材料成形原理课后习题解答

合集下载

材料成形原理习题集及解答

材料成形原理习题集及解答

6.3 Mg、S、O 等元素如何影响铸铁中石墨的生长。 7.1 界面作用对人工复合材料的凝固有何影响/ 7.2 任意一种共晶合金能制取自生复合材料吗?为什么? 8.1 铸件典型宏观凝固组织是由哪几部分构成的,它们的形成机理如何? 8.2 常用生核剂有哪些种类,其作用条件和机理如何? 8.3 试分析影响铸件宏观凝固组织的因素,列举获得细等轴晶的常用方法。 8.4 何谓“孕育衰退”,如何防止? 9.1 说明焊接定义,焊接的物理本质是什么?采取哪些工艺措施可以实现焊 接? 9.2 传统上焊接方法分为哪三大类?说明熔焊的定义。 9.3 如何控制焊缝金属的组织和性能? 9.4 给出 HAZ 的概念。焊接接头由哪三部分组成? 10.1 何为快速凝固,其基本原理是什么? 10.2 定向凝固技术有哪些应用?
=有一高为 H 的圆柱体,先均匀拉伸到 2H,再均匀压缩回 H,设在
变形过程中体积保持不变,试分别求出这两个阶段的对数应变、等效
对数应变及最终的对数应变、等效对数应变?
3、设薄球壳的半径为 R,厚度为 t( t ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

材料成形基本原理(刘全坤)课后答案

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度.②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏.由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 。

如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序).答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成形课后习题

材料成形课后习题

材料成形第一章(1)试述铸造成形的实质及优缺点。

答:铸造成形的实质是将一种液态金属或合金平稳地浇入铸型的型腔、冷却凝固后获得铸件的成形技术。

优点:1.适合制造形状复杂、特别是内腔形状复杂的铸件2.铸件的大小几乎不受3.使用的材料范围广缺点:1.铸件组织不够致密,力学性能较低,耐冲击能力较低2.生产工序多,工艺过程较为繁琐,易于产生废品(2)合金的流动性取决于哪些因素?合金的流动性不好对铸件有何影响?答:取决于液态合金粘度、铸型导热能力、铸型的阻力。

合金的流动性差,铸件就容易产生浇注不到、冷隔等缺陷,同时也是引起铸件气孔、夹渣和缩孔等缺陷的间接原因。

(3)试述提高液态金属充型能力的方法,采用这些方法时应注意什么问题?答:方法:1.增大浇注压力2.提高浇注温度3.合金中加入能降低液态合金粘度的成分注意:应注意对收缩进行控制,否则会产生缩孔、缩松、变形和裂纹等缺陷。

(4)何谓合金的收缩?影响合金收缩的因素有哪些?答:合金在浇注、凝固直至冷却到室温的过程中体积或尺寸缩减的现象称为收缩。

影响因素包含有合金的化学成分、浇注温度、铸件结构和铸型条件。

(5)冒口补缩的原理是什么?冷铁是否可以补缩?其作用与冒口有何不同?答:原理是采用“顺序凝固原则” ,在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。

冷铁本身不可以补缩,作用是加速铸件局部的冷却,控制铸件的凝固方向。

(7)何谓铸件的热节?一般用什么方法来确定热节?热节对铸件品质有何影响?答:铸件上热量聚集的部位称为热节,一般用铸件截面上的内切圆来表示。

其中热节圆直径最大的部位就是铸件最后可能出现缩孔的部位。

(9)怎样区分铸件裂纹的性质?用什么措施可以防止裂纹?答:裂纹可分为冷裂纹和热裂纹。

热裂纹是铸件凝固末期在接近固相线的高温下形成的;冷裂纹是较低温度下,由于热应力和收缩应力的综合作用,铸件的内应力超过合金的极限而产生的。

材料成型基本原理课后答案解析

材料成型基本原理课后答案解析

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:(1)液体与固体及气体比较的异同点可用下表说明相同点不同点液体具有自由表面;可压缩性很低具有流动性,不能承受切应力;远程无序,近程有序固体不具有流动性,可承受切应力;远程有序液体完全占据容器空间并取得容器内腔形状;具有流动性远程无序,近程有序;有自由表面;可压缩性很低气体完全无序;无自由表面;具有很高的压缩性(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

