 验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有 个. 13.二次函数y=kx 2-4x+2的图象与x 轴有公共点,则k 的取值范围是 .14.如图,直线AB 交反比例函数y=kx 于A ,B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连接OA .若S △OAC =72,则k 的值为 .15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为 .16.如图,在正方形ABCD 中,点E 是边CD 上一点,BF ⊥AE ,垂足为F ,将正方形沿AE 、BF 切割分成三块,再将△ABF 和△ADE 分别平移,拼成矩形BGHF .若BG=kBF ,则DECD = (用含k 的式子表示).三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算(﹣12)﹣2+(π-3.14)0+4cos45°-|1-√2|18.(6分)解不等式组{2(x +2)-x ≤5①4x+13>x -1②,并写出不等式组的非负整数解.19(6分)如图,在矩形ABCD 中,BE ⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:AF=CE.20.(8分)根据背景素材,探索解决问题. 如图所示,在坡顶A 处的同一水平面上有一座信号塔BC ,某数学兴趣小组的同学们想测量此信号塔的高度,经过小组讨论采取如下办法:同学们先在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为i=1:2.4的斜坡AP 攀行了26米到达点A ,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.请计算: (1)计算坡顶A 到地面PQ 的距离. (2)计算出信号塔BC 的高度.(结果精确到1米,参考数据:sin76≈0.97,cos76°≈0.24,tan76°≈4.01)21.(8分)某学校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A,B,C,D,E五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图.(1)请把图1补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.22.(8分)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,BC,过点C作⊙O的切线交AB 延长线于点D,OF⊥BC于点E,交CD于点F.(1)求证:∠BCD=∠BOE;,AB =10,求BD的长.(2)若sin∠BAC=3523.(10分)伴随"一盔一带"安全守护行动,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20个,乙种头盔30个,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元(1)甲、乙两种头盔的单价各为多少元?(2)商店决定再次购进甲、乙两种头盔共40个,正好赶上厂家进行促销活动,促销方式为甲种头盔按单价的八折出售,乙种头盔每个降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少个甲种头盔,使此次购买头盔的总费用最小?最小费用为多少元?24.(10分)如图,一次函数y=kx﹣3的图象与y轴交于点B,与反比例函数y=m(x>0)的图象交x于点A(8,1).(1)求出一次函数与反比例函数的表达式;(2)如图1,点C是线段AB上一点(不与点A,B重合),过点C作y轴的平行线与该反比例函数的图象交于点D,连接OC、OD、AD,当CD等于6时,求点C的坐标和△ACD的面积;(3)在(2)的前提下,将△OCD沿射线BA方向平移一定的距离后,得到△O'C'D',若点O的对应点O'恰好落在该反比例函数的图象上(如图2),求出点O',D'的坐标.25.(12分)如图1,抛物线与x轴交于A,B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的函数表达式;(2)若点P是对称轴上的一个动点,是否存在以P,C,M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;(3)如图2,D是OC的中点,一个动点G从点D出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E,F的位置,写出坐标,并求出最短路程.26.(12分)如图1,在正方形ABCD中,点E在线段BC上,连接AE,将△ABE沿着AE折叠得到△AFE,延长EF交CD于点G.(1)求证:DG=FG;(2)如图2,当点E是BC的中点时,求tan∠CGE的值;(3)如图3,当BEDG =23时,连接CF并延长交AB于点H,求CFCH的值.答案一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图是由5个完全相同的小正方体搭成的几何体,这个几何体的左视图是( B )2.2024年1月17日,搭载天舟七号货运飞船的长征七号遥八运载火箭,在我国文昌航天发射场点火发射,发射取得圆满成功,将与在轨运行的空间站组合体进行交会对接.空间站距离地球约为400000米,400000用科学记数法可表示为( C )A.400x103B.40x104C.4x105D.4x1063.若a与5互为相反数,则a+1的值为( C )A.6B.4C.-4D.-64.实数a,b互为相反数,其在数轴上对应的点的位置如图所示,下列结论中,正确的是( C )A.|a|<|b|B.a-b=0C.a<-1D.ab>05.简笔画通常利用对称构图,体现对称美.