人教版九年级数学课时检测:22.3 第1课时 商品利润最大问题
【人教版九年级数学上册教案】22.3实际问题与二次函数(第1课时)
22.3 实质问题与二次函数第 1课时教课目标:1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y= ax2的关系式。
2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。
3.让学生体验二次函数的函数关系式的应用,提升学生用数学意识。
要点难点:要点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y= ax2、y= ax2+b x + c 的关系式是教课的要点。
难点:已知图象上三个点坐标求二次函数的关系式是教课的难点。
教课过程:一、创建问题情境如图,某建筑的屋顶设计成横截面为抛物线型( 曲线 AOB)的薄壳屋顶。
它的拱高AB 为4m,拱高 CO为 0.8m。
施工前要先制造建筑模板,如何画出模板的轮廓线呢?分析:为了画出吻合要求的模板,平时要先建立合适的直角坐标系,再写出函数关系式,而后依据这个关系式进行计算,放样画图。
以下列图,以AB的垂直均分线为y 轴,以过点 O 的 y 轴的垂线为 x 轴,建立直角坐标系。
这时,屋顶的横截面所成抛物线的极点在原点,对称轴是 y 轴,张口向下,所以可设它的函数关系式为:y = ax2 (a< 0) (1)AB因为 y 轴垂直均分AB,并交 AB于点 C,所以 CB2= 2(cm) ,又 CO= 0.8m,所以点 B =的坐标为 (2 ,- 0.8) 。
因为点 B 在抛物线上,将它的坐标代人(1) ,得-0.8=a×22所以a=-0.2所以,所求函数关系式是y=- 0.2x 2。
二、引申拓展问题 1:能不可以以A点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系 ?让学生认识建立直角坐标系的方法不是独一的,以 A 点为原点, AB所在的直线为x 轴,过点 A 的 x 轴的垂线为y 轴,建立直角坐标系也是可行的。
问题 2,若以 A 点为原点, AB所在直线为x 轴,过点 A 的 x 轴的垂直为y 轴,建立直角坐标系,你能求出其函数关系式吗?分析:按此方法建立直角坐标系,则 A 点坐标为 (0 , 0) ,B 点坐标为 (4 , 0),OC 所在直线为抛物线的对称轴,所以有AC=CB, AC=2m, O点坐标为 (2 ; 0. 8) 。
人教版九年级数学上册 22.3 第2课时 商品利润最大问题 教案
第2课时 商品利润最大问题1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系.2.会运用二次函数求实际问题中的最大值或最小值.3.能应用二次函数的性质解决商品销售过程中的最大利润问题.一、情境导入 红光旅社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种方式变化下去,每床每日应提高多少元,才能使旅社获得最大利润?二、合作探究探究点一:最大利润问题 【类型一】利用解析式确定获利最大的条件为了推进知识和技术创新、节能降耗,使我国的经济能够保持可持续发展.某工厂经过技术攻关后,产品质量不断提高,该产品按质量分为10个档次,生产第一档次(即最低档)的新产品一天生产76件,每件利润10元,每提高一个档次,每件可节约能源消耗2元,但一天产量减少4件.生产该产品的档次越高,每件产品节约的能源就越多,是否获得的利润就越大?请你为该工厂的生产提出建议.解析:在这个工业生产的实际问题中,随着生产产品档次的变化,所获利润也在不断的变化,于是可建立函数模型;找出题中的数量关系:一天的总利润=一天生产的产品件数×每件产品的利润;其中,“每件可节约能源消耗2元”的意思是利润增加2元;利用二次函数确定最大利润,再据此提出自己认为合理的建议.解:设该厂生产第x 档的产品一天的总利润为y 元,则有y =[10+2(x -1)][76-4(x -1)]=-8x 2+128x +640=-8(x -8)2+1152.当x =8时,y 最大值=1152.由此可见,并不是生产该产品的档次越高,获得的利润就越大.建议:若想获得最大利润,应生产第8档次的产品.(其他建议,只要合理即可)【类型二】利用图象解析式确定最大利润(2014·福建莆田)某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y 1(元)与销售时间第x 月之间存在如图①所示(一条线段)的变化趋势,每千克成本y 2(元)与销售时间第x 月满足函数关系式y 2=mx 2-8mx +n ,其变化趋势如图②所示. (1)求y 2的解析式; (2)第几月销售这种水果,每千克所获得利润最大?最大利润是多少?解:(1)由题意可得,函数y 2的图象经过两点(3,6),(7,7),∴⎩⎪⎨⎪⎧9m -24m +n =6,49m -56m +n =7,解得⎩⎨⎧m =18,n =638.∴y 2的解析式为y 2=18x 2-x +638(1≤x ≤12). (2)设y 1=kx +b ,∵函数y 1的图象过两点(4,11),(8,10),∴⎩⎪⎨⎪⎧4k +b =11,8k +b =10,解得⎩⎪⎨⎪⎧k =-14,b =12.∴y 1的解析式为y 1=-14x +12(1≤x ≤12).设这种水果每千克所获得的利润为w 元.则w =y 1-y 2=(-14x +12)-(18x 2-x +638)=-18x 2+34x +338,∴w =-18(x -3)2+214(1≤x ≤12),∴当x =3时,w 取最大值214,∴第3月销售这种水果,每千克所获的利润最大,最大利润是214元/千克.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.。
同步测评解析数学(人教九年级上)22.3.1
22.3实际问题与二次函数第1课时实际问题与二次函数(1)1.如图,用12 m长的木方做一个有一条横档的矩形窗子,为使透进的光线最多,选择窗子的高AB(木方粗细忽略不计)为()A.1 mB.2 mC.3 mD.4 m2.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中每月获得的利润y和月份n之间的函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月3.某商场购进一批L型服装(数量足够多),进价为40元/件,以60元/件销售,每天销售20件.根据市场调研,若每件每降价1元,则每天销售数量比原来多3件.现商场决定对L型服装开展降价促销活动,每件降价x元(x为正整数).在促销期间,商场要想每天获得最大销售毛利润,每件应降价元,每天最大销售毛利润为元.(注:每件服装销售毛利润是指每件服装的销售价与进货价的差)4.如图,在边长为6 cm的正方形ABCD中,点E,F,G,H分别从点A,B,C,D同时出发,均以1 cm/s 的速度向点B,C,D,A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.5.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室长为x(单位:m),占地面积为y(单位:m2).(1)如图1,问饲养室长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.6.某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.假设果园多种x 棵橙子树.(1)直接写出平均每棵树结的橙子数y (单位:个)与x 之间的函数解析式. (2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?7.如图,在▱ABCD 中,AB=4,BC=3,∠BAD=120°,E 为BC 上一动点(不与B 重合),作EF ⊥AB 于点F ,FE ,DC 的延长线交于点G ,设BE=x ,△DEF 的面积为S.(1)求用x 表示S 的函数解析式,并写出x 的取值范围. (2)当E 运动到何处时,S 有最大值,最大值为多少?8.某城镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润P=-1100(x-60)2+41(单位:万元).当地政府拟在五年规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划五年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的三年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润Q=-99100(100-x )2+2945(100-x )+160(单位:万元). (1)若不进行开发,求五年所获利润的最大值是多少.(2)若按规划实施,求五年所获利润(扣除修路后)的最大值是多少. (3)根据(1)(2),该方案是否具有实施价值?9.某校校园内有一个大正方形花坛,如图甲所示.由四个边长均为3 m的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1 m,AE=AF=x m,在五边形EFBCG 区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()10.某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,灯的质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表所示:已知护眼灯每天的生产量y(单位:台)是等级x(单位:级)的一次函数,若工厂将当日所生产的护眼灯全部售出,工厂应生产等级的护眼灯,才能获得最大利润元.11.每年六、七月份某市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少钱才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(单位:千克)与销售单价x(单位:元/千克)之间满足关系:m=-10x+120,那么当销售单价定为多少时,每天获得的利润w最大?12. (2018·湖南衡阳中考)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件.市场调查发现,该产品每天的销售量y(单位:件)与销售价x(单位:元/件)之间的函数关系如图所示.(1)求y与x之间的函数解析式,并写出自变量x的取值范围;(2)求每天的销售利润W(单位:元)与销售价x(单位:元/件)之间的函数解析式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?★13.由于受干旱的影响,5月份,某市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:进入6月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(单位:元/千克)从6月第1周的2.8元/千x2+bx+c.克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-120(1)请观察题中的表格,用所学过的一次函数或二次函数的有关知识直接写出5月份y与x的函数解析式,并求出6月份y与x的函数解析式.x+1.2,6月份此种蔬(2)若5月份此种蔬菜的进价m(单位:元/千克)与周数x所满足的函数关系为m=14x+2.试问5月份与6月份分别在哪一菜的进价m(单位:元/千克)与周数x所满足的函数关系为m=-15周销售此种蔬菜1千克的利润最大?且最大利润分别是多少?★14.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(单位:万件)与销售单价x(单位:元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)(1)写出每月的利润z(单位:万元)与销售单价x(单位:元)之间的函数解析式.(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?课后作业·测评 夯基达标1.C 设窗子的面积为y m 2,AB 的长为x m,根据题意,得y=13(12-2x )x=-23x 2+4x , 显然,当x=-42×(-23)=3时,函数y 有最大值.2.C ∵y=-n 2+14n-24=-(n-2)(n-12), ∴当y=0时,n=2或n=12.又该函数的图象开口向下,∴1月,y<0;2月、12月,y=0. ∴该企业一年中应停产的月份是1月、2月、12月.故选C . 3.7 533 设促销期间每天销售L 型服装所获得的毛利润为W 元, 由题意得W=(20+3x )(60-40-x )=-3x 2+40x+400=-3(x -203)2+1 6003. 因为x 为正整数,所以当x=7时,每天销售毛利润最大,最大值为533元. 4.3 18 设运动时间为t s(0≤t ≤6),则AE=t ,AH=6-t ,根据题意得S 四边形EFGH =S 正方形ABCD -4S △AEH =6×6-4×12t (6-t )=2t 2-12t+36=2(t-3)2+18, 所以当t=3时,四边形EFGH 的面积取最小值,最小值为18 cm 2. 5.解 (1)y=x ·50-x2=-12(x-25)2+6252, 当x=25时,y 最大,即饲养室长x 为25 m 时,占地面积y 最大. (2)由题意得y=x ·50-(x -2)2=-12(x-26)2+338,当x=26时,占地面积y 最大,即饲养室长x 为26 m 时,占地面积y 最大; 因为26-25=1≠2,所以小敏的说法不正确. 6.解 (1)y=600-5x.(2)设橙子的总产量为W 个, 由题意得W=(600-5x )(100+x ),∵W=-5x 2+100x+60 000=-5(x-10)2+60 500, ∴当x=10时,W 取得最大值且W 最大=60 500.∴果园多种10棵橙子树时,可以使橙子的总产量最大,最大总产量为60 500个. 7.解 (1)在▱ABCD 中,AB ∥CD ,EF ⊥AB ,故有DG ⊥FE ,即DG 为△DEF 中EF 边上的高. ∵∠BAD=120°,∴∠B=60°. ∴∠BEF=∠CEG=30°.在Rt △BEF 与Rt △EGC 中,EF=√32x ,CG=12CE=12(3-x ),∴DG=CD+CG=11-x2.于是S=12EF ·DG=-√38x 2+11√38x ,其中0<x ≤3.(2)由(1)知,当0<x ≤3时,S 随x 的增大而增大, 故当x=3,即E 与C 重合时,S 有最大值,且S 最大=3√3. 8.分析 (1)利用二次函数顶点公式即可求解.(2)前两年,0≤x ≤50,在对称轴的左侧,P 随x 的增大而增大,当x 最大为50时,P 值最大且为40万元, 所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地投资额为x 万元,则外地投资额为(100-x )万元.关键要注意此时的自变量只有一个,共投资100万元,将x 和(100-x )分别代入相应的关系式即可得到y 与x 的二次函数解析式,进而利用配方法或顶点公式求出最值.(3)把(1)(2)中的最值作比较即可发现该方案有极大的实施价值. 解 (1)当x=60时,P 取最大值41, 故五年获利的最大值是41×5=205(万元).(2)前两年:0≤x ≤50,此时因为P 随x 增大而增大,所以当x=50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地投资额为x 万元,则外地投资额为(100-x )万元, 所以y=P+Q=[-1100(x -60)2+41]+(-99100x 2+2945x +160)=-x 2+60x+165=-(x-30)2+1 065,当x=30时,y 最大且为1 065,那么后三年获利最大值为1 065×3=3 195(万元),故五年获利的最大值为80+3 195-50×2=3 175(万元).(3)由(1)(2)可知该方案有极大的实施价值. 培优促能9.A S △AEF =12AE ·AF=12x 2,S △DEG =12DG ·DE=12×1×(3-x )=3-x 2,S 五边形EFBCG =S 正方形ABCD -S △AEF -S △DEG =9-12x 2-3-x 2=-12x 2+12x+152, 则y=4×(-12x 2+12x +152)=-2x 2+2x+30. ∵0<AE<AD ,∴0<x<3.综上,可得y=-2x 2+2x+30(0<x<3).故选A .10.十 1 800 设所获利润为W 元,由题意,得W=(80-2x )(x+20)=-2x 2+40x+1 600 =-2(x-10)2+1 800.由a=-2<0,知当x=10时,W 最大=1 800.故当每天生产十级护眼灯时,可获得最大利润1 800元. 11.解 (1)设荔枝售价定为y 元/千克时,水果商才不会亏本. 由题意得y (1-5%)≥(5+0.7),解得y ≥6.所以,水果商要把荔枝售价至少定为6元/千克才不会亏本. (2)由(1)可知,每千克荔枝的平均成本为6元, 由题意得w=(x-6)m=(x-6)(-10x+120)=-10(x-9)2+90.因此,当x=9时,w 有最大值.所以,当销售单价定为9元/千克时,每天获得的利润w 最大. 12.解 (1)设y 与x 的函数解析式为y=kx+b , 将(10,30),(16,24)代入y=kx+b , 得{10k +b =30,16k +b =24,解得{k =-1,b =40.故y 与x 的函数解析式为y=-x+40(10≤x ≤16). (2)W=(x-10)y=(x-10)(-x+40)=-x 2+50x-400=-(x-25)2+225, ∵a=-1<0,∴当x<25时,W 随x 的增大而增大. ∵10≤x ≤16,∴当x=16时,W 取得最大值,最大值为144.∴每件销售价为16元时,每天的销售利润最大,最大利润是144元. 13.解 (1)通过观察可见5月份价格y 与周数x 符合一次函数解析式, 即y=0.2x+1.8.将(1,2.8),(2,2.4)代入y=-120x 2+bx+c , 可得{2.8=-120+b +c ,2.4=-15+2b +c , 解之,得{b =-14,c =3.1,即y=-120x 2-14x+3.1.(2)设5月份第x 周销售此种蔬菜1千克的利润为W 1元,6月份第x 周销售此种蔬菜1千克的利润为W 2元,W 1=(0.2x+1.8)-(14x +1.2)=-0.05x+0.6, 因为-0.05<0,所以W 1随x 的增大而减小.所以当x=1时,W 1最大=-0.05+0.6=0.55.W 2=(-0.05x 2-0.25x+3.1)-(-1x +2)=-0.05x 2-0.05x+1.1. 因为对称轴为x=--0.052×(-0.05)=-0.5,且-0.05<0, 所以当x>-0.5时,y 随x 的增大而减小. 所以当x=1时,W 2最大=1.所以5月份销售此种蔬菜1千克的利润在第1周最大,最大利润为0.55元;6月份销售此种蔬菜1千克的利润在第1周最大,最大利润为1元. 创新应用14.解 (1)z=(x-18)y=(x-18)(-2x+100)=-2x 2+136x-1 800,所以z与x之间的函数解析式为z=-2x2+136x-1 800.(2)由z=350,得350=-2x2+136x-1 800,解这个方程得x1=25,x2=43.所以销售单价定为25元或43元.将z=-2x2+136x-1 800配方,得z=-2(x-34)2+512,因此,当销售单价为34元时,厂商每月能获得最大利润,最大利润是512万元.(3)结合(2)及函数z=-2x2+136x-1 800的图象(如图)可知,当25≤x≤43时,z≥350.又由这种电子产品的销售单价不能高于32元,得25≤x≤32.根据一次函数的性质,得y=-2x+100中y随x的增大而减小,所以当x=32时,每月制造成本最低.最低成本是18×(-2×32+100)=648(万元),即所求每月最低制造成本为648万元.。
