水泵特性曲线的关系
水泵特性曲线
水泵特性曲线
水泵是一类非常有效的设备,能够将低压低流量的流体转变成高压高流量的流体。
它的性能特性可以用水泵特性曲线来表示。
水泵特性曲线描述了水泵的流量,扬程、功率和效率随压力的变化情况,曲线中的节点代表了水泵的特性。
水泵特性曲线由水泵流量测试、扬程测试、功率测试和效率测试构成。
水泵流量测试是用来测量水泵扬程和流量的组合。
水泵流量测试结果表示水泵在不同的扬程和流量下的表现情况,从而可以得出水泵的流量和扬程数据。
扬程测试是用来测量水泵扬程的工作指标。
水泵的扬程是指水泵将低压低流量的流体转变成高压高流量的流体时,其能量消耗的能力。
扬程测试涉及到水泵的稳定工作,节点点是水泵在不同扬程下的性能特性。
功率测试是用来测量水泵机械效率和电功率效率的工作指标。
功率测试使用标准机理原理,测量水泵在不同扬程下的功率消耗情况,从而可以得出水泵的能耗特性。
最后是效率测试,它是用来测量水泵的流量、扬程、功率和效率之间的关系。
它直接基于水泵流量测试、扬程测试和功率测试的结果,推算出水泵的效率情况。
从而可以得出水泵的效率特性。
总之,水泵特性曲线是在测试水泵特性时必备的工作指标。
以上是关于水泵特性曲线的介绍,希望对大家有所帮助。
- 1 -。
水泵特性曲线
一、水泵的调速性能水泵在改变转速时,其内部几何尺寸没有改变,所以,据水泵的相似原理可知:当转速变化时,流量与转速成正比,扬程与转速的平方成正比,轴功率与转速的立方成正比,得出:同一台水泵当转速变化时,水泵的主要性能参数将按上述比例定律而变化,并且,在变化过程中可保持效率基本不变,若水泵机组转速可调,我们就可以改变某台水泵的转速以适应当时需水量的变化,这样就可以避免水泵机组在低效率区域运转造成的电动机过载,另一方面,也可以避免供水压力偏高所造成的浪费。
同时,水泵随着转速的变慢而使轴功率大为减少,电动机输入功率也随之减少,这就是调速水泵在供水系统中所起的节能作用。
二、变频恒压供水的节能原理所谓恒压供水方式,就是针对离心泵“流量大时扬程低,流量小时扬程高”的特性,通过自控变频系统,无论流量如何变化,都使水泵运行扬程保持不变,即等于设计扬程。
若采用关阀调节,当流量由Q2→Q1时,则工况点由A2变为A1,浪费扬程△H=H1-H3=△H1+△H2。
若采用变频恒压供水,则自动将转速调至n1,工况点处于B1点(参见图1)。
由于变频调速是无级变速,可以实现流量的连续调节,所以,恒压供水工况点始终处于直线H=H2上,在控制方式上,只需在水泵出口设定一个压力控制值,比较简单易行。
显然,恒压供水节约了H1-H2。
而没有考虑△H2。
因此,它不是最经济的供水调节方式,尤其在管路阻力大,管路特性曲线陡曲的情况下,△H2所占的比重更大,其局限性就显而易见。
图1三、四、减速的基本原理根据交流电动机工作原理中的转速关系,n=60f(1-s)/p,从公式中得出:均匀改变电动机定子绕组的电源频率,就可以平滑地改变电动机的同步转速。
电动机转速变慢,轴功率就相应减少,电动机输入功率也随之减少,这就是水泵调速的节能作用。
水泵的特性曲线
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*2-4离心泵的特性曲线一、离心泵的特性曲线压头、流量、功率和效率是离心泵的主要性能参数。
这些参数之间的关系,可通过实验测定。
离心泵生产部门将其产品的基本性能参数用曲线表示出来,这些曲线称为离心泵的特性曲线(characteristic curves)。
以供使用部门选泵和操作时参考。
特性曲线是在固定的转速下测出的,只适用于该转速,故特性曲线图上都注明转速n的数值,图2-6为国产 4B20型离心泵在n=2900r/min时特性曲线。
图上绘有三种曲线,即1.H-Q曲线H-Q曲线表示泵的流量Q和压头H的关系。
离心泵的压头在较大流量范围内是随流量增大而减小的。
不同型号的离心泵,H-Q曲线的形状有所不同。
如有的曲线较平坦,适用于压头变化不大而流量变化较大的场合;有的曲线比较陡峭,适用于压头变化范围大而不允许流量变化太大的场合。
2.N-Q曲线N-Q曲线表示泵的流量Q和轴功率N的关系,N随Q的增大而增大。
显然,当Q=0时,泵轴消耗的功率最小。
因此,启动离心泵时,为了减小启动功率,应将出口阀关闭。
3.η-Q曲线η-Q曲线表示泵的流量Q和效率η的关系。
开始η随Q的增大而增大,达到最大值后,又随Q的增大而下降。
该曲线最大值相当于效率最高点。
泵在该点所对应的压头和流量下操作,其效率最高。
所以该点为离心泵的设计点。
选泵时,总是希望泵在最高效率工作,因为在此条件下操作最为经济合理。
但实际上泵往往不可能正好在该条件下运转,因此,一般只能规定一个工作范围,称为泵的高效率区,如图2-6波折线所示。
高效率区的效率应不低于最高效率的92%左右。
泵在铭牌上所标明的都是最高效率下的流量,压头和功率。
离心泵产品目录和说明书上还常常注明最高效率区的流量、压头和功率的范围等。
二.离心泵的转数对特性曲线的影响离心泵的特性曲线是在一定转速下测定的。
当转速由n1改变为n2时,其流量、压头及功率的近似关系为, ,(2-6)式(2-6)称为比例定律,当转速变化小于20%时,可认为效率不变,用上式进行计算误差不大。
离心泵特性曲线
离心泵特性曲线首先离心泵的特性曲线图如下接下来是对于这个图的一些解读:离心泵的性能曲线包括流量-扬程(Q-H)曲线、流量-功率曲线(Q-N)、流量-效率曲线(Q-ŋ)以及流量-汽蚀余量(Q-NPSHr)曲线。
水泵的性能参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。
水泵性能曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—效率曲线。
它是离心泵的基本的性能曲线。
比转速小于80的离心泵具有上升和下降的特点称驼峰性能曲线。
比转速在80~150之间的离心泵具有平坦的性能曲线。
比转数在150以上的离心泵具有陡降性能曲线。
一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
上述曲线都是在一定的转速下,以试验的方法求得的。
不同的转速,可以通过公式进行换算。
在性能曲线上,对于一个任意的流量点,都可以找出一组与其相对应的扬程、功率、效率以及汽蚀余量值。
通常,把这一组相对应的参数称为工作状况,简称工况或工况点。
对于离心泵最高效率点的工况称为最佳工况点。
泵在最高效率点工况下运行是最理想的。
但是用户要求的性能千差万别,不一定和最高效率点下的性能相一致。
要想使每一个用户要求的泵都在泵最高效率点下运行,那样做需要的泵规格就太多了。
为此,规定一个范围(通常以效率下降5%~8%为界),称为泵的工作范围。
我们利用叶轮的切割或者变频技术可以扩大泵的工作范围。
我们把同一类型的水泵,将它的各种不同比转数以及相同比转数不同口径的泵的工作区域集中画在同一个Q-H坐标平面上。
为了使图面上大泵的方块不致太大,坐标可以采用对数坐标,于是就得到了该类型泵的系列型谱。
各类型的泵均有各自的型谱,使用户选用水泵十分方便。
每种系列用几种比转数的水力模型,泵的口径按一定的流量间隔比变化。
同一口径的泵扬程也按一定的间隔变化。
ISO 2858规定了标准的型谱。
水泵特性曲线.
