冀教版八年级数学上册期末试卷及答案
冀教版八年级数学上册期末考试(带答案)

冀教版八年级数学上册期末考试(带答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线y€2x-3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A.y二2x—4B.y=2x,4C.y=2x+2D.y=2x—22.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,贝0m+n的值是()A.-5B.-3C.3D.13.函数y€x—2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限m—24.已知关于x的分式方程字=1的解是负数,则m的取值范围是()x+1A.mW3B.mW3且mH2C.mV3D.mV3且mH25.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.1.2x109个B.12x109个C.1.2x1010个D.1.2x1011个…x€2,ax+by=7,6.已知…1是二元一次方程组{j[的解,则a—b的值为()[y€1ax—by=1A.-1B.1C.2D.37.如图,ZB=ZC=90°,M是BC的中点,DM平分ZADC,且ZADC=110°,则ZMAB=()A.30B.35C.45D.608. 如图,AABC 中,ABC 的角平分线,BEABC 的高,ZC=70°,ZABC=48°,那么上3是()A.59°B.60°9. 如图,菱形ABCD 的周长为28,则OE 的长等于()A.2B.3.5C.56°D.22° 对角线AC ,BD 交于点O,E 为AD 的中点, C.7D.10. 如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PNA.1B.1C.J2D.22二、填空题(本大题共6小题,每小题3分,共18分)1. 如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a- b|+J (a +b )2的结果是.11事ba {)2•计算空27飞*,.3. 分解因式:2x 3-6x 2+4x 二.4. 在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a,b ,c ,正放置的四个正方形的面积依次是S,S,S,S ,则S12341和为cm.三、解答题(本大题共6小题, 共72分)(1)(2) x 一216 x ,2x 2一45. 如图,OP 平分ZMON,PE 丄OM 于点E,PF 丄ON 于点F,OA=OB ,则图中有 对全等三角形.6. 如图,在RtAABC 中,ZACB=90°,AC=5cm,BC=12cm,将△ABC 绕点B 顺时针旋转60°,得到△BDE,连接DC 交AB 于点卩,则厶ACF 与的周长之1•解方程:2. 先化简,再求值:+s+s+s=2343—xk3. 已知关于x 的分式方程——-+1二(——1--2)的解为非负数,求k 的取值范x ,1(x ,1)(x 一2) 围.4. 如图,直线y 二kx+6分别与x 轴、y 轴交于点E,F,已知点E 的坐标为(- 8,0),点A 的坐标为(-6,0).(1) 求k 的值;(2) 若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出厶 OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3) 探究:当点P 运动到什么位置时,AOPA 的面积为',并说明理由.B5•如图,有一个直角三角形纸片,两直角边AC €6cm,BC =8cm,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.某公司计划购买A,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、D5、C6、A7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-2b头32、33、2x(x-1)(x-2).4、a+c5、36、42.三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解3_2、x,爲3、k€-8且k,.4、(1)k」;(2)AOPA的面积S=x+18(-8VxV0);(3)点P坐标为十4(-■:,)或(-二-:)时,三角形OPA的面积为5、CD的长为3cm.6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。
冀教版八年级数学上册期末考试(及答案)

冀教版八年级数学上册期末考试(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.化简x1x-,正确的是()A.x-B.x C.﹣x-D.﹣x5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A .30°B .35°C .45°D .60°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。
冀教版八年级上册数学期末考试试题及答案

冀教版八年级上册数学期末考试试卷一、单选题1x 的取值范围是( )A .x >2B .x <2C .x≥2D .x≤22.下列计算正确的是( )A B C =6 D 4 3.若分式242x x -+的值为0,则x 的值为( ) A .-2 B .0 C .2 D .±24.-64( )A .-2或2B .-2或-6C .-4+或-4-D .05.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .6.若a ,b 均为正整数,且a >b <+a b 的最小值是( )A .3B .4C .5D .6 7.分式方程52=x+3x 的解是( ) A .x=2B .x=1C .x=12D .x=-2 8.已知2221x M x y x y ÷=--,则M 等于( ) A .xx y 2 B .2x y x + C .2x x y - D .2x y x- 9.下列命题:①两个周长相等的三角形是全等三角形;②两个周长相等的直角三角形是全等三角形;③两个周长相等的等腰三角形是全等三角形;④两个周长相等的等边三角形是全等三角形.其中,真命题有( )A .1个B .2个C .3个D .4个10.一等腰三角形的两边长x 、y 满23x y -=足方程组23328x y x y -=⎧⎨+=⎩则此等腰三角形的周长为 ( )A .5B .4C .3D .5或411.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A′B′C′的位置后,再沿CB 方向向左平移,使点B′落在原三角板ABC 的斜边AB 上,则三角板A′B′C′平移的距离为( )A .6 cmB .4 cmC .(6-cmD .6)cm12.下列性质中,等腰三角形具有而直角三角形不一定具有的是 ( )A .两边之和大于第三边B .有一个角的平分线垂直于这个角的对边C .有两个锐角的和等于90°D .内角和等于180°13.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 14.如图,△ABC 和△DCE 都是边长为3的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 长( )A B .C .D .15.在△ABC 中,AB =AC =13,BC =10,点D 为BC 的中点,DE ⊥AB ,垂足为点E ,则DE 等于( )A .1013B .1513C .6013D .751316.如图,将长方形ABCD 对折,得折痕PQ ,展开后再沿MN 翻折,使点C 恰好落在折痕PQ 上的点C′处,点D 落在D′处,其中M 是BC 的中点且MN 与折痕PQ 交于F ,连接AC′,BC′,则图中共有等腰三角形的个数是( )A .1B .2C .3D .4二、填空题17________. 18.如图所示,由四个全等的直角三角形拼成的图中,直角边长分别为2,3,则大正方形的面积为________,小正方形的面积为________.19.如图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,,则图中阴影部分的面积等于________.20.如图所示,在边长为2的等边三角形ABC 中,G 为BC 的中点,D 为AG 的中点,过点D 作EF ∥BC 交AB 于E ,交AC 于F ,P 是线段EF 上一个动点,连接BP ,GP ,则△BPG的周长的最小值是________.三、解答题21.先化简,再求值: (1)211()1211x x x x x x ++÷--+-,其中x ;(2)2+21a a -÷(1)a ++22121a a a --+,其中a 1. 22.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE ≌DCE ;(2)当∠AEB=50°,求∠EBC 的度数.23.如图的等边三角形ABC 是学校的一块空地,为美化校园,决定把这块空地分为全等的三部分,分别种植不同的花草.现有两种划分方案:(1)分为三个全等的三角形;(2)分为三个全等的四边形.你认为这两种方案能实现吗?若能,画图说明你的划分方法.24.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍价格销售,剩下的小苹果以高于进价10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其它成本不计).问:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.25.课外兴趣小组活动时,老师出示了如下问题:如图①,已知在四边形ABCD 中,AC 平分∠DAB ,∠DAB =60°,∠B 与∠D 互补,求证:AB +AD .小敏反复探索,不得其解.她想,可先将四边形ABCD 特殊化,再进一步解决该问题.(1)由特殊情况入手,添加条件:“∠B =∠D”,如图②,可证AB +AD .请你完成此证明.(2)受到(1)的启发,在原问题中,添加辅助线:过C点分别作AB,AD的垂线,垂足分别为点E,F,如图③.请你补全证明过程.参考答案1.C【分析】二次根式的性质:被开方数大于等于0.【详解】根据题意,得2x-4≥0,解得,x≥2.故选C.【点睛】本题考查了二次根式有意义的条件.二次根式的被开方数是非负数.2.B【分析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.【详解】解:A A选项不正确;B B选项正确;C C选项不正确;D,所以D选项不正确.故选B.【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.3.C【详解】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C.4.C【分析】先依据立方根的性质得到-64的立方根-4,然后再求得平方根,最后相加即可.【详解】解:-64的立方根是-4.,8的平方根是±,所以-644+4-故选C.【点睛】本题主要考查的是立方根、平方根的性质,熟练掌握相关知识是解题的关键.5.D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,也是中心对称图形,故A选项不合题意;B、是轴对称图形,不是中心对称图形,故B选项不合题意;C、是轴对称图形,也是中心对称图形.故C选项不合题意;D、不是轴对称图形,也不是中心对称图形,故D选项符合题意;故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.6.B【解析】【分析】a、b的最小值,即可计算a+b的最小值.【详解】∴23.∵a a为正整数,∴a的最小值为3.∴12.∵b b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故选B.【点睛】本题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.7.A【分析】首先去掉分母,观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可.【详解】解:去分母,得5x=2(x+3),解得x=2.经检验,x=2是原方程的解.故选A.【详解】 试题解析:试题解析:()()222122.1x x x y x M x y x y x y x y x y-=÷=⋅=--+-+ 故选A.9.A【分析】根据全等三角形的判定方法依次分析各选项即可做出判断.【详解】解:A .周长相等的锐角三角形的对应角不一定相等,对应边也不一定相等,假命题; B .周长相等的直角三角形对应锐角不一定相等,对应边也不一定相等,假命题; C .周长相等的等腰三角形对应角不一定相等,对应边也不一定相等,假命题;D .两个周长相等的等边三角形的对应角一定相等,都是60°,对应边也一定相等,真命题. 真命题共1个.故选A .【点睛】本题考查了三角形判定定理的运用,命题与定理的概念.关键是掌握三角形判定定理. 10.A【分析】先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案.【详解】 解:解方程组23328x y x y -=⎧⎨+=⎩,得21x y =⎧⎨=⎩, 所以等腰三角形的两边长为2,1.若腰长为1,底边长为2,由112+=知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以,这个等腰三角形的周长为5.故选:A .【点睛】本题考查了等腰三角形的性质及解二元一次方程组,难度一般,关键是掌握分类讨论的思想11.C【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.【详解】解:∵AB=12cm,∠A=30°,∴BC=12AB=12×12=6cm,由勾股定理得,,∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′,∴B′C′=BC=6cm,∴AB′=AC-,过点B′作B′D⊥AC交AB于D,则()=(cm.故选C.【点睛】本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.12.B【详解】解:A、对于任意一个三角形都有两边之和大于第三边,不符合题意;B、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,符合题意;C、只有直角三角形才有两个锐角的和等于90°,不符合题意;D、对于任意一个三角形都有内角和等于180°,不符合题意.故选B.13.C【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.【详解】∵|a|>|c|>|b|,∴点A到原点的距离最大,点C其次,点B最小,又∵AB=BC,∴原点O的位置是在点B、C之间且靠近点B的地方.故选:C.【点睛】此题考查了实数与数轴,理解绝对值的定义是解题的关键.14.C【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【详解】解:∵△ABC和△DCE都是边长为3的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=3.