下面四个图案既是轴对称图形又是中心对称图形的是( C )6.下列计算正确的是( C )A.(a-b)(-a-b)=a2-b2B.2a³+3a³=5a6C.6x3y2+3x=2x2y2D.(-2x2)³=-6x67.有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是2的倍数的概率为( C )A.56B.34C.23D.128.下列计算正确的是( B )A.2m+n=2mnB.-a2·(-a)4=-a6°C.(-2x³)³=-6x9D.(4x-3)2=16x2-12x+99.把一条线段分割为两部分,使较长部分与全长的比值等于较短部分与较长部分的比值,则这个比值为黄金分割比,比值为√5-12,是公认的最能引起美感的比例,如图1为世界名画蒙娜丽莎.如图2,点E是正方形ABCD的边AB上的黄金分割点,且AE>BE,以AE为边作正方形AEHF,延长EH交CD于点I,连接BF交EI于点G,连接BI,则S△BCI :S△FGH为( D )A.1:1B.√5+13C.√5-12D.√5+1210.若一个点的坐标满足(k,2k),我们将这样的点定义为"倍值点".若关于x的二次函数y=(t+1)x2+(t+2)x+s(s,t为常数,t≠-1)总有两个不同的倍值点,则s的取值范围是( D )A.s<-1 B.s<0 C.0<s<1 D.-1<s<0二.填空题:本题共6小题,每小题4分,共24分.直接填写答案. 11.因式分解:2a 2-12a+18= 2(a -3)2 .12.在一个不透明的口袋中装有3个红球和若干个白球,它们除颜色外完全相同.多次摸球试 验后发现,摸到红球的频率稳定在0.2附近,则估计口袋中白球大约有 12 个. 13.二次函数y=kx 2-4x+2的图象与x 轴有公共点,则k 的取值范围是 k ≤2且k ≠0 . 14.如图,直线AB 交反比例函数y=kx 于A ,B 两点,交x 轴于点C ,且B 恰为线段AC 的中点,连接OA .若S △OAC =72,则k 的值为 73 .15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为293.16.如图,在正方形ABCD 中,点E 是边CD 上一点,BF ⊥AE ,垂足为F ,将正方形沿AE 、BF 切割分成三块,再将△ABF 和△ADE 分别平移,拼成矩形BGHF .若BG=kBF ,则DECD = √k -1 (用含k 的式子表示).三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算(﹣12)﹣2+(π-3.14)0+4cos45°-|1-√2| =4+1+4×√22+1-√2=6+√218.(6分)解不等式组{2(x +2)-x ≤5①4x+13>x -1②,并写出不等式组的非负整数解.解:解不等式①,得x≤1.解不等式②,得x>-4.∴原不等式组的解集为﹣4<x≤1. ∴非负整数解为0,1.19(6分)如图,在矩形ABCD 中,BE ⊥AC ,DF ⊥AC ,垂足分别为E ,F .求证:AF=CE.证明:四边形ABCD 是矩形 ∴AB=CD ,AB ∥CD ∴∠BAE=∠DCF又∵BE ⊥AC ,DF ⊥AC ∴∠AEB=∠CFD=90° 在△ABE 与△CDF 中 {∠AEB =∠CFD ∠BAE =∠DCF AB =CD∴△ABE ≌△CDF(AAS) ∴AE=CF∴AE+EF=CF+EF ,即AF=CE20.(8分)根据背景素材,探索解决问题. 如图所示,在坡顶A 处的同一水平面上有一座信号塔BC ,某数学兴趣小组的同学们想测量此信号塔的高度,经过小组讨论采取如下办法:同学们先在斜坡底P 处测得该塔的塔顶B 的仰角为45°,然后他们沿着坡度为i=1:2.4的斜坡AP 攀行了26米到达点A ,在坡顶A 处又测得该塔的塔顶B 的仰角为76°.请计算: (1)计算坡顶A 到地面PQ 的距离. (2)计算出信号塔BC 的高度.(结果精确到1米,参考数据:sin76≈0.97,cos76°≈0.24,tan76°≈4.01)解:(1)如图,过点A 作AH ⊥PQ 于点H∵斜坡AP 的坡度为1:2.4 ∴AHPH =512设AH=5k ,则PH=12k. ∴AP=13k∴13k=26,解得k=2 ∴AH=10∴坡顶A 到地面PQ 的距离为10米(2)如图,延长BC 交PQ 于点D ∵BC ⊥AC ,AC ∥PQ ∴BD ⊥PQ∴∠ACD=∠CDH=∠AHD=90°∴四边形AHDC 是矩形,CD=AH=10,AC=DH ∵∠BPD=45°∴△BPD 是等腰直角三角形 ∴PD=BD设BC=x ,则x+10=24+DH ∴AC=DH=x -14在Rt △ABC 中,tan76°=BCAC ,即x x -14≈4.01,解得x ≈19∴信号塔BC 的高度约19米.21.(8分)某学校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A ,B ,C ,D ,E 五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图. (1)请把图1补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.解:(1)本次调查的学生人数为20÷20%=100,最喜欢去A地的人数为100-20-40-25-5=10补全条形统计图如下.(2)研学活动地点C所在扇形的圆心角的度数为360°×40=144°100=300(名)(3)1200×25100答:估计最喜欢去D地研学的学生人数为30022.(8分)如图,AB是⊙O的直径,C是⊙O上一点,连接AC,BC,过点C作⊙O的切线交AB 延长线于点D,OF⊥BC于点E,交CD于点F.(1)求证:∠BCD=∠BOE;,AB =10,求BD的长.