人教版数学九年级上册22.3.1《实际问题与一元二次方程》说课稿1
人教版数学九年级上册22.3.1《实际问题与一元二次方程》说课稿1一. 教材分析《实际问题与一元二次方程》是人教版数学九年级上册第22章的一部分,这一章节的主要内容是让学生通过解决实际问题,学会建立一元二次方程,并掌握求解一元二次方程的方法。
在九年级学生的学习过程中,这是从具体形象思维向抽象逻辑思维过渡的重要环节,对于培养学生的数学素养,提高解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程有了一定的理解,这为学习一元二次方程打下了基础。
但是,由于一元二次方程的抽象性,学生可能在学习过程中存在一定的困难。
因此,在教学过程中,需要关注学生的学习困难,引导学生逐步理解一元二次方程的实质。
三. 说教学目标1.知识与技能目标:学生能理解一元二次方程的概念,学会列出一元二次方程,掌握一元二次方程的解法。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:一元二次方程的概念,列方程的方法,求解一元二次方程的算法。
2.教学难点:一元二次方程的实际应用,对一元二次方程解法的理解。
五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,引导学生通过解决实际问题,发现一元二次方程,学习一元二次方程。
同时,利用多媒体教学手段,展示实际问题的图像,帮助学生更直观地理解问题。
六. 说教学过程1.导入:通过一个实际问题,引入一元二次方程的概念。
2.新课导入:讲解一元二次方程的定义,列出一元二次方程的一般形式。
3.实例解析:通过具体的实际问题,引导学生学会列方程,理解方程的含义。
4.方法讲解:讲解一元二次方程的解法,包括因式分解法、配方法、求根公式等。
5.练习巩固:学生独立解决一些实际问题,巩固所学知识。
6.总结拓展:引导学生思考一元二次方程在实际生活中的应用,提高学生的应用能力。
人教版九年级数学上册22.3 第2课时 商品利润最大问题同步测试题附答案
第2课时 商品利润最大问题知识点1、二次函数常用来解决最优化的问题,这个问题实质是求函数的最大(小)值。
2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a - 时,二次函数有最大(小)值y=244ac b a-。
一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。
若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。
若每件商品的售价为x元,则可卖处(350-10x)件商品。
商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.54.9h t t =-(t 单位s ,h 单位m )可用来描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是( )A 、0.71sB 、0.70sC 、0.63sD 、0.36s5、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数图像大致为( )A B 第5题 C D6、已知二次函数2(0)y ax bx c a =++≠的图像如图所示,现有下列结论:①abc >0;②24b ac -<0;③c <4b ;④a+b >0.则其中正确的结论的个数是( )A 、1B 、2C 、3D 、47、如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )A B C 第7题 D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )A 、x=10,y=14B 、x=14,y=10C 、x=12,y=15D 、x=15,y=12第6题 第8题二、填空题1、已知卖出盒饭的盒数x (盒)与所获利润y (元)满足关系式:21200357600y x x =-+-,则卖出盒饭数量为 盒时,获得最大利润为 元。
(含答案)九年级数学人教版上册课时练第22章《22.3 实际问题与二次函数》(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第22章二次函数22.3实际问题与二次函数一、选择题(本大题共15小题,共45分)1.用60m长的篱笆围成矩形场地,矩形的面积S随着矩形的一边长L的变化而变化,要使矩形的面积最大,L的长度应为()A.63B.15 C.20 D.1032.如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120∘.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是()2A.182B.1832C.2432D.45323.把一个边长为3cm的正方形的各边长都增加x cm,则正方形增加的面积y(cm2)与x(cm)之间的函数表达式是()A.=(+3)2B.=2+6+6C.=2+6D.=24.为了节省材料,某工厂利用岸堤MN(岸堤足够长)为一边,用总长为80米的材料围成一个由三块面积相等的小长方形组成的长方形ABCD区域(如图),若BC=(x+20)米,则下列4个结论:AB=(10-1.5x)米;BC=2CF;AE=2BE;长方形ABCD的最大面积为300平方米.其中正确结论的序号是()A. ① ②B. ① ③C. ② ③D. ③ ④5.某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-22+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元6.某商店销售某种商品所获得的利润y(元)与所卖的件数x(件)之间的关系是y=-2+1000x-200000,则当0<x⩽450时,销售该商品所获得的最大利润为()A.2500元B.47500元C.50000元D.250000元7.某服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150B.160C.170D.1808.一件工艺品的进价为100元,标价135元出售,每天可售出100件,根据销售统计,一件工艺品每降价1元,则每天可多售出4件,要使每天获得的利润最大,则每件需降价()A.3.6元B.5元C.10元D.12元9.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天的销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示,最大利润是()A.180元B.220元C.190元D.200元10.某涵洞的截面是抛物线形状,如图所示的平面直角坐标系中,抛物线对应的函数解析式为y=-142,当涵洞水面宽AB为16m时,涵洞顶点O至水面的距离为()A.−6 B.12 C.16 D.24 11.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为=−1252,当水面离桥拱顶的高度DO是4时,这时水面宽度AB为()A.−20B.10C.20D.−1012.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊杆,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线型钢拱的函数解析式为()A.=266752B.=−266752 C.=1313502 D.=−131350213.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-1400(−80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,且AC ⊥x 轴.若OA =10米,则桥面离水面的高度AC 为()A.16940米 B.174米 C.16740米 D.154米14.如图所示的是跳水运动员10m 跳台跳水的运动轨迹,运动员从10m 高A 处的跳台上跳出,运动轨迹成抛物线状(抛物线所在平面与跳台墙面垂直).若运动员的最高点M 离墙1m ,离水面403m ,则运动员落水点B 离墙的距离OB 是()15.A.2 B.3 C.4 D.5 16.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米二、填空题(本大题共3小题,共9分)17.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=m时,矩形土地ABCD的面积最大.18.19.已知一个直角三角形两直角边的和为20cm,则这个直角三角形的最大面积为2.20.某商场降价销售一批名牌衬衫,已知所获利润y(元)与降价金额x(元)之间满足函数关系式y=-22+60x+800,则获利最多为元.三、解答题(本大题共10小题,共66分)21.某农场拟建两间矩形种牛饲养室,饲养室的一面靠现有墙(墙长>50m),中间用一道墙隔开(如图),已知计划中的建筑材料可建围墙的总长为50m,设中间隔墙长为x(m),总占地面积为y(2).(墙的厚度忽略不计)22.(1)求y关于x的函数解析式和自变量的取值范围.(2)请给出一种设计方案,使两间饲养室的占地总面积最大,并求出这个最大面积.23.某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x米,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)设计费能达到24000元吗?为什么?(3)当x是多少时,设计费最多?最多是多少元?24.如图,在矩形ABCD中,AB=10cm,AD=8cm,点P从点A出发沿AB以2cm/s的速度向终点B运动,同时点Q从点B出发沿BC以1cm/s的速度向终点C运动,它们其中一点到达终点后就都停止运动.25.(1)几秒后,点P,D的距离是点P,Q的距离的2倍.(2)几秒后,△DPQ的面积达到最小,最小面积为多少?26.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件.已知这种商品的零售价在一定范围内每降低1元,其日销售量就增加1件,为了促销决定对其降价x元销售,则每件的利润为____________元,每日的销售量为____________件,每日的利润y=____________(写出自变量的取值范围),所以当每件降价____________元时,每日获得的利润最大,为____________元.27.28.29.30.31.32.33.34.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降低1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式.(2)设该网店每月获得的利润为w元,当销售单价为多少元时,每月获得的利润最大?最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于3800元,且让消费者得到最大的实惠,则该休闲裤的销售单价应定为____________元.35.某商场销售一款成本为40元的可控温杯,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=-x+120.36.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额-成本);37.(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?38.39.40.41.42.43.44.45.在乡村振兴政策的帮扶下,某农户欲通过电商平台销售自家农产品,已知这种产品的成本价为10元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)之间大致有如下关系:w=-4x+80.设这种产品每天的销售利润为y(元).(1)当销售价定为多少时,每天销售的利润最大?最大利润是多少?(2)如果物价部门规定这种产品的销售价不得高于20元/千克,该农户要想每天获得84元的销售利润,销售价应定为多少?46.如图,有一座抛物线型拱桥,桥下面在正常水位时AB宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.47.(1)在如图所示的平面直角坐标系中,求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?48.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图2+bx+c表示,且抛物线上的点中所示的平面直角坐标系,抛物线可以用y=-16m.C到墙面OB的水平距离为3m,到地面OA的距离为17249.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离.(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?50.如图,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,按如图所示方式建立平面直角坐标系.51.52.(1)求该抛物线对应的函数关系式;(2)通过计算说明该货车能安全通过的最大高度.2.C3.C4.D5.B6.B7.A8.B9.D10.C11.C12.B13.B14.B15.A16.15017.5018.125019.解:(1)y=x(50-3x)=-32+50x,(0<x<503).(2)y=-32+50x=-3(−253)2+6253,当x=253时,max=6253,253m,平行于墙的围墙长度为25m,6253m2.20.解:(1)∵矩形的一边长为x米,周长为16米,∴另一边长为(8-x)米.∴S=x(8-x)=-2+8x(0<x<8).理由:当设计费为24000元时,广告牌的面积为24000÷2000=12(平方米),即-2+8x=12,解得x=2或x=6.∵x=2和x=6在0<x<8范围内,∴设计费能达到24000元.(3)∵S=-2+8x=-(−4)2+16,0<x<8,∴当x=4时,最大=16.则16×2000=32000(元).∴当x=4时,设计费最多,最多是32000元.21.解:(1)3秒后,点P,D的距离是点P,Q的距离的2倍.(2)4秒后△DPQ的面积最小,最小面积为242.22.解:(30-x),(20+x),-2+10x+600(0≤x≤30,且x为整数),5,625.23.解:(1)由题意,得y=100+5(80-x)=-5x+500.(2)由题意,得w=y(x-40)=(-5x+500)(x-40)=-52+700x-20000=-5(−70)2+4500.∵a=-5<0,∴当x=70时,w有最大值,最大=4500.(3)60.24.解:(1)根据题意得S=y(x-40)=(-x+120)(x-40)=-x2+160x-4800;(2)∵S=-x2+160x-4800=-(x-80)2+1600,∴当x=80时,S取得最大值,最大值为1600,答:当销售单价定为80元时,该公司每天获取的利润最大,最大利润是1600元.25.解:(1)根据题意可得y=w(x-10)=(x-10)(-4x+80)=-42+120x-800=-4(−15)2+100,∴当x=15时,y有最大值,为100.故当销售价定为15元/千克时,每天最大销售利润为100元.(2)当y=84时,可得84=-42+120x-800,整理,得2-30x+221=0,解得1=13,2=17.经检验,符合题意.故当销售价定为13元/千克或17元/千克时,该农户每天可获得销售利润84元.26.解:(1)设所求抛物线的解析式为y=2(a≠0).由CD=10m,可设D(5,b).∵AB=20m,水位上升3m就达到警戒线CD,∴B(10,b-3).把点D,B的坐标分别代入y=2,得25=,100=−3,解得=−125,=−1.∴y=-1252.(2)∵b=-1,∴拱桥顶O到CD的距离为1m.∴10.2=5(小时).∴再持续5小时到达拱桥顶.27.解:(1)由题意,得点B的坐标为(0,4),点C的坐标为(3,172),∴,=−16×32+3+.解得=2,=4.∴该抛物线的函数关系式为y=-162+2x+4.∵y=-162+2x+4=-16(−6)2+10,∴拱顶D到地面OA的距离为10m.(2)当x=6+4=10时,y=-162+2x+4=-16×102+2×10+4=223>6,∴这辆货车能安全通过.(3)当y=8时,-162+2x+4=8,即2-12x+24=0,∴1=6+23,2=6-23.∴两排灯的水平距离最小是6+23-(6-23)=43(m).28.解:(1)由题意得:A(-4,0),C(0,4),设抛物线的解析式为y=2+k(a≠0),则16+=0,=4,解得=−14=4,∴抛物线对应的函数关系式为y=-142+4.(2)2+0.42=2.2,当x=2.2时,y=-14×2.22+4=2.79,2.79-0.5=2.29(m).答:该货车能够安全通过的最大高度为2.29m.。
人教版2019年初中九年级数学:计算图形面积的最大值、商品利润最大问题、拱桥问题和运动中的抛物线针对提高
)若商场平均
子可以使橙子的总产量在20
某类产品按质量共分为生产最低档次产品每件利润为
奶,
x
万元用于修建一条公路,两年修成,通车前该特产只能在当年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投
代入解析式可得出此抛物
,正
,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。
1m水面的宽度是多少?(结
现测得,当水面宽时,涵洞顶点与水面
?