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴=故选:C.【点睛】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.15.C【解析】可用面积相等求出DE 的长,知道三边的长,可求出BC 边上的高,连接AD ,△ABC 的面积是△ABD 面积的2倍.解:连接AD ,∵AB=AC ,D 是BC 的中点,∴AD ⊥BC ,BD=CD=12×10=5∴AD=2−52.∵△ABC 的面积是△ABD 面积的2倍.∴2•12AB•DE=12•BC•AD , DE=10×122×13=6013.故选C .16.C【分析】根据翻折,平行及轴对称的知识找到所有等腰三角形的个数即可.【详解】解:∵C′在折痕PQ 上,∴AC′=BC′,∴△AC′B 是等腰三角形;∵M 是BC 的中点,∴BM=MC′,∴△BMC′是等腰三角形;由翻折可得∠CMF=∠C′MF ,∵PQ ∥BC ,∴∠PFM=∠CMF ,∴∠C′MF=∠PFM ,∴C′M=C′F ,∴△C′MF是等腰三角形,∴共有3个等腰三角形,故选C.【点睛】考查由翻折问题得到的等腰三角形的判定;综合运用所学知识得到等腰三角形的个数是解决本题的关键.17.【分析】先把各根式化为最简二次根式,再合并同类项即可.【详解】解故答案为:.【点睛】本题考查的是二次根式的加减法,熟知二次根式的加减实质上是合并同类项是解答此题的关键.18.13, 1【分析】根据条件可算出大正方形的面积为每个直角三角形斜边的平方,小正方形的边长为两条直角边的差,因此两条直角边的差的平方为小正方形的面积.【详解】解:根据勾股定理,每个直角三角形的斜边长的平方为22+32=13,即大正方形的面积为13.观察图形可知小正方形的边长为1,则小正方形的面积为1.故答案为:13;1.【点睛】本题考查了正方形的性质、勾股定理的证明图形;大正方形的面积可通过几个图形的面积之和求得.19【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=12BC=1,,进而求出阴影部分的面积. 【详解】解:∵△ABC 绕点A 顺时针旋转45°得到△A′B′C′,∠BAC=90°, ∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD ⊥BC ,B′C′⊥AB ,∴AD=12BC=1,,∴图中阴影部分的面积等于:S △AFC′﹣S △DEC′=12×1×1﹣12×1)2﹣1.1.【点睛】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD ,AF ,DC′的长是解题关键.20.3【分析】由于点G 关于直线EF 的对称点是A ,所以当B 、P 、A 三点在同一直线上时,BP+PG 的值最小,此时△BPG 的周长的最小.【详解】解:由题意得AG ⊥BC ,点G 与点A 关于直线EF 对称,连接PA ,则BP +PG =BP +PA ,所以当点A ,B ,P 在一条直线上时,BP +PA 的值最小,最小值为2.由题可得BG =1,因为△BPG 的周长为BG +PG +BP ,所以当BP +PA 的值最小时,△BPG 的周长最小,最小值是3.故答案为:3.【点睛】此题考查了线路最短的问题,确定动点为何位置时,使PC+PD 的值最小是关键.21.(1) 【分析】(1)先化简原式的值,然后将x 的值代入原式即可求出答案.(2)先根据分式的混合运算顺序和运算法则化简原式,再把a 的值代入计算可得.【详解】 解:(1)2111211x x x x x x +⎛⎫+÷ ⎪--+-⎝⎭)=()()()21111x x x -++-·x 1x -=()22x 1x -·1x x-=1x x -.当x =2 (2)2+21a a -÷()1a ++22121a a a --+=()2a 11a +-·1+1a +()()()2a 1a-11a +-=2-1a +11a a +-=31a a +-.当a 1. 【点睛】本题考查分式的化简求值,解题的关键熟练运用分式的运算法则和因式分解,熟练掌握分式混合运算顺序和运算法则.本题属于基础题型.22.见解析(2)∠EBC=25°【分析】(1)根据AAS 即可推出△ABE 和△DCE 全等.(2)根据三角形全等得出EB=EC ,推出∠EBC=∠ECB ,根据三角形的外角性质得出∠AEB=2∠EBC ,代入求出即可【详解】解(1)证明:∵在△ABE 和△DCE 中,A D{AEB DEC AB DC∠=∠∠=∠=,∴△ABE ≌△DCE (AAS )(2)∵△ABE ≌△DCE ,∴BE=EC ,∴∠EBC=∠ECB ,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°23.(1)见解析;(2)见解析.【分析】(1)三角形的中线把三角形的面积分成相等的两个三角形, 画△ABC 的两条中线,即可找出;(2)还是画△ABC 的两条中线,能够找出三个全等的四边形.【详解】解:能.划分方法如下:(1)画△ABC 的中线AD ,BE ,两条中线相交于O 点,连接OC ,则△ABO ,△BCO ,△ACO 为三个全等的三角形,如图①所示.(2)画△ABC 的中线AD ,BE ,两条中线相交于O 点,连接CO 并延长交AB 于点F ,则四边形AEOF ,四边形BDOF ,四边形CDOE 为三个全等的四边形,如图②所示.(答案不唯一)【点睛】本题考查等边三角形的性质.解答本题的关键是熟练掌握等底同高的三角形面积相等,等边三角形三线合一.24.(1) 苹果进价为每千克5元;(2) 甲超市销售方式更合算.【分析】(1)先设苹果进价为每千克x 元,根据两超市将苹果全部售完,其中甲超市获利2100元列出方程,求出x 的值,再进行检验即可求出答案.(2)根据(1)求出每个超市苹果总量,再根据大、小苹果售价分别为10元和5.5元,求出乙超市获利,再与甲超市获利2100元相比较即可.【详解】解:(1)设苹果进价为每千克x 元,根据题意得:3000400x 10%x 4002100x+-=(), 解得:x=5,经检验x=5是原方程的解,答:苹果进价为每千克5元.(2)由(1)得,每个超市苹果总量为:30005=600(千克), ∵大、小苹果售价分别为10元和5.5元,∴乙超市获利10 5.5600516502+⨯-=()(元). 又∵甲超市获利2100元,∴甲超市销售方式更合算.25.(1)见解析;(2)见解析.【分析】(1)如果:“∠B=∠D”,根据∠B 与∠D 互补,那么∠B=∠D=90°,又因为∠DAC=∠BAC=30°,因此我们可在直角三角形ADC 和ABC 中得出,那么. (2)按(1)的思路,作好辅助线后,我们只要证明三角形CFD 和BCD 全等即可得到(1)的条件.根据AAS 可证两三角形全等,DF=BE .然后按照(1)的解法进行计算即可.【详解】(1)证明:∵∠B =∠D =90°,AC 平分∠DAB ,∠DAB =60°,∴CD =CB ,∠CAB =∠CAD =30°.设CD =CB =x ,则AC =2x.由勾股定理,得AD ,AB∴AD +AB =,即AB +AD(2)解:由(1)知,AE +AF ∵AC 为角平分线,CF ⊥AD ,CE ⊥AB ,∴CF=CE,∠CFD=∠CEB=90°.∵∠ABC与∠D互补,∠ABC与∠CBE也互补,∴∠D=∠CBE,∴△CDF≌△CBE(AAS).∴DF=BE.∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF【点睛】本题考查了直角三角形全等的判定及性质;通过辅助线来构建全等三角形是解题的常用方法,也是解决本题的关键.。
冀教版八年级数学上册期末考试题及答案【完整】

冀教版八年级数学上册期末考试题及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的相反数是()11A.—2B.2C.D.——222.若点A(1+m,1-n)与点B(-3,2)关于y轴对称,则m+n的值是()A.-5B.-3C.3D.13.若-2a m b4与5a n+2b2m+n可以合并成一项,贝山-口的值是()A.2B.0C.-1D.14.已知关于x的分式方程m—2=1的解是负数,则m的取值范围是()x+1A.mW3B.mW3且mH2C.mV3D.mV3且mH25.已知一个多边形的内角和为1080。
,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.如图,AB〃CD,点E在线段BC上,若Z1=40°,Z2=30。
,则Z3的度数是()A.70°B.60°C.55°D.50°7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,bV0C.kV0,b>0D.kV0,bV08.如图,AABC中,ABC的角平分线,BEABC的高,ZC=70°,ZC.56°D.22°ABC=48°,那么上3是()A.59°B.60°9. 如图,菱形ABCD 的周长为28, 则OE 的长等于() A.2B.3.510. 如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是()BA.1B.1C.迈D.22二、填空题(本大题共6小题,每小题3分,共18分)1•若JX €頁,则X 二2•函数y €J 1_J 37中自变量x 的取值范围是.x ,23. __________________________________ 使JE 有意义的X 的取值范围是.4. 如图,已知ZX0Y=60°,点A 在边OX 上,OA=2.过点A 作AC 丄OY 于点C ,以AC 为一边在ZXOY 内作等边三角形ABC ,点P 是厶ABC 围成的区域(包括各边)内的一点,过点P 作PD 〃OY 交OX 于点D,作PE 〃OX 交OY 于点E.设对角线AC,BD 交于点O,E 为AD 的中点,AD线,点E 、N 在BC 上,则ZEAN 二2其中 OD=a,OE=b ,则a+2b 的取值范围是.3DAX5. 如图,直线AB ,CD 被BC 所截,若AB 〃CD ,Z1=45°,Z2=35°,则Z3=度。
冀教版八年级数学上册期末试卷附答案

60。
,则它们重叠部分的面积为( A.1B.2 冀教版八年级数学上册期末试卷附答案 班级:姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1•若\:'a 3€3a 2g'a+3,则a 的取值范围是() A.-3WaW0B.aWOC.aVOD.a 三-3 2. 已知a 、b 、c 是厶ABC 的三条边长,化简|a+b —c|—|c —a —b|的结果为()A.2a +2b —2cB.2a +2bC.2cD.0 3•等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为() A.12B.15C.12或15D.18 4. 若x ,y 均为正整数,且2x +1・4y =128,贝V x +y 的值为() A.3B.5C.4或5D.3或4或5 5•下列各组数中,能构成直角三角形的是() A.4,5,6B.1,1,迈C.6,8,11D.5,12,23 ,x 二2,ax +by =7, 6•已知{1是二元一次方程组{j [的解,则a-b 的值为() …y 二1ax -by =1 A.—1B.1C.2D.3 7•如图,在数轴上表示实数J5的点可能是() A.点P B.点Q C.点M D.点N 8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为) C()A.ZA=ZDB.AB=DCC.ZACB=ZDBCD.AC=BD 23x —4A (x ,1)(x ,2)x —1R+口,则实数壯4在同一直线上.若AB^/2,则CD=9.如图,DE //BC ,BE 平分€ABC ,若€1二70。
,则€CBE的度数为(D.7010.如图,已知ZABC=ZDCB ,下列所给条件不能证明△ABC 竺ADCB 的是二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:a 2(a -b)-4(a -b)=3. _______________________ 分解因式:x 3—X 二把两个同样大小的含45。
冀教版八年级数学上册期末试卷(及参考答案)

冀教版八年级数学上册期末试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.€3的倒数是()A・3B.—C.——D.—3332•如果X—2+迈—7+3,那么y x的算术平方根是()A・2B・3C・9D・±33.在圆的周长C=2nR中,常量与变量分别是()A.2是常量,C、n、R是变量B・2n是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量4.在平面直角坐标系中,点A(-3,2),B(3,5),C(x,y),若AC〃x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(-3,5)B.10,(3,-5)C・1,(3,4)D・3,(3,2)5•若关于x的一元二次方程(k—2)x2-2kx+k,6有实数根,则k的取值范围为()33A.k>0B.k>0且k...2C.k D.k'—且k (2)226.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF〃BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为)C.16D.18A.10B.127.下面四个手机应用图标中是轴对称图形的是()x €y 二5300150x €200y 二30x €y 二30 200x €150y 二5300 x €y 二30150x €200y 二53009. 夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台, 则根据题意列出方程组为(),x €y 二5300 A [200x €150y 二30 10. 如图,将AABC 沿DE,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若ZDOF=142°,则ZC 的度数为()二、填空题(本大题共6小题,每小题3分,共18分)1. 如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a- b|+J (a +b )2的结果是.—L~5~* 2. _______________________________________ 若|x |=3,y 2=4,且x >y ,贝Vx -y=.A CB DC .76D .80 A.38 D.483. ____________________________ 分解因式:2x 3-6x 2+4x二4. ____________________________________________ 如图,AB 〃CD ,则Z1+Z3—Z2的度数等于5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O,点E 、F 分别是AO 、AD6.如图,AD 〃BC ,ZD=100°,CA 平分ZBCD ,则ZDAC 二度.1) 2) x一216 x,2x2一4三、解答题(本大题共6小题,共72分)1.解方程:2•先化简,再从-1、2、3、4中选一个合适的数作为x的值代入求值.3.已知5a,2的立方根是3,3a,b-1的算术平方根是4,c是近3的整数部分.(1)求a,b,c的值;(2)求3a-b,c的平方根.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(-2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;1(2)若点D在y轴负半轴上,且满足S--S,求点D的坐标.△COD3△BOC\A},J5.已知平行四边形ABCD,对角线AC、BD交于点0,线段EF过点0交AD于点E,交BC于点F.求证:OE=OF.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?、选择题 C BB DD C D C C 1、2 3 4 5 6 7 8 910、A二、填空题 1、 2 3 4 5 6、 -2b 1或5. 2x (x -1) 180° 9 40° 三、解答题 1、 1)x=1; 2、 x+2; 参考答案 本大题共10小题,每题3分,共30分)本大题共6小题,每小题3分,共18分) (x-2). 本大题共6小题,共72分)2)方程无解 当x =T 时,原式=1.3、 4、 5、 6、 (1) (1)略. (1) a=5,b=2,c=3;(2)±4. k=-1,b=4;(2)点。