第/弋节离心泵的特性曲线离心泵的特性曲线定义-、理论特性曲线的定性分实测特性曲线的讨论离心泵的特性曲线定义当转速n为常量时,列出H、N、n以及Hs等随渝量变化的函数关系,即:H = f (Q) N = F (Q)Hs =屮(Q) n=<P (Q)我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。
叶轮中通过的水量可用下式表示:Q T = FzCzr也即: n - T^2r- 式中Q T ----- 泵理论流量(nP/s );F2——叶轮的出口面积(in2),C N —叶轮出口处水流绝对速度的径向(m/s ) C一、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析J 胪 由叫=将 Czu = U2 ■ C2rCtgp2 代入, 可得:Hy = KU2・ C2rCtgp2) s Q 图1-22 速度三角形"Cu=Ceosa = u - C,etgf3 Cj=Csma所以:H T = ILa (U2 - * Ctgp2)式中卩2、F2均为常数。
当水泵转速一定时,U2也为常数。
HT = A - B Q T是一个直线方程。
其斜率是用卩2来反映的p2> 90-B^,H T = A + B QT后弯式,上倾直线,扬程随流量的增加而减小。
02= 9()2时,径向式,是一条水平直线,扬程不随理论流量的变化。
p2< 90:时,H T = A-BQ T前弯式,是一条下倾直线,理论扬程随理论流量的增加而增加。
二、实测特性曲线的讨论7040302010J oz1、每一个Q都对应于一定的H, N n Hs2. Q-H曲线是一条不规则的下倾曲线(1)设计工况点。
最高效率点,水泵在该点工作效率最高。
(2)水泵高效工作段。
是水泵效率较高的工作范围,最髙效率点10%左右范围内作为水泵的高效工作段,选泵时,应使设计流量和扬程落在高效段内。
3、Q—N曲线N随着Q的增大而增大,闭闸启动:水泵启动前,压水管路闸阀是全闭的,待电动机运转正常后,压力表读数达到预定数值时,再逐步打开闸阀,使水泵工作正常运行。
水泵特性曲线
每 或1者k扬说g程水,(通当过H水A水泵)泵的表后流示其量:能为当量Q水的A时泵增,流值水量为泵为H能QA,时够, 供给每1kg水的能量为HA。
功率(NA)表示:当水泵的流量为QA 时,泵轴上所消耗的功率(kW)。
效率(ηA)表示:当水泵的流量为QA 时,水泵的有效功率占其轴功率的百分数 (%)。
所以: HT =
u2 g
(u2 -
QT F2
ctgβ2 )
式中β2 、F2 均为常数。当水泵转速一定时, u2也
为常数。
故:
HT = A – B QT
是一个直线方程。其斜率是用β2来反映的
β2> 90º时,HT = A + B QT
后弯式,上倾直线,扬程随流量的增加而减小。
β2= 90º时,径向式,是一条水平直线,扬程不
5、被输送液体的重力密度和粘度等对特性曲线的影 响。所输送的液体粘度愈大,泵内的能量损失愈 大,水泵的扬程和流量都要减小,效率要下降, 而轴功率增大。因此,如果被输送液体的粘度与 试验条件不符时, 则Q-H,Q-N,Q- η , Q-Hs要进行换算后才能使用,不能直接套用。
综上所述,从能量的传递角度来看,对 于水泵特性曲线
N随着Q的增大而增大,
闭闸启动:水泵启动前,压水管路闸阀是 全闭的,待电动机运转正常后,压力表读 数达到预定数值时,再逐步打开闸阀,使 水泵工作正常运行。
Q—N曲线,指的是水或某种特定液体时 的轴功率与流量之间的关系,抽升的液
体容重不同时,要换算
4、Q—Hs曲线 该曲线上各点的纵坐标,表示水泵在相应流量 下工作时,水泵做允许的最大限度的吸上真空高 度值。不表示水泵在某点(Q,H)点工作的实际 吸水真空值。实际的Hs必须小于Q—Hs曲线上的 相应值。
水泵特性曲线的关系
主要是由三条特性曲线组成,分别是:H-qv曲线,表示泵的扬程与流量关系。
P-qv曲线,表示泵的轴功率与流量的关系。
n qv曲线,表示泵的效率与流量的关系。
扬程随流量的增加而减少,轴功率随流量的增加而增加;流量为零时,效率为零;流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能曲线,合理配备水泵的台数。
2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。
3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。
4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。
还有的调节方式就是增加变频装置,很好用的。
5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。
6、合理,主要就是检修,否则可以不用阀门。
7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况下,那么压力不会变化,轴功率会增加。
&问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有关,还有可能增加。
但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。
离心泵的特性曲线是将由实验测定的Q、H、N、n等数据标绘而成的一组曲线。
此图由泵的制造厂家提供,供使用部门选泵和操作时参考。
不同型号泵的特性曲线不同,但均有以下三条曲线:(1) H-Q线表示压头和流量的关系;(2)N-Q线表示泵轴功率和流量的关系;(3)n线表示泵的效率和流量的关系;(4)泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。
离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。
关于离心水泵性能曲线与参数