.4m.请判断这辆汽车能否
在水池中央垂直于水面处安装一个柱子OA 水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在
处出手时离地面20/9 m,与篮筐中心
4m(B处),设篮球运行的路线
已知乙跳起后摸到的最大高度为 3.19m,他如何做才能盖
有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿
2.4m;集装箱顶部离地面
所示,现测得,当水面宽AB=1.6m
ED是多少?是否会超过。
22.3商品利润最大问题(教案)-2021-2022学年九年级上册初三数学(人教版)
一、教学内容
《22.3商品利润最大问题》-2021-2022学年九年级上册初三数学(人教版)
1.理解并掌握利润的概念,以及影响利润的因素;
2.利用一元二次方程解决实际问题中的最大利润问题;
3.通过实际案例,分析并建立利润最大化的数学模型;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《商品利润最大问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过如何让商品卖出更高利润的情况?”(例如:商店打折时如何定价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何实现商品利润最大化的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调利润计算公式和一元二次方程求解这两个重点。对于难点部分,我会通过具体例子和直观图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与商品利润最大化相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过改变售价和成本来观察利润的变化。
五、教学反思
今天我们在课堂上探讨了商品利润最大问题,从理论到实践,让学生们尝试解决实际问题。回顾整个教学过程,我觉得有几个地方值得反思。
首先,我发现学生们在理解利润概念和计算公式上并没有太大困难,但在将实际问题抽象成数学模型时,部分学生感到困惑。这说明我们在教学中需要更加注重培养学生的数学建模能力,让他们学会如何将现实问题转化为数学语言。
4.掌握如何从数学角度提出问题、分析问题、解决问题的方法;
人教版九年级上册第22章 课时2 最大利润问题1(16页)
随堂练习
4.某种商品每天的销售利润 y(元)与销售单价x(元)之间满足关系:
y=ax2+bx-75.其图象如图.
(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元? y/元
解:由题中条件可求y=-x2+20x-75.
∵-1<0,对称轴为x=10, 16
∴当x=10时,y值最大,最大值为25.
y=(20+x)(300-10x)
建立函数关系式:y=(20+x)(300-10x), 即:y=-10x2+100x+6000.
新课讲授
②自变量x的取值范围如何确定? 营销规律是价格上涨,销量下降,因此只要考虑销售量就可 以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.
建立函数 关系式
总利润=单件利润×销售量 或总利润=总售价-总成本.
最大利润问题
确定自变量 取值范围
涨价:要保证销售量≥0; 降价:要保证单件利润≥0.
确定最 大利润
利用配方法或公式法求最大值 或利用函数简图和性质求出.
随堂练习
3.某体育馆可容纳四千人同时观看比赛,现C区有座位400个,某赛事试营销售阶 段发现:当票价为80元时,可售出C区票280张,若每降价1元,可多售出6张票, 设降价 x元( x 取正整数),写出总票价 y 关于 x 的函数关系式及自变量x取值范围.
解:y=(80-x)(280+6x)= -6x2+200x+22400 280+6x ≤ 400,且 x ≥ 0. 所以,0≤ x ≤20 ( x 取正整数).
22.3 实际问题与二次函数 课时2 最大利润问题
学习目标
1.会运用二次函数的性质解决商品销售中的最大利润问题. 2.能弄清商品销售问题中的数量关系及确定自变量的取值范围.
人教九年级数学上册- 最大利润问题(附习题)
即降价情况下,定价57.5元时,有最大利润6125元.
(1)涨价情况下,定价65元时,有最大利润6250元. (2)降价情况下,定价57.5元时,有最大利润6125元.
综上可知: 该商品的价格定价为65元时,可获得最大利润6250元.
基础巩固
随堂演练
1.下列抛物线有最高点或最低点吗?如果有,写出这些
综合应用
3.某种文化衫以每件盈利20元的价格出售,每天可售出40 件. 若每件降价1元,则每天可多售10件,如果每天要盈利 最多,每件应降价多少元?
解:设每件应降价x元,每天的利润为y元, 由题意得:y=(20-x)(40+10x)
=-10x2+160x+800 =-10(x-8)2+1440 (0<x<20). 当x=8时,y取最大值1440. 即当每件降价8元时,每天的盈利最多。
点的坐标(用公式):
(1)y=-4x2+3x;
(2)y=3x2+x+6.
解:b 2a
3
2 4
3 8
,
4ac b2 4a
32
4 4
9, 16
最高点为
3 8
,
9 16
.
解:b 1 1 , 2a 2 3 6
4ac b2 4 3 6 12 71
,
4a
43
12
最低点为
1 6
,
71 12
课堂小结
利用二次函数解决利润问题的一般步骤: (1)审清题意,理解问题; (2)分析问题中的变量和常量以及数量之间的关系; (3)列出函数关系式; (4)求解数学问题; (5)求解实际问题.
分析:(1)根据题意,设平均每天销售A种礼盒 为x盒,B种礼盒为y盒,列二元一次方程组解 答;(2)根据题意,设A种礼盒降价m元/盒,则A 种礼盒的销售量为(10+m3 )盒,再根据总利润 =每件商品的利润×销售量”列出解析式即 可.
人教版数学九年级上册教案:22.3实际问题与二次函数第
22.3 实际问题与二次函数(第1课时)一、【教材分析】教学目标知识目标1.经历探索实际问题中的最大高度、面积、利润等问题的过程,体会二次函数是一类最优化的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的顶点坐标求出实际问题的最大值(或最小值),发展解决问题的能力.能力目标经历实际问题中的最大高度、面积、利润等问题的探究过程,认识数学与人类生活的密切联系及对人类历史发展的作用,发展运用数学知识解决实际问题的能力.情感目标体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.教学重点探究利用二次函数的最大值(或最小值)解决实际问题的方法.教学难点1.二次函数解决实际问题的方法;2.二次函数与最值问题.二、【教学流程】教学环节教学问题设计师生活动二次备课情景创设【回顾】1. 二次函数y=2(x-3)2+5的对称轴是________________,顶点坐标是______________.当x=_______时y有_____值是_______. .2. 二次函数y=-3(x+4)2-1的对称轴是__________ ,顶点坐标是_________.当x=______ 时,函数有最___ 值,是________ .3.二次函数y=2x2-8x+9的对称轴是__________,顶点坐标是___.当x=____时,函数有最_____复习引入,为学习实际问题与二次函数作好铺垫学生独立完成并组内交流值,是________. .【问题】从地面竖直向上抛出一个小球,小球的上升高度h(单位m)与小球运动时间t(单位:s)的关系式是h=30t-5t2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是少?【归纳】结合问题,拓展一般对于二次函数y=ax2+bx+c,如何求出它的最小(大)值呢?让学生先独立思考,若有困难,教师给予帮助分析理解.1.借助画函数图像解决问题2.发现抛物线的定点就是这个函数图像的最高点.3.求出抛物线的顶点坐标.学生说出解题思路,学生先写出证明过程.最后教师板书解题过程.学生根据前面问题的解决方法,总结出求二次函数最小(大)值的方法一般地,当a>0(a<0),抛物线y=ax2+bx+c的顶点是最低(高)点,也就是说,当x=-ab2时,二次函数y=ax2+bx+c有最小(大)值abac442.自主探究【探究1】用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?【探究2】某商品现在的售价为每分析:先写出s与l的关系式,再求出使s最大的l值。
人教版 九年级数学 22.1 --22.3测试题(含答案)
人教版 九年级数学 22.1 --22.3(含答案)22.1 二次函数的图象和性质一、选择题1. (2019•哈尔滨)将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为 A .22(2)3y x =++ B .22(2)3y x =-+ C .22(2)3y x =-- D .22(2)3y x =+-2. 在平面直角坐标系中,抛物线y =(x +5)(x -3)经过变换后得到抛物线y =(x +3)(x -5),则这个变换可以是( ) A .向左平移2个单位长度 B .向右平移2个单位长度 C .向左平移8个单位长度D .向右平移8个单位长度3.已知二次函数y =a (x -1)2+c 的图象如图,则一次函数y =ax +c 的图象大致是( )4. 已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:x -1 0 2 3 4 y5-4-3有下列结论:①抛物线的开口向上;②抛物线的对称轴为直线x =2;③当0<x<4时,y>0;④抛物线与x 轴的两个交点间的距离是4;⑤若A(x 1,2),B(x 2,3)是抛物线上的两点,则x 1<x 2.其中正确的个数是()A.2 B.3 C.4 D.55. 2018·潍坊已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或66.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动.过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )7. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2>4ac;②abc<0;③2a+b-c>0;④a+b+c<0.其中正确的是()A.①④B.②④C.②③D.①②③④8. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<19. 如图是二次函数y=ax2+bx+c的图象,有下列说法:①ac>0;②2a+b>0;③4ac<b2;④a+b+c<0;⑤当x>0时,y随x的增大而减小.其中正确的是()A.①②③B.①②④C.②③④D.③④⑤10. 某国家足球队在某次训练中,一名队员在距离球门12米处挑射,正好射中了2.4米高的球门横梁,若足球运动的路线是抛物线y=ax2+bx+c的一部分(如图),有下列结论:①a<-160;②-160<a<0;③a-b+c>0;④a<b<-12a.其中正确的是()A.①③B.①④C.②③D.②④二、填空题11.将抛物线y=-(x+2)2向________平移________个单位长度,得到抛物线y=-(x -1)2.12.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数解析式为y=__________.13. 若抛物线y=x2+bx+25的顶点在x轴上,则b的值为________.14. 如图所示,抛物线y=ax2-3x+a2-1经过原点,那么a的值是________.15. 抛物线y=ax2+bx+c经过点A(-3,0),对称轴是直线x=-1,则a+b+c =________.三、解答题16. 如图,已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.17. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△P AB的面积的最大值,并求出此时点P的坐标.18. (2019·山东东营)已知抛物线24y ax bx +=﹣经过点()()20,40AB ,-,,与y 轴交于点C .(1)求这条抛物线的解析式;(2)如图1,点P 是第三象限内抛物线上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标;(3)如图2,线段AC 的垂直平分线交x 轴于点E ,垂足为,D M 为抛物线的顶点,在直线DE 上是否存在一点G ,使CMG 的周长最小?若存在,求出点G 的坐标;若不存在,请说明理由.人教版 九年级数学 22.1 二次函数的图象和性质 培优课时训练-答案一、选择题 1. 【答案】B【解析】将抛物线22y x =向上平移3个单位长度,再向右平移2个单位长度,得到的抛物线的解析式为()2223y x =-+, 故选B .2. 【答案】B[解析] y =(x +5)(x -3)=(x +1)2-16,顶点坐标是(-1,-16).y =(x +3)(x -5)=(x -1)2-16,顶点坐标是(1,-16).所以将抛物线y =(x +5)(x -3)向右平移2个单位长度得到抛物线y =(x +3)(x -5),故选B.3.【答案】B [解析]根据二次函数的图象开口向上,得a >0,根据c 是二次函数图象顶点的纵坐标,得出c<0,故一次函数y=ax+c的图象经过第一、三、四象限.故选B.4. 【答案】B[解析] 先根据二次函数的部分对应值在坐标系中描点、连线,由图象可以看出抛物线开口向上,所以结论①正确.由图象(或表格)可以看出抛物线与x轴的两个交点分别为(0,0),(4,0),所以抛物线的对称轴为直线x=2且抛物线与x轴的两个交点间的距离为4,所以结论②和④正确.由图象可以看出当0<x<4时,y<0,所以结论③错误.由图象可以看出当抛物线上的点的纵坐标为2或3时,对应的点均有两个,若A(x1,2),B(x2,3)是抛物线上两点,既有可能x1<x2,也有可能x1>x2,所以结论⑤错误.5. 【答案】B[解析] 当h<2时,有-(2-h)2=-1,解得h1=1,h2=3(舍去);当2≤h≤5时,y=-(x-h)2的最大值为0,不符合题意;当h>5时,有-(5-h)2=-1,解得h3=4(舍去),h4=6.综上所述,h的值为1或 6.6. 【答案】B 【解析】∵△ABC是等腰直角三角形,∴∠A=90°,∠B=∠C=45°.(1)当0≤x≤2时,点P在AB边上,△BDP是等腰直角三角形,∴PD=BD=x,y=12x2(0≤x≤2),其图象是抛物线的一部分;(2)当2<x≤4时,点P在AC边上,△CDP是等腰直角三角形,∴PD=CD=4-x,∴y=12BD·PD=12x(4-x)(2<x≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B的图象能大致反映y与x之间的函数关系.7. 【答案】A[解析] ①因为图象与x轴有两个不同的交点,所以b2-4ac>0,即b2>4ac,故①正确.②图象开口向下,故a<0.图象与y轴交于正半轴,故c>0.因为对称轴为直线x=-1,所以-b2a=-1,所以2a=b,故b<0,所以abc>0,故②错误.③因为a<0,b<0,c>0,所以2a+b-c<0,故③错误.④当x=1时,y=a+b+c,由图可得,当x=-3时,y<0.因为抛物线的对称轴为直线x=-1,所以由对称性可知,当x=1时,y<0,即a+b+c<0,故④正确.综上所述,①④正确,故选A.8. 【答案】B【解析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc->⎧⎨++<⎩,解得c<-2,故选B.9. 【答案】C[解析] ①由图象可知:a>0,c<0,∴ac<0,故①错误;②由对称轴可知:-b2a<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴Δ=b2-4ac>0,即4ac<b2,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x>-b2a时,y随着x的增大而增大,故⑤错误.故选C.10. 【答案】B[解析] 用排除法判定.易知c=2.4.把(12,0)代入y=ax2+bx+c中,可得144a+12b+2.4=0,即12a+15+b=0.由图象可知a<0,对称轴为直线x =-b 2a ,且0<-b2a <6, ∴b>0,∴12a +15<0,∴a<-160,即①成立,②不成立,故不可能选C 与D. ∵-b2a <6,∴b<-12a. ∵a<0,b>0,∴a<b<-12a ,∴④正确,而a -b +c 的取值不确定, ∴③不正确.故选B.二、填空题11. 【答案】右 3 12. 【答案】a(1+x)213. 【答案】±1014. 【答案】-1[解析] 因为抛物线经过原点(0,0),所以a 2-1=0,即a =±1.因为抛物线的开口向下,所以舍去a =1.故a =-1.15. 