(2)若sin∠BAC=35(1)证明:如图,连接OC∵CD 是⊙O 的切线∴∠OCD=90°∴∠OCB+∠BCD=90°∵OF ⊥BC∴∠BEO=90°∴∠BOE+∠OBE=90°∵OC=OB∴∠OCB=∠OBC∴∠BCD=∠BOE(2)解:如图,过点B 作BH ⊥CD 于点H∵AB 是⊙O 的直径∴∠ACB=90°∵sin ∠BAC=BC AB =35,AB=10 ∴BC=6∵OF ⊥BB∴AC ∥OF∴∠BOE=∠BAC∵∠BCD=∠BOE∴∠BAC=∠BCD∴sin ∠BAC=sin ∠BCD=35∴BH=185∵OC ⊥CD BH ⊥CD∴BH ∥OC∴△BDH ∽△ODC∴1855=BD BD+5解得BD=907故BD 的长为90723.(10分)伴随"一盔一带"安全守护行动,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20个,乙种头盔30个,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元(1)甲、乙两种头盔的单价各为多少元?(2)商店决定再次购进甲、乙两种头盔共40个,正好赶上厂家进行促销活动,促销方式为甲种头盔按单价的八折出售,乙种头盔每个降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少个甲种头盔,使此次购买头盔的总费用最小?最小费用为多少元?解:(1)设甲种头盔的单价为x 元,乙种头盔的单价为y 元根据题意,得{20x+30y=2920 x-y=11解得{x=65 y=54答:甲种头盔单价为65元,乙种头盔单价为54元.(2)设再次购进甲种头盔m只,总费用为w元根据题意,得m≥12(40-m)解得m≥403w=65×0.8m+(54-6)(40-m)=4m+1920.∵4>0∴w随着m增大而增大当m=14时,w取得最小值最小值为14×4+1920=1976.∴购买14个甲种头盔时,总费用最小,最小费用为1976元.24.(10分)如图,一次函数y=kx﹣3的图象与y轴交于点B,与反比例函数y=mx(x>0)的图象交于点A(8,1).(1)求出一次函数与反比例函数的表达式;(2)如图1,点C是线段AB上一点(不与点A,B重合),过点C作y轴的平行线与该反比例函数的图象交于点D,连接OC、OD、AD,当CD等于6时,求点C的坐标和△ACD的面积;(3)在(2)的前提下,将△OCD沿射线BA方向平移一定的距离后,得到△O'C'D',若点O的对应点O'恰好落在该反比例函数的图象上(如图2),求出点O',D'的坐标.解:(1)点A(8,1)在一次函数y=kx-3的图象上∴1=8k-3,解得k=12∴一次函数的表达式为y=12x-3∵点A(8,1)在反比例函数y=mx图象上解得m=8.∴反比例函数的表达式为y=8x(2)设C (a ,12a -3)(0<a <8),则D (a ,8a )∴CD=8a -(12a -3)=8a -12a+3∵CD=6∴8a -12a+3=6.解得a=-8(舍去)或a=2∴C(2,-2).如图1,过点A 作AE ⊥CD 于点E则AE=8-2=6∴S △ACD =6×6×12=18(3)D’(6,6)25.(12分)如图1,抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N.(1)求抛物线的函数表达式;(2)若点P 是对称轴上的一个动点,是否存在以P ,C ,M 为顶点的三角形与△MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由;(3)如图2,D 是OC 的中点,一个动点G 从点D 出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E ,F 的位置,写出坐标,并求出最短路程.解:(1):OA=2,OB=4,OC=8∴A(-2,0),B(4,0),C(0,8)设抛物线的函数表达式为y=a(x+2)(x -4)将点C 的坐标代入,得﹣8a=8.解得a=-1.抛物线的函数表达式为y=-x 2+2x+8.(2)存在以点P ,C ,M 为顶点的三角形与△MNB 相似理由如下:∵y=-x 2+2x+8=-(x -1)2+9∴对称轴为直线x=1.设直线BC 的函数表达式为y=kx+b将点B ,C 的坐标代人,得{4k +b =0b =8解得{k =﹣2b =8 ∴直线BC 的函数表达式为y=-2x+8.∴M(1,6),N(1,0).∴由两点距离公式可得BN=3,MN=6,BM=3√5,CM=√5若以点P ,C ,M 为顶点的三角形与△MNB 相似,则有∠BMN=∠CMP .①如图1,当∠CPM=∠BNM=90°时∴CP ∥x 轴∴点P 的坐标为(1,8)②图2,当∠PCM=∠BNM=90°时∴PM CM =BM MN =√52∴PM=52∴点P 的坐标为(1,172)综上所述,点P 的坐标为(1,8)或(1,172)(3)2√3726.(12分)如图1,在正方形ABCD 中,点E 在线段BC 上,连接AE ,将△ABE 沿着AE 折叠得 到△AFE ,延长EF 交CD 于点G.(1)求证:DG=FG;(2)如图2,当点E 是BC 的中点时,求tan ∠CGE 的值;(3)如图3,当BE DG =23时,连接CF 并延长交AB 于点H ,求CF CH 的值.(1)证明:四边形ABCD 是正方形 ∴AB=AD ,∠B=∠D=90°将△ABE 沿着AE 折叠得到△AFE ∴AB=AF ,∠B=∠AFE=∠AFG=90° ∴AD=AF∵AG=AG∴Rt △AFG ≌Rt △ADG(HL) ∴DG=FG(2)解:设BC=CD=2a∵点E 是BC 的中点∴BE=CE=a将△ABE 沿着AE 折叠得到△AFE ∴BE=EF=a∵EG 2=CE 2+CG 2即(a+DG)2=a 2+(2a -DG)2. DG=23a∴tan ∠CGE=a2a -23a =34(3)CF CH =25。

2024年中考数学模拟考试试卷-附答案(北师大版)

2024年中考数学模拟考试试卷-附答案(北师大版)