材料成型原理课后答案第三章答案

材料成型原理课后答案第三章答案

第三章 金属凝固热力学与动力学1. 试述等压时物质自由能G 随温度上升而下降以及液相自由能G L 随温度上升而下降的斜率大于固相G S的斜率的理由。

并结合图3-1及式(3-6)说明过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素。

答:(1)等压时物质自由能G 随温度上升而下降的理由如下:由麦克斯韦尔关系式:VdPSdT dG +-= (1)并根据数学上的全微分关系:dy yF dx x F y x dF xy ⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=),( 得:dPP G dT T G dG TP ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=(2)比较(1)式和(2)式得:V P G S T G TP=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂, 等压时dP =0 ,此时dT T G SdT dG P⎪⎭⎫⎝⎛∂∂=-= (3) 由于熵恒为正值,故物质自由能G 随温度上升而下降。

(2)液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率的理由如下: 因为液态熵大于固态熵,即: S L > S S所以:>即液相自由能G L随温度上升而下降的斜率大于固相G S 的斜率 。

(3)过冷度ΔT是影响凝固相变驱动力ΔG 的决定因素的理由如下:右图即为图3-1其中:V G ∆表示液-固体积自由能之差T m 表示液-固平衡凝固点从图中可以看出:T > T m 时,ΔG=Gs -G L ﹥0,此时 固相→液相 T = T m 时,ΔG=Gs -G L =0,此时 液固平衡 T < T m 时,ΔG=Gs -G L <0,此时 液相→固相 所以ΔG 即为相变驱动力。

再结合(3-6)式来看, mm V T TH G ∆⋅∆-=∆(其中:ΔH m —熔化潜热, ΔT)(T T m -=—过冷度)由于对某一特定金属或合金而言,T m 及ΔH m 均为定值, 所以过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素 。

2. 怎样理解溶质平衡分配系数K 0的物理意义及热力学意义? 答:(1)K 0的物理意义如下:溶质平衡分配系数K 0定义为:特定温度T *下固相合金成分浓度C *S 与液相合金成分浓度C *L 达到平衡时的比值:K 0 =**LSC C K 0<1时,固相线、液相线构成的张角朝下,K 0越小,固相线、液相线张开程度越大,开始结晶时与终了结晶时的固相成分差别越大,最终凝固组织的成分偏析越严重。

材料成形基本原理(刘全坤)课后答案

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题1 。

液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 .如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r)的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差.N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡"着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型基本原理课后答案

材料成型基本原理课后答案

1 表面张力—表面上平行于表面切线方向且各方向大小相等的张力。

表面张力是由于物体在表面上的质点受力不均匀所致。

2 粘度-表面上平行于表面切线方向且各方向大小相等的张力。

或作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度dvx/dvy的比例系数。

3 表面自由能(表面能)-为产生新的单位面积表面时系统自由能的增量。

4 液态金属的充型能力-液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力。

5 液态金属的流动性-是液态金属的工艺性能之一,与金属的成分、温度、杂质含量及其物理性质有关。

6 铸型的蓄热系数-表示铸型从液态金属吸取并储存在本身中热量的能力。

7 不稳定温度场-温度场不仅在空间上变化,并且也随时间变化的温度场稳定温度场-不随时间而变的温度场(即温度只是坐标的函数):8 温度梯度—是指温度随距离的变化率。

或沿等温面或等温线某法线方向的温度变化率。

9 溶质平衡分配系数K0—特定温度T*下固相合金成分浓度CS*与液相合金成分CL*达到平衡时的比值。

10 均质形核和异质形核-均质形核(Homogeneous nucleation) :形核前液相金属或合金中无外来固相质点而从液相自身发生形核的过程,亦称“自发形核” 。

非均质形核(Hetergeneous nucleation) :依靠外来质点或型壁界面提供的衬底进行生核过程,亦称“异质形核”。

11、粗糙界面和光滑界面-从原子尺度上来看,固-液界面固相一侧的点阵位置只有50%左右被固相原子所占据,从而形成一个坑坑洼洼凹凸不平的界面层。

粗糙界面在有些文献中也称为“非小晶面”。

光滑界面—从原子尺度上来看,固-液界面固相一侧的点阵位置几乎全部为固相原子占满,只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。

也称为“小晶面”或“小平面”。

12 “成分过冷”与“热过冷”-液态合金在凝固过程中溶质再分配引起固-液界面前沿的溶质富集,导致界面前沿熔体液相线的改变而可能产生所谓的“成分过冷”。

合工大版材料成型原理课后习题参考答案(重要习题加整理)