【答案】0[解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0), ∴a +b +c =0.三、解答题16. 【答案】解:(1)∵抛物线的顶点坐标为(1,4), ∴设此抛物线的解析式为y =a(x -1)2+4. ∵抛物线过点B(0,3),∴3=a(0-1)2+4,解得a =-1,∴y =-(x -1)2+4,即此抛物线的解析式为y =-x2+2x +3.(2)作点B 关于x 轴的对称点E(0,-3),连接AE 交x 轴于点P ,此时PA +PB 的值最小.设直线AE 的解析式为y =kx +b , 则⎩⎨⎧k +b =4,b =-3,解得⎩⎨⎧k =7,b =-3, ∴直线AE 的解析式为y =7x -3.当y =0时,x =37,∴当PA +PB 的值最小时,点P 的坐标为(37,0).17. 【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c. 根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b2a=-1,解得⎩⎪⎨⎪⎧a =-1,b =-2,c =3. 所以抛物线的解析式为y =-x 2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m , 所以S △PAB =12×(-m 2-3m)×3=-32(m 2+3m)=-32(m +32)2+278, 所以当m =-32时,S △PAB 有最大值278,此时点P 的坐标为(-32,154).18. 【答案】(1)∵抛物线4y ax bx +-=经过点()()2,0,40A B -,, 424016440a b a b +-=⎧∴⎨--=⎩,解得1,21a b ⎧=⎪⎨⎪=⎩ ∴抛物线解析式为2142y x x --=;(2)如图1,连接OP ,设点21,42P x x x ⎛⎫+- ⎪⎝⎭,其中40x -<<,四边形ABPC 的面积为S ,由题意得0,4C -(),AOCOCPOBPS SSS∴++=()1124422x =⨯⨯+⨯⨯-2114422x x ⎛⎫+⨯⨯--+ ⎪⎝⎭,24228x x x ---+=,2412x x -+=-,()2216x ++=.10﹣<,开口向下,S 有最大值,∴当2x =-时,四边形ABPC 的面积最大,此时,4y =-,即()2,4P --.因此当四边形ABPC 的面积最大时,点P 的坐标为()2,4--. (3)()2211941222y x x x =+-=+-, ∴顶点91,2M ⎛⎫-- ⎪⎝⎭.如图2,连接AM 交直线DE 于点G ,此时,CMG 的周长最小.设直线AM 的解析式为y kx b +=,且过点20A (,),91,2M ⎛⎫-- ⎪⎝⎭,20,92k b k b +=⎧⎪∴⎨-+=-⎪⎩∴直线AM 的解析式为332y x =-. 在Rt AOC中,AC ==.D 为AC的中点,12AD AC ∴== ADE AOC ∽,AD AEAO AC∴=,2=5AE ∴=,523OE AE AO ∴--===,()30E ∴-,, 由图可知()1,2D -设直线DE 的函数解析式为y mx n =+,2,30m n m n +=-⎧∴⎨-+=⎩解得:12,32m n ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线DE 的解析式为1322y x =--. 1322,332y x y x ⎧=--⎪⎪∴⎨⎪=-⎪⎩解得:34,158x y ⎧=⎪⎪⎨⎪=-⎪⎩315,48G ⎛⎫∴- ⎪⎝⎭.22.2 二次函数与一元一次方程一、选择题1. 二次函数y =x 2-2x -2的图象与坐标轴的交点个数是( ) A .0 B .1 C .2 D .32.已知二次函数y =ax 2+bx +c 的图象如图所示,则一元二次方程ax 2+bx +c =0的解是( )A.x1=-3,x2=1 B.x1=3,x2=1C.x=-3 D.x=-23. 从地面竖直向上抛出一个小球,小球的上升高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=24t-4t2,那么小球从抛出至回落到地面所需的时间是()A.6 s B.4 s C.3 s D.2 s4. 已知二次函数y=x2-x+14m-1的图象与x轴有交点,则m的取值范围是( )A.m≤5 B.m≥2 C.m<5 D.m>25.下面的表格列出了函数y=ax2+bx+c(a,b,c是常数,且a≠0)的x与y的部分对应值,那么方程ax2+bx+c=0的一个根x的取值范围是( )x … 6.17 6.18 6.19 6.20…y …-0.03-0.010.020.04…A.6<x<6.17 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.206.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是( )A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<27. 根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0)的一个根x的取值范围是()A.1.23<x <1.24 B .1.24<x <1.25C .1.25<x <1.26D .1<x <1.238. 王芳将如图所示的三条水平直线m 1,m 2,m 3中的一条记为x 轴(向右为正方向),三条竖直直线m 4,m 5,m 6中的一条记为y 轴(向上为正方向),并在此坐标平面内画出了抛物线y =ax 2-6ax -3,则她所选择的x 轴和y 轴分别为( )A .m 1,m 4B .m 2,m 5C .m 3,m 6D .m 4,m 59. 已知二次函数y =-x 2+x +6及一次函数y =-x +m ,将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,得到一个新函数图象(如图),当直线y =-x +m 与新图象有4个交点时,m 的取值范围是( )A .-254<m<3 B .-254<m<2 C .-2<m <3D .-6<m <-210. 如图,抛物线y =12x 2-7x +452与x 轴交于点A ,B ,把抛物线在x 轴及其下方的部分记作C 1,将C 1向左平移得到C 2,C 2与x 轴交于点B ,D ,若直线y =12x +m 与C 1,C 2共有3个不同的交点,则m 的取值范围是( )A .-458<m <-52B .-298<m <-12C .-298<m <-52D .-458<m <-12二、填空题11. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为____________.12. 如图,已知抛物线y =x 2+2x -3与x 轴的两个交点分别是A ,B (点A 在点B的左侧).(1)点A 的坐标为__________,点B 的坐标为________; (2)利用函数图象,求得当y <5时x 的取值范围为________.13.已知二次函数y =3x 2+c 与正比例函数y =4x 的图象只有一个交点,则c 的值为________.14.如图,抛物线y =ax 2与直线y =bx +c 的两个交点分别为A (-2,4),B (1,1),则方程ax 2=bx +c 的解是____________.15. 已知二次函数y =kx 2-6x -9的图象与x 轴有两个不同的交点,则k 的取值范围为____________.三、解答题16. 已知抛物线y =x 2-2bx +c.(1)若抛物线的顶点坐标为(2,-3),求b ,c 的值;(2)若b +c =0,是否存在实数x ,使得相应的y 的值为1?请说明理由; (3)若c =b +2且抛物线在-2≤x≤2上的最小值是-3,求b 的值.17. 利用图象解一元二次方程x 2-2x -1=0时,我们采用的一种方法是在直角坐标系中画出抛物线y =x 2和直线y =2x +1,两图象交点的横坐标就是该方程的解.(1)请你再给出一种利用图象求方程x 2-2x -1=0的解的方法;(2)已知函数y =x 3的图象(如图),求方程x 3-x -2=0的解(精确到0.1).18. 已知抛物线l :y =(x -h )2-4(h 为常数).(1)如图22-B -2(a),当抛物线l 恰好经过点P (1,-4)时,l 与x 轴从左到右的交点为A ,B ,与y 轴交于点C .①求l 的解析式,并写出l 的对称轴及顶点坐标.②在l 上是否存在点D (与点C 不重合),使S △ABD =S △ABC ?若存在,请求出点D 的坐标;若不存在,请说明理由.③M 是l 上任意一点,过点M 作ME ⊥y 轴于点E ,交直线BC 于点D ,过点D 作x 轴的垂线,垂足为F ,连接EF ,当线段EF 的长度最短时,求出点M 的坐标.(2)设l与直线y=35x-245有个交点的横坐标为x0,且满足3≤x0≤5,通过l位置随h变化的过程,直接写出h的取值范围.19. 在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.20.某班“数学兴趣小组”对函数y=x2-2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x轴有________个交点,所以对应的方程x2-2|x|=0有________个实数根;②方程x2-2|x|=2有________个实数根;③关于x的方程x2-2|x|=a有4个实数根时,a的取值范围是________.人教版九年级数学22.2 二次函数与一元一次方程针对训练-答案一、选择题1. 【答案】D2. 【答案】 A [解析] ∵抛物线与x轴的一个交点的坐标是(1,0),对称轴是直线x=-1,∴抛物线与x轴的另一个交点的坐标是(-3,0).故一元二次方程ax2+bx+c=0的解是x1=-3,x2=1.故选A.3. 【答案】A4. 【答案】 A [解析] ∵抛物线y=x2-x+1 4m-1与x轴有交点,∴b2-4ac≥0,即(-1)2-4×1×(14m-1)≥0,解得m≤5.5. 【答案】 C [解析] 由表格中的数据,得在6.17<x<6.20范围内,y随x的增大而增大,当x=6.18时,y=-0.01,当x=6.19时,y=0.02,故方程ax2+bx+c=0的一个根x的取值范围是6.18<x<6.19.6. 【答案】 A [解析] 抛物线的对称轴是直线x=-2a 2a=-1,∴抛物线与x轴的另一个交点坐标是(-4,0).∵a<0,∴抛物线开口向下,∴使y<0成立的x的取值范围是x<-4或x>2.故选A.7. 【答案】B8. 【答案】A[解析] ∵y =ax 2-6ax -3=a (x -3)2-3-9a ,∴抛物线的对称轴为直线x =3, ∴王芳选择的y 轴为直线m 4.∵抛物线y =ax 2-6ax -3与y 轴的交点为(0,-3), ∴抛物线与y 轴的交点在x 轴的下方, ∴王芳选择的x 轴为直线m 1.9. 【答案】D【解析】 如图,当y =0时,-x 2+x +6=0,解得x 1=-2,x 2=3,则A (-2,0),B (3,0).将该二次函数在x 轴上方的图象沿x 轴翻折到x 轴下方的部分图象的解析式为y =(x +2)(x -3),即y =x 2-x -6(-2≤x ≤3).当直线y =-x +m 经过点A (-2,0)时,2+m =0,解得m =-2;当直线y =-x +m 与抛物线y =x 2-x -6有唯一公共点时,方程x 2-x -6=-x +m 有两个相等的实数根,解得m =-6.所以当直线y =-x +m 与新图象有4个交点时,m 的取值范围为-6<m <-2.10. 【答案】C【解析】 如图.∵抛物线y =12x 2-7x +452与x 轴交于点A ,B ,∴B (5,0),A (9,0).∴抛物线C 1向左平移4个单位长度得到C 2,∴平移后抛物线的解析式为y =12(x -3)2-2.当直线y =12x +m 过点B 时,有2个交点, ∴0=52+m ,解得m =-52;当直线y =12x +m 与抛物线C 2只有一个公共点时,令12x +m =12(x -3)2-2,∴x 2-7x +5-2m = 0,∴Δ=49-20+8m =0,∴m =-298,此时直线的解析式为y =12x -298,它与x 轴的交点为(294,0),在点A 左侧,∴此时直线与C 1,C 2有2个交点,如图所示.∴当直线y =12x +m 与C 1,C 2共有3个不同的交点时,-298<m <-52.二、填空题11. 【答案】-1或2或1 【解析】 ∵函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,∴当函数为二次函数时,16-4(a -1)×2a =0, 解得a 1=-1,a 2=2;当函数为一次函数时,a -1=0,解得a =1. 故答案为-1或2或1.12. 【答案】(1)(-3,0)(1,0) (2)-4<x <2【解析】(1)当x 2+2x -3=0时,解得x 1=-3,x 2=1,∴A (-3,0),B (1,0). (2)当y =5时,x 2+2x -3=5,x 2+2x -8=0,解得x 1=-4,x 2=2. 由函数图象可得,当-4<x <2时,y <5.13.【答案】43【解析】本题考查了已知二次函数的图象与一次函数的图象的交点个数,求字母未知数的值.把y =3x 2+c 与y =4x 联立方程组并消去y 得3x 2+c =4x ,化简得3x 2-4x +c =0,由于它们的图象只有一个交点,故此方程有两个相等的实数根,所以b 2-4ac =(-4)2-4×3c =0,解得c =43. 14. 【答案】x 1=-2,x 2=1 [解析] 方程ax 2=bx +c 的解即抛物线y =ax 2与直线y =bx +c 交点的横坐标.∵交点是A(-2,4),B(1,1),∴方程ax 2=bx +c 的解是x 1=-2,x 2=1.15. 【答案】k >-1且k ≠0三、解答题16. 【答案】解:(1)∵抛物线y =x 2-2bx +c , ∴a =1.∵抛物线的顶点坐标为(2,-3), ∴y =(x -2)2-3.∵y =(x -2)2-3=x 2-4x +1, ∴b =2,c =1. (2)存在.理由:由y =1,得x 2-2bx +c =1, ∴x 2-2bx +c -1=0.∵Δ=4b 2+4b +4=(2b +1)2+3>0, ∴存在两个实数x ,使得y =1.(3)若c =b +2,则抛物线可化为y =x 2-2bx +b +2,其对称轴为直线x =b . ①若b ≤-2,则抛物线在x =-2时取得最小值,此时-3=(-2)2-2×(-2)b +b +2,解得b =-95,不合题意,舍去;②若b ≥2,则抛物线在x =2时取得最小值,此时-3=22-2×2b +b +2,解得b =3;③若-2<b <2,则抛物线在x =b 时取得最小值,此时4(b +2)-4b 24=-3,化简,得b 2-b -5=0,解得b 1=1+212(不符合题意,舍去),b 2=1-212. 综上所述,b 的值为3或1-212.17. 【答案】解:(1)答案不唯一,如在直角坐标系中画出抛物线y =x 2-1和直线y =2x ,其交点的横坐标就是方程的解.(2)在图中画出直线y =x +2,与函数y =x 3的图象交于点B ,得点B 的横坐标x ≈1.5, ∴方程的解为x ≈1.5.18. 【答案】解:(1)①将P(1,-4)代入y=(x-h)2-4,得(1-h)2-4=-4,解得h=1,∴抛物线l的解析式为y=(x-1)2-4,∴抛物线l的对称轴为直线x=1,顶点坐标为(1,-4).②存在.将x=0代入y=(x-1)2-4,得y=-3,∴点C的坐标为(0,-3),∴OC=3.∵S△ABD=S△ABC,∴点D的纵坐标为3或-3.当y=-3时,(x-1)2-4=-3,解得x1=2,x2=0(舍去),∴点D的坐标为(2,-3).当y=3时,(x-1)2-4=3,解得x1=1+7,x2=1-7,∴点D的坐标为(1+7,3)或(1-7,3).综上所述,在抛物线l上存在点D(与点C不重合),使S△ABD=S△ABC,点D的坐标为(2,-3)或(1+7,3)或(1-7,3).③如图(a)所示:∵∠EOF=∠OED=∠OFD=90°,∴四边形OEDF为矩形,∴OD=EF.依据垂线段的性质可知:当OD⊥BC时,OD有最小值,即EF有最小值.把y=0代入抛物线的解析式,得(x-1)2-4=0,解得x1=-1,x2=3,∴B(3,0),∴OB=OC.又∵OD⊥BC,∴CD=BD.∴点D的坐标为(32,-32).将y=-32代入y=(x-1)2-4,得(x-1)2-4=-32,解得x1=-102+1,x2=102+1,∴点M的坐标为(-102+1,-32)或(102+1,-32).(2)∵y=(x-h)2-4,∴抛物线的顶点在直线y=-4上.对于直线y=35x-245,当3≤x0≤5时,-3≤y0≤-9 5,即抛物线l与直线y=35x-245在G(3,-3),H(5,-95)之间的一段有一个交点.当抛物线经过点G时,(3-h)2-4=-3,解得h=2或h=4.当抛物线经过点H时,(5-h)2-4=-95,解得h=5+555或h=5-555.随h的逐渐增加,l的位置随之向右平移,如图(b)所示.由函数图象可知:当2≤h≤5-555或4≤h≤5+555时,抛物线l与直线在3≤x0≤5段有一个交点.19. 