冀教版八年级数学上册期末测试题(附参考答案)

冀教版八年级数学上册期末测试题(附参考答案)满分120分 考试时间120分钟一、选择题(本大题共16个小题,共38分。
1—6小题各3分,7—16小题各2分。
每小题只有一个选项符合题目要求)1.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )2.化简x 2−1x÷(1−1x )的结果为( )A .x +1B .x−1xC .xD .1x3.小明解分式方程1x+1=2x3x+3-1的过程如下: 解:去分母,得3=2x -(3x +3)① 去括号,得3=2x -3x +3② 移项、合并同类项,得-x =6③ 化系数为1,得x =-6④以上步骤中,开始出错的一步是( ) A .① B .② C .③D .④4.如图,在∠AOB 的边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是∠AOB 的平分线,请说明此做法的依据是( )A .SASB .ASAC .AASD .SSS5.如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB =6,DE=3,则AC的长是( )A.8 B.6C.5 D.46.下列各数中为无理数的是( )A.√2B.1.5C.0 D.-17.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形8.如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,E是边BC上的中点,AD=ED=3,则BC的长为( )A.3√2B.3√3C.6 D.6√29.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根−√45,则实数m所在的范围是( )10.若实数m=5√15A.m<-5 B.-5<m<-4C.-4<m<-3 D.m>-3AB的长为半径11.如图,在△ABC中,AC>BC,分别以点A,B为圆心,以大于12画弧,两弧交于点D ,E ,经过点D ,E 作直线分别交AB ,AC 于点M ,N ,连接BN ,下列结论正确的是( )A .AN =NCB .AN =BNC .MN =12BCD .BN 平分∠ABC12.某学校组织七、八两个年级学生到黄河岸边开展植树造林活动.已知七年级植树900棵与八年级植树1 200棵所用的时间相同,两个年级平均每小时共植树350棵.求七年级年级平均每小时植树多少棵.设七年级年级平均每小时植树x 棵,则下面所列方程中正确的是( ) A .900350−x =1 200xB .900x =1 200350+xC .900350+x =1 200xD .900x=1 200350−x13.在正数范围内定义一种运算 “※”,其规则为a ※b =1a +1b ,如2※4=12+14,根据这个规则,方程3※(x -1)=1的解为( ) A .x =52 B .x =-1 C .x =12D .x =-314.如图,点D 是AC 的垂直平分线与边BC 的交点,作DE ⊥AB 于点E .若∠BAC =68°,∠C =36°,则∠ADE 的度数为( )A .56°B .58°C .60°D .62°15.如图,在等边三角形ABC 中,D ,E 分别是BC ,AC 的中点,P 是线段AD 上的一个动点,当△PCE 的周长最小时,点P 的位置在( )A.A点处B.D点处C.AD的中点处D.△ABC三条高的交点处16.幻方的历史很悠久,如图为两个三阶幻方,请你探究如图三阶幻方中,奇数和偶数的位置、数和数之间的数量关系所呈现的规律,根据这一规律,求出a,b,则a b=( )二、填空题(本大题共3个小题,共10分,17小题2分,18—19小题各4分,每空2分)17.若x=3-√2,则代数式x2-6x+9的值为18.如图,在△ABC中,AB=4,AC=5,∠A=80°,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB,AC于点M,N,则△AMN的周长为,∠BEC=19.因为√4<√7<√9,即2<√7<3,所以√7的整数部分为2,小数部分为√7-2.那么√11的整数部分为,若√2整数部分为a, √11的小数部分为b,则a+b+5=三、解答题(本大题共7小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)(1)计算:√27÷√3×2√2-6√22(2)|-2 024|+π0-(16)−1+√1621.(本小题10分)(1)解方程:2x−5x−2=3x−3x−2-3 (4分)(2)先化简(1+3a−1)÷a 2−4a−1,再从-1,0,1,2中选择一个适当的数作为a 的值代入求值.(6分)22.(本小题10分)如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示-√2,设点B 所表示的数为m .(1)求实数m 的值 (2)求|m +1|+|m -1|的值(3)在数轴上还有C ,D 两点分别表示实数c 和d ,且有|2c +4|与√d −4互为相反数,求2c +3d 的平方根23.(本小题满分10分)如图,在△ABC 中,AB =AC ,AD 为△ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与AB ,AC 分别交于点E ,F ,连接DE ,DF .(1)求证:△ADE ≌△ADF ;(2)若∠BAC=80°,求∠BDE的度数.24.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半EF的长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于12径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,求BD 的长。
冀教版数学八年级上册期末试卷及答案

冀教版数学八年级上册期末试卷1一、选择题(本大题共12个小题,1-6每小题2分,7-12每小题2分,共计30分)1.4的平方根是()A.±2 B.﹣2 C.2 D.2.如果分式有意义,则x的取值范围是()A.全体实数 B.x≠1 C.x=1 D.x>13.下列各命题中,是真命题的是()A.同位角相等B.内错角相等C.邻补角相等D.对顶角相等4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位) D.0.0502(精确到0.0001)5.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.6.化简(﹣)2的结果是()A.﹣3 B.3 C.±3 D.97.如图,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是()A.∠B=∠E B.∠A=∠EDF C.∠BCA=∠F D.BC∥EF8.下列各式的计算中,正确的是()A. =×=6 B.(﹣1)2=3﹣1=2C. =×=9 D.3=9.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.OC=OD C.∠CPO=∠DPO D.∠CPD=∠DOC10.用反证法证明命题:在一个三角形中,最大的内角不小于60°,证明的第一步是()A.假设最大的内角小于60°B.假设最大的内角大于60°C.假设最大的内角大等于60°D.假设最大的内角小等于60°11.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∠ACD=30°,那么下列结论正确的是()A.AD=CD B.AC=AB C.BD=BC D.CD=AB12.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm二、填空题13.下列各式:①②③④是最简二次根式的是(填序号).14.如图,已知△ABC≌△FED,∠A=40°,∠B=106°,则∠EDF= .15.实数a在数轴上的位置如图,则|a﹣3|= .16.如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为.17.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD= .18.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.19.已知,则= .20.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD 为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2016个等腰直角三角形的斜边长是.三、解答题21.计算:÷+×﹣6.22.阅读下列解题过程,并按要求回答:化简: +=﹣…①=﹣…②=…③=…④=﹣…⑤(1)上述计算过程在第几步出现错误,并指出错误原因;(2)请书写正确的化简过程.23.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD 的长,再计算三角形的面积.24.某校为美化校园,计划对某一区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【电子版下载搜索公粽号:好学熊资料库】25.数学课上,老师要求学生证明:“到角的两边距离相等的点在这个角的平分线上”,请你结合图形书写已知、求证,并完成证明过程:已知:.求证:.证明:26.如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,且∠B=∠ADE,(1)如图1,当点D为BC中点时,试说明:.(2)如图2,联接CE,当EC⊥BC时,试说明:△ABC为等腰直角三角形.参考答案与试题解析一、选择题(本大题共12个小题,1-6每小题2分,7-12每小题2分,共计30分)1.4的平方根是()A.±2 B.﹣2 C.2 D.【考点】平方根.【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:A.2.如果分式有意义,则x的取值范围是()A.全体实数 B.x≠1 C.x=1 D.x>1【考点】分式有意义的条件.【分析】直接利用分式有意义的条件得出x的值.【解答】解:∵分式有意义,∴x﹣1≠0,解得:x≠1.故选:B.3.下列各命题中,是真命题的是()A.同位角相等B.内错角相等C.邻补角相等D.对顶角相等【考点】命题与定理.【分析】根据平行线的性质对A、B进行判断;根据邻补角的定义对C进行判断;根据对顶角的性质对D进行判断.【解答】解:A、两直线平行,同位角相等,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误;C、邻补角不一定相等,只有都为90度时,它们才相等,所以C选项错误;D、对顶角相等,所以D选项正确.故选D.4.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位) D.0.0502(精确到0.0001)【考点】近似数和有效数字.【分析】根据近似数的精确度把0.05019精确到0.1得到0.1,精确度千分位得0.050,精确到百分位得0.05,精确到0.0001得0.0502,然后依次进行判断.【解答】解:A、0.05019≈0.1(精确到0.1),所以A选项正确;B、0.05019≈0.050(精确到千分位),所以B选项错误;C、0.05019≈0.05(精确到百分位),所以C选项正确;D、0.05019≈0.0502(精确到0.0001),所以D选项正确.故选:B.5.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【电子版下载搜索公粽号:好学熊资料库】【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.6.化简(﹣)2的结果是()A.﹣3 B.3 C.±3 D.9【考点】二次根式的乘除法.【分析】原式利用平方根定义计算即可得到结果.【解答】解:(﹣)2=3,故选B7.如图,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是()A.∠B=∠E B.∠A=∠EDF C.∠BCA=∠F D.BC∥EF【考点】全等三角形的判定.【分析】由条件可知有两组边对应相等,则可加第三组边相等或这两个边的夹角相等,则可求得答案.【解答】解:∵AB=DE,BC=EF,∴要使△ABC≌△DEF,则需要∠B=∠E,根据SAS可判定其全等,故选A.8.下列各式的计算中,正确的是()A. =×=6 B.(﹣1)2=3﹣1=2C. =×=9 D.3=【考点】二次根式的混合运算.【分析】根据二次根式的乘法法则对A进行判断;根据完全平方公式对B进行判断;根据平方差公式和二次根式的乘法法则对C进行判断;利用二次根式的性质对D进行判断.【解答】解:A、原式==×=6,所以A选项错误;B、原式=3﹣2+1=4﹣2,所以B选项错误;C、原式==×=9,所以C选项正确;D、原式=,所以D选项错误.故选C.9.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论错误的是()A.PC=PD B.OC=OD C.∠CPO=∠DPO D.∠CPD=∠DOC【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PC=PD,再利用“HL”证明Rt△OCP和Rt△ODP全等,根据全等三角形对应边相等可得OC=OD,全等三角形对应角相等可得∠CPO=∠DPO,从而得解.【解答】解:∵OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,∴PC=PD,在Rt△OCP和Rt△ODP中,,∴Rt△OCP≌Rt△ODP(HL),∴OC=OD,∠CPO=∠DPO,所以,A、B、C选项结论都正确,结论错误的是∠CPD=∠DOC.故选D.10.用反证法证明命题:在一个三角形中,最大的内角不小于60°,证明的第一步是()A.假设最大的内角小于60°B.假设最大的内角大于60°C.假设最大的内角大等于60°D.假设最大的内角小等于60°【考点】反证法.【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接选择即可.【解答】解:∵用反证法证明在一个三角形中,最大的内角不小于60°,∴第一步应假设结论不成立,即假设最大的内角小于60°.故选:A.11.