关于离心水泵性能曲线与参数!一、关于离心水泵参数之间必须遵从的关系:1、能量关系:机械能守恒原理:功率N ∝扬程H ³流量Q2、流体动力学原理:A、阻力矩M正比流速v的平方:M ∝ v^2B、速度头与水头的转换关系(流速v的平方与扬程H的转换关系):v^2 /2∝gHC、流量与管网阻力R的关系:H ∝流量Q^23、运动学关系:线速度与角速度成正比 v ∝ω4、功能关系:A、功率N = 转矩M³角速度ωB、功率N ∝角速度ω的立方:N ∝ω^3二、各种曲线:1、流量-扬程曲线(Q-H)2、流量-功率曲线(Q-N)3、流量-效率曲线(Q-η)4、流量-气蚀余量曲线(Q-(NPSH)r)5、意义:A、性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程、功率、效率和气蚀余量值;B、这一组参数称为工作状态,简称工况或工况点;C、离心泵取高效率点工况称为最佳工况点;D、最佳工况点一般为设计工况点;E、一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近;F、在实践中选高效率区间运行、即节能、又能保证泵正常工作,因此了解泵的性能参数相当重要。
要分清几个过程的前提条件:1、管网曲线一定时:1)系统压力增大,流量增大,压力与流量的平方成正比,即H ∝流量Q^22)是一个系统功率增大的过程,或者说泵机转速提高的过程,变频频率升高的过程; 3)管网曲线是一个二次曲线;4)就相当于电路电阻R一定,电压变化、电流变化、功率变化的情况;2、改变管网曲线,增大流量:1)相关物理过程例如打开出水龙头时;2)改变管网曲线减小管网阻力R,系统流量增大,压力减小很少认为恒定,3)压力恒定,系统流量与功率成正比,流量增大,功率增大,电机转子转速在稳定区速度梢微降低,负荷增大;4)这就是泵的实际运行状态,流量大,功率大,流量小功率小,例如风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小;5)风门关小时、回流阀开大时,系统流量减小,功率减小,用电量也小,此时转子转速在稳定区速度梢微升高,负荷减轻;6)如果这时改变出水管径,就等于改变流量,改变电机运行功率,这就是改变出水管径改变流量的原理;7)相当于电路的电压不变,电阻R变化时,电流、功率变化的情况;3、泵机功率不变:1)相关物理过程如灭火水枪;2)用减小出水管截面,增大管网阻力R,减小流量、增大压力,泵机功率不变;3)目的在于增大压力,增大出口水流速度等;4)也是管网改造,减小流量、增大扬程、不增大系统功率的方法的原理;5)这个过程H-Q曲线,是上翘的双曲线形,流量与压力反比降低,或压力与流量反比升高的曲线;6)这个过程相当于恒流源电路中,外电路变阻器的电阻增大时,电流减小、电压升高、功率不变的情形;1、管网曲线一定时:这种运行情况适宜封闭式流体循环系统;2、改变管网曲线,调节流量:1)这是大部分风机、供水泵的正常工作状态;2)在这种状态下运行时,忽略压力的变化既恒压;3)在这种状态下运行时,流量与电机输出功率成正比,既风门大功率大、风门小功率小,所以用风门调节风量大小并不浪费电。
解析离心泵的特性曲线(图文)
图文解析离心泵的特性曲线一、离心泵的特性曲线定义当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η= φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。
离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。
严格意义上讲,每一台水泵都有特定的特性曲线。
在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。
在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。
在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。
二、影响离心泵特性曲线的因素离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。
1、叶轮出口直径对性能曲线的影响在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。
根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。
例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。
2、转速与性能曲线的关系同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:Q1/Q2 = n1/n2H1/H2 = (n1/n2)2Nl/N2 = (n1/n2)2三、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析由HT =中,将C2u = u2 - C2rctgβ2 代入,可得:HT =(u2 - C2rctgβ2)叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。
什么叫水泵的性能曲线
反映水泵各性能参数之间的关系曲线。
包括基本性能曲线、汽蚀性能曲线、相对性能曲线、通用性能曲线、综合性能曲线、全面性能曲线等。
水泵性能曲线的作用:
1、表达水泵压力、扬程、效率等性能参数,通常用曲线表示,这个表示水泵性能参数关系的图表就叫水泵的性能曲线。
2、水泵各性能参数不是孤立的、静止的,而是相互联系和相互制约的,对于特定的水泵,这种联系和制约具有一定的规律性。
它们之间的变化规律,都反映在水泵的性能曲线上。
所以水泵的特性曲线是选择水泵的依据。
常见的水泵性能曲线有三种:
1、平坦的性能曲线
这种性能曲线适用于流量调节范围较大,而压力变化较小的系统,也就是对扬程要求变化较小、流量变化要求相对较低的系统中。
大多数泵如IS单级离心泵、D型泵、双吸泵、IH化工离心泵等曲线的都是比较平坦的。
