IGBT升压斩波电路设计
升压直流斩波电路

〈〈电力电子技术》课程设计说明书升压直流斩波电路设计院、部:电气与信息工程学院学生姓名: _____________________指导教师:职称专业:电气工程及其白动化班级: ________________________完成时间: _____________________电力电子课程设计课题任务书电力电子电路的基本作用是进行电能的变换与控制,即将一定形式的输入点能变换成另外一种形式的电能输出,从而满足不同负载的要求。
电能的形式可以分为交流和直流两种类型,因此根据输入、输出的不同形式,可将电力电子电路分为四大类型,即AC-DC变换器、DC-AC变换器、DC-DC变换器、AC-AC变换器。
该设计将主要介绍其中的DC-DC变换器。
随着半导体工业的发展,DC/DC^换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
目前直流变换电路的用途非常广泛,无论是从性能、功率还是节能性上,都处丁不断地发展之中。
其中升压直流斩波电路是输出电压高丁电源电压的一种斩波电路,主要运用丁直流电动机传动、单相功率因数校正以及交直流电源中。
该设计中,运用了单相桥式全控整流电路和升压斩波电路结合,从而实现升压直流斩波。
通过方案选定,电路构造以及电路调试,最终基本实现升压直流斩波电路功能。
由丁知识浅薄,该课程设计说明书里还存在不少批漏和错误,殷切希望老师和同学们的批评指正。
关键词:直流;斩波;升压1绪论 (1)1.1电力电子技术的介绍 (1)1.2电力电子技术的应用 (1)1.3直流直流变流技术 (2)1.4设计要求 (2)2 系统总体方案设计 (2)2.1总体电路设计框图 (2)2.2整流电路选择 (2)3主电路设计 (5)3.1整流电路 (5)3.1.1 整流电路图及工作波形 (5)3.1.2 整流电路工作原理 (6)3.2升压斩波电路 (6)3.2.1升压斩波电路及工作波形 (6)3.2.2升压斩波电路工作原理 (7)3.3元器件参数及选型 (7)3.3.1 晶闸管的选型 (7)3.3.2绝缘栅双极晶体管(IGBD选型 (9)4控制电路及驱动电路 (11)4.1控制电路 (11)4.1.1 SG3525控制芯片介绍 (11)4.1.2 SG3525外部引脚功能 (12)4.2驱动电路 (13)4.3控制和驱动电路原理图 (13)5保护电路设计 (15)5.1过电流保护 (15)5.2过电压保护 (15)6仿真电路图及结果 (16)6.1 MATLAB仿真软件 (16)6.2整流电路仿真及部分参数设置 (16)6.2.1 整流电路仿真模型 (16)6.2.2部分参数设置 (17)6.3升压斩波电路仿真模型 (19)6.4总电路仿真模型 (19)6.5仿真波形及波形分析 (20)7设计总结 (21)参考文献 (22)致谢 (23)附录 (24)附录A升压直流斩波总电路图 (24)附录B元件活单 (25)1绪论1.1电力电子技术的介绍电力电子技术是一门新兴的应用丁电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTQ IGBT等)对电能进行变换和控制的技术。
IGBT控制直流斩波电路设计

IGBT控制的直流斩波电路设计目录前言一、总体设计·····························1、总体框图···························二、电路选择与分析······················1 三相桥式整流电路····················2 斩波电路························3 保护及缓冲电路······················4 PWM控制脉冲·························5 整体电路图··························三、总体分析及元器件的选择············1 元器件参数的计算····················2 元器件清单列表·····················四设计所用参考文献····················五设计收获与体会······················前言电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。
IGBT升压斩波电路 纯电阻负载

IGBT升压斩波电路纯电阻负载IGBT(Insulated Gate Bipolar Transistor)升压斩波电路是一种常见的电路拓扑结构,用于提供稳定的直流电源和有效地降低电压波动。
本文将介绍IGBT升压斩波电路在纯电阻负载情况下的原理和应用。
1. 什么是IGBT升压斩波电路IGBT升压斩波电路是一种电源电路,通过使用IGBT和相关的电路元件,将输入电源的电压升高并在输出端提供稳定的电压。
该电路结构常用于工业设备、电子设备和高功率应用中,以提供稳定的电源和防止电压波动对电器设备的影响。
2. IGBT升压斩波电路的工作原理IGBT升压斩波电路由三个主要部分组成:升压变压器、整流电路和滤波电路。
2.1 升压变压器升压变压器是IGBT升压斩波电路的关键组件之一。
其作用是将输入电压升高,并提供给下游的整流电路。
升压变压器通常由一个初级线圈和一个次级线圈组成。
当输入电压施加在初级线圈上时,次级线圈将输出更高的电压。
2.2 整流电路整流电路的作用是将升压变压器输出的交流电压转换为直流电压。
常用的整流电路包括整流二极管桥等。
整流二极管桥将交流电压转化为脉冲状的直流电压,并通过滤波电路进行平滑。
2.3 滤波电路滤波电路用于去除直流电压中的纹波。
在IGBT升压斩波电路中,常使用电容器和电感器构成的滤波器。
电容器将纹波电压平滑为稳定的直流电压,而电感器则有助于消除高频噪声。
3. IGBT升压斩波电路在纯电阻负载下的应用IGBT升压斩波电路在纯电阻负载下的应用广泛,尤其在一些对电源稳定性要求较高的场合。
下面介绍几个典型的应用案例:3.1 电力系统稳定性改善IGBT升压斩波电路在电力系统中被广泛应用,特别是在电力输配电领域。
通过使用该电路,可以提供稳定的直流电源,减少电压波动对电力系统的影响。
这对于保证电力系统的稳定性和负载的正常运行至关重要。
3.2 电子设备稳压电源在一些对电压稳定性要求高的电子设备中,IGBT升压斩波电路可用于提供稳定的电源电压。
IGBT升压斩波电路设计