2024年中考数学模拟考试试卷-附答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图所示的几何体是由5个大小相同的小立方块搭成,此几何体的俯视图是( )2.万里长城是世界文化遗产之一,其总长大约为21 200 000 m ,将21 200 000用科学记数法表示为( )A.2.12x106B.2.12x107C.0.212x108D.212x1073.如图,AB∥CD,直线l与AB,CD分别交于点E和F,CD上有一点G且GE=GF,∠1=122°,则∠2的度数为( )A.54°B.64°C.58°D.68°4.实数a,b在数轴上的位置如图所示,则下列结论不正确的是( )A.ab<0B.a+b>0-bl=a-bD.√a2=-a5.下列图形中,既是轴对称图形又是中心对称图形的是()6.下列运算正确的是()A.(m﹣1)2=m2﹣1B.(2m)³=6m³C.m7-m3=m4D.m2+m5=m77.用如图所示的两个可自由转动的转盘进行"配紫色"游戏(红色和蓝色配成紫色),两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色(若指针停在分界线上,则重转),则配得紫色的概率为( )A.16B.14C.13D.128.已知点A(x1,y1),B(x2,y2)在反比例函数y=-2x的图象上,且x1<0<x2,则下列结论一定正确的是( )A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1-y2>09.如图,在矩形ABCD 中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E和F,大于12EF为半径画弧,两弧交于点P,作射线BP,过点C作BP的垂线分别交BP,AD于点M和N,则CN的长为()A.√10B.√11C.2√3D.410.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点,已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(32,32),且当0≤x≤m时,函数y’=ax2+4x+c-34(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是( )A.-1≤m≤0B.2≤m≤4C.2≤m<72D.2-<m≤72二.填空题:本题共6小题,每小题4分,共24分..11.因式分解:xy2-4x= .12.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为.13.若关于x的一元二次方程x2+2x+h=0无实数根,则k的取值范围是.14.如图,正方形的边AB=2,弧BD和弧AC都是以2为半径的圆弧,则图中空白两部分的面之差为.15.为了增强学生身体素质,学校要求学生练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,男、女生从开始匀速跑步到停止跑步分别用时100s,120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则当男、女相遇时,此时男、女同学距离终点的距离为.16.如图,在矩形ABCD 中,AB=8,AD=10,点M 是BC 的中点,E 是BM 上的一点,连接AE ,作点B 关于直线AE 的对称点B',连接DB'并延长交BC 于点F .当BF 最大时,点B'到BC 的距离为 .三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:|﹣12|+(-1)2024﹣sin30°﹣(√3-√2)018.(6分)解不等式组{2(x -1)+1>﹣3①x -1≤1+x3②,并把它的解集在数轴上表示出来.19.(6分)如图,四边形ABCD 是平行四边形,点E ,F ,G ,H 分别在边AD 、AB 、BC 、CD 上,且DE=BG ,AF=CH .求证:EF=GH.20.(8分)植物园是当地人民喜爱的休闲场所之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最小和最大高度分别为多少?(结果精确到0.1m,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)21.(8分)"小手拉大手,共创文明城".某校为了解学生对所在城市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示.单位:分):94,83,90,86,94,88,96,100,89,82,94,82,84,89,88,93,98,94,93,92.整理上面的数据,得到频数分布表和扇形统计图.根据以上信息,解答下列问题:(1)填空:a= ,b= .(2)若成绩不低于90分为优秀,请估计该校1600名学生中,达到优秀等级的人数;(3)已知A等级中有2名男生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.22.(8分)如图,AB是⊙O的直径,点E,C在⊙O上,点C是弧BE的中点,AE垂直于过点C 的直线CD,垂足为D,AB的延长线交直线CD于点F.(1)求证:CD是⊙O的切线;(2)若AE=2,sin∠AFD=13①求⊙O的半径;②求线段DE的长.23.(10分)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A 粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:(1)该商场节后每千克A粽子的进价为多少元?(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润为多少?24.(10分)当k 值相同时,我们把正比例函数y=1k x 和反比例函数y=kx 叫做"关联函数".