2、陡降的性能曲线
这种性能曲线适用于对流量的要求较高而压力的要求不高的系统中。
一般像螺杆泵等都具有这种特性。
3、有驼峰的性能曲线
有驼峰的性能曲线的泵在运行中可能会出现不稳定工况,泵出现噪音、震动等,一般是不允许出现的。
有了上面的知识,我们可以从性能曲线上判别相同型号两台泵的优势。
首先看曲线是否平坦,有无驼峰。
泵曲线越平越好,当然驼峰是不允许的。
其次看它的效率哪个高。
然后比较他们的范围哪个更宽广,范围越广阔,调整、使用越好。
水泵性能曲线
水泵性能曲线
水泵是一种广泛应用于水利系统及工业自动化系统中的设备,有时也被称为循环泵或流量泵。
它的主要作用是将低压低温的流体转变成高压高温的流体,以满足系统的运行需求。
水泵的性能一致是其使用效果的重要指标,其中涉及到很多技术指标,其中最主要的一项就是水泵性能曲线。
水泵性能曲线,也称为离心泵性能曲线,是由水泵厂家组织实验结果制作的一张曲线图,其数据表示泵的能力特性。
它实际上是一张二维曲线图,纵轴表示输出水量,横轴表示扬程。
从该曲线图可以看出,不同的扬程会使泵的输出量有较大的变化,所以,根据水泵性能曲线的变化,即可得出泵的效率。
水泵性能曲线实际上是根据水泵的运行情况,从实验中获得的数据,来绘制出来的一张图表。
根据该曲线,方便系统设计师选择出最合适的水泵型号,以达到在最佳工况状态下最佳性能,从而满足系统的效率和运行要求。
在识别水泵性能曲线时,需要注意以下几点:
(1)对多数厂家给出的性能曲线图,纵轴表示输出水量,横轴表示扬程。
(2)图上的虚线表示的是理论计算所得的最高性能曲线,而实线是实际运行所得的曲线;
(3)图上的误差范围表示的是根据相应的水泵数据,经过精确计算所得的误差范围;
(4)图上还表示各种效率等参数,比如泵的扬程、效率等,这些参数可以比较出测试水泵性能曲线图所反映出来的性能水平。
通过以上介绍,我们可以看出,水泵性能曲线是一种有用而又重要的技术指标,能够提供以有效控制泵的运行性能,确保水泵能够按设计要求处理任务,从而实现对设备的有效节电。
在使用水泵时,应加以充分的重视,以便于获得更高的节能效果。
水泵的性能曲线图分析
水泵的性能曲线图分析文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-水泵的性能曲线图分析:泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。
水泵的性能曲线图上水平座标标示流量,垂直座标标示压力(扬程),其中有根流量与压力曲线,一般情况下当压力升高时流量下降,你可以根据压力查到流量,也可从流量查到压力;还有根效率曲线,其这中间高,两边低,标明流量与压力在中间段是效率最高,因此我们选泵时要注意泵运行时的压力与流量,处于效率曲线最高附近;再有一个功率(轴功率)曲线,其一般随流量增加而增加。
注意其轴功率不应超过电机功率。
1、曲线:Q-H,流量与扬程曲线趋势图,粗线是推荐工作范围。
扬程--流量曲线以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N(流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。
每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。
扬程是随流量的增大而下降的。
Q-H(流量-扬程)是一条不规则的曲线。
相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。
它将是该水泵最经济工作的一个点。
在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。
在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。
因无法上图,请自找一幅水泵性能曲线图对照着看。
主要就这些了。
GPM :加仑/分钟,流量单位 3.=gallons per minute 加仑/分,每分钟加仑数(等于4.546升/分)273L/h。
其中ft是英尺,表示扬程。
1英尺=12英寸, 1英寸=2.54厘米所以, 1英尺=12×2.54=30.48厘米=0.3048米.比如说自来水管道压力为0.2Mpa,它能供到多高的高度呢转换公式是什么请大家告诉我一下!谢谢转换公式:高度H=P/(ρg)压力为 P=0.2 Mpa=200000 Pa 高度H=P/(ρg)=200000/(1000*9.8)= 20.41 m以上是静压转换为压力高度的计算公式,实际在使用时,水以某一流量沿管道流动,流动中有沿程水头损失和局部水头损失,水并不能供到上述高度,应是上述高度再减去水在管道流动的水头损失。
第六节离心泵的特性曲线
三、流量效率曲线
效率曲线为从最高点向两侧下降的变化趋势。
四、流量与允许吸上真空度曲线 离心泵流量与允许吸上真空度曲线是一条下降的曲线。 而离心泵流量与汽蚀余量(HSV或Δh)曲线是一条上升的
曲线。
离心泵的试验性能曲线
离心泵的试验性能曲线:在一定的转速下测定水泵扬程、轴功率、效 率与流量之间的关系,并绘出完整的性能曲线。
一、流量和扬程曲线 结论: Q~H曲线是下降的曲线,即随流量Q的增大,
扬程H逐渐减少。相应与效率最高值的点的参数,即水泵 铭牌上所列的各数据。水泵的高效段(不低于最高效率 点10%左右)
二、流量与轴功率曲线
离心泵的轴功率随流量增加而逐渐增加,曲线有上升的 特点。
当流量为零时(闸阀关闭),轴功率最小。因此,为便 于离心泵的启动和防止动力机超载,启动时,应将出水 管路上的闸阀关闭,启动后,再将闸阀逐渐打开,即水 泵的闭阀启动。
水泵样本或产品目录中除了以性能曲线表示水泵的性能外,还以表 格的形式给出水泵的性能。
12SH-6型泵性能表
水泵 型号
流量Q
m3/h L/s
扬程 H(m)
转速 n
(r/min)
功率 P (KW)
轴 配套 功率 功率
效率 (%)
允许 吸上 真空 度(m)
叶轮 直径 D(mm)
重量 (kg)