目录1 引言 (4)2 方案设计 (5)2.1 升压斩波电路原理 (5)2.2 工作原理 (6)2.3 参数计算 (7)3 分单元电路设计 (9)3.1 控制电路设计 (9)3.1.1 控制电路方案的选择 (9)3.1.2 SG3525的工作原理 (10)3.2 驱动电路设计 (10)3.3 保护电路设计 (11)4 总电路图 (13)5 课程设计总结 (14)6 参考文献 (15)1 引言电力电子技术(Power Electronics)也称为电力电子学。
利用电力电子开关器件组成电力开关电路,利用晶体管集成电路和微处理器构成信号处理和控制系统,对电力开关电路进行实时、适式的控制,可以经济有效地实现开关模式的电力变换和电力控制,包括电压(电流)的大小、频率、相位和波形的变换和控制。
是综合了电子技术、控制技术和电力技术的新兴交叉学科。
现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。
直流变直流是电力电子技术中变流技术的重要部分,广泛应用于电子领域。
直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。
直接直流变流电路也称斩波电路,它的功能就是将直流电变为另一固定电压或可调电压的直流电。
本课程设计就是其中的一种斩波电路,即升压斩波电路。
本课程设计采用IGBT全控型器件,采用专用PWM控制集成电路SG3525进行驱动,并利用MATLAB的Power System工具箱进行主电路的仿真实验,满足了设计要求,是一次比较成功的设计。
2 方案设计图1 系统总体框图斩波电路一般主要可分为主电路模块,控制电路模块和驱动电路模块三部分组成。
其中,主电路模块主要由电源变压器、整流电路、滤波电路和直流斩波电路组成,其中主要由全控器件IGBT 的开通与关断的时间占空比来决定输出电压Uo 的大小。
控制与驱动电路模块:用直接产生PWM 的专用芯片SG3525产生PWM 信号送给驱动电路,经驱动电路来控制IGBT 的开通与关断。
升压,降压,升降压斩波电路课程方案

题目:MOSFET升降压斩波电路设计一.课程设计的目的电力电子技术的课程设计是《电力电子技术》课程的一个重要的实践教案环节。
它与理论教案和实践教案相配合,可使我们在理论联系实际,综合分析,理论计算,归纳整理和实验研究方面得到综合训练和提高,从而培养学生独立解决实际问题的能力。
加深理解电力电子技术的课程内容,建立正确的设计思想,熟悉项目设计的顺序和方法,提高正确使用技术资料,标准,手册等的独立工作能力。
3.为后续课程的学习打下坚实的基础。
二.设计的技术数据及要求1、交流电源:单相220V;2、前级整流输出输电压: U d=50V~80V;3、输出功率:300W;4、开关频率5KHz;5、占空比10%~90%;6、输出电压脉率:小于10%。
三、设计内容及要求一.方案的论证及方案的选择;1.方案一:升降压斩波电路图原理图:升降压斩波电路的输出电压平均值可以大于或小于输入直流电压值,这种电源具有一个相对于输入电压公共端为负极性的输出电压。
升降压电路可以灵活的改变电压的高低,还可以改变电压的极性,因此常用于电池供电设备中产生负电源的设备和各种开关稳压器。
其原理图即为降压与升压斩波电路串联而成的。
一.MOSFET降压斩波电路图如下:图中L、R 为负载电机的等效电路,负载电压的平均值为,因此称为降压斩波电路。
若负载中L 值较少,或ton 较小,或E 较小,则在可控器件V 关断后,到了t2 时刻,负载电流已衰减至零会出现负载电流断续的情况。
下图中表明了电流连续和断续时的波形情况。
二.MOSFET降压斩波电路图如下:假设L值、C值很大MOSFET导通时,E向L充电,充电电流恒为I1,同时C的电压向负载供电,因C值很大,输出电压u o为恒值,记为U o。
设V通的时间为t o n,此阶段L上积蓄的能量为EI1t o n MOSFET关断时,E和L共同向C充电并向负载R供电。
设V断的时间为t o f f,则此期间电感L释放能量为稳态时,一个周期T中L积蓄能量与释放能量相等<3-20)化简得:<3-21),输出电压高于电源电压,故称升压斩波电路。
IGBT升压斩波电路设计 精品