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,∠ACD=30°,那么下列结论正确的是()A.AD=CD B.AC=AB C.BD=BC D.CD=AB【考点】含30度角的直角三角形.【分析】根据30°角所对的直角边等于斜边的一半解答即可.【解答】解:∵∠ACB=90°,∠ACD=30°,∴AD=AC,A错误;∵∠ACD+∠A=90°,∠B+∠A=90°,∴∠ACD=∠B=30°,∴AC AB,B正确;CD=BC,C、D错误;故选:B.12.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=AC,求出AB+BC+AC=19cm,AB+BD+AD=AB+BC=13cm,即可求出AC,即可得出答案.【解答】解:∵DE是AC的垂直平分线,∴AD=DC,AE=CE=AC,∵△ABC的周长为19cm,△ABD的周长为13cm,∴AB+BC+AC=19cm,AB+BD+AD=AB+BD+DC=AB+BC=13cm,∴AC=6cm,∴AE=3cm,故选A.二、填空题13.下列各式:①②③④是最简二次根式的是②③(填序号).【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案..【解答】解:②③是最简二次根式,故答案为:②③.14.如图,已知△ABC≌△FED,∠A=40°,∠B=106°,则∠EDF= 34°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠F=∠A=40°,∠E=∠B=106°,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△FED,∠A=40°,∠B=106°,∴∠F=∠A=40°,∠E=∠B=106°,∴∠EDF=180°﹣∠E﹣∠F=34°,故答案为:34°.15.实数a在数轴上的位置如图,则|a﹣3|= 3﹣a .【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得a与3的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.16.如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为 4 .【考点】角平分线的性质.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.17.如图,在△ABC中,∠ACB=90°,∠B=40°,D为线段AB的中点,则∠ACD= 50°.【考点】直角三角形的性质.【分析】由“直角三角形的两个锐角互余”得到∠A=50°.根据“直角三角形斜边上的中线等于斜边的一半”得到CD=AD,则等边对等角,即∠ACD=∠A=50°.【解答】解:如图,∵在△ABC中,∠ACB=90°,∠B=40°,∴∠A=50°.∵D为线段AB的中点,∴CD=AD,∴∠ACD=∠A=50°.故答案是:50°.18.如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动 4 分钟后△CAP与△PQB全等.【考点】直角三角形全等的判定.【分析】设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,此时AP=BQ,△CAP≌△PBQ;②若BP=AP,则12﹣x=x,得出x=6,BQ=12≠AC,即可得出结果.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.19.已知,则= .【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件求出x的值,进而得出y的值,代入代数式进行计算即可.【解答】解:∵y=++4,∴,解得x=,∴y=4,∴原式==.故答案为:.20.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD 为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2016个等腰直角三角形的斜边长是21008.【考点】等腰直角三角形.【分析】先求出第一个到第四个的等腰直角三角形的斜边的长,探究规律后即可解决问题.【解答】解:第一个等腰直角三角形的斜边为,第二个等腰直角三角形的斜边为2=()2,第三个等腰直角三角形的斜边为2=()3,第四个等腰直角三角形的斜边为4=()4,…第2016个等腰直角三角形的斜边为()2016=21008.故答案为21008.三、解答题21.计算:÷+×﹣6.【考点】二次根式的混合运算.【分析】根据二次根式的运算顺序和运算法则依次计算可得.【解答】解:原式=+﹣2=2+3﹣2=3.22.阅读下列解题过程,并按要求回答:化简: +=﹣…①=﹣…②=…③=…④=﹣…⑤(1)上述计算过程在第几步出现错误,并指出错误原因;(2)请书写正确的化简过程.【考点】分式的加减法.【分析】(1)根据去括号,可得答案;(2)根据分式的加减,可得答案.【解答】解:(1)第③步出现错误,错因:去带负号的括号时,括号里的各项没有变号(2)原式=﹣=﹣===﹣.23.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD 的长,再计算三角形的面积.【考点】勾股定理.【分析】设BD=x,由CD=BC﹣BD表示出CD,分别在直角三角形ABD 与直角三角形ACD中,利用勾股定理表示出AD2,列出关于x的方程,求出方程的解得到AD的长,即可求出三角形ABC面积.【解答】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S△ABC=BC•AD=×14×12=84.24.某校为美化校园,计划对某一区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,求甲、乙两工程队每天能完成绿化的面积分别是多少m2?【考点】分式方程的应用.【分析】设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列出分式方程,解方程即可.【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得﹣=4解得:x=50经检验:x=50是原方程的解所以甲工程队每天能完成绿化的面积是50×2=100(m2)答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.25.数学课上,老师要求学生证明:“到角的两边距离相等的点在这个角的平分线上”,请你结合图形书写已知、求证,并完成证明过程:已知:P是∠AOB内任一点,PC⊥OA,PD⊥OB,垂足分别是C、D两点,PC=PD;.求证:点P在∠AOB的平分线上.证明:【考点】角平分线的性质.【分析】根据题意画出图形,写出已知和求证,根据全等三角形的判定和性质证明结论.【解答】已知:P是∠AOB内任一点,PC⊥OA,PD⊥OB,垂足分别是C、D两点,PC=PD;求证:点P在∠AOB的平分线上;证明:连结OP;如图所示:∵PC⊥OA,PD⊥OB,∴∠PCO=∠PDO=90°,…在Rt△OPC 和Rt△OPD中,,∴Rt△OPC≌Rt△OPD(HL);∴∠POA=∠POB,∴OP是∠AOB的平分线,即点P在∠AOB的平分线上;故答案为:P是∠AOB内任一点,PC⊥OA,PD⊥OB,垂足分别是C、D 两点,PC=PD;点P在∠AOB的平分线上.26.如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,且∠B=∠ADE,(1)如图1,当点D为BC中点时,试说明:.(2)如图2,联接CE,当EC⊥BC时,试说明:△ABC为等腰直角三角形.【考点】等腰直角三角形;等腰三角形的性质.【分析】(1)根据等腰三角形的性质可得出AD⊥BC,∠BAD=∠BAC,再通过角的计算即可证出结论∠EDC=∠BAD=∠BAC;(2)通过等腰三角形以及角的计算找出∠BAD=∠CAE,由此即可证出△BAD≌△CAE(SAS),从而得出∠B=∠ACE=∠ACB,再结合EC⊥BC,即可得出∠ACB=∠ACE=45°,∠B=45°,即△ABC为等腰直角三角形.【解答】证明:(1)∵点D为BC中点,AB=AC,∴AD⊥BC,∠BAD=∠BAC,∴∠ADB=∠ADC=90°,∴∠BAD+∠B=90°,∠ADE+∠EDC=90°,又∵∠B=∠ADE,∴∠EDC=∠BAD=∠BAC.(2)∵AB=AC,AD=AE,且∠B=∠ADE,∴∠BAC=∠DAE,∵∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠BAD=∠CAE.在△BAD和△CAE中,有,∴△BAD≌△CAE(SAS),∴∠B=∠ACE=∠ACB,∵EC⊥BC,∴∠ACB=∠ACE=45°,∠B=45°,∴△ABC为等腰直角三角形.冀教版数学八年级上册期末试卷2一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )2.下列计算正确的是( )A .3+2= 5B .3×2=6C .12-3= 3D .8÷2=4 3.若分式x 2-4x +2的值为0,则x 的值是( )A .2B .-2C .±2D .4 4.-64的立方根与64的平方根之和为( )A .-2或2B .-2或-6C .-4+2 2或-4-2 2D .4或-12 5.要使二次根式2x -4有意义,那么x 的取值范围是( )A .x >2B .x <2C .x ≥2D .x ≤2 6.已知图中的两个三角形全等,则∠1等于( )A .72°B .60°C .50°D .58°7.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是( )A .3B .4C .5D .6 8.分式方程5x +3=2x 的解是( )A .x =2B .x =1C .x =12 D .x =-2 9.已知2x x 2-y 2÷M =1x -y,则M 等于( )A .2x x +yB .x +y 2xC .2x x -yD .x -y 2x10.下列命题:①两个周长相等的三角形是全等三角形;②两个周长相等的直角三角形是全等三角形;③两个周长相等的等腰三角形是全等三角形;④两个周长相等的等边三角形是全等三角形.其中,真命题有( ) A .1个 B .2个 C .3个 D .4个11.已知:一等腰三角形的两边长x ,y 满足方程组⎩⎨⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( )A .5B .4C .3D .5或412.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A .6 cmB .4 cmC .(6-2 3)cmD .(4 3-6)cm13.如图,△ABC 的三边AB ,BC ,CA 的长分别是20,30,40,三条角平分线将△ABC 分为三个小三角形,则S △ABO ∶S △BCO ∶S △CAO 等于( )A.1∶1∶1 B.1∶2∶3C.2∶3∶4 D.3∶4∶514.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长度为()A. 3 B.2 3 C.3 3 D.4 3 15.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于()A.1013B.1513C.6013D.751316.如图,将长方形ABCD对折,得折痕PQ,展开后再沿MN翻折,使点C恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是BC的中点,且MN 与折痕PQ交于F.连接AC′,BC′,则图中共有等腰三角形的个数是()A.1 B.2 C.3 D.4二、填空题(17题3分,18,19题每题4分,共11分)17.计算40+1025的结果为________.18.命题“在同一个三角形中,等边对等角”的逆命题是______________________,是________命题(填“真”或“假”).19.如图,在新修的小区中,有一条“Z ”字形绿色长廊ABCD ,其中AB ∥CD ,在AB ,BC ,CD 三段绿色长廊上各修一凉亭E ,M ,F 且BE =CF ,点M 是BC 的中点,在凉亭M 与F 之间有一池塘,不能直接到达,要想知道M 与F 的距离,只需要测出线段EM 的长度.理由是依据_____________可以证明_____________,从而由全等三角形对应边相等得出.三、解答题(20,21题每题8分,22~25题每题10分,26题11分,共67分) 20.(1)计算:33-(3)2+(x +3)0-27+|3-2|.(2)解方程:x x -2-1=8x 2-4.21.先化简,再求值:⎝ ⎛⎭⎪⎫x +1x -1+1x 2-2x +1÷x x -1,其中x = 2.22.如图,BD,CE分别是△ABC的高,且BE=CD,求证:Rt△BEC≌Rt△CDB.23.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,BE ⊥AE,延长AE,BC交于点F.求证:(1)AD=FC.(2)AB=BC+AD.24.如图,AD平分∠BAC,AD⊥BD,垂足为D,DE∥AC.求证:△BDE是等腰三角形.25.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3 000元以相同的进价购进质量相同的苹果.甲超市的销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍销售,剩下的小苹果以高于进价的10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2 100元(其他成本不计),则:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?甲、乙超市的销售方案哪种更合算?26.课外兴趣小组活动时,老师出示了如下问题:如图①,已知在四边形ABCD 中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补.求证:AB+AD=3AC.小敏反复探索,不得其解.她想,可先将四边形ABCD特殊化,再进一步解决该问题.(1)由特殊情况入手,添加条件:“∠B=∠D”,如图②,可证AB+AD=3AC.请你完成此证明.(2)受到(1)的启发,在原问题中,添加辅助线:过C点分别作AB,AD的垂线,垂足分别为点E,F,如图③.请你补全证明过程.答案一、1.D 点拨:选项A :是轴对称图形,也是中心对称图形,故此选项不合题意;选项B :是轴对称图形,不是中心对称图形,故此选项不合题意; 选项C :是轴对称图形,也是中心对称图形,故此选项不合题意;选项D :不是轴对称图形,也不是中心对称图形,故此选项符合题意.故 选D.2.C 点拨:3与2的被开方数不同,因此不能合并,A 不正确;3×2=3×2=6,B 不正确;12-3=2 3-3=3,C 正确;8÷2=8÷2=2,D 不正确.故选C.3.A 点拨:本题的易错之处是因为粗心大意,只考虑到分子等于0,而忽略了分母不等于0的限制条件.4.C 点拨:-64的立方根是-4,64的平方根是2 2和-2 2.