【答案】【思维教练】由图象过点(1,-2),将其带入y1的函数表达式中,解方程即可;(2)由y1=(x+a)(x-a-1)可得出y1过x轴上的两点的坐标,然后分两种情况讨论即可;(3)先求出y1=(x+a)(x-a-1)的对称轴,根据开口向上的二次函数,离对称轴越近,函数值越小即可得解.解:(1)∵函数y1=(x+a)(x-a-1)图象经过点(1,-2),∴把x=1,y=-2代入y1=(x+a)(x-a-1)得,-2=(1+a)(-a),(2分)化简得,a2+a-2=0,解得,a1=-2,a2=1,∴y1=x2+x-2;(4分)(2)函数y1=(x+a)(x-a-1)图象在x轴的交点为(-a,0),(a+1,0),①当函数y2=ax+b的图象经过点(-a,0)时,把x=-a,y=0代入y2=ax+b中,得a2=b;(6分)②当函数y2=ax+b的图象经过点(a+1,0)时,把x=a+1,y=0代入y2=ax+b中,得a2+a=-b;(8分)(3)∵抛物线y1=(x+a)(x-a-1)的对称轴是直线x=-a+a+12=12,m<n,∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大,∵m<n,∴点Q离对称轴x=12的距离比P离对称轴x=12的距离大,(10分)∴|x0-12|<1-12,∴0<x0<1.(12分)20. 【答案】解:(1)m=0.(2分)(2)如解图所示:(4分)(3)①函数图象有两个最低点,坐标分别是(-1,-1)以及(1,-1).②函数图象是轴对称图形,对称轴是直线x=0(y轴).(6分)③从图象信息直接看出:当x<-1或0<x<1时,函数值随自变量的增大而减小;当-1<x<0或x>1时,函数值随自变量的增大而增大.④在x<-2或x>2时,函数值大于0,在-2<x<0或0<x<2时,函数值小于0等.(答案不唯一,合理即可)(4)①3,3;②2; ③-1<a<0.(10分)【解法提示】①观察图象可知函数图象与x轴有3个交点,∴方程x2-2|x|=0有3个不相等的实数根;②把抛物线y=x2-2|x|向下平移2个单位,得抛物线y=x2-2||x-2,则抛物线y=x2-2|x|-2与x轴只有2个交点,∴方程x2-2|x|-2=0有2个不相等的实数根;③把抛物线y=x2-2|x|向上平移0<h<1时,抛物线与x轴有4个交点,∴抛物线解析式y=x2-2|x|-a中,0<-a<1,∴-1<a<0.22.3 实际问题与二次函数第1课时最优化问题1.已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为( )(A)25 cm2 (B)50 cm2 (C)100 cm2 (D)不确定2.(2019天门)矩形的周长等于40,则此矩形面积的最大值是.3.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元.设该纪念品的销售单价为x(元),日销量为y(件).(1)求y与x的函数关系式;(2)要使日销售利润为720元,销售单价应定为多少元?4.如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s 的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( )(A)19 cm2 (B)16 cm2 (C)15 cm2 (D)12 cm25.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,饲养室的长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.6.(核心素养—数学建模)(2019云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价 x(元/千克)的函数关系如图所示.(1)求y与x的函数解析式;(2)求这一天销售西瓜获得的利润W的最大值.第2课时生活中的抛物线1.(2019临沂)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3 s后,速度越来越快;③小球抛出3 s时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是( )第1题图(A)①④(B)①②(C)②③④(D)②③2.如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,若水面下降2 m,则水面宽度增加m.第2题图3.平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y=-x2+x+,绳子甩到最高处时刚好通过站在x=2处跳绳的学生小明的头顶,则小明的身高为米.4.如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.5.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1 m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数解析式y=a(x-4)2+h,已知点O与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a=-时,①求h的值;②通过计算判断此球能否过网;(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7 m,离地面的高度为 m的Q处时,乙扣球成功,求a的值.6.如图所示,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用 y=-x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3 m时,到地面OA的距离为 m.(1)求该抛物线的函数解析式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m,宽为4 m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少?22.3 实际问题与二次函数第1课时最优化问题1.已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为( B )(A)25 cm2 (B)50 cm2 (C)100 cm2 (D)不确定2.(2019天门)矩形的周长等于40,则此矩形面积的最大值是100 .3.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元.设该纪念品的销售单价为x(元),日销量为y(件).(1)求y与x的函数关系式;(2)要使日销售利润为720元,销售单价应定为多少元?解:(1)根据题意,得y=200-10(x-8)=-10x+280,故y与x的函数关系式为y=-10x+280(8<x≤12).(2)根据题意,得(x-6)(-10x+280)=720,解得x1=10,x2=24(不合题意,舍去).答:要使日销售利润为720元,销售单价应定为10元.4.如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s 的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小值为( C )(A)19 cm2 (B)16 cm2 (C)15 cm2 (D)12 cm25.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,饲养室的长x为多少时,占地面积y最大?(2)如图2,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)因为饲养室的长为x m,则宽为()m,所以y=x·=-(x-25)2+.所以当x=25时,y取得最大值.所以饲养室的长x为25 m时,占地面积y最大.(2)因为饲养室的长为x m,则宽为[] m,所以y=x·=-(x-26)2+338.所以当x=26时,y取得最大值.所以饲养室的长x为26 m时,占地面积y最大.因为26-25=1≠2,所以小敏的说法不正确.6.(核心素养—数学建模)(2019云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价 x(元/千克)的函数关系如图所示.(1)求y与x的函数解析式;(2)求这一天销售西瓜获得的利润W的最大值.解:(1)当6≤x≤10时,设y与x的解析式为y=kx+b(k≠0),根据题意,得解得所以y=-200x+2 200,当10<x≤12时,y=200,故y与x的函数解析式为y=(2)当6≤x≤10时,W=(x-6)y=(x-6)(-200x+2 200)=-200(x-)2+1 250,因为-200<0,所以抛物线的开口向下,所以x=时,W取最大值,此时W=1 250;当10<x≤12时,W=(x-6)·200=200x-1 200,因为W随x的增大而增大,所以x=12时W取得最大值,此时W=200×12-1 200=1 200.综上所述,W的最大值为1 250元,即当销售价格为8.5元/千克时,取得最大利润,最大利润为1 250元.第2课时生活中的抛物线1.(2019临沂)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40 m;②小球抛出3 s后,速度越来越快;③小球抛出3 s时速度为0;④小球的高度h=30 m时,t=1.5 s.其中正确的是( D )第1题图(A)①④(B)①②(C)②③④(D)②③2.如图是抛物线形拱桥,当拱顶离水面2 m时,水面宽4 m,若水面下降2 m,则水面宽度增加(4-4) m.第2题图3.平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图建立直角坐标系,抛物线的函数解析式为y=-x2+x+,绳子甩到最高处时刚好通过站在x=2处跳绳的学生小明的头顶,则小明的身高为1.5 米.4.如图,杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-x2+3x+1的一部分.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.解:(1)y=-x2+3x+1=-(x-)2+,所以当x=时,y有最大值,所以演员弹跳离地面的最大高度是4.75米.(2)能表演成功.理由如下:当x=4时,y=-×42+3×4+1=-9.6+13=3.4,即点B(4,3.4)在抛物线y=-x2+3x+1上,所以能表演成功.5.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1 m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数解析式y=a(x-4)2+h,已知点O与球网的水平距离为5 m,球网的高度为1.55 m.(1)当a=-时,①求h的值;②通过计算判断此球能否过网;(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7 m,离地面。
九年级数学: 22.3实际问题与二次函数 最大利润问题练习题含答案
人教版数学九级上册第二十二章二次函数 22.3 实际问题与二次函数最大利润问题专题练习题1.服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为( )A.150元 B.160元 C.170元 D.180元2.某产品进货单价为9元,按10元一件出售时,能售出50件.若每件每涨价1元,销售量就减少10件,则该产品能获得的最大利润为( )A.50元 B.80元 C.90元 D.100元3.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n -24,则该企业一年中应停产的月份是( )A.1月、2月、3月 B.2月、3月、4月C.1月、2月、12月 D.1月、11月、12月4.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件.为了获得最大利润决定降价x元,则单件的利润为元,每日的销售量为件,每日的利润y=,所以每件降价____元时,每日获得的利润最大为____元.5.已知某人卖盒饭的盒数x(盒)与所获利润y(元)满足关系式y=-x2+1200x-357600,则当卖出盒饭数量为____盒时,获得最大利润是____元.6. 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41.每年最多可投入100万元的销售投资,则5年所获利润的最大值是.7. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降价1元,每天就可多售出5件,但要求销售单价不得低于成本.求销售单价为多少元时,每天的销售利润最大?最大利润是多少?8. 一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)9.某租赁公司拥有20辆小型汽车,公司平均每日的各项支出共6250元,当每辆车的日租金为500元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆.根据以上材料解答下列问题:设公司每日租出x 辆车时,日收益为y 元(日收益=日租金收入-平均每日各项支出).(1)公司每日租出x 辆车时,每辆车的日租金收入为 元;(用含x 的代数式表示)(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益才能盈利?10.某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价增加10x 元(x 为整数).(1)直接写出每天游客居住的房间数量y 与x 的函数关系式;(2)设宾馆每天的利润为W 元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?(3)某日,宾馆了解当天的住宿情况,得到以下信息:①当日所获利润不低于5000元;②宾馆为游客居住的房间共支出费用没有超过600元;③每个房间刚好住满2人.问:这天宾馆入住的游客人数最少有多少人?11.某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x 天生产的粽子数量为y 只,y 与x 满足如下关系:y =⎩⎪⎨⎪⎧32x (0≤x≤5),20x +60(5<x≤19). (1)李红第几天生产的粽子数量为260只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,若李红第x 天创造的利润为w 元,求w 与x 之间的函数解析式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)答案:1---3 ACC4. (30-x) (20+x) -x 2+10x +600 5 6255. 600 24006. 205万元7. 解:设每天的销售利润为y 元,销售单价为x 元,则y =(x -50)=-5(x -80)2+4500,∵a =-5<0,50≤x ≤100,∴当x =80时,y 最大值=45008. 解:(1)y =-0.5x +160(120≤x ≤180)(2)设销售利润为W 元,则W =(x -80)(-0.5x +160)=-12(x -200)2+7200,∵a =-12<0, ∴当x<200时,y 随x 的增大而增大,∴当x =180时,W 最大=-12(180-200)2+7200=7000, 则当销售单价为180元时,销售利润最大,最大利润是7000元9. (1) 1500-50x(2)由题意可知,租赁公司的日收益为y =x(1500-50x)-6250=-50(x -15)2+5000,∵-15<0,当x =15时,租赁公司日收益最大,最大是5000元(3)由题意得-50(x -15)2+5000>0,解得5<x<25,∵x ≤20,∴5<x ≤20,即当每日租出至少6辆时,租赁公司的日收益才能盈利10. 解:(1)根据题意得y =50-x(0≤x ≤50,且x 为整数)(2)W =(120+10x -20)(50-x)=-10x 2+400x +5000=-10(x -20)2+9000,∵a =-10<0,∴当x =20时,W 最大值=9000,则当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元(3)由题意得⎩⎪⎨⎪⎧-10(x -20)2+9000≥5000,20(-x +50)≤600,解得20≤x≤40, ∵房间数y =50-x ,又∵-1<0,∴当x =40时,y 的值最小,这天宾馆入住的游客人数最少,最少人数为2y =2(-x +50)=20(人)11. 解:(1)设李红第x 天生产的粽子数量为260只,根据题意得20x +60=260,解得x =10,则李红第10天生产的粽子数量为260只(2)根据图象得当0≤x≤9时,p =2;当9<x≤19时,可求解析式为p =110x +1110, ①当0≤x≤5时,w =(4-2)·32x=64x ,x =5时w 的最大值为320;②当5<x≤9时,w =(4-2)·(20x+60)=40x +120,x =9时w 的最大值为480;③当9<x≤19时,w=·(20x+60)=-2x2+52x+174=-2(x-13)2+512,x=13时w 的最大值为512.综上所述,第13天的利润最大,最大利润是512元。