IGBT升压斩波电路设计目录1 引言 (3)1.1 电力电子技术的介绍 (3)1.2 电力电子技术的应用 (3)1.3 电力电子技术中的直流变化技术 (4)2 系统方案与主电路设计 (4)2.1 系统方案 (4)2.2 主电路设计 (4)2.3 参数计算 (5)2.3.1 RLC的计算 (5)2.3.2 额定参数的计算 (6)3 控制电路的设计 (6)3.1 芯片SG3525的介绍 (6)3.2 控制电路原理图 (7)4 系统仿真 (8)4.1 仿真模型的建立 (8)4.2 系统仿真结果与分析 (11)5 结论 (12)参考文献 (13)1 引言1.1 电力电子技术的介绍电力电子技术(Power Electronics)也称为。
利用电力电子开关器件组成电力开关电路,利用晶体管集成电路和微处理器构成信号处理和控制系统,对电力开关电路进行实时、适式的控制,可以经济有效地实现开关模式的电力变换和电力控制,包括电压(电流)的大小、频率、相位和波形的变换和控制。
是综合了电子技术、控制技术和电力技术的新兴交叉学科。
现已成为现代电气工程与不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。
(Power Electronics)这一名称是在上世纪60年代出现的。
1974年,的W.Newell用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学、和三个学科交叉而形成的。
这一观点被全世界普遍接受。
“电力电子学”和“电力电子技术”是分别从学术和工程技术2个不同的角度来称呼的。
1.2 电力电子技术的应用电力电子技术是一个全新的技术平台,它由电路技术、功率半导体技术、计算机技术以及现代化的控制技术组成。
从电力电子技术出现算起,它已经走过了50年的发展历程,也从电子技术中分离出来,成为了一门独立的科学技术。
随着科学技术的发展,电力电子技术广泛应用于国民经济的每个工业领域。
新千年后,电力电子技术的相关技术得到长足发展,再加上与微电子技术的结合,将使电力电子技术应用前景更为广阔。
IGBT升压斩波电路的设计-2

1 设计要求与方案设计要求=50V,输出功率P=300W ,利用IGBT设计一个升压斩波电路。
输入直流电压Ud开关频率为5KHz,占空比10%到50%,输出电压脉率小于10%。
设计方案根据升压斩波电路设计任务要求设计主电路、驱动电路。
其结构框图如图1所示。
图1在图1结构框图中,控制电路用来产生IGBT升压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在IGBT控制端与公共端之间,可以使其开通或关断的信号。
通过控制IGBT的开通和关断来控制IGBT升压斩波电路工作。
控制电路中保护电路是用来保护电路,防止电路产生过电流、过电压现象而损坏电路设备。
、\2 升压斩波电路设计方案升压斩波主电路电路工作原理原理图本设计为直流升压斩波(boost chopper)电路,该电路是本系统的核心。
应为输出电压比较大,故斩波器件选用能够承受大电压和导通内阻小,开关频率高,开关时间小的大功率IGBT管。
在IGBT关断时给负载中电感电流提供通道,设置了续流二极管VD。
斩波电路主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等。
原理图如下图1所示:|$图1 主电路仿真图左边E为输入直流50V电压,右边为U斩波电压输出。
I G为SG3525输出的PWM斩波信号。
V为IGBT,VD为电力二极管,L为电感,C为电容,R为负载。
o n o f f 0o f f o f f t t T U E Et t+==T offt =βE -11E 1U 0αβ==off t T "原理分析:首先假设电感L 值很大,电容C 值也很大。
当I G 为高电平时,V导通,50V 电源向L 充电,充电基本恒定为,同时电容C 上的电压向负载R 供电,因C 值很大,基本保持输出电压ou为恒值,记为o U 。
设V 处于通态的时间为o n t ,此阶段电感L 上积储的能量为1o n E I t 。
当V 处于段态时E 和L 共同向电容C 充电,并向负载R 提供能量。
升压斩波电路原理

升压斩波电路原理
升压斩波电路(Boost Chopper)设计 1.直流升压斩波电路一共分为三个部分电路块:分为主电路模块,控制电路模块和驱动控制模块。
其中主电路模块,主要由全控器件IGBT的开通与关断的时间占空比来决定输出电压u的大小;而其控制电路模块,可用SG3525来控制IGBTo
的开通与关断。
其驱动电路模块,用来驱动IGBT。
2.升压斩波主电路的工作原理:
图1.1升压斩波电路图
电路的基本工作原理:
图1.1中假设L值、C值很大,V通时,E向L充电,充电电流恒为I,同时C 的电压向负载R供电,因C值很大,输1
出电压u为恒值,记为U。
设V通的时间为t,此阶段L上ooon积蓄的能量为EIt 1on
V断时,E和L共同向C充电并向负载R供电。
设V断的时
,,U,EIto1off间为t,则此期间电感L释放能量为。
当电路工作off
于稳态时,一个周期T中L积蓄能量与释放能量相等,即
,,EIt,U,EIt 1ono1off
化简得:
t,tTonoffU,E,Eo (1) ttoffoff
(1)
,输出电压高于电源电压,故称该电路为升压斩波电路。
T/t,1off
也称之为boost变换器。
升压比,调节其即可改变输出电压T/toff
toffU。
将升压比的倒数记作,即。
和导通占空比有如,,oT
下关系:
,,,,1 (2)
因此,式(1)可表示为
11,,UEE (3) o,1,,
升压斩波电路能使输出电压高于电源电压的原因:储能之后具L有使电压泵升的作用; 电容C可将输出电压保持住。
1。
IGBT升压斩波电路设计