本题的易错之处是混淆了“64的平方根”与“64的平方根”.5.C 点拨:本题的易错之处是认为2x -4有意义时2x -4>0.6.D 7.B 8.A 9.A 10.A11.A 点拨:本题运用了分类讨论思想,由方程组⎩⎨⎧2x -y =3,3x +2y =8解得⎩⎨⎧x =2,y =1,根据组成三角形的条件,经分类讨论可知这个等腰三角形的腰长为2,底边长为1,故周长为2+2+1=5.12.C 13.C14.D 点拨:因为两个三角形都是边长为4的等边三角形,所以CB =CD =CE =DE =4,∠CDE =∠DCE =60°,所以∠CDB =∠CBD =30°,所以∠BDE =90°,由勾股定理可得BD =4 3.15.C 点拨:连接AD ,则由已知易得AD ⊥BC ,在△ABD 中根据勾股定理,得AD =AB 2-BD 2=AB 2-⎝ ⎛⎭⎪⎫BC 22=132-52=12.根据三角形面积公式,可得12AB ·DE =12BD ·AD ,即13DE =5×12,解得DE =6013.16.C 点拨:将长方形ABCD 对折,得折痕PQ ,则P ,Q 分别是AB ,CD 的中点,且PQ ∥AD ∥BC ,则PQ 垂直平分AB ,所以AC ′=BC ′,根据等腰三角形的定义可知△ABC ′是等腰三角形.因为M 是BC 的中点,折叠后点C 落在C ′处,则MC =MC ′=MB ,∠CMF =∠C ′MF =∠MFC ′,则根据等腰三角形的定义可知△MBC ′是等腰三角形,根据等腰三角形的判定定理可知△MFC ′是等腰三角形.二、17.4 1018.在同一个三角形中,等角对等边;真19.SAS ;△BEM ≌△CFM三、20.解:(1)原式=3-3+1-3 3+(2-3)=-3 3.(2)方程两边同时乘(x +2)(x -2),得x (x +2)-(x +2)(x -2)=8.去括号,得x 2+2x -x 2+4=8.移项、合并同类项,得2x =4.系数化为1,得x =2.检验:当x =2时,(x +2)(x -2)=0.即x =2不是原分式方程的解.所以原分式方程无解.21.解:⎝ ⎛⎭⎪⎫x +1x -1+1x 2-2x +1÷x x -1=()x -1()x +1+1()x -12·x -1x =x 2()x -12·x -1x =x x -1. 当x =2时,原式=22-1=2+ 2. 22.证明:∵BD ,CE 分别是△ABC 的高,∴∠BEC =∠CDB =90°.在Rt △BEC 和Rt △CDB 中,⎩⎨⎧BC =CB ,BE =CD ,∴Rt △BEC ≌Rt △CDB (HL).23.证明:(1)∵AD ∥BC ,∴∠D =∠ECF .∵E 为CD 的中点,∴DE =CE .又∵∠AED =∠FEC ,∴△ADE ≌△FCE (ASA).∴AD =FC .(2)由(1)知△ADE ≌△FCE ,∴AE =FE .又∵BE ⊥AF ,∴AB =FB .∵CF =AD ,∴AB =FB =BC +CF =BC +AD .24.证明:∵DE ∥AC ,∴∠CAD =∠ADE .∵AD 平分∠BAC ,∴∠CAD =∠DAE .∴∠DAE =∠ADE .∵AD ⊥BD ,∴∠DAE +∠B =90°,∠ADE +∠BDE =90°,∴∠B =∠BDE .∴△BDE 是等腰三角形.25.解:(1)设苹果进价为每千克x 元,根据题意,得400x +10%x ⎝ ⎛⎭⎪⎫3 000x -400=2 100,解得x =5,经检验,x =5是原方程的根. 故苹果进价为每千克5元.(2)由(1)知甲、乙两超市苹果的购进总量都为3 0005=600(千克),乙超市获利600×⎝ ⎛⎭⎪⎫10+5.52-5=1 650(元). ∵2 100>1 650,∴甲超市的销售方案更合算.26.(1)证明:易知∠B =∠D =90°.∵AC 平分∠DAB ,∠DAB =60°,∴CD =CB ,∠CAB =∠CAD =30°.设CD =CB =x ,则AC =2x .由勾股定理,得AD =3CD =3x ,AB =3CB =3x .∴AD +AB =3x +3x =2 3x =3AC ,即AB +AD =3AC .(2)解:由(1)知,AE +AF =3AC .∵AC 平分∠DAB ,CF ⊥AD ,CE ⊥AB ,∴CF =CE ,∠CFD =∠CEB =90°.∵∠ABC 与∠D 互补,∠ABC 与∠CBE 也互补,∴∠D =∠CBE ,∴△CDF ≌△CBE .∴DF =BE .∴AB +AD =AB +(AF +FD )=(AB +BE )+AF =AE +AF =3AC .点拨:本题运用从特殊到一般的思想求解,即:从特殊图形②中证出AB +AD =3AC ,然后根据这个解题思路证明一般图形,通过添加辅助线,实现了由“特殊”到“一般”的转化过程并达到解决问题的目的.。
冀教版八年级数学上册期末考试卷及答案【1套】

1 .A .2. A . C .冀教版八年级数学上册期末考试卷及答案【1套】班级: 姓名:、选择题(本大题共10小题,每题3分,共30分)若关于X的不等式组aW-3x€3a+2/无解,则a的取值范围是()x…a—4B.aV-3C.a>3 D.a±3矩形具有而平行四边形不一定具有的性质是()对边相等 B.对角相等对角线相等 D.对角线互相平分3AB.0C.-1D4AC._耳xD5二次函数y 二ax 2+bx +c 的图象如图所示,对称轴是直线x =1.下列结论: ①abc €0;②3a +c …0;③(a +c 匕数).其中结论正确的个数为(A B.2个6已知x 二2,ax +by =7,1是二元一次方程组{/[的解,则a -b 的值为() y 二1ax -by=1A-1B.1C.2D.37若-2a m b 4与5a n +2b 2m +n 可以合并成一项,则山-口的值是(右a=*7+耳2、b=_\'7,则a 和b 互为()化简x -丄,正确的是()xA.倒数B.相反数C.负倒数D.有理化因式度数为()8. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,贝OZ ABC 的A. 90°B.60°C.45°D.30° 9.如图所示,下列推理及括号中所注明的推理依据错误的是()A. ・・・Z1=Z3,・・・AB 〃CD (内错角相等,两直线平行)B. TAB 〃CD,・・・Z1=Z3(两直线平行,内错角相等)C. ・・・AD 〃BC,・・・ZBAD+ZABC=180°(两直线平行,同旁内角互补)D. TZDAM=ZCBM ,・・・AB 〃CD (两直线平行,同位角相等)10. 如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是()A.1B.1C./2D.22¥二、填空题(本大题共6小题,每小题3分,共18分)1. __________________________________________________ 若x 2€2(m —3)x €16是关于x 的完全平方式,则m,.2. _______________________________________ 若|x |=3,y 2=4,且x >y ,贝廿x -y =.D B113.若m+—=3,贝Vm2+——=.mm24.如图,在A ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且ABD与A ABC全等,点D的坐标是.度。
2022-2023年冀教版初中数学八年级上册期末考试检测试卷及答案(共5套)

2022-2023年冀教版数学八年级上册期末考试测试卷及答案(一)一.选择题1.若有意义,则x满足条件是()A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣32.下列根式中属于最简二次根式的是()A.B.C.D.3.下列代数式中,属于分式的是()A.﹣3B.﹣a﹣b C.D.﹣4a3b4.若分式的值为零,则m的取值为()A.m=±1B.m=﹣1C.m=1D.m的值不存在5.已知a﹣1=20172+20182,则=()A.4033B.4034C.4035D.40366.下列各数中:,3.,0.2020020002…(每两个2之间0的个数逐次增加1个),,0,3.1415926,﹣,,无理数有()个.A.3B.4C.5D.67.如图,在Rt△ABC中,∠C=90°,点D为AB边中点,DE⊥AB,并与AC边交于点E.如果∠A=15°,BC=1,那么AC等于()A.2B.C.D.8.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于()A.6B.8C.9D.189.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是()A.10B.8C.6D.410.在Rt△ABC中,∠ACB=90°,CD是高,AC=4m,BC=3m,则线段CD的长为()A.5m B.m C.m D.m11.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC12.计算(1+)÷的结果是()A.x+1B.C.D.二.填空题13.分式与的最简公分母是.14.|1﹣|=.1﹣的相反数是.15.如图,四边形OABC为长方形,OA=1,则点P表示的数为.16.化简:(a>0)=.17.若3,4,a和5,b,13是两组勾股数,则a+b的值是.18.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为cm2.三.解答题19.解方程:=20.(1)已知a、b为实数,且+(1﹣b)=0,求a2017﹣b2018的值;(2)若x满足2(x2﹣2)3﹣16=0,求x的值.21.已知x=﹣1,求x2+3x﹣1的值.22.如图,已知△ABC中,∠C=90°,AB的垂直平分线交BC于M,交AB于N,若AC=,MB=2MC,求AB的长.23.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.24.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.25.一项旧城区改造工程,如果由甲工程队单独做,需要60天可以完成;如果由甲乙两队合作12天后,剩下的工程由乙工程队单独做,还需20天才能完成.求乙工程队单独完成这项工程需要多少天?参考答案一.选择题1.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.2.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、是最简二次根式,正确;故选:D.3.【解答】解:A、﹣3是整式;B、﹣a﹣b是多项式,属于整式;C、是分式;D、﹣4a3b是单项式,属于整式;故选:C.4.【解答】解:∵分式的值为零,∴|m|﹣1=0,m﹣1≠0,解得:m=﹣1.故选:B.5.【解答】解:∵a﹣1=20172+20182,∴a=20172+20182+1,∴2a﹣3=2(20172+20182+1)﹣3=2×20172+2×20182﹣1=2×20172+2017+2×20182﹣2018=2017×(2×2017+1)+2018×(2×2018﹣1)=2017×4035+2018×4035=4035×(2017+2018)=4035×4035=40352,∴=4035,故选:C.6.【解答】解:在所列8个数中,无理数有,0.2020020002…(每两个2之间0的个数逐次增加1个),﹣这3个数,7.【解答】解:∵点D为AB边中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=15°,∴∠BEC=∠A+∠ABE=30°,∵∠C=90°,∴BE=AE=2BC=2,CE=BC=,∴AC=AE+CE=2+,故选:C.8.【解答】解:作EH⊥BC于H,∵BE平分∠ABC,CD是AB边上的高线,EH⊥BC,∴EH=DE=3,∴△BCE的面积=×BC×EH=9,故选:C.9.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP 和△EBP 中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =S △ABC =×12=6,故选:C.10.【解答】解:在Rt△ABC 中,AB===5,△ABC 的面积=×AB×CD=×AC×BC,即×5×CD=×4×3,解得,CD=,故选:B.11.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE 平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.12.【解答】解:原式=(+)÷=•=,故选:B.二.填空题13.【解答】解:分式与的最简公分母是6a3b4c,故答案为:6a3b4c.14.【解答】解:|1﹣|=﹣1,1﹣的相反数是:﹣(1﹣)=﹣1.故答案为:﹣1,﹣1.15.【解答】解:∵OA=1,OC=3,∴OB==,故点P表示的数为,故答案为:.16.【解答】解:∵a>0,∴==2a,故答案为:2a.17.【解答】解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=17,故答案为:17.18.【解答】解:设三边长为9xcm,12xcm,15xcm,∵(9x)2+(12x)2=(15x)2,∴AC2+BC2=AB2,∴∠C=90°,∵周长为72cm,∴9x+12x+15x=72,解得:x=2,∴9x=18,12x=24,∴它的面积为:×18×24=216(cm2),故答案为:216.三.解答题19.【解答】解:方程两边都乘以(1+x)(1﹣x),得:6=1+x,解得:x=5,检验:当x=5时,(1+x)(1﹣x)=﹣24≠0,所以分式方程的解为x=﹣5.20.【解答】解:(1)∵a,b为实数,且+(1﹣b)=0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2017﹣b2018=(﹣1)2017﹣12018=(﹣1)﹣1=﹣2;(2)2(x2﹣2)3﹣16=0,2(x2﹣2)3=16,(x2﹣2)3=8,x2﹣2=2,x2=4,x=±2.21.【解答】解:∵x=﹣1,∴x2+3x﹣1==2﹣2+1+3﹣3﹣1=﹣1+.22.【解答】解:如图,连接MA,∵M在线段AB的垂直平分线上,∴MA=MB=2MC,∵∠C=90°,∴AC2+CM2=MA2,即3+MC2=4MC2,解得MC=1,∴MB=2MC=2,∴BC=3,在Rt△ABC中,由勾股定理可得AB===2,即AB的长为2.23.【解答】(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.24.【解答】解:在Rt△ABD 中,AB=AD=2,∠BAD=90°,∴BD==4,∵CD=4,BC=8,∴BC 2=BD 2+CD 2,∴∠BDC=90°,∴S 四边形ABCD =S △ABD +S △DCB =×2×2+×4×4=4+8.25.【解答】解:设乙工程队单独完成这项工程需要x 天,根据题意,得:(+)×12+=1,解得:x=40,经检验:x=40是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要40天.2022-2023年冀教版数学八年级上册期末考试测试卷及答案(二)一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.在代数式35+y ,4x π-3,x 2-y 23,1x ,ρ2ρ中,分式的个数是()A.2B.3C.4D.52.若分式x 3-64x的值为0,则x 的值是()A.4或-4B.4C.-4D.03.下列图形中,既是轴对称图形又是中心对称图形的是()4.下列二次根式中,最简二次根式是()A.2B.12C.0.2D.a25.在三边分别为下列长度的三角形中,不是直角三角形的是()A.1,2,3B.2,3,5C.5,13,12D.4,7,56.计算18-2的结果是()A.4B.3C.22D.27.