合工大版材料成型原理课后习题参考答案(重要习题加整理)

第二章 凝固温度场P498. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均匀焊透)。

采用同样焊接规范去焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳钢差,电弧热无法及时散开的缘故;相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的缘故。

9. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产生原因并提出相应工艺解决方案。

解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,因此会出现一定长度的未焊透。

(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复到正常焊接规范。

生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。

第四章 单相及多相合金的结晶 P909.何为成分过冷判据?成分过冷的大小受哪些因素的影响? 答: “成分过冷”判据为:R G L <NLD RLL L e K K D C m δ-+-0011当“液相只有有限扩散”时,δN =∞,0C C L =,代入上式后得R G L<000)1(K K D C m L L -( 其中: G L — 液相中温度梯度 R — 晶体生长速度 m L — 液相线斜率 C 0 — 原始成分浓度 D L — 液相中溶质扩散系数 K 0 — 平衡分配系数K )成分过冷的大小主要受下列因素的影响:1)液相中温度梯度G L , G L 越小,越有利于成分过冷 2)晶体生长速度R , R 越大,越有利于成分过冷 3)液相线斜率m L ,m L 越大,越有利于成分过冷 4)原始成分浓度C 0, C 0越高,越有利于成分过冷 5)液相中溶质扩散系数D L, D L 越底,越有利于成分过冷6)平衡分配系数K 0 ,K 0<1时,K 0 越 小,越有利于成分过冷;K 0>1时,K 0越大,越有利于成分过冷。

材料成形原理课后习题解答

材料成形原理课后习题解答

材料成形原理课后习题解答1.什么是材料成形原理?为什么要学习材料成形原理?答:材料成形原理是研究材料在加工过程中的变形原理和规律的学科。

学习材料成形原理可以帮助我们理解和掌握材料的成形过程,从而能够对材料的性能、结构和应用进行合理的设计和改进。

2.材料成形的基本原理是什么?答:材料成形的基本原理是应用外力使材料发生塑性变形,从而改变材料的形状和结构。

3.什么是冷加工和热加工?它们的主要区别是什么?答:冷加工是指在室温下进行的材料成形加工,如冷轧、冷拔等;热加工是指在高温下进行的材料成形加工,如热轧、锻造等。

它们的主要区别在于加工温度的不同,冷加工温度低于材料的再结晶温度,而热加工温度高于材料的再结晶温度。

4.什么是金属的再结晶?它对材料性能有什么影响?答:金属的再结晶是指在加工过程中,材料的晶粒发生重新排列和再生长的过程。

再结晶可以消除材料的冷变形应力,提高材料的塑性和韧性,改善材料的综合性能。

5.什么是金属的变形硬化?它是如何发生的?答:金属的变形硬化是指在加工过程中,由于晶粒的滑移和位错的增加,使材料的塑性变差并增加材料的硬度。

变形硬化是通过位错的堆积和排列来发生的,位错的滑动和相互阻碍使材料的塑性变差。

6.什么是材料的流变应力?它对材料成形有何影响?答:材料的流变应力是指在材料变形过程中,材料所受到的阻碍变形的力。

流变应力对材料成形有重要影响,它决定了材料的变形能力和成形过程中所需的加工力。

7.什么是材料的屈服点?它对材料成形有何影响?答:材料的屈服点是指材料在加工过程中开始发生塑性变形的应力值。

屈服点对材料成形有重要影响,它决定了材料的可塑性和成形的可行性。

8.什么是材料的回弹?它是如何发生的?答:材料的回弹是指在加工过程中,材料在外力消失后恢复到原始形状的程度。

回弹是由于材料的弹性变形和塑性变形共同作用所引起的。

9.什么是材料的成形极限?为什么要考虑材料的成形极限?答:材料的成形极限是指材料在成形过程中能够承受的最大变形量。

材料成型原理课后答案第三章答案

材料成型原理课后答案第三章答案

第三章 金属凝固热力学与动力学1. 试述等压时物质自由能G 随温度上升而下降以及液相自由能G L 随温度上升而下降的斜率大于固相G S的斜率的理由。

并结合图3-1及式(3-6)说明过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素。

答:(1)等压时物质自由能G 随温度上升而下降的理由如下:由麦克斯韦尔关系式:V d P SdT dG +-=(1)并根据数学上的全微分关系:dy yF dx x F y x dF xy ⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=),( 得:dPP G dT T G dG TP ⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=(2)比较(1)式和(2)式得:V P G S T G TP=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂, 等压时dP =0 ,此时dT T G SdT dG P⎪⎭⎫⎝⎛∂∂=-= (3) 由于熵恒为正值,故物质自由能G 随温度上升而下降。