人教版九年级上册:22.3.2 最大利润问题 同步练习(含答案)
22.3实际问题与二次函数同步练习第2课时最大利润问题一、选择题1.便民商店销售一种商品,在销售过程中,发现一周利润y(单位:元)与每件销售价x(单位:元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,每件销售价x(单位:元)满足15≤x≤22,那么一周可获得的最大利润是()A.20元B.1508元C.1550元D.1558元2.商场销售某种品牌的电磁炉.在销售过程中,发现一周利润y(元)与每台销售价x(元)之间满足y=-2(x-20)2+980.由于某种原因,x的取值范围只能是15≤x≤19,那么一周可获得的最大利润是()A.976元B.978元C.980元D.982元3.经过调研预测,黄山市某塑料玩具生产公司一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月4.某种商品每件进价为18元,调查表明:在某段时间内若以每件x元(18≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为()A.18元B.20元C.22元D.24元5.某品牌钢笔进价为8元/支,按10元/支出售时每天能卖出20支.市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为()A.11元/支B.12元/支C.13元/支D.14元/支6.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是()A.销售单价降低15元时,每天获得利润最大B.每天的最大利润为1250元C.若销售单价降低10元,则每天的利润为1200元D.若每天的利润为1050元,则销售单价一定降低了5元7.某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销售量y(件)满足当x=130时,y=70;当x=150时,y=50,且y是x的一次函数.设销售利润为S(元),为了获得最大的销售利润,每件产品的售价应定为()A.160元B.180元C.140元D.200元二、填空题8.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y(元)与销售单价x(元)满足关系y=-x2+70x -800.要想获得最大利润,则销售单价应该定为元.9.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加一人,每人的单价就降低10元.当一个旅行团的人数为时,这个旅行社可以获得最大的营业额.10.某旅行社有100张床位,每张床位每晚收费10元时,客床可全部租出.若每张床位每晚收费提高2元,则减少10张床位的租出;若每张床位每晚收费再提高2元,则再减少10张床位的租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每张床位每晚的收费应提高元.11.(中考·贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商品的售价应为________元.12.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天销售量t(单位:件)与每件的销售价x(单位:元)可以看成是一次函数关系:t=-3x+204.(1)商场卖这种服装每天的销售利润y(单位:元)与每件的销售价x(单位:元)之间的函数解析式为______________________;(2)商场要想每天获得最大销售利润,每件的销售价定为________元最合适,最大利润是________元.三、解答题13.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系y=-x2+20x-75.(1)当销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(2)当销售单价为多少元时,该种商品每天的销售利润为21元?14.(2020·宿迁)某超市经销一种商品,每千克成本为50元.经试销发现,该种商品每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如下表所示:(1)求y(千克)与x(元/千克)之间的函数解析式.(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?15.(2020·辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?16.(2020·青岛)某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4 m,宽AB=3 m,抛物线的最高点E到BC的距离为4 m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示,求该抛物线的函数解析式.(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2 m,求每个B型活动板房的成本是多少(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本).(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?17.茶叶是湖南省的主要经济作物之一.2021年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/千克,并根据历年的相关数据整理出第x天(1≤x≤15,且x为整数)制茶成本(含采摘和加工)和制茶量的相关信息如表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本).(1)求出该茶厂第10天的收入;(2)设该茶厂第x天的收入为y(元),试求出y与x之间的函数关系式,并求出该茶厂第几天的收入最高?最高收入为多少元?18.某服装批发市场销售一种衬衫,每件衬衫的进价为50元,规定每件售价不低于进价.经市场调查发现,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:(1)求出y与x之间的函数解析式.(不需要求自变量x的取值范围)(2)该批发市场每月想获利24000元,又想尽量给客户优惠,则该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?19.某公司在甲、乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润.若该公司在甲、x(单位:辆)之间满足y=-12乙两地共销售30辆该品牌的汽车,甲、乙两地总的销售利润为W万元,其中在甲地销售x辆.(1)求W与x的函数关系式.(2)甲、乙两地各销售多少辆车时W最大?W的最大值是多少?(3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?20.小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种“多肉植物”,单株获利最大.(提示:单株获利=单株售价-单株成本)参考答案一、选择题1.便民商店销售一种商品,在销售过程中,发现一周利润y(单位:元)与每件销售价x(单位:元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,每件销售价x(单位:元)满足15≤x≤22,那么一周可获得的最大利润是(D)A.20元B.1508元C.1550元D.1558元2.商场销售某种品牌的电磁炉.在销售过程中,发现一周利润y(元)与每台销售价x(元)之间满足y=-2(x-20)2+980.由于某种原因,x的取值范围只能是15≤x≤19,那么一周可获得的最大利润是(B)A.976元B.978元C.980元D.982元3.经过调研预测,黄山市某塑料玩具生产公司一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则没有盈利的月份为(D)A.2月和12月B.2月至12月C.1月D.1月、2月和12月4.某种商品每件进价为18元,调查表明:在某段时间内若以每件x元(18≤x≤30,且x为整数)出售,可卖出(30-x)件.若使利润最大,则每件商品的售价应为(D)A.18元B.20元C.22元D.24元5.某品牌钢笔进价为8元/支,按10元/支出售时每天能卖出20支.市场调查发现如果每支每涨价1元,每天就少卖出2支,为了每天获得最大利润,其售价应定为(D)A.11元/支B.12元/支C.13元/支D.14元/支6.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.经过调查发现,销售单价每降低5元,每天可多售出10件,下列说法错误的是(D)A.销售单价降低15元时,每天获得利润最大B.每天的最大利润为1250元C.若销售单价降低10元,则每天的利润为1200元D.若每天的利润为1050元,则销售单价一定降低了5元7.某种商品的成本是120元,试销阶段每件商品的售价x(元)与产品的销售量y(件)满足当x=130时,y=70;当x=150时,y=50,且y是x的一次函数.设销售利润为S(元),为了获得最大的销售利润,每件产品的售价应定为(A)A.160元B.180元C.140元D.200元二、填空题8.某鞋帽专卖店销售一种绒帽,若这种帽子每天获利y (元)与销售单价x (元)满足关系y =-x 2+70x -800.要想获得最大利润,则销售单价应该定为 35 元.9.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团的人数每增加一人,每人的单价就降低10元.当一个旅行团的人数为 55 时,这个旅行社可以获得最大的营业额.10.某旅行社有100张床位,每张床位每晚收费10元时,客床可全部租出.若每张床位每晚收费提高2元,则减少10张床位的租出;若每张床位每晚收费再提高2元,则再减少10张床位的租出.以每次提高2元的这种方法变化下去,为了投资少而获利大,每张床位每晚的收费应提高 6 元.11.(中考·贺州)某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(20≤x ≤30,且x 为整数)出售,可卖出(30-x )件,若使利润最大,则每件商品的售价应为___25_____元. 12.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天销售量t (单位:件)与每件的销售价x (单位:元)可以看成是一次函数关系:t =-3x +204.(1)商场卖这种服装每天的销售利润y (单位:元)与每件的销售价x (单位:元)之间的函数解析式为_y =-3x 2+330x -8568_____________________;(2)商场要想每天获得最大销售利润,每件的销售价定为__55______元最合适,最大利润是___507_____元. 三、解答题13.某商场经调研得出某种商品每天的利润y (元)与销售单价x (元)之间满足关系y =-x 2+20x -75.(1)当销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元? (2)当销售单价为多少元时,该种商品每天的销售利润为21元? 解:(1)∵y =-x 2+20x -75=-(x -10)2+25, ∴当x =10时,y 最大=25,∴最大利润是25元.(2)当y =21时,得-x 2+20x -75=21,解得x 1=8,x 2=12,∴当销售单价为8元或12元时,该种商品每天的销售利润为21元.14.(2020·宿迁)某超市经销一种商品,每千克成本为50元.经试销发现,该种商品每天销售量y (千克)与销售单价x (元/千克)满足一次函数关系,其每天销售单价、销售量的四组对应值如下表所示:(1)求y (千克)与x (元/千克)之间的函数解析式.解:设y =kx +b ,则⎩⎨⎧55k +b =70,60k +b =60,解得⎩⎨⎧k =-2,b =180.∴y (千克)与x (元/千克)之间的函数解析式为y =-2x +180.(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?解:由题意得(x -50)(-2x +180)=600, 整理,得x 2-140x +4 800=0, 解得x 1=60,x 2=80.答:该天的销售单价应定为60元/千克或80元/千克.(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少? 解:设当天的销售利润为w 元,则w =(x -50)(-2x +180)=-2(x -70)2+800. ∵-2<0,∴当x =70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元. 15.(2020·辽阳)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中10≤x ≤15,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶. (1)求y 与x 之间的函数关系式;解:设y 与x 之间的函数关系式为y =kx +b (k ≠0).根据题意,得⎩⎨⎧12k +b =90,14k +b =80,解得⎩⎨⎧k =-5,b =150.∴y 与x 之间的函数关系式为y =-5x +150.(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元? 解:根据题意,得w =(x -10)(-5x +150)=-5(x -20)2+500. ∵a =-5<0,∴抛物线开口向下,w 有最大值. ∴当x <20时,w 随着x 的增大而增大. ∵10≤x ≤15且x 为整数, ∴当x =15时,w 有最大值,w最大值=-5×(15-20)2+500=375.答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗手液每天销售利润最大,最大利润是375元.16.(2020·青岛)某公司生产A 型活动板房成本是每个425元.图①表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD =4 m ,宽AB =3 m ,抛物线的最高点E 到BC 的距离为4 m.(1)按如图①所示的直角坐标系,抛物线可以用y =kx 2+m (k ≠0)表示,求该抛物线的函数解析式.解:∵长方形的长AD =4 m ,宽AB =3 m ,抛物线的最高点E 到BC 的距离为4 m ,∴OH =AB =3 m ,D (2,0).∴EO =EH -OH =4-3=1(m). ∴E (0,1). ∴该抛物线的函数解析式为y =kx 2+1, 把点D (2,0)的坐标代入,得k =-14. ∴该抛物线的函数解析式为y =-14x 2+1.(2)现将A 型活动板房改造为B 型活动板房.如图②,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元/m 2.已知GM =2 m ,求每个B 型活动板房的成本是多少(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本). 解:∵GM =2 m ,∴OM =OG =1 m.∴当x =1时,y =34. ∴N ⎝⎛⎭⎫1,34. ∴MN =34 m.∴S 长方形MNFG =MN ·GM =34×2=32(m 2). ∴32×50+425=500(元).答:每个B 型活动板房的成本是500元.(3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少? 解:根据题意,得w =(n -500)[100+20(650-n )10] =-2(n -600)2+20 000.∵每月最多能生产160个B 型活动板房, ∴100+20(650-n )10≤160,解得n ≥620. ∵-2<0,∴当n ≥620时,w 随n 的增大而减小. ∴当n =620时,w 有最大值19 200.答:公司将销售单价定为620元时,每月销售B 型活动板房所获利润最大,最大利润是19200元.17.茶叶是湖南省的主要经济作物之一.2021年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400元/千克,并根据历年的相关数据整理出第x 天(1≤x ≤15,且x 为整数)制茶成本(含采摘和加工)和制茶量的相关信息如表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本).(1)求出该茶厂第10天的收入;(2)设该茶厂第x天的收入为y(元),试求出y与x之间的函数关系式,并求出该茶厂第几天的收入最高?最高收入为多少元?