IGBT升压斩波电路设计引言在工业、能源和交通等领域中,高稳定性的直流电源得到广泛应用。
而升压斩波电路是一种常见的直流电源升压技术,在短时间内将直流电压升高到所需电压水平,同时保证电路稳定性和高效性。
因此,设计一种合理可行的IGBT升压斩波电路对于实际应用有非常重要的意义。
1.升压斩波电路原理升压斩波电路是通过改变输入电流的波形来实现电压的升高,使电压高于输入电压。
其实现原理是利用三极管的导通与截止控制,将电压进行放大、升压和限流的过程。
具体原理如下:1.在升压周期内,当输入电压低于输出电压,将三极管S1导通,使电感L储存能量。
2.当电压达到一定值时,开关S1关闭,而三极管S2导通,以使储存在电感L中的能量释放,从而产生高电压。
3.在降压周期内,当输入电压高于输出电压时,电感L将存储电流,而电容C通过三极管S2连接会被放电,以使电路中的电流保持稳定。
4.当电压下降到一定程度后,开关S2关闭,而三极管S1导通,使剩余能量继续储存于电感L中,以进行下一次升压。
2.IGBT升压斩波电路设计在设计IGBT升压斩波电路之前,需要考虑一些参数和特性,如输出电压、电流、升压斜率、升压率、升压时间、谐振频率、效率和稳定性等因素。
在设计过程中,需要根据实际需求进行合理参数选择和参数调整,针对性优化设计,以达到最佳的工作效果。
2.1 设计参数选择在设计IGBT升压斩波电路时,首先需要考虑输出电压和电流的大小,以确定升压斩波电路的类型和参数。
在选择输出电压和电流时,需要考虑实际应用环境中所需的电压范围和电流稳定性,选择合适的交流输入电压和电容参数。
此外,根据所选择的参数,还需要适当调整升压斜率、升压率和升压时间等因素,以提高效率和稳定性。
2.2 升压斩波电路拓扑结构设计针对不同的电压和电流要求,升压斩波电路有多种不同的拓扑结构,如单臂斩波、全桥斩波、半桥斩波和反平衡斩波等。
在选择拓扑结构时,需要考虑它们的优缺点和适用规律,确定最佳的设计方案。
igbt升压斩波电路课程设计

igbt升压斩波电路课程设计一、课程目标知识目标:1. 学生能够理解IGBT的基本结构、工作原理及其在电力电子设备中的应用。
2. 学生能够描述升压斩波电路的原理,并掌握其关键参数的计算方法。
3. 学生能够解释IGBT升压斩波电路在不同应用场景中的优势及限制。
技能目标:1. 学生能够运用所学知识,设计简单的IGBT升压斩波电路,并进行仿真分析。
2. 学生能够通过实验操作,验证升压斩波电路的性能,并掌握实验数据的处理方法。
3. 学生能够运用相关软件(如Multisim、LTspice等)对IGBT升压斩波电路进行设计与优化。
情感态度价值观目标:1. 学生培养对电力电子技术领域的兴趣,提高学习主动性和积极性。
2. 学生通过团队合作,培养沟通、协作能力,增强集体荣誉感。
3. 学生在学习过程中,认识到电力电子技术在实际应用中的重要性,增强社会责任感。
课程性质:本课程为高年级电子技术专业课程,具有较强的理论性和实践性。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力。
教学要求:结合课程性质、学生特点,注重理论与实践相结合,提高学生的实际操作能力,培养学生解决实际问题的能力。
通过课程目标分解,使学生在掌握知识、技能的同时,培养良好的情感态度价值观。
二、教学内容1. 理论知识:- IGBT的基本结构、工作原理及特性参数- 升压斩波电路的原理及分类- IGBT升压斩波电路的设计方法及关键参数计算- IGBT升压斩波电路在不同应用场景的分析2. 实践操作:- 使用Multisim、LTspice等软件进行IGBT升压斩波电路设计与仿真- 实验室搭建IGBT升压斩波电路,进行性能测试与数据分析- 针对实际应用案例,进行电路优化与调试3. 教学大纲:- 第一周:介绍IGBT的基本结构、工作原理及特性参数,讲解升压斩波电路的原理及分类- 第二周:深入学习IGBT升压斩波电路的设计方法,进行关键参数计算- 第三周:分析不同应用场景下的IGBT升压斩波电路,并进行实践操作- 第四周:总结课程内容,进行电路设计与优化,开展实验成果交流教材关联:教学内容与《电力电子技术》教材中第四章“IGBT及其应用”和第五章“升压斩波电路”相关章节紧密关联,确保教学内容与课本相符。
IGBT升降压斩波电路设计