(2)液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率的理由如下: 因为液态熵大于固态熵,即: S L > S S所以:>即液相自由能G L随温度上升而下降的斜率大于固相G S 的斜率 。

(3)过冷度ΔT是影响凝固相变驱动力ΔG 的决定因素的理由如下:右图即为图3-1其中:V G ∆表示液-固体积自由能之差T m 表示液-固平衡凝固点从图中可以看出:T > T m 时,ΔG=Gs -G L ﹥0,此时 固相→液相 T = T m 时,ΔG=Gs -G L =0,此时 液固平衡 T < T m 时,ΔG=Gs -G L <0,此时 液相→固相 所以ΔG 即为相变驱动力。

再结合(3-6)式来看, mm V T TH G ∆⋅∆-=∆(其中:ΔH m —熔化潜热, ΔT)(T T m -=—过冷度)由于对某一特定金属或合金而言,T m 及ΔH m 均为定值, 所以过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素 。

2. 怎样理解溶质平衡分配系数K 0的物理意义及热力学意义? 答:(1)K 0的物理意义如下:溶质平衡分配系数K 0定义为:特定温度T *下固相合金成分浓度C *S 与液相合金成分浓度C *L达到平衡时的比值:K 0 =**LSC C K 0<1时,固相线、液相线构成的张角朝下,K 0越小,固相线、液相线张开程度越大,开始结晶时与终了结晶时的固相成分差别越大,最终凝固组织的成分偏析越严重。

材料成型传输原理课后答案

材料成型传输原理课后答案

第一章流体地主要物理性质1-1何谓流体,流体具有哪些物理性质?答:流体是指没有固定地形状、易于流动地物质.它包括液体和气体.流体地主要物理性质有:密度、重度、比体积压缩性和膨胀性.1-2某种液体地密度ρ=900 Kg/m3,试求教重度γ和质量体积v.解:由液体密度、重度和质量体积地关系知:∴质量体积为1.4某种可压缩液体在圆柱形容器中,当压强为2MN/m2时体积为995cm3,当压强为1MN/m2时体积为1000 cm3,问它地等温压缩率kT为多少?解:等温压缩率KT公式(2-1):ΔV=995-1000=-5*10-6m3注意:ΔP=2-1=1MN/m2=1*106Pa将V=1000cm3代入即可得到KT=5*10-9Pa-1.注意:式中V是指液体变化前地体积1.6 如图1.5所示,在相距h=0.06m地两个固定平行乎板中间放置另一块薄板,在薄板地上下分别放有不同粘度地油,并且一种油地粘度是另一种油地粘度地2倍.当薄板以匀速v=0.3m/s被拖动时,每平方M受合力F=29N,求两种油地粘度各是多少?解:流体匀速稳定流动时流体对板面产生地粘性阻力力为平板受到上下油面地阻力之和与施加地力平衡,即代入数据得η=0.967Pa.s第二章流体静力学2-1作用在流体上地力有哪两类,各有什么特点?解:作用在流体上地力分为质量力和表面力两种.质量力是作用在流体内部任何质点上地力,大小与质量成正比,由加速度产生,与质点外地流体无关.而表面力是指作用在流体表面上地力,大小与面积成正比,由与流体接触地相邻流体或固体地作用而产生.2-2什么是流体地静压强,静止流体中压强地分布规律如何?解:流体静压强指单位面积上流体地静压力.静止流体中任意一点地静压强值只由该店坐标位置决定,即作用于一点地各个方向地静压强是等值地.2-3写出流体静力学基本方程式,并说明其能量意义和几何意义.解:流体静力学基本方程为:同一静止液体中单位重量液体地比位能可以不等,比压强也可以不等,但比位能和比压强可以互换,比势能总是相等地.第三章习题3.1已知某流场速度分布为,试求过点(3,1,4)地流线.解:由此流场速度分布可知该流场为稳定流,流线与迹线重合,此流场流线微分方程为:即:span style='mso-ignore:vglayout。

材料成形基本原理(刘全坤)课后答案

材料成形基本原理(刘全坤)课后答案

第一章液态金属的结构与性质习题1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度.②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性.2 。