小明的练习本上有如下四道题目,其中只有一道题他做对了,这道题目是()=4y 23x2B.1x -y -1y -x =2x -y=x 6y3 D.13x +13y =x +y 3y8.如图,在△ABC 和△DEC 中,AB =DE .若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是()A.BC =EC ,∠B =∠E B.BC =EC ,AC =DC C.∠B =∠E ,∠A =∠DD.BC =EC ,∠A =∠D(第8题)(第9题)9.如图,在Rt△ABC 中,∠BAC =90°,AB =AC ,点A ,点C 分别在直线a ,b 上,且a ∥b .若∠1=60°,则∠2的度数为()A.75°B.105°C.135°D.155°10.如图,在△ABC 中,AC 的垂直平分线交AC 于点E 、交AB 于点D ,CD 平分∠ACB ,若∠A=50°,则∠B 的度数为()A.25°B.30°C.35°D.40°(第10题)(第11题)(第12题)11.如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点D 到AB 的距离等于()A.4B.3C.2D.112.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为()A.2B.23 C.3D.313.当x =-3时,m 2x 2+5x +7的值为5,则m 等于()A.2B.22C.55D.514.在Rt△ABC 中,∠C =90°,若BC -AC =2cm,AB =10cm,则Rt△ABC 的面积是()A.24cm 2B.36cm 2C.48cm 2D.60cm 215.如图,在△ABC 中,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则下列三个结论:①AS =AR ;②QP ∥AR ;③△BRP ≌△QSP .其中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确(第15题)(第16题)16.如图,点P是∠AOB内一定点,且∠AOB=40°,点M和点N分别是射线OA和射线OB 上的动点,当△PMN的周长取最小值时,∠MPN的度数为()A.140°B.100°C.50°D.40°二、填空题(17,18小题各3分,19小题每空2分,共12分)17.如图,在△ABC中,点D在边BC上,∠BAD=80°,AB=AD=DC,则∠C=________,∠BAC=________.(第17题)(第19题)18.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1.例如8*9=9+1=4,那么15*196=________,m*(m*16)=________.19.如图,已知线段AB=20米,MA⊥AB于点A,MA=6米,射线BD⊥AB于点B,P点从B 点向A点运动,每秒走1米,Q点从B点向D点运动,每秒走3米,P,Q同时从B点出发,则出发x秒后,AP=________米,BQ=________米,在线段MA上有一点C,使△CAP 与△PBQ全等,则x的值为________.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题11分,共66分)20.(1)计算:45+45-8+42;+(1+3)(1-3)-12;x2-x,其中x=2-1.x2-2x+121.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F,且BE=CF.求证:(1)∠DBE=∠DCF;(2)△ABC为等腰三角形.(第21题)22.如图,在△ABC 中,AB =BC ,DE ⊥AB 于点E ,交BC 于点D ,DF ⊥BC 于点D ,交AC 于点F .(1)若∠AFD =155°,求∠EDF 的度数;(2)若点F 是AC 的中点,求证:∠CFD =12∠B .(第22题)23.已知a ,b ,c 满足|a -7|+b -5+(c -42)2=0.(1)求a ,b ,c 的值;(2)判断以a ,b ,c 的值为边长能否构成三角形,若能构成三角形,此三角形是什么形状?24.某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2万元,付乙工程队工程款1.5万元,现有三种施工方案:(A )由甲工程队单独完成这项工程,恰好如期完工;(B )由乙工程队单独完成这项工程,比规定工期多6天;(C )由甲、乙两个工程队后,剩下的由乙工程队单独做,也正好能如期完工.小聪同学设规定工期为x +x -5x +6=1.(1)请将(C )中被墨水污染的部分补充出来:______________________________.(2)你认为三种施工方案中,哪种方案既能如期完工,又能节省工程款?说明你的理由.25.如图,现要在三角形土地ABC 内建一所中心医院,使医院到A ,B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这所中心医院的位置.(不必写出作法,保留作图痕迹)(第25题)26.嘉琪剪了三张直角三角形纸片,进行了如下操作:(1)如图①,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE,若AC=6,BC=8,求CD的长.(2)如图②,嘉琪拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6,BC=8,求CD的长.(3)如图③,嘉琪将直角三角形纸片ABC折叠,使直角顶点C落在斜边中点D的位置,EF是折痕.已知DE=3,DF=4,求AB的长.(第26题)答案一、1.B 2.B 3.B 4.A 5.D6.C7.B8.D 9.B10.B 11.C12.C 13.B14.A15.D【点拨】在Rt△APR 和Rt△APS =PS ,=AP ,∴Rt△APR ≌Rt△APS (HL),∴AR =AS ,∠RAP =∠SAP .∵AQ =PQ ,∴∠QPA =∠SAP ,∴∠RAP =∠QPA ,∴QP ∥AR .而在△BRP 和△QSP 中,只满足∠BRP =∠QSP =90°和PR =PS ,找不到第3个条件,∴无法得出△BRP ≌△QSP .故本题仅①和②正确.故选D.16.B 【点拨】如图,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1P 2,交OA 于M ,交OB 于N ,此时△PMN 的周长最小.连接OP ,OP 1,OP 2,则∠OP 1M =∠OPM ,∠OPN =∠OP 2N ,∠P 1OP 2=2∠AOB =80°.在△OP 1P 2中,∠OP 1P 2+∠OP 2P 1=180°-80°=100°,∴∠MPN =∠OPM +∠OPN =∠OP 1M +∠OP 2N =100°.故选B.(第16题)二、17.25°;105°18.15;5+119.(20-x);3x;5三、20.解:(1)原式=45+35-22+42=75+2 2.(2)原式=5+[1-(3)2]-23=3-2 3.(3)原式=x+1-1x+1·(x-1)2x(x-1)=x-1x+1.当x=2-1时,原式=2-1-12-1+1=2-22=1- 2.21.证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在Rt△BDE和Rt△CDF =CF,=CD,∴Rt△BDE≌Rt△CDF(HL).∴∠DBE=∠DCF.(2)∵BD=CD,∴∠DBC=∠DCB.又∵∠EBD=∠FCD,∴∠DBC+∠EBD=∠DCB+∠FCD,即∠ABC=∠ACB.∴AB=AC.∴△ABC为等腰三角形.22.(1)解:∵∠AFD=155°,∴∠DFC=25°.∵DF⊥BC,DE⊥AB,∴∠FDC=∠AED=90°.∴∠C=180°-90°-25°=65°.∵AB=BC,∴∠A=∠C=65°.∴∠EDF=360°-65°-155°-90°=50°.(2)证明:如图,连接BF.(第22题)∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC ,∠ABF =∠CBF =12∠ABC .∴∠CFD +∠BFD =90°.∵FD ⊥BC ,∴∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴∠CFD =12∠ABC .23.解:(1)∵a ,b ,c 满足|a -7|+b -5+(c -42)2=0,∴|a -7|=0,b -5=0,(c -42)2=0,解得a =7,b =5,c =4 2.(2)∵a =7,b =5,c =42,而7+5>42,∴a +b >c .∴以a ,b ,c 的值为边长能构成三角形.∵a 2+b 2=(7)2+52=32=(42)2=c 2,∴此三角形是直角三角形.24.解:(1)一起做5天(2)(C )方案.理由:解方程1x +1x +6+x -5x +6=1,得x =30.经检验,x =30是原分式方程的解.这三种施工方案需要的工程款分别为(A )2×30=60(万元);(B )1.5×(30+6)=54(万元);(C )2×5+1.5×30=55(万元).综上所述,(C )方案既能如期完工,又能节省工程款.25.解:如图,点P 即为中心医院的位置.(第25题)26.解:(1)由折叠可知,AD =BD ,设CD =x ,则AD =BD =8-x .∵∠C =90°,AC =6,∴62+x 2=(8-x )2,∴x =74,即CD =74.(2)在Rt△ABC 中,AC =6,BC =8,∴AB =10.由折叠可知,AE =AC =6,CD =ED ,∠ADE =∠C =90°,∴BE =10-6=4.设CD =y ,则DE =y ,BD =8-y ,在Rt△BDE 中,y 2+42=(8-y )2,∴y =3,即CD =3.(3)连接CD 交EF 于O .∵折叠△CEF 到达△DEF 的位置,△CEF 是直角三角形,∴CE =DE =3,CF =DF =4,由勾股定理得EF =5.由折叠易知CD ⊥EF ,OC =OD =12CD .∵S △CEF =12EC ×CF =12EF ×OC ,∴OC =EC ×CF EF =3×45=125.∴CD =2OC =245.∵CD 是AB 的中线,∴AB =2CD =485.2022-2023年冀教版数学八年级上册期末考试测试卷及答案(三)一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.若分式x 3-64x的值为0,则x 的值是()A.4或-4B.4C.-4D.02.下列图形中,既是轴对称图形又是中心对称图形的是()3.下列二次根式中,最简二次根式是()A.2B.12C.0.2D.a24.在三边分别为下列长度的三角形中,不是直角三角形的是()A.1,2,3B.2,3,5C.5,13,12D.4,7,55.计算18-2的结果是()A.4B.3C.22D.26.小明的练习本上有如下四道题目,其中只有一道题他做对了,这道题目是()=4y 23x2B.1x -y -1y -x =2x -y=x 6y3 D.13x +13y =x +y 3y7.如图,在△ABC 和△DEC 中,AB =DE .若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是()A.BC =EC ,∠B =∠E B.BC =EC ,AC =DC C.∠B =∠E ,∠A =∠DD.BC =EC ,∠A =∠D(第7题)(第8题)8.如图,在Rt△ABC 中,∠BAC =90°,AB =AC ,点A ,点C 分别在直线a ,b 上,且a ∥b .若∠1=60°,则∠2的度数为()A.75°B.105°C.135°D.155°9.如图,已知CD 垂直平分AB ,AC =4cm ,BD =3cm ,则四边形ADBC 的周长为()A.7cmB.12cmC.14cmD.16cm(第9题)(第10题)10.如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点D 到AB 的距离等于()A.4B.3C.2D.111.若(2a +3)2+b -2=0,则a b=()A.32B.-32C.±32D.9412.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为()A.2B.23C.3D.3(第12题)(第15题)(第16题)13.当x =-3时,m 2x 2+5x +7的值为5,则m 等于()A.2B.22C.55D.514.在Rt△ABC 中,∠C =90°,若BC -AC =2cm,AB =10cm,则Rt△ABC 的面积是()A.24cm 2B.36cm 2C.48cm 2D.60cm 215.如图,在△ABC 中,AQ =PQ ,PR =PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,则下列三个结论:①AS =AR ;②QP ∥AR ;③△B R P ≌△QSP .其中()A.全部正确B.仅①和③正确C.仅①正确D.仅①和②正确16.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB 上的动点,当△PMN的周长取最小值时,∠MPN的度数为()A.140°B.100°C.50°D.40°二、填空题(17小题3分,18,19小题每空2分,共11分)17.如果△ABC≌△DEF,且△ABC的周长是90cm,AB=30cm,DF=20cm,那么BC的长等于________cm.18.如图,在△ABC中,点D在边BC上,∠BAD=80°,AB=AD=DC,则∠C=________,∠BAC=________.(第18题)19.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1.例如8*9=9+1=4,那么15*196=________,m*(m*16)=________.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.计算:(1)45+45-8+42;+(1+3)(1-3)-12.21.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,CF交ED的延长线于点F.求证:△BDE≌△CDF.(第21题)22.如图,在△ABC 中,AB =BC ,DE ⊥AB 于点E ,DF ⊥BC 于点D ,交AC 于点F .(1)若∠AFD =155°,求∠EDF 的度数;(2)若点F 是AC 的中点,求证:∠CFD =12∠B .(第22题)23.已知a ,b ,c 满足|a -7|+b -5+(c -42)2=0.(1)求a ,b ,c 的值;(2)判断以a ,b ,c 为边长能否构成三角形,若能构成三角形,此三角形是什么形状?24.如图,现要在三角形土地ABC 内建一所中心医院,使医院到A ,B 两个居民小区的距离相等,并且到公路AB 和AC 的距离也相等,请确定这所中心医院的位置.(不必写出作法,保留作图痕迹)(第24题)25.某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2万元,付乙工程队工程款1.5万元,现有三种施工方案:(A)由甲工程队单独完成这项工程,恰好如期完工;(B)由乙工程队单独完成这项工程,比规定工期多6天;(C)由甲、乙两个工程队后,剩下的由乙工程队单独做,也正好能如期完工.小聪同学设规定工期为x=1.(1)请将(C)中被墨水污染的部分补充出来:________________________________________________________________________;(2)你认为三种施工方案中,哪种方案既能如期完工,又能节省工程款?