电力电子技术课程设计报告课题名称升降压斩波电路设计IGBT专业班级学号学生姓名指导教师指导教师职称评分完成日期:2015年1月13日摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。
直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。
而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用范围在直流斩波电路中很广泛,对其做研究有很好的使用意义。
本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。
关键词全控型; IGBT升降压;直流斩波;:目录目录 (1)1 设计任务要求 (1)1.1 设计任务 1 1.2 设计要求22方案选择 (2)2.1方案一22.2方案二 23 电路设计 (3)3.1 主电路设计3 3.2 驱动电路设计33.3保护电路 44 仿真控制 (5)5心得体会 (5)参考文献 (6)附录1 程序清单 (6)附录2 元件清单 (7)答辩记录 (7)1 设计任务要求1.1 设计任务IGBT升降压斩波电路设计(纯电阻负载)设计条件:(1)输入直流电压,Ud=50V;(2)输出功率:300W(3)开关频率5KHZ(4)占空比10%-50%10%输出电压脉率:小于 (5)1.2 设计要求1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案;2,设计主电路原理图,触发电路原理图,并设置必要的保护电路;3,参数计算,选择主电路及保护电路元件参数4,利用仿真软件MATLAB等进行电路优化;5,最好可以建模并仿真完成相关的设计电路。
斩波电路原理

1、主电路①、降压斩波电路(Buck Chopper)降压斩波电路(Buck Chopper)的原理图及工作波形如图4-12所示。
图中V 为全控型器件,选用IGBT 。
D 为续流二极管。
由图4-12b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向负载供电,U D =U i 。
当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。
负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on /T)。
由此可知,输出到负载的电压平均值U O 最大为U i ,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
(a)电路图 (b)波形图图4-12 降压斩波电路的原理图及波形②、升压斩波电路(Boost Chopper)升压斩波电路(Boost Chopper)的原理图及工作波形如图4-13所示。
电路也使用一个全控型器件V 。
由图4-13b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向电感L 1充电,充电电流基本恒定为I 1,同时电容C 1上的电压向负载供电,因C 1值很大,基本保持输出电压U O 为恒值。
设V 处于通态的时间为t on ,此阶段电感L 1上积蓄的能量为U i I 1t on 。
当V 处于断态时U i 和L 1共同向电容C 1充电,并向负载提供能量。
设V 处于断态的时间为t off ,则在此期间电感L 1释放的能量为(U O -U i ) I 1t on 。
当电路工作于稳态时,一个周期T 内电感L 1积蓄的能量与释放的能量相等,即:U i I 1t on =(U O -U i ) I 1t off 上式中的T/t off ≥1,输出电压高于电源电压,故称该电路为升压斩波电路。
升压斩波电路课程设计

课程设计说明书升压直流斩波院、部:电气与信息工程学院学生姓名:唐浩指导教师:肖文英职称副教授专业:电气工程及其自动化班级:电气本1205班完成时间: 2015年5月26日摘要斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC变换器,包括直接直流电变流电路和间接直流电变流电路。
直接直流电变流电路也称斩波电路,它的功能是将直流电变为另一固定电压或可5调电压的直流电,一般是指直接将直流电变为另一直流电,这种情况下输入与输出之间不隔离。
间接直流变流电路是在直流变流电路中增加了交流环节,在交流环节中通常采用变压器实现输入输出间的隔离,因此也称带隔离的直流直流变流电路或直交直电路。
直流斩波电路的种类有很多,包括六种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta 斩波电路,利用不同的斩波电路的组合可以构成符合斩波电路,如电流可逆斩波电路,桥式可逆斩波电路等。
利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。
关键字:直流斩波;升压斩波;变压器ABSTRACTCurrent chopper circuit as a fixed voltage or DC into another adjustable voltage DC - DC converter, including direct and indirect DC DC converter circuit converter circuit. Dc converter circuit is also called directlyChopper circuit, its function is to change the dc into another fixed voltage or 5 adjustable voltage direct current (dc), generally refers to the directly to the direct current into another, this kind of circumstance not isolation between the input and output. Indirect dc converter circuit is in the dc converter circuit increases the communication link, usually in the communication link between the input and output is realized by using transformer isolation, therefore also calls the dc dc converter circuit with isolation or rectangular straight circuit. Kinds of dc chopper circuit has a lot of, including six basic chopper circuit: buck chopper circuit, boost chopper circuit, buck chopper circuit, Cuk chopper circuit, Sepic chopper circuit and ZetaChopper circuit, using a combination of different chopper circuit can conform to the chopper circuit, such as current reversible chopper circuit, bridge type reversible chopper circuit, etc. Using basic chopper circuit on the structure of the same combination, can constitute a heterogeneous multiple chopper circuit.Keywords: dc chopper; boost chopper; transformer目录第1章绪论 (1)第2章升压直流斩波电路的设计思想 (3)2.1升压直流斩波电路原理 (3)2.2参数计算 (4)第3章升压直流斩波电路驱动电路设计 (5)第4章升压直流斩波电路保护电路设计 (6)4.1过电流保护电路 (6)4.2过电压保护电路 (6)第5章升压直流斩波电路总电路的设计 (8)第6章升压直流斩波电路仿真 (9)6.1仿真模型的选择 (9)6.2仿真结果及分析 (9)第7章设计总结 (12)参考文献 (13)致谢 (15)附录 (16)第1章绪论升压直流电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。
IGBT升降压斩波电路设计