12SH-6 590 164 792 220 936 260
IS型单级单吸泵的综合性能图
BA 型泵的综合性能图
98
213
74
5.4
90 1450 250 300 77.5 4.5
82
279
75
3.5
540 847
水泵特性曲线
通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。
特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量-功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。
一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。
在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。
什么叫泵的效率?公式如何?指泵的有效功率和轴功率之比。
η=Pe/P泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。
有效功率即:泵的扬程和质量流量及重力加速度的乘积。
天牛船泥泵计算Pe=ρg QH (W) 或Pe=γQH/1000(KW)ρ:泵输送液体的密度(kg/m3)γ:泵输送液体的重度γ=ρg(N/ m3)g:重力加速度(m/s)质量流量Qm=ρQ(t/h 或kg/s)什么是泵的全性能测试台?能通过精密仪器准确测试出泵的全部性能参数的设备为全性能测试台。
国家标准精度为B级。
流量用精密蜗轮流量计测定,扬程用精密压力表测定。
吸程用精密真空表测定。
功率用精密轴功率机测定。
转速用转速表测定。
效率根据实测值:n=rQ102计算什么叫泵的效率?公式如何?答:指泵的有效功率和轴功率之比。
η=Pe/P 泵的功率通常指输入功率,即原动机传到泵轴上的功率,故又称轴功率,用P表示。
有效功率即:泵的扬程和质量流量及重力加速度的乘积。
Pe=ρg QH (W) 或Pe=γQH/1000 (KW)ρ:泵输送液体的密度(kg/m3)γ:泵输送液体的重度γ=ρg (N/ m3)g:重力加速度(m/s)质量流量Qm=ρQ (t/h 或kg/s)我只知道物体旋转时会产生一个轴向的力,但是不知道如何计算,和转速直径还是质量有关,还是都有关系。
水泵基本参数及特性曲线讲解
效率
01
效率:指水泵实际输出功率与输入功率的比值,是水泵的重要 性能参数。
02
效率的高低反映了水泵能量利用的完善程度,效率越高,说明
水泵的能量损失越少。
效率通常用百分数表示。
03
转速
01
转速:指水泵叶轮每分钟的旋转次数,是水泵的重要
性能参数。
02
转速的大小决定了水泵的流量、扬程和功率等性能参
数。
Q-n曲线
总结词
流量与转速的关系曲线
详细描述
Q-n曲线表示水泵在不同流量下的转速变化。在一定范围内,随着流量的增加,转速可能会相应增加或保持恒定。
Q-η曲线
总结词
流量与效率的关系曲线
详细描述
Q-η曲线表示水泵在不同流量下的效率变化。在最优工况点附近,水泵的效率最高。随着流量的增加或减 小,效率通常会相应降低。
扬程
01
扬程:指水泵所能够提升的液体的总高度,是水泵 的重要性能参数。
02
扬程的大小取决于泵的转速、叶轮结构、叶片角度 等因素。
03
扬程单位常用米表示。
功率
01 功率:指水泵在单位时间内所做的功,是水泵的 重要性能参数。
02 功率的大小取决于泵的转速、扬程、流量和效率 等因素。
03
功率单位常用千瓦(kW)表示。
定期检查水泵的各个部件,如轴承、密封件、叶轮等,确 保其完好无损。
要点二
清洗与润滑
定期清洗水泵内部,并加注润滑油,以减少摩擦和磨损。
水泵常见故障及处理
流量不足
可能是由于叶轮堵塞、密封件磨 损或管道堵塞等原因造成。应检 查并清洁叶轮和管道,更换密封
件。
扬程不足
可能是由于泵内漏气、叶轮损坏或 转速过低等原因造成。应检查泵内 气体是否泄漏,更换叶轮或调整电 机转速。
水泵变频运行特性曲线
1 引言水泵采用变频调速可以达到很好的节能效果,这在同行业中已经有很多人写了大量的论文进行论述.但其结果却有很多不尽人意的地方,有很多结论甚至是错误的和无法解释清楚的,本文以简易的图解分析法来进行进一步的解释和分析.2 水泵变频运行分析的误区有很多人在水泵变频运行的分析中都习惯引用风机水泵中的比例定律流量比例定律 Q1/Q2=n1/n2扬程比例定律 H1/H2=n1/n22轴功率比例定律 P1/P2=n1/n23并由此得出结论:水泵的流量与转速成正比,水泵的扬程与转速的平方成正比,水泵的输出功率与转速的3次方成正比.以上结论确实是由风机和水泵的比例定律中引导出来的,但是却无法解释如下问题:1 为什么水泵变频运行时频率在30~35Hz以上时才出水2 为什么水泵在不出水时电流和功率极小,一旦出水时电流和功率会有一个突跳,然后才随着转速的升高而升高绘制水泵的性能特性曲线和管道阻力曲线很多人绘制出水泵的性能特性曲线和管道阻力曲线如图1所示.图1 水泵的特性曲线图1中,水泵在工频运行的特性曲线为F1,额定工作点为A,额定流量QA,额定扬程HA,管网理想阻力曲线R1=KQ与流量Q 成正比.采用节流调节时的实际管网阻力曲线R2,工作点为B,流量QB,扬程HB.采用变频调速且没有节流的特性曲线F2,理想工作点为C,流量QC,扬程HC;这里QB=QC.按图1中所示曲线,要想用调速的方法将流量降到零,必须将变频器的频率也降到零,但这与实际情况是不相符的.实际水泵变频调速时,频率降到30~35Hz以下时就不出水了,流量已经降到零.变频泵与工频泵并联变频泵与工频泵并联运行时,由于工频泵出口压力大,变频泵出口压力小,因此怀疑变频泵是否会不出水是否工频泵的水会向变频泵倒灌3 以上分析的误区1 相似定律确实是风机水泵在理论分析当中的一条很重要的定律,它表明相似泵或风机在相似工况下运行时,对应各参数之相互关系的计算公式.而比例定律是相似定律作为特例演变而来的.