小亮根 据学习函数的经验,以函数y=﹣12x 和y=﹣2x 为例对"关联函数"进行了探究,下面是小亮的探 究过程,请你将它补充完整(1)如图,在同一平面直角坐系中画出这两个函数的图象,两个函数图象在第二、四象限分别 交于点A 、B ,则点A 、B 的坐标分别是A 、B .(2)点P 是函数y=﹣12x 在第二象限内的图象上的一个动点(不与点A 重合),作直线PA 、PB ,分别与x 轴交于点C 、D .设点P 的横坐标为t .小亮通过分析得到:在点P 运动的过程中,总有PC=PD.证明PC=PD 的过程如下(不完整): 易知点P 的坐标为(t ,﹣2t ) 设直线AP 的表达式为y=ax+b -2a+ b =1将点A 、P 的坐标分别代人,得{﹣2a +b =1ta +b =﹣2t解得{a =﹣1tb =﹣2-tt∴直线AP 的表达式为y=﹣1t x -2-t t令y=0,得x=t -2,则点C 的坐标为(t -2,0) 同理可得直线BP 的表达式为y=1t x -2+t t.....请你补充剩余的证明过程;(3)当△PCD 是等边三角形时,t= .(4)随着点P 的运动,△ABP 的面积S 与点P 的横坐标t 之间存在一定的函数关系,当t>﹣2时,请你求出S 关于t 的函数表达式.25.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点Q是x轴上方抛物线上一点,射线QM⊥x轴于点N,若QM=BM,且tan∠MBN=43,请直接写出点Q的坐标;(3)如图2,点E是第一象限内一点,连接AE交y轴于点D,AE的延长线交抛物线于点P点F在线段CD上,且CF=OD,连接AF,EF,BE,BP,若S△AFE =S△ABE,求△PAB的面积.26.(12分)原题再现:小强特别喜欢探究数学问题,一天李老师给他这样一个几何问题:△ABC 和△BDE都是等边三角形,将△BDE绕着点B旋转到图1位置,求证:AE=CD.小强很快就通过△ABE△CBD,论证了AE=CD.(1)请你写出小强的证明过程;迁移应用:小强想,把等边△ABC和等边△BDE都换成等腰直角三角形,将△BDE绕着点B 旋转到图2位置,其中∠ACB=∠EDB=90°,那么AE和CD有什么数量关系呢?(2)请你帮助小强写出结论,并给出证明;(3)如图3,如果把等腰直角三角形换成正方形,将正方形AFEG绕点A旋转α°,若AB=6√2,AG=4,在旋转过程中,当C,G,E三点共线时,请求出DG的长度.答案一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图所示的几何体是由5个大小相同的小立方块搭成,此几何体的俯视图是( C )2.万里长城是世界文化遗产之一,其总长大约为21 200 000 m ,将21 200 000用科学记数法表示为( B )A.2.12x106B.2.12x107C.0.212x108D.212x1073.如图,AB∥CD,直线l与AB,CD分别交于点E和F,CD上有一点G且GE=GF,∠1=122°,则∠2的度数为( B )A.54°B.64°C.58°D.68°4.实数a,b在数轴上的位置如图所示,则下列结论不正确的是( C )A.ab<0B.a+b>0-bl=a-bD.√a2=-a5.下列图形中,既是轴对称图形又是中心对称图形的是( D )6.下列运算正确的是( C )A.(m﹣1)2=m2﹣1B.(2m)³=6m³C.m7-m3=m4D.m2+m5=m77.用如图所示的两个可自由转动的转盘进行"配紫色"游戏(红色和蓝色配成紫色),两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色(若指针停在分界线上,则重转),则配得紫色的概率为( B )A.16B.14C.13D.128.已知点A(x1,y1),B(x2,y2)在反比例函数y=-2x的图象上,且x1<0<x2,则下列结论一定正确的是( D )A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1-y2>09.如图,在矩形ABCD 中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E和F,大于12EF为半径画弧,两弧交于点P,作射线BP,过点C作BP的垂线分别交BP,AD于点M和N,则CN的长为( A )A.√10B.√11C.2√3D.410.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点,已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(32,32),且当0≤x≤m时,函数y’=ax2+4x+c-34(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是( B )A.-1≤m≤0B.2≤m≤4C.2≤m<72D.2-<m≤72二.填空题:本题共6小题,每小题4分,共24分..11.因式分解:xy2-4x= x(y+2)(y-2) .12.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为1350.13.若关于x的一元二次方程x2+2x+h=0无实数根,则k的取值范围是k>1 .14.如图,正方形的边AB=2,弧BD和弧AC都是以2为半径的圆弧,则图中空白两部分的面之差为2π-4 .15.为了增强学生身体素质,学校要求学生练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,男、女生从开始匀速跑步到停止跑步分别用时100s,120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则当男、女相遇时,此时男、女同学距离终点的距离为315m .16.如图,在矩形ABCD 中,AB=8,AD=10,点M 是BC 的中点,E 是BM 上的一点,连接AE ,作点B 关于直线AE 的对称点B',连接DB'并延长交BC 于点F .