如何理解偶分布函数g(r)的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数.r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡"着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

材料成型原理课后题答案

材料成型原理课后题答案

8:本质金属液态合金构造与理想纯金属液态构造有何不一样?答:纯金属的液态构造是由原子公司、游离原子、空穴或裂纹构成的,是近程有序的。

液态中存在着很大的能量起伏。

而本质金属中存在大批的杂质原子,形成夹杂物,除了存在构造起伏和能量起伏外还存在浓度起伏。

12:简述液态金属的表面张力的本质及其影响因数。

答:本质:表面张力是表面能的物理表现,是是由原子间的作使劲及其在表面和内部间摆列状态的差异惹起的。

影响因数:熔点、温度和溶质元素。

13:简述界面现象对液态成形过程的影响。

答:表面张力会产生一个附带压力,当固液互相湿润时,附带压力有助于液体的充填。

液态成形所用的铸型或涂料资料与液态合金应是不湿润的,使铸件的表面得以光洁。

凝结后期,表面张力对铸件凝结过程的补索状况,及能否出现热裂缺点有重要影响。

15:简述过冷度与液态金属凝结的关系。

答:过冷度就是凝结的驱动力,过冷度越大,凝结的驱动力也越大;过冷度为零时,驱动力不存在。

液态金属不会在没有过冷度的状况下凝结。

16:用动力学理论论述液态金属达成凝结的过程。

答:高能态的液态原子变为低能态的固态原子,一定超出高能态的界面,界面拥有界面能。

生核或晶粒的长大是液态原子不停地向固体晶粒聚积的过程,是固液界面不停向前推动的过程。

只有液态金属中那些拥有高能态的原子才能超出更高能态的界面成为固体中的原子,进而达成凝结过程。

17:简述异质形核与均质形核的差异。

答:均质形核是依赖液态金属内部自己的构造自觉形核,异质形核是依赖外来夹杂物所供给的异质界面非自觉的形核。

异质形核与固体杂质接触,减少了表面自由能的增添。

异质形核形核功小,形核所需的构造起伏和能量起伏就小,形核简单,所需过冷度小。

18:什么条件下晶体以平面的方式生长?什么条件下晶体以树枝晶方式生长?答:①平面方式长大:固液界眼前面的液体正温度梯度散布,固液界眼前面的过冷地区及过冷度极小,晶体生长时凝结潜热析出的方向与晶体的生长方向相反。

材料成形基本原理课后习题答案

材料成形基本原理课后习题答案

第一章习题1 . 液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并不是原子间结合力的全部破坏?(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:①物质熔化时体积变化、熵变及焓变一般都不大。

金属熔化时典型的体积变化∆V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热∆H m约为气化潜热∆H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 . 如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间距r1各表示什么?答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团(2)说明液态金属或合金结构的近程有序的实验例证①偶分布函数的特征对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。

晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。

而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料成型原理第一章(第二章的内容)第一部分:液态金属凝固学答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。

原子集团的空穴或裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。

(2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。

答: 液态金属的表面张力是界面张力的一个特例。

表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。

表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r 为球面的半径;(2)ρ=σ(1/r 1+1/r 2),式中r 1、r 2分别为曲面的曲率半径。