即两台完全相同的泵在相同的工况条件下,输送相同的流体,且泵的直径和输送流体的密度不变,仅仅转速不同时,水泵的流量、扬程和功率与转速之间的关系.2 在风机单机运行时,风门挡板不变且温度和密度不变时,管网阻力只与风机的流量有关,阻力系数为常数.因此其运行工况与标准工况相同,可以应用比例定律.但在风机并联运行时,由于出口风压受其它风机的风压的影响,出口流量也与总流量不同,造成工况变化,因此比例定律已经不再适用了.3 相似定律在引风机中,如果挡板不变但介质温度和密度发生了变化时,作为特例,其形式也发生了变化,与上述比例定律不同,必须进行温度或密度的修正.4 在水泵方面,比例定律仅适用于水泵的出水口和进水口之间没有高度差,即没有净扬程的情况.比如在没有落差的同一水平面上远距离输水,水泵的输出扬程压力仅用来克服管道的阻力,在这种情况下,当转速降到零时,扬程压力也降到零,流量也正好降到零,这是理想的水泵运行工况.图1中工作点A和C就完全适合这种工况,可以使用比例定律.5 但实际水泵运行工况不可能达到理想工况,水泵的出水口和进水口之间是有高度差的,有时还很大.在水泵并联运行时,水泵的出水口压力还要受到其它水泵运行压力的影响.并联运行的泵要想出水,水其扬程必须大于其他水泵当时的压力.水泵出口流量并不是总管网流量,总管网流量为所有运行的水泵的流量和.由于管网总流量增大和阻力增大,因此并联运行的水泵扬程更高,工况发生变化,因此比例定律在此也不再适用.4 单台水泵变频运行的图解分析1 单台水泵变频运行分析的关键,在于水泵进出口水位的高度差,也就是水泵的净扬程H0.水泵的扬程只有大于净扬程时才能出水.因此管网阻力曲线的起始点就是该净扬程的高度,见图2.图2 单台水泵变频运行特性曲线图2中,额定工作点仍然为A,理想管网阻力曲线R1与流量成正比.变频后的特性曲线F2,工作点B.流量为零时的净扬程H0,变频运行实际工作点HB与净扬程的差△H=HB-H0,为克服管网阻力达到所需流量QB时的附加扬程.由于管网阻力曲线与图1不同,因此不满足相似定律.2 图2中的工作点A为水泵额定工作点,满足水泵的额定扬程和额定流量.因此R1成为理想的管网阻力曲线.但是由于实际管网阻力曲线不可能为理想曲线,因此实际的最大工作点一定要偏离A点.如果实际最大工作点向A点右下方偏移,则由于流量增加较大,容易造成水泵过载.因此实际额定工作点应该向A点左上方偏移,见图3.图3 实际工作点向A点偏移3 图3中,在节流阀门全部打开,管网阻力曲线R2为实际管网阻力曲线.变频器在50Hz下运行时的实际最大工作点C,实际最大流量QC比水泵的额定流量QA小,最大流量时的扬程HC比水泵实际额定扬程HA高.实际工作点C的参数只能通过实际测试才能得出.当在变频器频率为F2时的特性曲线F2,实际工作点B.实际工作点与净扬程的差△H=HB-H0=K2QB2,为克服实际管网阻力达到所需流量QB时的附加扬程.工作点B的实际扬程HB=K2QB2+H0.5 相同性能曲线水泵工频并联运行时的图解分析 1 两台或两台以上的泵向同一压力管道输送流体时的运行方式称为并联运行.并联运行的目的是为了增加流体的流量,适用于流量变化较大,采用一台大型泵的运行经济性差的场合.同时水泵并联运行时可以有备用泵,来保证系统运行的安全可靠性.2 水泵并联运行工况的工作点,由并联运行的总性能曲线和总的管道特性曲线的交点来确定.并联运行的总性能曲线,是根据并联运行时工作扬程相等,流量相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4.相加的原则,在同一坐标扬程下,将每台泵性能曲线上相应的横坐标流量相加绘制而成的,见图4.图4 水泵并联运行特性3 图4为两台相同性能泵并联工作的总性能曲线与工作点.其中A为任意一台泵单泵运行时的工作点,净扬程H0.B为两台泵并联运行时单台泵的工作点.F2为两台泵并联运行时的总的性能曲线,在纵坐标相同的情况下,横坐标为单台泵性能曲线的两倍.并联运行的工作点C点的流量QC=2QB,扬程H C=HB.管网阻力曲线不变,只是两台泵并联运行时,流量为两台泵的流量和.4 两台相同性能的水泵并联运行有如下特点:l HC=HB>HA:即两台泵并联运行时扬程相同,且一定大于单台泵运行时的扬程.l QC=2QB<2QA:即两台并联运行的总输出流量为两台单泵输出流量之和,每台泵的流量一定小于单泵运行时的流量.因此并联运行时的总流量,不能达到两台单泵的流量和.l 管网阻力曲线越陡,泵的性能曲线越平坦,并联后的每台泵的流量同单泵运行时的流量比较就越小,并联工作的效果越差.l 并联运行适合于性能曲线较陡,以及管网阻力曲线较平坦的场合.6 不同性能水泵并联运行的图解分析关死点扬程或最大扬程相同,流量不同的水泵并联运行时的性能曲线图5 扬程不同的水泵并联运行特性曲线1 F1为大泵的性能曲线,大泵单泵运行时的工作点A1.2 F2为小泵的性能曲线,小泵单独运行时的工作点B1.3 F3为并联水泵的总性能曲线,工作点C,扬程HC,流量QC= QA2+ QB2.关死点扬程或最大扬程相同,流量不同的水泵并联运行的特点1 HC=HB2=HA2>HA1>HB1:即两台泵并联运行时扬程相同,且一定大于每台泵单泵运行时的扬程.2 QC=QA2+QB2<QA1+Q B1:即两台泵并联运行的总输出流量为两台泵输出流量之和;每台泵的流量一定小于该泵单泵运行时的流量.因此并联运行时的总流量,不能达到每台泵单泵运行的流量和.关死点扬程或最大扬程不同,流量也不同的水泵并联运行时的性能曲线如图6所示.图6 扬程不同、流量不同水泵并联特性曲线1 F1为大泵的性能曲线,大泵单泵运行时的工作点A1.2 F2为小泵的性能曲线,小泵单独运行时的工作点B1.3 F3为并联水泵的总的性能曲线,工作点C,扬程HC,流量QC =QA2+QB2.关死点扬程或最大扬程不同,流量也不同的水泵运行时特点1 HC=HB2=HA2>HA1>HB1:即两台泵并联运行时扬程相同,且一定大于大泵单泵运行时的扬程HA1,更大于小泵单泵运行时的扬程HB1.2 QC=QA2+QB2<QA1+QB1:即两台泵并联运行的总输出流量为两台泵输出流量之和;每台泵的流量一定小于该泵单泵运行时的流量.