当BF 最大时,点B'到BC 的距离为165.三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:|﹣12|+(-1)2024﹣sin30°﹣(√3-√2)0 =12+1-12-1 =018.(6分)解不等式组{2(x -1)+1>﹣3①x -1≤1+x3②,并把它的解集在数轴上表示出来. 解不等式①,得x>-1 解不等式②,得x ≤2原不等式组的解集为﹣1<x ≤219.(6分)如图,四边形ABCD 是平行四边形,点E ,F ,G ,H 分别在边AD 、AB 、BC 、CD 上,且DE=BG ,AF=CH .求证:EF=GH.证明:四边形ABCD 是平行四边形 ∴AD=BC ,∠A=∠C又∵DE=BG∴AE=CG在△EAF和△GCH中,{AE=CG ∠A=∠C AF=CH∴△EAF≌△GCH(SAS)∴EF=GH20.(8分)植物园是当地人民喜爱的休闲场所之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最小和最大高度分别为多少?(结果精确到0.1m,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)解:如图过点B作BT⊥ON于点T,过点A作AK⊥ON于点K在Rt△OBT中,OT=OB·cos26°=3x0.90=2.7(m)∵∠BMN=∠MNT=∠BTN=90°∴四边形BMNT是矩形∴TN=BM=0.9m∴ON=OT+TN=3.6(m)∴CN=ON﹣OC=3.6-3=0.6(m)在Rt△AOK中,OK=OA·cos50°=3x0.64=1.92(m)∴KN=ON﹣OK=3.6-1.92=1.7(m)答:座板距地面的最小高度约为0.6m,最大高度约为1.7m.21.(8分)"小手拉大手,共创文明城".某校为了解学生对所在城市创建全国文明城市相关知 识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x 表示.单位:分):94,83,90,86,94,88,96,100,89,82,94,82,84,89,88,93,98,94,93,92.整理上面的数据,得到频数分布表和扇形统计图.根据以上信息,解答下列问题:(1)填空:a= ,b= .(2)若成绩不低于90分为优秀,请估计该校1600名学生中,达到优秀等级的人数;(3)已知A 等级中有2名男生,现从A 等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.解:(1)a=20-8-5-4=3.∵b%=8+20x100%=40%∴b=40故答案为3,40(2)1600×1120=880(名)即估计该校1600名学生中,达到优秀等级的人数为880.(3)A 等级中有2名男生,则有1名女生.画树状图如下:共有6种等可能的结果,恰好抽到一男一女的结果∴恰好抽到一男一女的概率为46=2322.(8分)如图,AB 是⊙O 的直径,点E ,C 在⊙O 上,点C 是弧BE 的中点,AE 垂直于过点C 的直线CD ,垂足为D ,AB 的延长线交直线CD 于点F.(1)求证:CD 是⊙O 的切线;(2)若AE=2,sin ∠AFD=13①求⊙O的半径;②求线段DE的长.22.(1)证明:如图,连接OC∵AD⊥DF∴∠D=90°∵点C是弧BE的中点∴弧CE=弧CB∴∠DAC=∠CAB∵OA = OC∴∠CAB=∠OCA∴∠DAC=∠OCA∴AD∥OC∴∠OCF=∠D=90°∵OC是⊙O的半径∴DC是⊙O的切线.(2)解:①如图,过点O作OG⊥AE,垂足为GAE=1∴AG=EG=12∵OG⊥AD∴∠AGO=∠DGO=90°∵∠D=∠AGO=90°∴OG∥DF∴∠AFD=∠AOG∵sin∠AFD=13∴sin∠AOG=sin∠AFD=13在Rt △AGO 中,AO=1÷13=3∴⊙0的半径为3②∵∠OCF=90°∴∠OCD=180°∠OCF=90°∵∠OGE=∠D=90°∴四边形OGDC 是矩形∴OC=DG=3∵GE=1∴DE=DG -GE=3-1=2∴线段DE 的长为223.(10分)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A 粽子能够畅销.根据预测,每千克A 粽子节前的进价比节后多2元,节前用240元购进A 粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:(1)该商场节后每千克A 粽子的进价为多少元?(2)如果该商场在节前和节后共购进A 粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A 粽子获得利润最大?最大利润为多少?解:(1)设该商场节后每千克A 粽子的进价为x 元240x -4=240x+2 解得x=10或x=﹣12(舍去)经检验,x=10是原分式方程的根,且符合题意.答:该商场节后每千克A 粽子的进价为10元.(2)设该商场节前购进m 千克A 粽子,总利润为w 元根据题意,得(10+2)m+10(400-m)≤4600解得m ≤300w=(20-12)m+(16-10)(400-m)=2m+2400.∵2>0∴w 随着m 增大而增大当m=300时,w 取得最大值,最大利润为2x300+2400=3000(元)答:该商场节前购进300千克A 粽子获得利润最大24.(10分)当k 值相同时,我们把正比例函数y=1k x 和反比例函数y=k x 叫做"关联函数".小亮根 据学习函数的经验,以函数y=﹣12x 和y=﹣2x 为例对"关联函数"进行了探究,下面是小亮的探 究过程,请你将它补充完整(1)如图,在同一平面直角坐系中画出这两个函数的图象,两个函数图象在第二、四象限分别 交于点A 、B ,则点A 、B 的坐标分别是A 、B .(2)点P 是函数y=﹣12x 在第二象限内的图象上的一个动点(不与点A 重合),作直线PA 、PB ,分别与x 轴交于点C 、D .