说明你的理由.26.如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,1s后,△BPD与△CQP是否全等?请说明理由.②若点Q的运动速度与点P的运动速度不相等,则点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以第(1)②题中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,经过多长时间,点P与点Q第一次在△ABC的哪条边上相遇?(第26题)答案一、1.B 2.B 3.A 4.D 5.C 6.B7.D8.B9.C10.C11.A点拨:∵(2a+3)2+b-2=0,(2a+3)2≥0,b-2≥0,∴(2a+3)2=0,b-2=0.∴2a+3=0,b-2=0.∴a =-32,b =2.∴a b=32.12.C 13.B 14.A15.D点拨:在Rt△APR 和Rt△APS =PS ,=AP ,∴Rt△APR ≌Rt△APS (HL),∴AR =AS ,∠RAP =∠SAP .∵AQ =PQ ,∴∠QPA =∠SAP ,∴∠RAP =∠QPA ,∴QP ∥AR .而在△BRP 和△QSP 中,只满足∠BRP =∠QSP =90°和PR =PS ,找不到第3个条件,所以无法得出△BRP ≌△QSP .故本题仅①和②正确.故选D.16.B点拨:如图,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1P 2,交OA 于M ,交OB于N ,此时△PMN 的周长最小.连接OP ,OP 1,OP 2,则∠OP 1M =∠OPM ,∠NPO =∠NP 2O ,∠P 1OP 2=2∠AOB =80°.在△OP 1P 2中,∠OP 1P 2+∠OP 2P 1=180°-80°=100°,∴∠MPN =∠OPM +∠OPN =∠OP 1M +∠OP 2N =100°.故选B.(第16题)二、17.4018.25°;105°19.15;5+1三、20.解:(1)原式=45+35-22+42=75+22.(2)原式=5+1-(3)2-23=6-3-23=3-2 3.21.证明:∵AD 是BC 边上的中线,∴BD =CD .又CF ∥AB ,∴∠B =∠DCF .在△BDE 和△CDF 中,B =∠DCF ,=CD ,EDB =∠FDC ,∴△BDE ≌△CDF .22.(1)解:∵∠AFD =155°,∴∠DFC =25°.∵DF ⊥BC ,DE ⊥AB ,∴∠FDC =∠AED =90°.∴∠C =180°-90°-25°=65°.∵AB =BC ,∴∠A =∠C =65°.∴∠EDF =360°-65°-155°-90°=50°.(2)证明:如图,连接BF .(第22题)∵AB =BC ,且点F 是AC 的中点,∴BF ⊥AC ,∠ABF =∠CBF =12∠ABC .∴∠CFD +∠BFD =90°.∵FD ⊥BC ,∴∠CBF +∠BFD =90°.∴∠CFD =∠CBF .∴∠CFD =12∠ABC .23.解:(1)∵a ,b ,c 满足|a -7|+b -5+(c -42)2=0,∴|a -7|=0,b -5=0,(c -42)2=0,解得a =7,b =5,c =4 2.(2)∵a =7,b =5,c =42,而7+5>42,∴a +b >c .∴以a ,b ,c 为边长能构成三角形.∵a 2+b 2=(7)2+52=32=(42)2=c 2,∴此三角形是直角三角形.24.解:如图,点P 即为所作.(第24题)25.解:(1)一起做5天(2)(C)方案.理由:解方程+x -5x +6=1,得x =30.经检验,x =30是原分式方程的解.这三种施工方案需要的工程款分别为(A)2×30=60(万元);(B)1.5×(30+6)=54(万元);(C)2×5+1.5×30=55(万元).综上所述,(C)方案既能如期完工,又能节省工程款.26.解:(1)①△BPD 与△CQP 全等.理由:1s 后,BP =CQ =3×1=3(cm).∵D 为AB 的中点,AB =10cm,∴BD =5cm.∵CP =BC -BP =5cm,∴CP =BD .∵AB =AC ,∴∠B =∠C .在△BPD 和△CQP 中,=CP ,B =∠C ,=CQ ,∴△BPD ≌△CQP (SAS).②∵点Q 的运动速度与点P 的运动速度不相等,∴BP ≠CQ .又∵∠B =∠C ,∴两个三角形全等需BP =CP =4cm,BD =CQ =5cm.∴点P ,Q 运动的时间为4÷3=43(s).∴点Q 的运动速度为5÷43=154(cm/s).(2)设经过x s,点Q 第一次追上点P .根据题意,得=10×2,解得x =803.∴点P 共运动了3×803=80(cm).∵△ABC 的周长为10×2+8=28(cm),而80=28×2+24=28×2+8+10+6,∴经过803s ,点P 与点Q 第一次在△ABC 的AB 边上相遇.2022-2023年冀教版数学八年级上册期末考试测试卷及答案(四)一、选择题(1~10题每题3分,11~16题每题2分,共42分)1.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()2.下列计算正确的是()A.3+2=5B.3×2=6C.12-3=3D.8÷2=43.若分式x 2-4x +2的值为0,则x 的值是()A.2B.-2C.±2D.44.-64的立方根与64的平方根之和为()A.-2或2B.-2或-6C.-4+22或-4-22D.4或-125.要使二次根式2x -4有意义,那么x 的取值范围是()A.x >2B.x <2C.x ≥2D.x ≤26.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°7.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是()A.3B.4C.5D.68.分式方程5x +3=2x的解是()A.x =2B.x =1C.x =12D.x =-29.已知2x x 2-y 2÷M =1x -y ,则M 等于()A.2x x +y B.x +y 2xC.2x x -yD.x -y2x10.下列命题:①两个周长相等的三角形是全等三角形;②两个周长相等的直角三角形是全等三角形;③两个周长相等的等腰三角形是全等三角形;④两个周长相等的等边三角形是全等三角形.其中,真命题有()A.1个B.2个C.3个D.4个11.已知:一等腰三角形的两边长x ,y x -y =3,x +2y =8,则此等腰三角形的周长为()A.5B.4C.3D.5或412.如图,直角三角板ABC 的斜边AB =12cm,∠A =30°,将三角板ABC 绕点C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为()A.6cm B.4cm C.(6-23)cmD.(43-6)cm13.如图,△ABC 的三边AB ,BC ,CA 的长分别是20,30,40,三条角平分线将△ABC 分为三个小三角形,则S △ABO ∶S △BCO ∶S △CAO 等于()A.1∶1∶1B.1∶2∶3C.2∶3∶4D.3∶4∶514.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,则BD 的长度为()A.3B.23C.33D.4315.如图,在△ABC 中,AB =AC =13,BC =10,点D 为BC 的中点,DE ⊥AB ,垂足为点E ,则DE 等于()A.1013B.1513C.6013D.751316.如图,将长方形ABCD 对折,得折痕PQ ,展开后再沿MN 翻折,使点C 恰好落在折痕PQ上的点C ′处,点D 落在D ′处,其中M 是BC 的中点,且MN 与折痕PQ 交于F .连接AC ′,BC ′,则图中共有等腰三角形的个数是()A.1B.2C.3D.4二、填空题(17题3分,18,19题每题4分,共11分)17.计算40+1025的结果为________.18.命题“在同一个三角形中,等边对等角”的逆命题是______________________,是________命题(填“真”或“假”).19.如图,在新修的小区中,有一条“Z ”字形绿色长廊ABCD ,其中AB ∥CD ,在AB ,BC ,CD 三段绿色长廊上各修一凉亭E ,M ,F 且BE =CF ,点M 是BC 的中点,在凉亭M 与F 之间有一池塘,不能直接到达,要想知道M 与F 的距离,只需要测出线段EM 的长度.理由是依据_____________可以证明_____________,从而由全等三角形对应边相等得出.三、解答题(20,21题每题8分,22~25题每题10分,26题11分,共67分)20.(1)计算:33-(3)2+(x +3)0-27+|3-2|.(2)解方程:x x -2-1=8x 2-4.÷xx -1,其中x = 2.22.如图,BD ,CE 分别是△ABC 的高,且BE =CD ,求证:Rt△BEC ≌Rt△CDB .23.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE,BE,BE⊥AE,延长AE,BC交于点F.求证:(1)AD=FC.(2)AB=BC+AD.24.如图,AD平分∠BAC,AD⊥BD,垂足为D,DE∥AC.求证:△BDE是等腰三角形.25.烟台享有“苹果之乡”的美誉.甲、乙两超市分别用3000元以相同的进价购进质量相同的苹果.甲超市的销售方案是:将苹果按大小分类包装销售,其中大苹果400千克,以进价的2倍销售,剩下的小苹果以高于进价的10%销售.乙超市的销售方案是:不将苹果按大小分类,直接包装销售,价格按甲超市大、小两种苹果售价的平均数定价.若两超市将苹果全部售完,其中甲超市获利2100元(其他成本不计),则:(1)苹果进价为每千克多少元?(2)乙超市获利多少元?甲、乙超市的销售方案哪种更合算?26.课外兴趣小组活动时,老师出示了如下问题:如图①,已知在四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补.求证:AB+AD=3AC.小敏反复探索,不得其解.她想,可先将四边形ABCD特殊化,再进一步解决该问题.(1)由特殊情况入手,添加条件:“∠B=∠D”,如图②,可证AB+AD=3AC.请你完成此证明.(2)受到(1)的启发,在原问题中,添加辅助线:过C点分别作AB,AD的垂线,垂足分别为点E,F,如图③.请你补全证明过程.答案一、1.D点拨:选项A:是轴对称图形,也是中心对称图形,故此选项不合题意;选项B:是轴对称图形,不是中心对称图形,故此选项不合题意;选项C:是轴对称图形,也是中心对称图形,故此选项不合题意;选项D:不是轴对称图形,也不是中心对称图形,故此选项符合题意.故选D.2.C点拨:3与2的被开方数不同,因此不能合并,A不正确;3×2=3×2=6,B不正确;12-3=23-3=3,C正确;8÷2=8÷2=2,D不正确.故选C.3.A点拨:本题的易错之处是因为粗心大意,只考虑到分子等于0,而忽略了分母不等于0的限制条件.4.C 点拨:-64的立方根是-4,64的平方根是22和-2 2.本题的易错之处是混淆了“64的平方根”与“64的平方根”.5.C 点拨:本题的易错之处是认为2x -4有意义时2x -4>0.6.D7.B 8.A 9.A 10.A11.A 点拨:本题运用了分类讨论思想,由方程组x -y =3,x +2y =8=2,=1,根据组成三角形的条件,经分类讨论可知这个等腰三角形的腰长为2,底边长为1,故周长为2+2+1=5.12.C13.C 14.D 点拨:因为两个三角形都是边长为4的等边三角形,所以CB =CD =CE =DE =4,∠CDE =∠DCE =60°,所以∠CDB =∠CBD =30°,所以∠BDE =90°,由勾股定理可得BD =4 3.15.C 点拨:连接AD ,则由已知易得AD ⊥BC ,在△ABD 中根据勾股定理,得AD =AB 2-BD 2=132-52=12.根据三角形面积公式,可得12AB ·DE =12BD ·AD ,即13DE =5×12,解得DE =6013.16.C 点拨:将长方形ABCD 对折,得折痕PQ ,则P ,Q 分别是AB ,CD 的中点,且PQ ∥AD∥BC ,则PQ 垂直平分AB ,所以AC ′=BC ′,根据等腰三角形的定义可知△ABC ′是等腰三角形.因为M 是BC 的中点,折叠后点C 落在C ′处,则MC =MC ′=MB ,∠CMF =∠C ′MF =∠MFC ′,则根据等腰三角形的定义可知△MBC ′是等腰三角形,根据等腰三角形的判定定理可知△MFC ′是等腰三角形.二、17.41018.在同一个三角形中,等角对等边;真19.SAS;△BEM ≌△CFM三、20.解:(1)原式=3-3+1-33+(2-3)=-3 3.(2)方程两边同时乘(x +2)(x -2),得x (x +2)-(x +2)(x -2)=8.去括号,得x 2+2x -x 2+4=8.移项、合并同类项,得2x =4.系数化为1,得x =2.检验:当x =2时,(x +2)(x -2)=0.即x =2不是原分式方程的解.所以原分式方程无解.÷x x -1=(x -1)(x +1)+1(x -1)2·x -1x =x 2(x -1)2·x -1x =x x -1.当x =2时,原式=22-1=2+ 2.22.证明:∵BD ,CE 分别是△ABC 的高,∴∠BEC =∠CDB =90°.在Rt△BEC 和Rt△CDB 中,=CB ,=CD ,∴Rt△BEC ≌Rt△CDB (HL).23.证明:(1)∵AD ∥BC ,∴∠D =∠ECF .∵E 为CD 的中点,∴DE =CE .又∵∠AED =∠FEC ,∴△ADE ≌△FCE (ASA).∴AD =FC .(2)由(1)知△ADE ≌△FCE ,∴AE =FE .又∵BE ⊥AF ,∴AB =FB .∵CF =AD ,∴AB=FB=BC+CF=BC+AD.24.证明:∵DE∥AC,∴∠CAD=∠ADE.∵AD平分∠BAC,∴∠CAD=∠DAE.∴∠DAE=∠ADE.∵AD⊥BD,∴∠DAE+∠B=90°,∠ADE+∠BDE=90°,∴∠B=∠BDE.∴△BDE是等腰三角形.25.解:(1)设苹果进价为每千克x元,根据题意,得400x+10%100,解得x=5,经检验,x=5是原方程的根.故苹果进价为每千克5元.(2)由(1)知甲、乙两超市苹果的购进总量都为30005=600(千克),乙超市获利650(元).∵2100>1650,∴甲超市的销售方案更合算.26.(1)证明:易知∠B=∠D=90°.∵AC平分∠DAB,∠DAB=60°,∴CD=CB,∠CAB=∠CAD=30°.设CD=CB=x,则AC=2x.由勾股定理,得AD=3CD=3x,AB=3CB=3x.∴AD+AB=3x+3x=23x=3AC,即AB+AD=3AC.(2)解:由(1)知,AE+AF=3AC.∵AC平分∠DAB,CF⊥AD,CE⊥AB,∴CF=CE,∠CFD=∠CEB=90°.∵∠ABC与∠D互补,∠ABC与∠CBE也互补,∴∠D=∠CBE,∴△CDF≌△CBE.∴DF=BE.∴AB+AD=AB+(AF+FD)=(AB+BE)+AF=AE+AF=3AC.点拨:本题运用从特殊到一般的思想求解,即:从特殊图形②中证出AB+AD=3AC,然后根据这个解题思路证明一般图形,通过添加辅助线,实现了由“特殊”到“一般”的转化过程并达到解决问题的目的.2022-2023年冀教版数学八年级上册期末考试测试卷及答案(五)。
(完整版)冀教版八年级上册数学期末测试卷及含答案