因此并联运行时的总流量,不能达到每台泵单泵运行的流量和.3 两泵并联运行时,扬程低的水泵并联运行时流量减少更快.4 当管网阻力曲线变化时,容易发生工作点在D的位置,该点的扬程高于小泵的最大扬程,造成小泵因扬程不足不出水,严重时会发生汽蚀现象.7变频泵与工频泵并联运行时的图解分析变频泵与工频泵并联运行时总的性能曲线,与关死点扬程最大扬程不同,流量也不同的水泵并联运行时的情况非常类似,可以用相同的方法来分析.图7中:图7 变频泵与工频泵并联运行特性曲线1 F1为工频泵的性能曲线,也是变频泵在50Hz下满负荷运行时的性能曲线假定变频泵与工频泵性能相同,工频泵单泵运行时的工作点A1.2 F2为变频泵在频率F2时的性能曲线,变频泵在频率F2单独运行时的工作点B1.3 F3为变频和工频水泵并联运行的总的性能曲线,工作点C,扬程HC,流量QC=QA2+QB2.变频泵与工频泵并联运行时的特点1 F2不仅仅是一条曲线,而是F1性能曲线下方偏左的一系列曲线族.F3也不仅仅是一条曲线,而是在F1性能曲线右方偏上的一系列曲线族.2 F2变化时,F3也随着变化.工作点C也跟着变化.因此变频泵的扬程HB2,流量QB2,工频泵扬程HA2,流量QA2,以及总的扬程HC=HB2=HA2,和总流量QC= QA2+QB2都会随着频率F2的变化而变化.3 随着变频泵频率F2的降低,变频泵的扬程逐渐降低,变频泵流量QB2快速减少;工作点C的扬程也随着降低,使总的流量QC减少;因此工频泵的扬程也降低,使工频泵流量QA2反而略有增加,此时要警惕工频泵过载.8水泵运行时的特例变频泵与工频泵并联运行特例之一,是频率F2= F1=50Hz 图8中:图8 变频泵在50Hz时与工频泵并联运行特性曲线1 F1为工频泵的性能曲线,也是变频泵F2= F1=50Hz下满负荷运行时的性能曲线假定变频泵与工频泵性能相同,工频泵和变频泵单泵运行时的工作点A1.2 F3为变频和工频泵并联运行时总的性能曲线.工作点C,扬程HC=HB2=HA2等于每台泵的扬程,每台泵的流量QA2=QB2,总流量QC=QA2+QB2=2QA2.即当F2= F1=50Hz时,变频泵与工频泵并联运行时的特性,与两台性能相同的泵并联运行时完全一样.变频泵与工频泵并联运行特例之二是F2=MIN图9中:图9 变频泵在最低频率下与工频泵并联运行特性曲线1 F1为工频泵的性能曲线,工频泵单泵运行时的工作点A1.2 F2=MIN为变频泵最低频率下单泵运行时的性能曲线.3 F3为变频和工频泵并联运行时总的性能曲线,工作点C不与F3相交,只与F1相交,扬程HC=HA1=HA2=HB2等于每台泵的扬程,工频泵的流量QA2=QA1,总流量QC=QA2=QA1,QB2=0. 即当F2=MIN时,变频泵的扬程不能超过工频泵的扬程,因此变频泵的流量为零.变频泵与工频泵并联运行时总的性能曲线,与单台工频泵运行时的性能曲线相同,变频泵没有流量输出,但仍然消耗一定的功率.4 在此运行状况中,变频泵的效率降到最低,因此变频泵最好不要工作在这种工况中.5 在这种特例中,变频泵极易产生汽蚀现象,易造成泵的损坏,解决的办法是将再循环打开,使泵保持一定的最小流量,但这样做使泵的能耗增加.水泵变频不论是单泵运行还是并联运行都有一个极端理想的特例,就是只有净扬程,没有管网阻力.或者管网阻力与净扬程相比可以忽略.则管网阻力曲线可以看成是一条与净扬程点平行的一条直线. 水泵将水通过粗管道垂直向上打入一个开口的蓄水池就是属于这种情况.电厂锅炉给水泵系统中,由于给水压力极高,管网阻力相对较小,因此采用变频运行时也可以看成属于这种情况见图10.图10 没有管网阻力时变频泵与工频泵并联运行特性曲线1 F1为变频器最高运行频率性能曲线,工作点A,F2和F3为变频运行性能曲线.H0为实际扬程.2 图10中不论怎样调节频率,扬程都恒定不变,只是流量变化.水泵的输出功率只随流量的变化而变化.从图10中可以看出,随着频率的减少,微小的频率变化ΔF会引起很大的流量变化ΔQ.性能曲线越平坦,ΔF引起的ΔQ就越大.因此频率越低,流量越小时这种变化就越大.所以说频率与流量之间的关系为QA/F1-FMIN,是一种非线性的很难说是几次方的关系.由于功率与流量成正比,功率与频率的关系为H0QA/F1 -FMIN,也很难说与频率是几次方的关系.3 在这种情况下进行变频运行时,流量不宜太小,以防止微小的频率或转速的变化引起流量较大的变化,造成水泵流量不稳定.4 FMIN越高,F1-FMIIN就越小,流量和功率随频率的变化就越大.9 结束语经过以上分析,就可以解释上面当中的一些问题了:1 水泵在30~35Hz以上时才能出水,是因为水泵性能曲线的最高扬程必须大于水泵的净扬程,或者大于并联运行的工频泵的工作扬程,该频率对应于水泵变频运行时的最低频率F2=FMIN.2 频率在最低频率以下时,水泵不出水,没有有效功率输出,其损耗仅为水泵的空载损耗,因此电机的电流和功率都非常小,此时水泵效率降到最低.一旦运行频率大于最低频率,水泵出水后的流量一方面要克服管网阻力做功,另一方面还要克服净扬程做功,因此水泵功率大幅度增加,电机电流也大幅度增加,有一个突跳.然后才随着频率的增加继续增加.只要运行频率大于最低频率FMIN,水泵就不会不出水.这是因为只要水泵性能曲线的最高扬程大于净扬程或其它泵工作扬程,水泵就一定会出水.不要总以为变频泵的扬程比工频泵的扬程低,其实变频泵与工频泵并联运行时的扬程是一样的,只是性能曲线中的最高扬程不同,性能曲线不同,因此流量不同.3 由于变频泵始终有流量,因此不存在工频泵的流量向变频泵倒灌的现象.何况管道中还有逆止阀的存在,如果变频器的频率低于最低频率,则变频泵不出水,逆止阀自动关闭.。
水泵性能曲线
离心泵的特性曲线分析
水泵的特性参数之间的相互变化关系及相互制约性:首先以该水泵的额顶转速为先决条件的。
水泵的特性参数如流量Q 扬程H 轴功率N 转速n有效率η之间存在的一定的关系。
他们之间的量值变化关系用曲线来表示,这种曲线就称为水泵的特性曲线。
水泵特性曲线主要有三条曲线:流量—扬程曲线,流量—功率曲线,流量—有效率曲线。
A、流量—功率曲线
轴功率是随着流量而增加的,当流量Q=0时,相应的轴功率并不等于零,而为一定值(约正常运行的60%左右)。