设点P 的横坐标为t .小亮通过分析得到:在点P 运动的过程中,总有PC=PD.证明PC=PD 的过程如下(不完整):易知点P 的坐标为(t ,﹣2t )设直线AP 的表达式为y=ax+b-2a+ b =1将点A 、P 的坐标分别代人,得{﹣2a +b =1ta +b =﹣2t 解得{a =﹣1t b =﹣2-t t∴直线AP 的表达式为y=﹣1t x -2-t t令y=0,得x=t -2,则点C 的坐标为(t -2,0) 同理可得直线BP 的表达式为y=1t x -2+t t.....请你补充剩余的证明过程;(3)当△PCD 是等边三角形时,t= .(4)随着点P 的运动,△ABP 的面积S 与点P 的横坐标t 之间存在一定的函数关系,当t>﹣2时,请你求出S 关于t 的函数表达式.解:(1)令﹣12x=﹣2x ,则x 2=4 ∴x 1=-2,x 2=2分别代入关系式,得y 1=1,y 2=-1.∴A(-2,1),B(2,-1)(2)令1t x -t+2t =0,得x=1+2则点D 的坐标为(t+2,0)如图,过点P 作PH ⊥x 轴于点H ,则H(t ,0).又:C(t -2,0),D(t+2,0)∴CH=DH∴PH是线段CD的中垂线∴PC=PD(3)﹣√33(4)S=t﹣4t25.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点Q是x轴上方抛物线上一点,射线QM⊥x轴于点N,若QM=BM,且tan∠MBN=43,请直接写出点Q的坐标;(3)如图2,点E是第一象限内一点,连接AE交y轴于点D,AE的延长线交抛物线于点P点F在线段CD上,且CF=OD,连接AF,EF,BE,BP,若S△AFE =S△ABE,求△PAB的面积.(1)设抛物线的表达式为y=a(x+1)(x-3)=a(x2-2x-3),当x=0时,y=3∴-3a=3,解得a=-1.故抛物线的表达式为y=-x2+2x+3(2)Q(2,3)(3)面积=3.526.(12分)原题再现:小强特别喜欢探究数学问题,一天李老师给他这样一个几何问题:△ABC 和△BDE都是等边三角形,将△BDE绕着点B旋转到图1位置,求证:AE=CD.小强很快就通过△ABE△CBD,论证了AE=CD.(1)请你写出小强的证明过程;迁移应用:小强想,把等边△ABC和等边△BDE都换成等腰直角三角形,将△BDE绕着点B 旋转到图2位置,其中∠ACB=∠EDB=90°,那么AE和CD有什么数量关系呢?(2)请你帮助小强写出结论,并给出证明;(3)如图3,如果把等腰直角三角形换成正方形,将正方形AFEG绕点A旋转α°,若AB=6√2,AG=4,在旋转过程中,当C,G,E三点共线时,请求出DG的长度.(1)证明:△ABC 和△BDE 分别是等边三角形 ∴AB=CB ,BE=BD∴∠ABC=∠DBE=60°∴∠DBE ﹣∠DBA=∠ABC ﹣∠DBA ,即∠ABE=∠CBD 在△ABE 和△CBD 中{AB =CB ∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS )∴AE=CD(2)解:AE=√2CD .理由如下∵△ABC ,△BDE 都是等腰直角三角形∴BA=√2BC ,BE=√2BD∴AB CB =BE BD =√2∵∠ABC=∠DBE=45°∴∠ABE=∠CBD∴△ABE ∽△CBD∴AE CD =AB CB =√2∴AE=√2CD(3)解:①如图1,连接AE. 由(2)知△ADG ∽△ACE∴DG CE =AD AC =√22∴DG=√22CE∵四边形ABCD是正方形∴AD=AB=6√2,AC=√2AB=12∵四边形AFEG是正方形∴∠AGE=90°,GE=AG=4∵C,G,E三点共线∴CG=8√2∴CE=CG﹣EG=8√2-4∴DG=8-2√2②如图2,连接AE由(2)知△ADG∽△ACE∴DGCE =ADAC=√22∴DG=√22CE∵四边形ABCD是正方形∴AD=AB=6√2,AC=√2AB=12∵四边形AFEG是正方形∴∠AGE=90°,GE=AG=4∵C,G,E三点共线∴CG==8√2∴CE=CG+EG=8√2+4.∴DG=√22CE=8+2√2综上,当C,G,E三点共线时,DG的长度为8-2√2或8+2√2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级中考模拟测试题(一)一、填空题(每题3分,共24分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,x y 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q , 则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(每题3分,共24分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r2+π B 、r c r+π C 、r c r +2π D 、22rc r +π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a 的取值范围是( ) A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A 、12-πB 、41π-C 、13-πD 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是( )A 、51<<xB 、135<<xC 、513<<xD 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( )A 、%2xB 、%21x +C 、%%)1(x x •+D 、%%)2(x x •+ 三、解答题17.(6分)化简:2222111x x x x x x-+-÷-+18. (6分)解分式方程:2412-=+-x x x19.(10分)如图,在梯形纸片ABCD 中,AD//BC ,AD>CD ,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C′E.求证:四边形CDC′E 是菱形.20、(10分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。