电力电子技术课程设计报告课题名称IGBT升降压斩波电路设计专业班级学号学生姓名指导教师指导教师职称评分完成日期:2015年1月13日摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。
直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。
而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用范围在直流斩波电路中很广泛,对其做研究有很好的使用意义。
本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。
关键词:直流斩波;升降压; IGBT;全控型目录目录 (1)1 设计任务要求 (2)1.1 设计任务21.2 设计要求2 2方案选择 (3)2.1方案一32.2方案二33 电路设计 (5)3.1 主电路设计53.2 驱动电路设计63.3保护电路84 仿真控制 (9)5心得体会 (11)参考文献 (12)附录1 程序清单 (13)附录2 元件清单 (14)答辩记录 (15)1 设计任务要求1.1 设计任务IGBT升降压斩波电路设计(纯电阻负载)设计条件:(1)输入直流电压,Ud=50V;(2)输出功率:300W(3)开关频率5KHZ(4)占空比10%-50%(5) 输出电压脉率:小于10%1.2 设计要求1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案;2,设计主电路原理图,触发电路原理图,并设置必要的保护电路;3,参数计算,选择主电路及保护电路元件参数4,利用仿真软件MATLAB等进行电路优化;5,最好可以建模并仿真完成相关的设计电路。
电力电子技术IGBT升压斩波电路设计(纯电阻负载)

电力电子技术IGBT升压斩波电路设计(纯电阻负载)一、背景介绍IGBT斩波电路属于半导体功率电路,它可以有效地改善电源质量和降低工作噪声,是实现电源线路质量优化的重要途径之一。
IGBT升压斩波,常被用于电力电子领域,包括变频器、逆变器、直流能量调整等,已得到广泛的应用。
在电力电子技术中,IGBT斩波电路是一种简单有效的线性电子电源,它可以提供稳定、可靠的输出电压,并能够有效地抑制电压衰减;它还具有良好的谐波抑制效果,以改善主输出电压的质量。
二、IGBT升压斩波电路设计原理IGBT升压斩波电路是将IGBT信号驱动电路连接在高压蓄电池上,形成一个斩波电源,结合升压电路。
该斩波电源可以以恒定的斩波深度将电压变换为所需的输出电压。
IGBT升压斩波电路的设计原理如下:(1)驱动电路:设计一个好的驱动电路是IGBT升压斩波电路设计的重要环节,它可以使IGBT管更有效地工作,其构成要素有IGBT管,中间击穿双极管、分流电阻、抗衡电容以及控制电路。
(2)斩波电路:斩波电路是IGBT升压斩波电路的核心部分,它可以有效地减少工作噪声,它的主要构成要素有IGBT管、串联双极管、击穿双极管以及斩波抗衡电容。
IGBT管工作在斩波模式,可以形成击穿的斩波脉冲,这可以有效地保持电源的高效率,改善输出质量。
(3)升压电路:IGBT升压斩波电路中主要部件是功率IGBT和升压转换器,升压电路有效地将输入低压升压到所需的输出电压,它的结构一般为开关型异步变压器,由一组变压线圈和一组导通导线组成,通过反馈可以实现升压自动调节。
(2)斩波电路设计原理:斩波电路是IGBT升压斩波电路的核心部分,其设计的基本原理是:在高压蓄电池的负端构建一个斩波环路,通过将一个可变的高频电流引入该环路,使得电感电流可以迅速切换,并且有效地形成脉冲放电,从而形成不断变化的脉冲,从而获得所需的输出电压。
控制电路中要添加有效的斩波电容,以获得所需的斩波电流;另外,对电路中的双极管进行选择,以达到有效的电路极化和阴极放电。
IGBT升降压斩波电路设计完整版