解:(1)当x=10时,制茶成本为150+10x=250(元/千克),制茶量为40+4x=40+4×10=80(千克),该茶厂第10天的收入为(400-250)×80=12000(元).(2)根据题意得y=[400-(150+10x)]·(40+4x)=-40x2+600x+10000=-40(x-7.5)2+12250.∵a=-40<0,1≤x≤15,且x是正整数,∴x=7或8时,y取得最大值,最大值为12240.∴y与x之间的函数关系式为y=-40x2+600x+10000,该茶厂第7天和第8天的收入最高,最高为12240元.18.某服装批发市场销售一种衬衫,每件衬衫的进价为50元,规定每件售价不低于进价.经市场调查发现,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:(1)求出y与x之间的函数解析式.(不需要求自变量x的取值范围)(2)该批发市场每月想获利24000元,又想尽量给客户优惠,则该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?解:(1)y=-20x+2600.(2)由题意得(x-50)(-20x+2600)=24000,解得x1=70,x2=110.∵要尽量给客户优惠,∴这种衬衫应定价为70元/件.(3)由题意得w=(x-50)(-20x+2600)=-20(x-90)2+32000.∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价,∴50≤x,(x-50)≤50×30%,解得50≤x≤65,∴当x=65时,w取得最大值,此时w=19500.答:售价定为65元可获得最大利润,最大利润是19500元.19.某公司在甲、乙两地同时销售某种品牌的汽车,已知在甲地的总销售利润y(单位:万元)与销售量x2+10x,在乙地每销售一辆汽车可获得2万元的销售利润.若该公司在甲、x(单位:辆)之间满足y=-12乙两地共销售30辆该品牌的汽车,甲、乙两地总的销售利润为W万元,其中在甲地销售x辆.(1)求W与x的函数关系式.(2)甲、乙两地各销售多少辆车时W最大?W的最大值是多少?(3)为了开拓甲地市场,公司规定甲地平均每辆汽车的销售利润不高于2万元,那么公司销售这30辆汽车可获得的最大销售利润是多少?解:(1)W=-12x2+10x+2(30-x)=-12x2+8x+60.(2)W=-12x2+8x+60=-12(x-8)2+92,∵a=-12<0,∴当x=8时,W取最大值92,此时30-x=22,∴在甲地销售8辆车,在乙地销售22辆车时W最大,W的最大值是92.(3)甲地每辆车的平均销售利润为(-12x2+10x)÷x=-12x+10,∴-12x+10≤2,解得x≥16.∵W=-12(x-8)2+92,a=-12<0,∴当x≥16时,W随x的增大而减小,∴当x=16时,W最大,此时W=-12×(16-8)2+92=60,∴可获得的最大销售利润为60万元.20.小哲的姑妈经营一家花店,随着越来越多的人喜爱“多肉植物”,姑妈也打算销售“多肉植物”.小哲帮助姑妈针对某种“多肉植物”做了市场调查后,绘制了以下两张图表:(1)如果在三月份出售这种植物,单株获利1元;(2)请你运用所学知识,帮助姑妈求出在哪个月销售这种“多肉植物”,单株获利最大.(提示:单株获利=单株售价-单株成本)解:(2)设直线的解析式为y1=kx+b(k≠0),把点(3,5),(6,3)代入,得{5=3k+b,3=6k+b,解得{k=−23,b=7,∴直线的解析式为y1=-23x+7.设抛物线的解析式为y2=a(x-6)2+1, 把点(3,4)代入上式得4=a(3-6)2+1,解得a=13,∴抛物线的解析式为y2=13(x-6)2+1,∴y1-y2=-23x+7-13(x-6)2-1=-13(x-5)2+73.∵-13<0,∴x=5时,函数取得最大值,∴5月销售这种“多肉植物”,单株获利最大.。
人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案
人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案一. 教材分析人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时主要介绍了二次函数在实际问题中的应用。
这部分内容是对前面学习的二次函数知识的巩固和拓展,通过实际问题引导学生将理论知识和实际应用相结合,提高解决问题的能力。
教材通过丰富的例题和练习题,帮助学生掌握二次函数在实际问题中的运用方法。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步的了解。
但是,将二次函数应用于实际问题中,解决实际问题对学生来说还是一个挑战。
因此,在教学过程中,需要关注学生对知识的掌握程度,以及他们在解决实际问题时的思维方式和方法。
三. 教学目标1.了解二次函数在实际问题中的应用。
2.能够将实际问题转化为二次函数问题,利用二次函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.掌握二次函数在实际问题中的应用。
2.将实际问题转化为二次函数问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数在实际问题中的应用。
同时,运用讨论法、案例分析法等,激发学生的学习兴趣,提高学生的参与度。
六. 教学准备1.准备相关的实际问题案例。
2.准备PPT,展示二次函数在实际问题中的应用。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出本节课的主题,激发学生的兴趣。
例如:一个农场计划种植两种作物,种植面积一定的条件下,如何安排两种作物的种植面积,使得总收益最大?2.呈现(10分钟)呈现实际问题,引导学生认识到实际问题可以通过二次函数来解决。
通过PPT展示实际问题的图像,让学生观察和分析图像,理解二次函数在实际问题中的应用。
3.操练(10分钟)让学生分组讨论,尝试将实际问题转化为二次函数问题。
每组选择一个实际问题,分析问题中的变量关系,列出二次函数的表达式。
人教版九年级数学课时检测-商品利润最大问题
第1課時 商品利潤最大問題知識點1、二次函數常用來解決最優化的問題,這個問題實質是求函數的最大(小)值。
2、拋物線2(0)y ax bx c a =++≠的頂點是它的最高(低)點,當x=2b a - 時,二次函數有最大(小)值y=244ac b a -。
一、選擇題1、進入夏季後,某電器商場為減少庫存,對電熱取暖器連續進行兩次降價。
若設平均每次降價的百分率是x ,降價後的價格為y 元,原價為a 元,則y 與x 之間的函數關係式為( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店從廠家以每件21元的價格購進一批商品,該商品可以自行定價。
若每件商品的售價為x 元,則可賣處(350-10x)件商品。
商品所獲得的利潤y 元與售價x 的函數關係為( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某產品的進貨價格為90元,按100元一個售出時,能售500個,如果這種商品每漲價1元,其銷售量就減少10個,為了獲得最大利潤,其定價應定為( )A 、130元B 、120元C 、110元D 、100元4、小明在跳遠比賽中跳出了滿意的一跳,函數23.5 4.9h t t =-(t 單位s ,h 單位m )可用來描述她的重心的高度變化,則她從起跳後到重心處於最高位置時所用的時間是( )A 、0.71sB 、0.70sC 、0.63sD 、0.36s5、如圖,正△ABC 的邊長為3cm ,動點P 從點A 出發,以每秒1cm 的速度,沿A →B →C的方向運動,到達點C 時停止,設運動時間為x (秒),2y PC =,則y 關於x 的函數圖像大致為( )A B C D6、已知二次函數2(0)=++≠的圖像如圖所示,現有下列結論:①abc>0;y ax bx c a②24-<0;③c<4b;④a+b>0.則其中正確的結論的個數是()b acA、1B、2C、3D、47、如圖,已知:正方形ABCD邊長為1,E、F、G、H分別為各邊上的點,且AE=BF=CG=DH,設小正方形EFGH的面積為s,AE為x,則s關於x的函數圖象大致是()A B C D8、某廠有許多形狀為直角梯形的鐵皮邊角料,為節約資源,現要按圖中所示的方法從這些邊角料上截取矩形(陰影部分)片備用,當截取的矩形面積最大時,矩形兩邊長x、y應分別為()A、x=10,y=14B、x=14,y=10C、x=12,y=15D、x=15,y=12二、填空題1、已知賣出盒飯的盒數x(盒)與所獲利潤y(元)滿足關係式:21200357600=-+-,y x x則賣出盒飯數量為盒時,獲得最大利潤為元。
22.3 实际问题与二次函数(第一课时)(教学设计)九年级数学上册同步备课系列(人教版)
22.3 实际问题与二次函数(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级上册(以下统称“教材”)第二十二章“二次函数”22.3 实际问题与二次函数(第一课时),内容包括:利用二次函数解决抛掷问题与几何图形最值.2.内容解析二次函数是描述现实世界变量之间关系的重要数学模型,将实际问题中的变量关系转化为二次函数后,就可以利用二次函数的图象和性质加以解决,其关键是从实际问题中抽象出数学模型.本节课是在学生学习二次函数的图象和性质的基础上,借助于二次函数的图象研究二次函数的最小(大)值,并运用这个结论解决相关的实际问题.以现实生活为背景,通过对投掷、跳水、跳远、拱桥、隧道等抛物线的探究,建立合理的平面直角坐标系,利用待定系数法确定二次函数的表达式是解决此类问题的关键.通过探究矩形面积与矩形一边长两个变量之间的关系,让学生体会运用函数观点解决实际问题的作用,初步体验建立函数模型的过程和方法.基于以上分析,确定本节课的教学重点是:从实际问题中抽象出二次函数关系并运用二次函数的最小(大)值解决实际问题.二、目标和目标解析1.目标1)会求二次函数y =ax 2+bx +c 的最小(大)值.2)能够从实际问题中抽象出二次函数关系,并运用二次函数及性质解决最小(大)值等实际问题. 2.目标解析达成目标1)的标志是:学生会借助于二次函数的图象得到在二次函数顶点处取得最小(大)值的结论,理解当x =-2ba时,函数有最小(大)值244ac b a -.达成目标2)的标志是:学生通过经历探索具体问题中数量关系和变化规律的过程,进一步体验如何从实际问题中抽象出二次函数模型,结合实际问题研究二次函数,将二次函数的最小(大)值的结论和已有知识综合运用来解决实际问题.三、教学问题诊断分析学生已经学习了二次函数的定义、图象和性质,学习了列方程、不等式和函数解决实际问题,这为本节课的学习奠定了基础.但运用二次函数的知识解决实际问题要求学生能选取适当的用来描述变量之间关系的函数分析问题和解决问题,对学生来说,要完成这一过程难度较大.基于以上分析,本节课的教学难点是:将实际问题抽象出数学模型,并利用二次函数解决实际问题.四、教学过程设计(一)复习巩固[问题]通过配方,写出下列抛物线的开口方向、对称轴、顶点坐标、说出两个函数的最大值、最小值分别是多少?1)y=6x2+12x 2)y=-4x2+8x-10师生活动:教师提出问题,学生回答.【设计意图】复习回顾二次函数y=ax2+bx+c的图象特征和性质,为本节课学习利用二次函数解决抛掷问题与几何图形最值进行铺垫.(二)探究新知【问题】从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0≤t≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?师:这个问题研究的是哪两个变量之间的关系?生:小球运动的高度h和小球运动的时间t两个变量之间的关系.师:结合题目内容,你觉得小球的运动时间与小球的高度有什么样的关系?生:小球运动的高度随小球的运动时间的变化而变化.师:小球的运动时间是多少时,小球最高呢?生:结合已学二次函数知识回答问题.师生活动:教师引导学生,得出如下结论:画出函数的图像h=30t-5t2(0≤t≤6),可以看出这个函数图象是一条抛物线的一部分。
人教版九年级数学上册 22.3.2 最大利润问题 能力提升卷
人教版九年级数学上册22.3.2 最大利润问题能力提升卷一、选择题(共10小题,3*10=30)1.服装店将进价为100元的服装按x元出售,每天可销售(200-x)件,若想获得最大利润,则x应定为()A.150元B.160元C.170元D.180元2.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价.若每件商品售价为x元,则可卖出(350-10x)件商品,那么商品所赚钱y元与售价x元之间的函数关系式为()A.y=-10x2-560x+7 350B.y=-10x2+560x-7 350C.y=-10x2+350xD.y=-10x2+350x-7 3503.某工厂2019年产品的产量为100吨,该产品产量的年平均增长率为x(x>0),设2021年该产品的产量为y吨,则y关于x的函数解析式为()A.y=100(1-x)2B.y=100(1+x)2C.y=100(1+x)2D.y=100+100(1+x)+100(1+x)24.出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,为了使一天出售该种手工艺品的总利润y(元)最大,则x的值为()A.4 B.5C.6 D.85.某商店销售皮鞋,已知所获利润y(元)与销售单价x(元)之间的关系式为y=-x2+24x+2 956,则获利最多为()A.3 144元B.3 100元C.144元D.2 956元的关系满足y=-2(x-20)2+1 558,由于某种原因,每件销售价x(单位:元)满足15≤x≤22,那么一周可获得的最大利润是()A.20元B.1 508元C.1 550元D.1 558元7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,其一年中获得的利润y和月份n之间的函数关系式为y=-n2+14n-24,则该企业一年中应停产的月份是()A.1月、2月、3月B.2月、3月、4月C.1月、2月、12月D.1月、11月、12月8.某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.要使销售该纪念品每天获得的利润y最大,每件的销售价x为()A.50元B.55元C.60元D.65元9.为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,若使合作社每天获利最大,房价定为()A.100元B.110元C.120元D.150元10.某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k月份n(月)12成本y(万元/件)1112需求量x(件/月)120100在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,则m为()A.3或9 B.2或10C.1或11 D.-1或12二.填空题(共8小题,3*8=24)11.某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售量单价是_______元/件,才能在半月内获得最大利润.12. 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41(万元).每年最多可投入100万元的销售投资,则5年所获利润的最大值是万元.13.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.14.某商场以每件42元的价钱购进一种服装,根据试销得知这种服装每天销售量t(单位:件)与每件的销售价x(单位:元)可以看成是一次函数关系:t=-3x+204. 商场要想每天获得最大销售利润,每件的销售价定为________元最合适,最大利润是________元.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30-x)件,若使利润最大,则每件商品的售价应为________元.16.某果园有90棵橘子树,平均每棵树结520个橘子.根据经验估计,每多种一棵橘子树,平均每棵树就会少结4个橘子.设果园里增种x棵橘子树,所结橘子总个数为y个,则果园里增种________棵橘子树时,所结橘子总个数最多.17.将进货价为70元/件的某种商品按零售价100元/件出售时每天能卖出20件,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1件.为了获得最大利润决定降价x元,则每日的利润y=___________ ,所以每件降价___元时,每日获得的利润最大为_______元.18.某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元)的关系满足:y=-2x+400;①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2 600元;④销售这种文化衫的月利润最大为9 000元.其中正确的是_________(把所有正确结论的序号都填上).三.