21、(10分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表家电名称 空调 彩电 冰箱 工 时21 31 41 产值(千元)4 3 2问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?22、(8分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率。

A DEB C C ′23.(10分)某电信公司开设了甲、乙两种市内移动通信业务。

甲种使用者每月需缴15元月租费,然后每通话1分钟, 再付话费0.3元; 乙种使用者不缴月租费, 每通话1分钟, 付话费0.6元。

若一个月内通话时间为x 分钟, 甲、乙两种的费用分别为y 1和y 2元。

(1)试分别写出y 1、y 2与x 之间的函数关系式; (2)在同一坐标系中画出y 1、y 2的图像;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠? 24.(12分)如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P 为x 轴上的—个动点,点P 不与点0、点A 重合.连结CP ,过点P 作PD 交AB 于点D . (1)求点B 的坐标;(2)当点P 运动什么位置时,△OCP 为等腰三角形,求这时点P 的坐标;(3)当点P 运动什么位置时,使得∠C PD=∠OAB,且58BD BA ,求这时点P 的坐标.Oy P CBD Ax参考答案一、1、⎩⎨⎧==02611y x 或 ⎩⎨⎧=-=28222y x 2、0=a 0<b3、14、240135、336、4457、2 8、)33,4(二、 9.D 10.B 11.D 12.B 13.D 14.A 15.B 16.D三、17.解:原式=2(1)(1)(1)x x x -+-÷1(1)x x x -+ =2(1)(1)(1)x x x -+-·(1)1x x x +-=x18.解分式方程:2412-=+-x x x 解:42=-+x x62=x 3=x经检验 3=x 是原方程的解 ∴ 3=x19.证明:根据题意可知 DE C CDE 'ΔΔ≅ 则 '''CD C D C DE CDE CE C E =∠=∠=,,∵AD//BC ∴∠C ′DE=∠CED ∴∠CDE=∠CED ∴CD=CE∴CD=C ′D=C ′E=CE ∴四边形CDC ′E 为菱形。

20、解:(1)由题设知0<a ,且方程01282=+-a ax ax 有两二根6,221==x x于是6,2==OB OAOCA ∆∽OBC ∆ 122=•=∴OB OA OC 即32=OCA DE BCC ′而322===∆∆OCOBS S AC BC OCA OBC 故 3=AC BC (2)因为C 是BP 的中点 BC OC =∴ 从而C 点的横坐标为3又32=OC )3,3(C ∴设直线BP 的解析式为b kx y +=,因其过点)0,6(B ,)3,3(C ,则有⎩⎨⎧+=+=b k b k 3360 ⎪⎩⎪⎨⎧=-=∴3233b k 3233+-=∴x y 又点)3,3(C 在抛物线上 a a a 122493+-=∴ 33-=∴a ∴抛物线解析式为:34338332-+-=x x y 21、解:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有⎪⎪⎩⎪⎪⎨⎧≥++==++=++60)3(12190120413121360z y x z y x z y x总产值x x y x y x z y x z y x A -=-++=++++=++=1080)3(720)2()(223460≥z 300≤+∴y x 而3603=+y x 3003360≤-+∴x x 30≥∴x1050≤∴A 即 30=x 270=y 60=z22、解:用B 和G 分别代表男孩和女孩,用“树状图”列出所有结果为:∴这个家庭有2个男孩和1个女孩的概率为83。

这个家庭至少有一个男孩的概率87。

23.解:(1)y 1=15+0.3x (x ≥0)y 2=0.6x (x ≥0)(2)如右图:(3)由图像知:当一个月通话时间为50分钟时, 两种业务一样优惠当一个月通话时间少于50分钟时, 乙种业务更优惠当一个月通话时间大于50分钟时, 甲种业务更优惠 【说明: 用方程或不等式求解进行分类讨论也可】 24.(1)过B 作BQ ⊥OA 于Q 则∠COA=∠BAQ =60° 在Rt △BQA 中, QB=ABSin 60°=232222QA=AB -BQ =4-(23)=2 ∴OQ=OA -QA=5 ∴B (5,23) (2)若点P 在x 正半轴上∵∠COA=60°,△OCP 为等腰三角形 ∴△OCP 是等边三角形∴OP=OC=CP=4 ∴P (4,0) 若点P 在x 负半轴上∵∠COA=60° ∴∠COP=120° ∴△OCP 为顶角120°的等腰三角形∴OP=OC=4 ∴P (-4,0)∴点P 的坐标为(4,0)或(-4,0) (3)∵∠CPD=∠OAB=∠COP=60°∴∠OPC+∠DPA=120° 又∵∠PDA+∠DPA=120° ∴∠OPC=∠PDA ∵∠OCP=∠A=60° ∴△COP ∽△PAD∴OP OCAD AP=yO PCBD AxQOyP CBD AxDOyPCBAxP∵58BDAB=,AB=4∴BD=52∴AD=32即4 372OPOP=-∴276OP OP-=得OP=1或6∴P点坐标为(1,0)或(6,0)x。

相关文档
最新文档