I G B T升降压斩波电路设计Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】电力电子技术课程设计报告课题名称IGBT升降压斩波电路设计专业班级学号学生姓名指导教师指导教师职称评分完成日期:2015年1月13日摘要直流斩波电路作为将直流电变成另一种固定电压或可调电压的 DC-DC 变换器,诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。
直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。
全控型电力电子器件IGBT在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。
升降压斩波电路综合了升压电路和降压电路的优点,可以在一个电路中同时实现升压和降压,简化了电路结构。
而全控型器件IGBT的使用为外部自动控制提供了巨大便利,因此其使用范围在直流斩波电路中很广泛,对其做研究有很好的使用意义。
本文首先比较了两种具有升降压功能的DC/DC变换电路,具体地分析了两种DC/DC 变换器的设计(拓扑结构、工作模式和储能电感参数设计),详细地阐述了该DC/DC变换器控制系统的原理和实现,通过MATLAB软件中的Simulink部分建模仿真,最后给出了测试结果。
关键词:直流斩波;升降压; IGBT;全控型目录1 设计任务要求设计任务IGBT升降压斩波电路设计(纯电阻负载)设计条件:(1)输入直流电压,Ud=50V;(2)输出功率:300W(3)开关频率5KHZ(4)占空比10%-50%(5) 输出电压脉率:小于10%设计要求1,分析题目要求,提出2-3种实现方案,比较并确定主电路结构和控制结构方案;2,设计主电路原理图,触发电路原理图,并设置必要的保护电路;3,参数计算,选择主电路及保护电路元件参数4,利用仿真软件MATLAB等进行电路优化;5,最好可以建模并仿真完成相关的设计电路。
IGBT直流斩波电路的设计