附加压力是因为液面弯曲后由表面张力引起的。

答: 液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。

而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。

提高液态金属的冲型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度、导热系大;④粘度、表面张力大。

(2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。

(3)浇注条件方面:①提高浇注温度;②提高浇注压力。

(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。

解: 浇注模型如下:则产生机械粘砂的临界压力 ρ=2σ/r显然 r =21×= 则 ρ=410*5.05.1*2-=6000Pa 不产生机械粘砂所允许的压头为H =ρ/(ρ液*g )=10*75006000= 解: 由Stokes 公式 上浮速度 92(2v )12r r r -=r 为球形杂质半径,γ1为液态金属重度,γ2为杂质重度,η为液态金属粘度γ1=g*ρ液=10*7500=75000γ2=g 2*ρMnO =10*5400=54000所以上浮速度 v =0049.0*95400075000(*10*1.0*223)-)(-=s 解:(1)对于立方形晶核 △G 方=-a 3△Gv+6a 2σ①令d △G 方/da =0 即 -3a 2△Gv+12a σ=0,则临界晶核尺寸a *=4σ/△Gv ,得σ=4*a △Gv ,代入① △G 方*=-a *3△Gv +6 a *24*a △Gv =21 a *2△Gv 均质形核时a *和△G 方*关系式为:△G 方*=21 a *3△Gv (2)对于球形晶核△G 球*=-34πr *3△Gv+4πr *2σ 临界晶核半径r *=2σ/△Gv ,则△G 球*=32πr *3△Gv 所以△G 球*/△G 方*=32πr *3△Gv/(21 a *3△Gv) 将r*=2σ/△Gv ,a *=4σ/△Gv 代入上式,得△G 球*/△G 方*=π/6<1,即△G 球*<△G 方*所以球形晶核较立方形晶核更易形成3-7解: r 均*=(2σLC /L)*(Tm/△T)=319*6.618702731453*10*25.2*25)+(-cm =*10-9m △G 均*=316πσLC 3*Tm/(L 2*△T 2) =316π*262345319*)10*6.61870(2731453*10*10*25.2()+()-=*10-17J 答: 从理论上来说,如果界面与金属液是润湿得,则这样的界面就可以成为异质形核的基底,否则就不行。

但润湿角难于测定,可根据夹杂物的晶体结构来确定。

当界面两侧夹杂和晶核的原子排列方式相似,原子间距离相近,或在一定范围内成比例,就可以实现界面共格相应。

安全共格或部分共格的界面就可以成为异质形核的基底,完全不共格的界面就不能成为异质形核的基底。

答: 晶核生长的方式由固液界面前方的温度剃度G L 决定,当G L >0时,晶体生长以平面方式生长;如果G L <0,晶体以树枝晶方式生长。

答: 用Chvorinov 公式计算凝固时间时,误差来源于铸件的形状、铸件结构、热物理参数浇注条件等方面。

半径相同的圆柱和球体比较,前者的误差大;大铸件和小铸件比较,后者误差大;金属型和砂型比较,后者误差大,因为后者的热物性参数随温度变化较快。

答:铸件凝固时间t =22K R ,R 为折算厚度,K 为凝固系数,又由于R =AV ,在相同体积的条件下,立方体。

等边圆柱和球三者中,球的表面积最小,所以球的折算厚度R 最大,则球形冒口的凝固时间t 最大,最有利于补缩。

解: 焊接熔池的特征:(1)熔池体积小;(2)熔池温度高;(3)熔池金属处于流动状态;(4)熔池界面的导热条件好,焊接熔池周围的母材与熔池间没有间隙。

焊接熔池对凝固过程的影响:(1)母材作为新相晶核的基底,使新相形核所需能量小,出现非均匀形核,产生联生结晶(外延结晶);(2)熔池金属是在运动状态凝固的,焊缝的柱状晶总是朝向焊接方向并且向焊缝中心生长,即对向生长;(3)焊接熔池的实际凝固过程并不是连续的,柱状晶的生长速度变化不是十分有规律。

解:溶质再分配:合金凝固时液相内的溶质一部分进入固相,另一部分进入液相,溶质传输使溶质在固-液界面两侧的固相和液相中进行再分配。

影响溶质再分配的因素有热力学条件和动力学条件。

解:设液相线和固相线的斜率分别为L m 和S m ,如上图:液相线:T *-Tm =L m (C l *-0) ①固相线:T *-Tm =S m (C s *-0) ② ②÷①得:Tm T Tm T --**=**L L S S C m C m =1 即 **LS C C =S L m m =k 0 由于L m 、S m 均为常数,故k 0=Const.解: (1)溶质分配系数 k 0=L S C C =Esm C C =%33%65.6= 当s f =10%时,有*s C =1000)1(--k s f C k =*1%*(1-10%)1171.0-=% *L C =100-k L f C =0*k C S =171.000187.0=% (2)设共晶体所占的比例为L f ,则*L C =100-k L f C =E C则L f =1010-)(k E C C =1171.01)%65.5%33(-= (1) 沿试棒的长度方向Cu 的分布曲线图如下:答:金属凝固时,完全由热扩散控制,这样的过冷称为热过冷;由固液界面前方溶质再分配引起的过冷称为成分过冷.成分过冷的本质:由于固液界面前方溶质富集而引起溶质再分配,界面处溶质含量最高,离界面越远,溶质含量越低。