这个功率主要消耗于机械损失上。
此时水泵里是充满水的,如果长时间的运行,会导致泵内温度不断升高,泵壳,轴承会发热,严重时可能使泵体热力变形,我们称为“闷水头”,此时扬程为最大值,当出水阀逐渐打开时,流量就会逐渐增加,轴功率亦缓慢的增加。
B、流量—扬程特性曲线
它是离心泵的基本的特性曲线。
比转速小于80的离心泵具有上升和下降的特点(既中间凸起,两边下弯),称驼峰特性曲线。
比转速在80~150之间的离心泵具有平坦的特性曲线。
比转数在150以上的离心泵具有陡降特性曲线。
一般的说,当流量小时,扬程就高,随着流量的增加扬程就逐渐下降。
C、流量—有效率曲线
它的曲线象山头形状,当流量为零时,有效率也等于零,随着流量的增大,有效率也逐渐的增加,但增加到一定数值之后有效率就下降了,有效率有一个最高值,在最高有效率点附近,有效率都比较高,这个区域称为高有效率区。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要是由三条特性曲线组成,分别是:
H-qv曲线,表示泵的扬程与流量关系。
P-qv曲线,表示泵的轴功率与流量的关系。
η-qv曲线,表示泵的效率与流量的关系。
扬程随流量的增加而减少,轴功率随流量的增加而增加;
流量为零时,效率为零;
流量增加,效率增加,但当流量增大到某一标准值时,流量在增大,效率反而下降
1、特性曲线主要是用于选泵使用,不同曲线会极大影响泵的效率,泵并联运行也需要性能
曲线,合理配备水泵的台数。
2、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,
会烧坏电机。
3、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题
或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。
4、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。
还有的调节方式就是增加变频装置,很好
用的。
5、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线
影响造成的。
6、合理,主要就是检修,否则可以不用阀门。
7、这个问题的条件不充分,如果选用的是同一台水泵,同样的电机功率,外网不变的情况
下,那么压力不会变化,轴功率会增加。
8、问题的本身就是错误的,有效压头并不一定随着流量的增加而下降,这与叶轮安装角有关,还有可能增加。
但就通常使用的泵而言这个问题也是有问题的,扬程随着流量的增加可以大幅度降低的,这与泵的种类,也就是泵的性能曲线有关。
离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。
此图由泵的制造厂家提供,供使用部门选泵和操作时参考。
不同型号泵的特性曲线不同,但均有以下三条曲线:
(1) H-Q线表示压头和流量的关系;
(2) N-Q线表示泵轴功率和流量的关系;
(3) η-Q线表示泵的效率和流量的关系;
(4) 泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。
离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。
离心泵铭牌上标出的性能参数即为最高效率点上的工况参数。
离心泵的性能曲线可作为选择泵的依据。
确定泵的类型后,再依流量和压头选泵。
例2-2用清水测定一台离心泵的主要性能参数。
实验中测得流量为10m3/h,泵出口处压力表的读数为0.17MPa(表压),入口处真空表的读数为-0.021Mpa,轴功率为1.07KW,电动机的转速为2900r/min,真空表测压点与压力表测压点的垂直距离为0.2m。
试计算此在实
验点下的扬程和效率。
解泵的主要性能参数包括转速n、流量Q、扬程H、轴功率N和效率。
直接测出的参
数为
转速n=2900r/min
流量Q=10m3/h=0.00278m3/s
轴功率N=1.07KW
需要进行计算的有扬程H和效率。
用式
计算扬程H,即
已知:
于是
二、影响离心泵性能的主要因素
1 液体物理性质对特性曲线的影响
生产厂所提供的特性曲线是以清水作为工作介质测定的,当输送其它液体时,要考虑液
体密度和粘度的影响。
(1)粘度当输送液体的粘度大于实验条件下水的粘度时,泵体内的能量损失增大,泵的
流量、压头减小,效率下降,轴功率增大。
(2)密度离心泵的体积流量及压头与液体密度无关,功率则随密度增大而增加。
2 离心泵的转速对特性曲线的影响
当液体粘度不大,泵的效率不变时,泵的流量、压头、轴功率与转速可近似用比例定律
计算,即
式中:Q1、H1、N1离心泵转速为n1时的流量、扬程和功率。
Q2、H2、N2离心泵转速为n2时的流量、扬程和功率。
上面的一组公式称为比例定律。
当转速变化小于20%时,可认为效率不变,用上工进行
计算误差不大。
若在转速为n1的特性曲线上多选几个点,利用比例定律算出转速为n2时相应的数据,并将结果标绘在坐标纸上,就可以得到转速为n2时的特性曲线。
3 叶轮直径对特性曲线的影响
当泵的转速一定时,其扬程、流量与叶轮直径有关。
下面为切割定律。
式中:Q1、H1、N1离心泵转速为在D1时的流量、扬程和功率。
Q2、H2、N2离心泵转速为D2时的流量、扬程和功率。
本文标签: 离心泵特性曲线泵的流量转速曲线
以离心式水泵为例,水泵性能曲线图包含有Q-H(流量-扬程)、Q-N (流量-功率)、Q-n(流量-效率)及Q-Hs(流量-允许吸上真空高度)。
每一个流量Q都相应于一定的扬程H、轴功率N、效率n和允许吸上真空高度Hs 。
扬程是随流量的增大而下降的。
Q-H(流量-扬程)是一条不规则的曲线。
相应于效率最高值的(Qo,Ho)点的参数,即为水泵铭牌上所列的各数据。
它将是该水泵最经济工作的一个点。
在该点左右的一定范围内(一般不低于最高效率点的10%左右)都属于效率较高的区段,称为水泵的高效段。
在选泵时,应使泵站设计所要求的流量和扬程能落在高效段范围内。