目录1设计原理分析............................................................................................................ 错误!未定义书签。
1.1总体结构分析................................................................................................. 错误!未定义书签。
1.2主电路的设计................................................................................................. 错误!未定义书签。
1.3触发电路的设计............................................................................................ 错误!未定义书签。
1.4驱动电路设计................................................................................................. 错误!未定义书签。
1.5保护电路分析................................................................................................. 错误!未定义书签。
2仿真分析与调试....................................................................................................... 错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IGBT升压斩波电路设计
目录
1 引言 (4)
2 方案设计 (5)
2.1 升压斩波电路原理 (5)
2.2 工作原理 (6)
2.3 参数计算 (7)
3 分单元电路设计 (9)
3.1 控制电路设计 (9)
3.1.1 控制电路方案的选择 (9)
3.1.2 SG3525的工作原理 (10)
3.2 驱动电路设计 (10)
3.3 保护电路设计 (11)
4 总电路图 (13)
5 课程设计总结 (14)
6 参考文献 (15)
1 引言
电力电子技术(Power Electronics)也称为电力电子学。
利用电力电子开关器件组成电力开关电路,利用晶体管集成电路和微处理器构成信号处理和控制系统,对电力开关电路进行实时、适式的控制,可以经济有效地实现开关模式的电力变换和电力控制,包括电压(电流)的大小、频率、相位和波形的变换和控制。
是综合了电子技术、控制技术和电力技术的新兴交叉学科。
现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。
直流变直流是电力电子技术中变流技术的重要部分,广泛应用于电子领域。
直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路。
直接直流变流电路也称斩波电路,它的功能就是将直流电变为另一固定电压或可调电压的直流电。
本课程设计就是其中的一种斩波电路,即升压斩波电路。
本课程设计采用IGBT全控型器件,采用专用PWM控制集成电路SG3525进行驱动,并利用MATLAB的Power System工具箱进行主电路的仿真实验,满足了设计要求,是一次比较成功的设计。
2 方案设计
图1 系统总体框图 斩波电路一般主要可分为主电路模块,控制电路模块和驱动电路模块三部分组成。
其中,主电路模块主要由电源变压器、整流电路、滤波电路和直流斩波电路组成,其中主要由全控器件IGBT 的开通与关断的时间占空比来决定输出电压Uo 的大小。
控制与驱动电路模块:用直接产生PWM 的专用芯片SG3525产生PWM 信号送给驱动电路,经驱动电路来控制IGBT 的开通与关断。
电路模块:驱动电路把控制信号转换为加在IGBT 控制端和公共端之间,用来驱动IGBT 的开通与关断。
驱动电路模块:控制电路中的保护电路是用来保护电路的,防止电路产生过电流现象损害电路设备。
2.1 升压斩波电路原理
控制与 直流
主 保
图2斩波电路2.2 工作原理
在电路中V导通时,电流由E经升压电感L和V形成回路,电感L储能;当V关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断V导通时电容的放电回路。
调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。
分析升压斩波电路的工作原理时,首先假设电路中电感L值很大,电容C 值也很大。
当可控开关V处于通态时,电源E向电感L充电,充电电流基本恒定为I1,同时电容C上的电压向负载R供电。
因C值很大,基本保持输出电压uo为恒值,记为Uo。
设V处于通态的时间为t
on
,此阶段电感L上积蓄的能量为
EI
l t
on。
当V处于断态时E和L共同向电容C充电,并向负载R提供能量。
设V
处于断态的时间为t off,则在此期间电感L释放的能量为(Uo-E) I
l t
off。
当电路工
作于稳态时,一个周期T中电感L积蓄的能量与释放的能量相等,即
EI
l t
on
=(Uo-E) I
l
t
off
(1)
化简得
U o=t on+t off
t off E=T
t off
E(2)
式中,T/toff≥1,输出电压高于电源电压,故称该电路为升压斩波电路。
又称boost变换器(Boost Converter)。
式(2)中T/toff表示升压比,调节其大小,即可改变输出电压U0的大小。
将升压比的倒数记作β,即β= t off
T。
则β和占空比α有如下关系
α+β=1(3) 因此,式(2)可表示为:
U o=1
βE=1
1−α
E (4)
升压斩波电路之所以能使输出电压高于电源电压,关键有两个原因:一是电感L储能之后具有使电压泵升的作用,二是电容C可将输出电压保持住。
在以上分析中,认为V处于通态期间因电容C的作用使得输出电压Uo不变,但实际上C值不可能为无穷大,在此阶段其向负载放电,Uo必然会有所下降,故实际输出电压会略低于式(4)所得结果。
不过,在电容C值足够大时,误差很小,基本可以忽略。
如果忽略电路中的损耗,则由电源提供的能量仅由负载R消耗,即
EI
l
=UoIo (5) 该式表明,升压斩波电路可看成是直流变压器。
根据电路结构并结合式(4)得出输出电流的平均值Io为
I o=U o
R =1
β
E
R
(6)
由式(5)即可得出电源电流I l为
I l=U o
E I o=1
β2
E
R
(7)
下面确定电流连续的临界条件:
如果在T时刻电感电流i L刚好降到0,则为电流连续与断续的临界工作状态。
此时电感电流平均值为
I l=1
2i l,max=1
2
E
L
t on=TU o
2L′
α(1−α) (8)
又由式(4)和式(5)可得
I o
I l
=1−α(9)
联立式(8)、(9)可得,在临界状态下的电感值为
L′=TU o
2I o
α(1−α)2(10) 当时L>L′时,升压斩波电路工作在连续状态下。
电感越大时,电感电流越平直。
电容在关断期间释放的能量与开通期间吸收的电荷相等,即
∆Q =I o αT (11) 则电压变化量
∆U o =∆Q C =I o αT C (12) 所以电容值为
C =I o αT
∆U o (13)
滤波电容越大,输出电压越平直。
2.3 参数计算
(1)输出电压U o 、负载电阻R 、输出电流I o
根据设计要求,可取输入直流电压E=50V ,输出功率Po=1kW ,占空比α=0.375。
因此,由式(4)得输出电压
U o =11−αE =11−0.375×50V =80V (14) 负载电阻为
R=(Uo^2)/Po =〖80〗^2/1000=6.4Ω,
取标称值R=6.4Ω
由(6)式可得输出电流为
Io=Uo/R=80/6.4 A=12.5A
由(7)式可得电源电流为
Il=Uo/E Io=80/50×12.5=20A
(2)电感L 、电容C
要求开关频率 fs=5KHz ,所以开关周期T =1
f s =2×10−4s 。
由式(10)可得在临界状态下的电感值为
L ′=
TU o 2I o α(1−α)2 =2×10−4×1002×3
×0.375×(1−0.375)2=9.375×10−5H 为使升压斩波电路工作在连续状态下,取L =1×10−4H 。
确定电容的计算
要求输出电压脉率小于10%,取5%,则∆U o =U o ×5%=4V 。
代入式(13)
可得
C=I oαT
∆U o
=3×0.375×2×10−44⁄=5.6×10−5
F
为使输出电压较平直,取电容值C=5.625×10−5F。
(3)IGBT
当IGBT截止时,回路通过二极管续流,此时IGBT两端承受最大正压为50V;而当α=1时,IGBT有最大电流,其值为3A。
故需选择集电极最大连续电流I
c
=6A,反向击穿电压B vceo=100V的IGBT,而一般的IGBT都满足要求。
(4) 续流二极管
其承受最大反压50V,其承受最大电流趋近于10A,考虑2倍裕量,故需选
择U
N ≥200V,I
N
≥10A的二极管。
3 分单元电路设计
3.1控制电路设计
3.1.1 控制电路方案的选择
控制电路主要实现的功能是产生控制信号,用于控制斩波电路中主功率器件的通断,同时能够通过对占空比的调节达到控制输出电压大小的目的。
根据对输出电压平均值进行调制的方式不同,斩波电路可有三种控制方式:1)保持开关周期T不变,调节开关导通时间t
on
,称为脉冲宽度调制(PWM)或脉冲调宽型;
2)保持开关导通时间t
on
不变,改变开关周期T,称为频率调制或调频型;
3)t
on
和T都可调,使占空比改变,称为混合型。
其中,又以第1种应用最多,故本设计中也采用PWM控制。
PWM控制就是对脉冲宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形(含形状和幅值)。
这种电路把直流电压“斩”成一系列脉冲,改变脉冲的占空比来获得所需的输出电压。
改变脉冲的占空比就是对脉冲宽度进行调制,只是因为输入电压和所需要的输出电压都是直流电压,因此脉冲既是等幅的,也是等宽的,仅仅是对脉冲的占空比进行控制。