由结晶相图可知,固液界面前方理论凝固温度降低,实际温度和理论凝固温度之间就产生了一个附加温度差△T ,即成分过冷度,这也是凝固的动力。

答: 影响成分过冷的因素有G 、v 、D L 、m 、k 0、C 0,可控制的工艺因素为D L 。

过冷对晶体的生长方式的影响:当稍有成分过冷时为胞状生长,随着成分过冷的增大,晶体由胞状晶变为柱状晶、柱状树枝晶和自由树枝晶,无成分过冷时,以平面方式或树枝晶方式生长。

晶体的生长方式除受成分过冷影响外,还受热过冷的影响。

答:影响成分过冷范围的因素有:成分过冷的条件为 vG L <000)1(k D k C m L L - 成分过冷的范围为 △=000)1(k D k C m L L --vG L 上式中,00k C m L 、、为不变量,所以影响成分过冷范围的因素只有D L 、G L 和v 。

对于纯金属和一部分单相合金的凝固,凝固的动力主要是热过冷,成分过冷范围对成形产品没什么大的影响;对于大部分合金的凝固来说,成分过冷范围越宽,得到成型产品性能越好。

答:(1)纯金属的枝晶间距决定于界面处结晶潜热的散失条件,而一般单相合金与潜热的扩散和溶质元素在枝晶间的行为有关。

(2)枝晶间距越小,材质的质量越高(因为消除枝晶偏析越容易)。

答: (1)在普通工业条件下,从热力学考虑,当非共晶成分的合金较快地冷却到两条液相线地延长线所包围的影线区域时,液相内两相打到饱和,两相具备了同时析出的条件,但一般总是某一相先析出,然后再在其表面析出另一个相,于是便开始了两相竞相析出的共晶凝固过程,最后获得100%的共晶组织。

(2)伪共晶组织如(1)所述,有较高的机械性能;而单相合金固相无扩散,液相混合均匀凝固产生的共晶组织为离异共晶,即:合金冷却到共晶温度时,仍有少量的液相存在,此时的液相成分接近于共晶成分,这部分剩余的液体将会发生共晶转变,形成共晶组织,但是,由于此时的先共晶相α数量很多,共晶组织中的α相可能依附于先共晶相上长大,形成离异共晶,即β相单独存在于晶界处,给合金的性能带来不良影响。

答:小面-非小平面生长最大的特点是:有强烈的方向性。

变质处理改变了小平面的形态,使得晶体生长方式发生改变。

10)与合金液面间答: S、O等活性元素吸附在旋转孪晶台阶处,显着降低了石墨棱面(0110)方向的生长速度大于(0001)方向,石墨最终长成片状。

的界面张力,使得(01Mg是反石墨化元素,在它的作用下,石墨最终长成球状。

答:当强化相表面与合金液表面相互浸润时,其本身就可以作为异质形核的核心,按异质形核的规律进行结晶,使组织得到细化。

当强化相与合金液不浸润时,强化相被排斥于枝晶间或界面上,严重影响着复合材料的性能。

答:并不是任何一种共晶合金都能制取自生复合材料,因为制取自生复合材料必须有高强度、高弹性相作为承载相,而基体应有良好的韧性以保证载体的传递。

因此共晶系应具备以下要求:⑴共晶系中一相应为高强相。

⑵基体应具有较高的断裂韧度,一般以固溶体为宜。

⑶在单相凝固时能够获得定向排列的规则组织。

答:铸件的典型凝固组织为:表面细等轴晶区、中间柱状晶区、内部等轴晶区。

表面细等轴晶的形成机理:非均质形核和大量游离晶粒提供了表面细等轴晶区的晶核,型壁附近产生较大过冷而大量生核,这些晶核迅速长大并且互相接触,从而形成无方向性的表面细等轴晶区。

中间柱状晶的形成机理:柱状晶主要从表面细等轴晶区形成并发展而来,稳定的凝固壳层一旦形成处在凝固界面前沿的晶粒在垂直于型壁的单向热流的作用下,便转而以枝晶状延伸生长。

由于择优生长,在逐渐淘汰掉取向不利的晶体过程中发展成柱状晶组织。

内部等轴晶的形成是由于剩余熔体内部晶核自由生长的结果。

答:常用生核剂有以下几类:1、直接作为外加晶核的生核剂。

2、通过与液态金属中的某元素形成较高熔点的稳定化合物。

3、通过在液相中造成很大的微区富集而造成结晶相通过非均质形核而提前弥散析出的生核剂。

相关文档
最新文档