冀教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若等腰三角形的两边长分别是6cm和4cm,则等腰三角形的周长是()A.16cmB.14cmC.16cm或14cmD.无法确定2、下列命题正确的是()A.若a>b,b<c,则a>cB.若a>b,则ac>bcC.若a>b,则ac 2>bc 2D.若ac 2>bc 2,则a>b3、如图,有一块直角三角形纸片,两直角边分别为AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于( )A.2cmB.3cmC.4cmD.5cm4、将5a,,通分后最简公分母是()A.8a 2b 3B.4ab 3C.8a 2b 4D.4a 2b 35、|a﹣2|+|b+1|=0,则(a+b)2等于( )A.﹣1B.1C.0D.﹣26、观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个7、在△ABC中,∠ACB=90°,AC=40,CB=9,M、N在AB上且AM=AC,BN=BC,则MN的长为()A.6B.7C.8D.98、已知空气的单位体积质量为1.24×10﹣3g/厘米3, 1.24×10﹣3用小数表示为()A.0.000124B. 0.0124C.﹣0.00124D.0.001249、把分式中的x、y的值都扩大2倍,则分式的值()A.缩小一半B.扩大2倍C.扩大4倍D.不变10、某细胞的直径约为米,该直径用科学记数法表示为A. 米B. 米C. 米D. 米11、下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.12、A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运40kg,A型机器人搬运1200kg所用时间与B型机器人搬运800kg所用时间相等.设B型机器人每小时搬运化工原料xkg,根据题意可列方程为()A. =B. =C. =D. =13、下列根式中,是最简二次根式的是()A. B. C. D.14、下列图形中是轴对称图形的有()A.1个B.2个C.3个D.4个15、如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6B.2C.3D.二、填空题(共10题,共计30分)16、使式子1+ 有意义的x的取值范围是________17、如图,⊙的半径为,点为⊙上一点,如果,弦于点,那么的长是________.18、若式子在实数范围内有意义,则的取值范围是________.19、若关于x的分式方程有增根,则m=________.20、较大小:﹣________﹣;﹣8________|﹣8|(填“<”“=”或“>”).21、在实数中,最大的一个数是________.22、函数y= 中,自变量x的取值范围是________.23、若|x﹣3|+ =0,则x2y的平方根是________.24、如图所示:数轴上点A所表示的数为a,则a的值是________.25、如果|x|=9,那么x=________;如果x2=9,那么x=________.三、解答题(共5题,共计25分)26、先化简,,然后从的范围内选取一个合适的整数作为x的值代入求值.27、如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.28、先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.29、如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.30、如图:AC=DF,AD=BE,BC=EF.求证:BC‖//EF.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、D5、B6、B7、C8、D10、D11、B12、A13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、29、。
冀教版八年级数学上册期末试卷及答案【完整】

冀教版八年级数学上册期末试卷及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是()A.3B.13C.13-D.3-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.化简x1x-,正确的是()A.x-B.x C.﹣x-D.﹣x5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1 8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SAS B.ASA C.AAS D.SSS 二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2.计算:16=_______.3.若23(1)0m n -++=,则m -n 的值为________.4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________. 三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.5.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间x (0≤x ≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、C5、D6、A7、B8、B9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、43、445、46、32°三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、112x-;15.3、(1)a≥2;(2)-5<x<14、(1)略;(2)3.5、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
最新冀教版八年级数学上册期末考试及答案【完美版】

最新冀教版八年级数学上册期末考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是()A.﹣3 B.3 C.-13D.132.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是()A.0个B.1个C.2个D.3个5.代数式131xx-+-中x的取值范围在数轴上表示为()A.B.C.D.6.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.1320715)A.点P B.点Q C.点M D.点N8.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.9.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b+的结果是________.2.当m=____________时,解分式方程533x mx x-=--会出现增根.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD 的周长为_____________.5.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为___________cm (杯壁厚度不计).6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是________. 三、解答题(本大题共6小题,共72分)1.解方程:2(1)4x -=2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.5.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?6.为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、A6、B7、C8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、23、204、10.5、206、8 5三、解答题(本大题共6小题,共72分)1、x=-1或x=32、112x-;15.3、(1)11x-;(2)14、(1)(0,3);(2)112y x=-.5、略6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
冀教版八年级上册数学期末测试卷及含答案

冀教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、使得关于 x 的不等式组无解,且使分式方程的解小于 4 的所有整数a 的个数是().A.2B.3C.4D.52、如图,A,B,C,D是⊙O上的点,∠AOD=80°,AO∥DC,则∠B的度数为( )A.40°B.45°C.50°D.55°3、如图所示,在中,内角与外角的平分线相交于点,,交于,交于,连接、,下列结论:①;②;③垂直平分;④.其中正确的是()A.①②④B.①③④C.②③④D.①③4、如图,在Rt△ABC中,∠ACB=90°,AC=BC,边AC落在数轴上,点A表示的数是1,点C表示的数是3.以点A为圆心、AB长为半径画弧交数轴负半轴于点B1,则点B1所表示的数是( )A.-2B.-2C.1-2D.2 -15、若代数式有意义,则实数x的取值范围是()A.x>0B.x≥0C.x>0且x≠2D.x≥0且x≠26、小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A. B. C. D.7、实数a,b在数轴上对应的点的位置如图所示,计算|a﹣b|的结果为()A.a+bB.a﹣bC.b﹣aD.﹣a﹣b8、下列命题中真命题的个数是()①两条对角线相等的四边形是矩形②菱形是中心对称图形,不是轴对称图形③对角线互相垂直且相等的四边形是正方形④依次连结矩形各边的中点,所得四边形是菱形.A.1B.2C.3D.49、如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A表示的数是A. B.1.4 C. D.10、下列分式中,属于最简分式的是()A. B. C. D.11、的平方根是()A.±9B.3C.±3D.-312、-8的立方根是()A.-2B.2C.±2D.-413、在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A.(-3,1)B.(3,-1)C.(-1,3)D.(1,-3)14、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.15、如图,△ABC与△A1B1C1关于点O成中心对称,下列结论:①∠BAC=∠B1A1C1;②AC=A1C1 ;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,,,,若,则的长为________.17、如图,在矩形ABCD中,BC=4,CD=3,将△ABE沿BE折叠,使点A恰好落在对角线BD上的点F处,则DE的长是________.18、如图,已知等边三角形ABC的边长为3,过AB边上一点P作PE AC于点E,Q为BC延长线上一点,取PA=CQ,连接PQ,交AC于M,则EM的长为________.19、如图,在ABC中,∠ACB=90°,AE平分∠BAC,DE⊥AB于D,如果AC =3cm,BC=4cm,AB=5cm,那么EBD的周长为________.20、某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为________.21、在平面直角坐标系中,点A、B的坐标分别为( 2,0 ),(4,0),点C 的坐标为(m,m)(m为非负数),则CA+CB的最小值是________22、等腰三角形的顶角等于50°,则一个底角的度数为________;等腰三角形的一个底角为50°,则它的顶角为________.23、若代数式在实数范围内有意义,则x的取值范围是________.24、菱形对角线的长分别是6cm和8cm,则周长是________cm,面积是________cm2.25、要使二次根式有意义,字母x必须满足的条件是________三、解答题(共5题,共计25分)26、计算①②- |1﹣| +(﹣1)027、甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两单独完成工程各需多少天?28、已知a,b,c为正数,满足如下两个条件:a+b+c=32 ①②是否存在以,,为三边长的三角形?如果存在,求出三角形的最大内角.29、七(1)班的大课间活动丰富多彩,小峰与小月进行跳绳比赛.在相同的时间内,小峰跳了100个,小月跳了140个.如果小月比小峰毎分钟多跳20个,试求出小峰毎分钟跳绳多少个?30、请你用计算器对1,2,3,…,10进行开方运算,并计算相邻两数之差(用后一个数的算术平方根减去前一个数的算术平方根),对所得结果进行比较,会发现什么规律?试用含n的式子表示.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、C5、D6、D7、C8、A9、D10、B11、C12、A13、B14、B15、D二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009——2010学年度第一学期期末教学质量检测
八年级数学试卷
一、选择题(每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求,请将它的代号填在题后的括号内)
1.下列图形中,不是轴对称图形的个数是( )。
【原创】 A .1个 B .2个 C .3个 D .4个
2.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是【根据2007年河北省中考数学第5题改编】
A .4
B .9
C .12
D .3
3.若-5a >2a ,a 下列各式正确的是( )【原创】
A .a >0
B .a ≤0
C .a ≥0
D .a <0
4.下列四种说法正确的( )【原创】
(1)立方根是它本身的是1 (2)平方根是它本身的数是0 (3)算术平方根是它本身的数是0 (4)倒数是它本身的数是1和-1 A .(1)(2) B .(1)(3) C .(2)(4)
D .(3)(4)
5.化简b
a b b a a ---2
2的结果是( )【2010年河北省中考数学第7题】 A .2
2b a -
B .b a +
C .b a -
D .1
6.在平面直角坐标系中,点P (x -2, x )不可能在的象限是( )【原创】 A .第一象限
B .第二象限
得 分 评卷人
22.(本小题满分8分)【根据八年级数学学习点津上册第58页填空第4题改编】
如图8,P 是等边△ABC 内的一点,且PA =6,PB =8,PC =10,若将△PAC 绕点A 逆时针旋转60°后,得到△P ′AB 。
(1)△APP ′的形状是 ; (2)求∠APB 的度数。
23.(本小题满分8分)【根据八年级数学学习点津上册第101页第14题改编】
在图9所示的平面直角坐标系中有两个△ABC 和△DEF 请解答
下列问答:(1)△DEF 是由△ABC 怎样得到的?
(2)将下表补充完整,在直角坐标系中画出△A ′B ′C ′;
(3)观察△ABC 与△A ′B ′C ′,写出有关这两个三角形的一个正确结论。
得 分 评卷人
得 分 评卷人
(x ,y )
(2x ,y )
A ( )
A ′
( )
B (0,0)
B ′
( )
C ( ) C ′
( )
图
y。