解答题(共7小题,66分)19.(8分) 某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?20.(8分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为_________件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.21.(8分) 某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?22.(10分) 某商店经营一种小商品,进价为每件20元,根据市场分析,在一个月内,当每件的售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为每件30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的利润最大?最大利润是多少元?23.(10分)某商店销售一款进价为每件40元的护肤品,调查发现,销售单价不低于40元且不高于80元时,该商品的日销售量y(件)与销售单价x(元)之间存在一次函数关系,当销售单价为44元时,日销售量为72件;当销售单价为48元时,日销售量为64件.(1)求y与x之间的函数关系式.(2)设该护肤品的日销售利润为W(元),当销售单价为多少时,日销售利润最大,最大日销售利润是多少?24.(10分)世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?25.(12分) 我市某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为x元/件(x≥6,且x是按0.5元的倍数上涨),当天销售利润为y元.(1)求y与x的函数关系式(不要求写出自变量的取值范围).(2)要使当天销售利润不低于240元,求当天销售单价所在的范围.(3)若每件文具的利润不超过80%,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.参考答案1-5 ABBAB 6-10DCBCC11. 3512. 20513. 2214. 55,50715. 2516. 2017. -x2+10x+600,5,62518. ①②③19. 解:(1)由题意得y=(80+x)(384-4x)=-4x2+64x+30720.(2)∵y=-4x2+64x+30720=-4(x-8)2+30976,∴当x=8时,y有最大值,为30976.即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.20. 解:(1)由题意得:200-10×(52-50)=200-20=180(件),故答案为:180(2)由题意得:y=(x-40)[200-10(x-50)]y=-10x2+1100x-28000y=-10(x-55)2+2250,∴每件销售价为55元时,获得最大利润;最大利润为2250元21. 解:(1)y=10x+60(1≤x≤12,且x为整数).(2)设每月销售利润为w元.根据题意,得w=(36-x-24)(10x+60),整理,得w=-10x2+60x+720=-10(x-3)2+810.∵-10<0,且1≤x≤12,∴当x=3时,w有最大值,最大值是810.∴36-3=33.答:当定价为33元/箱时,每月销售牛奶的利润最大,最大利润是810元.22. 解:(1) (30-20)×[105-5×(30-25)]=800(元).(2)设当售价为每件x 元时,一个月的利润为y 元.由题意,得y =(x -20)[105-5(x -25)]=-5x 2+330x -4 600=-5(x -33)2+845,当x =33时,y 有最大值,最大值为845.故当售价定为每件33元时,一个月的利润最大,最大利润是845元.23. 解:(1)设y 与x 的函数关系式为y =kx +b(k≠0),由题意得⎩⎪⎨⎪⎧44k +b =72,48k +b =64,解得⎩⎪⎨⎪⎧k =-2,b =160, 所以y 与x 之间的函数关系式是y =-2x +160(40≤x≤80).(2)由题意得,W 与x 的函数关系式为W =(x -40)(-2x +160)=-2x 2+240x -6 400=-2(x -60)2+800,当x =60时,W 最大,是800,所以当销售单价为60元时,日销售利润最大,最大日销售利润是800元.24. 解:(1)y =300-10(x -44),即y =-10x +740(44≤x≤52)(2)根据题意得(x -40)(-10x +740)=2400,解得x 1=50,x 2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元(3)w =(x -40)(-10x +740)=-10x 2+1140x -29600=-10(x -57)2+2890,当x <57时,w 随x 的增大而增大,而44≤x≤52,所以当x =52时,w 有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w 元最大,最大利润是2640元25. 解:(1)y =(x -5)⎝⎛⎭⎫100-x -60.5×5=-10x 2+210x -800, 故y 与x 的函数关系式为y =-10x 2+210x -800.(2)要使当天销售利润不低于240元,则y≥240.令-10x 2+210x -800=240,解得x 1=8,x 2=13.∵-10<0,∴抛物线的开口向下.∴当天销售单价所在的范围为8≤x≤13.(3)∵每件文具的利润不超过80%,∴x -5≤0.8,解得x≤9.由(1)得y=-10x2+210x-800=-10(x-10.5)2+302.5,∵对称轴为直线x=10.5,且抛物线开口向下,∴当x=9时,y取得最大值,此时y=280.答:要想当天获得利润最大,每件文具售价为9元,最大利润为280元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时 商品利润最大问题知识点1、二次函数常用来解决最优化的问题,这个问题实质是求函数的最大(小)值。
2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a - 时,二次函数有最大(小)值y=244ac b a-。
一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。
若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。
若每件商品的售价为x 元,则可卖处(350-10x)件商品。
商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.54.9h t t =-(t 单位s ,h 单位m )可用来描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是( )A 、0.71sB 、0.70sC 、0.63sD 、0.36s5、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x (秒),2y PC =,则y 关于x 的函数图像大致为( )A B C D6、已知二次函数2(0)y ax bx c a =++≠的图像如图所示,现有下列结论:①abc >0;②24b ac -<0;③c <4b ;④a+b >0.则其中正确的结论的个数是( )A 、1B 、2C 、3D 、47、如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点,且AE=BF=CG=DH ,设小正方形EFGH的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )A B C D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )A 、x=10,y=14B 、x=14,y=10C 、x=12,y=15D 、x=15,y=12二、填空题1、已知卖出盒饭的盒数x (盒)与所获利润y (元)满足关系式:21200357600y x x =-+-,则卖出盒饭数量为 盒时,获得最大利润为 元。
2、人民币存款一年期的年利率为x ,一年到期后,银行会将本金和利息自动按一年期定期存款储蓄转存。
如果存款额是a 元,那么两年后的本息和y 元的表达式为 (不考虑利息税)。
11、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。
为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施。
经调查发现:若这种衬衫每降价2元,商场平均每天可多售出4件,则商场降价后每天的盈利y (元)与降价x (元)的函数关系式 。
3、已知正方形ABCD 的边长是1,E 为CD 边的中点,P 为正方形ABCD 边上的一个动点,动点P 从点A 出发,沿A →B →C →E 运动,到达E 点.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,则当13y =时,x 的值= .4、如图,抛物线y=ax2-4和y=-ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a的值为14、如图,点P在抛物线y=x2-4x+3上运动,若以P为圆心,为半径的⊙P与x轴相切,则点P的坐标为。
5、如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB向B以2mm/s 的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.三、解答题1、某旅馆有30个房间供旅客住宿。
据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元/天,就会有一个房间空闲。
该旅馆对旅客住宿的房间每间要支出各种费用20元/天(没住宿的不支出)。
当房价定为每天多少时,该旅馆的利润最大?2、最近,某市出台了一系列“三农”优惠政策,使农民收入大幅度增加。
某农户生产经销一种农副产品,已知这种产品的成本价为20元每千克。
经市场调查发现,该产品每天的销售量w (千克)与销售量x (元)有如下的关系:w=-2x+80。
设这种产品每天的销售利润为y (元)。
(1)求y 与x 之间的函数关系式;(2)当销售价定为多少元每千克时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元每千克,该农户想要每天获得150元的销售利润,销售价应定为多少?3、与某雪糕厂由于季节性因素,一年之中产品销售有淡季和旺季,当某月产品无利润时就停产。
经调查分析,该厂每月获得的利润y (万元)和月份x 之间满足函数关系式2y x ax b =-++,已知3月份、4月份的利润分别是9万元、16万元。
问(1)该厂每月获得的利润y (万元)和月份x 之间的函数关系式;(2)该厂在第几个月份获得最大利润?最大利润为多少?(3)该厂一年中应停产的是哪几个月份?通过计算说明。
4、(黄冈)某技术开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买这种新型产品,公司决定商家一次性购买这种新型产品不超过10件时,每件按3000元销售;若一次性购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元。
(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x 件,开发公司所获得的利润为y 元,求y (元)与x (元)之间的函数关系式,并写出自变量的取值范围;(3)该公司的销售人员发现:当商家一次性购买产品的件数超过某一数量时,,会出现随着一次购买数量的增多,公司所获的利润反而减少这一情况。
为使商家一次购买的数量越来越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)5、(长沙)在长株潭建设两型社会的过程中。
为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工。
已知生产这种产品的成本价为每件20元。
经过市场调查发现,该产品的销售单价定为25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:40(2530)250.5(3035)x xyx x-≤≤⎧=⎨-≤⎩<。
(年获利=年销售收入-生产成本-投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(件)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分是10万元的固定捐款;另一部分则是每销售一件产品,就抽出一元作为捐款。
若出去第一年的最大获利(或是最小亏损)以及第二年的捐款后,到第二年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的单位。
(选作)参考答案选择题1、D 2、B 3、B 4、D 5、D 6、B 7、B 8、D二.填空题 1、600 240000 2、()21y a x =+ 3、226080y x x =-++ 4、2533或 5、0.16 6、(-2,1)()2+()2 7、3三.解答题1、解:设每天的房价为60+5x 元,则有x 个房间空闲,已住宿了30-x 个房间.∴度假村的利润y=(30-x )(60+5x )-20(30-x ),其中0≤x ≤30.∴y=(30-x )•5•(8+x )=5(240+22x-x2)=-5(x-11)2+1805.因此,当x=11时,y 取得最大值1805元,即每天房价定为115元∕间时,度假村的利润最大。
2、解:(1)y=(x-20)w=(x-20)(-2x+80)=-2x2+120x-1600,∴y 与x 的函数关系式为:y=-2x2+120x-1600;(3分)(2)y=-2x2+120x-1600=-2(x-30)2+200,∴当x=30时,y 有最大值200,∴当销售价定为30元/千克时,每天可获最大销售利润200元;(6分)(3)当y=150时,可得方程:-2(x-30)2+200=150,解这个方程,得x1=25,x2=35,(8分)根据题意,x2=35不合题意,应舍去,∴当销售价定为25元/千克时,该农户每天可获得销售利润150元.3、解:(1)把点(3,9),(4,16)代入函数关系式:99316164a b a b =-++⎧⎨=-++⎩解得:1424a b =⎧⎨=-⎩∴y=-x2+14x-24(2)当1472(1)x =-=⨯-时,=25y 最大∴7月份获得最大利润,最大利润是25万元.x2-14x+24=0解得:x1=2,x2=12.所以第二月和第十二月份无利润,根据二次函数的性质,第一月份的利润为负数,因此一年中应停产的是第一月份,第二月份和第十二月份.4、解:(1)设件数为x,依题意,得3000-10(x-10)=2600,解得x=50,答:商家一次购买这种产品50件时,销售单价恰好为2600元;(2)当0≤x≤10时,y=(3000-2400)x=600x,当10<x≤50时,y=[3000-10(x-10)-2400]x,即y=-10x2+700x当x>50时,y=(2600-2400)x=200x∴y=⎧⎪⎨⎪⎩600x(0≤x≤10,且x为整数)−10x2+700x(10<x≤50,且x为整数)200x(x>50,且x为整数)(3)由y=-10x2+700x可知抛物线开口向下,当x=35时,利润y有最大值,此时,销售单价为3000-10(x-10)=2750元,答:公司应将最低销售单价调整为2750元.5、解:(1)∵25<28<30,y=⎧⎨⎩40−x(25≤x≤30)25−0.5x(30<x≤35)∴把x=28代入y=40-x得,∴y=12(万件),答:当销售单价定为28元时,该产品的年销售量为12万件;(2)①当25≤x≤30时,W=(40-x)(x-20)-25-100=-x2+60x-925=-(x-30)2-25,故当x=30时,W最大为-25,即公司最少亏损25万;②当30<x≤35时,W=(25-0.5x)(x-20)-25-100=21356252x x-+-=21(35)12.52x---故当x=35时,W最大为-12.5,即公司最少亏损12.5万;对比①,②得,投资的第一年,公司亏损,最少亏损是12.5万;答:投资的第一年,公司亏损,最少亏损是12.5万;(3)①当25≤x≤30时,W=(40-x)(x-20-1)-12.5-10=-x2+61x-862.5≥67.5,-x2+61x-862.5≥67.5,化简得:x2-61x+930≤0解得:30≤x≤31,当两年的总盈利不低于67.5万元时,x=30;②当30<x≤35时,W=(25-0.5x)(x-20-1)-12.5-10=2135.5547.567.5 2x x-+-≥化简得:x2-71x+1230≤0当两年的总盈利不低于67.5万元时,30≤x≤35,答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x≤35.。