三角函数经典解题方法与考点题型

合集下载

高三理科数学培优专题——三角函数

高三理科数学培优专题——三角函数

三角函数专题一、方法总结:1.三角函数恒等变形的基本策略。

(1)注意隐含条件的应用:1=cos 2x +sin 2x 。

(2)角的配凑。

α=(α+β)-β,β=2βα+-2βα-等。

(3)升幂与降幂:主要用2倍角的余弦公式。

(4)化弦(切)法,用正弦定理或余弦定理。

(5)引入辅助角。

asinθ+bcosθ=22b a +sin (θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

2.解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

二、例题集锦: 考点一:三角函数的概念1.(2011年东城区示范校考试15)设A 是单位圆和x 轴正半轴的交点,Q P 、是单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .(1)若34(,)55Q ,求⎪⎭⎫⎝⎛-6cos πα的值; (2)设函数()f OP OQ α=⋅,求()αf 的值域.考点二:三角函数的图象和性质2.(2014年课标I ,7)在函数①cos 2y x =,②cos y x =,③cos(2)6y x π=+,④tan 24y x π⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为 ( )A.①②③B. ②③④C. ②④D. ①③3.(2012年课标全国,9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A.15[,]24 B.13[,]24C.10,2⎛⎤ ⎥⎝⎦D.()0,24.(2011年课标全国,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A. ()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减B. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 C. ()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 D. ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增5.将函数()()sin 22f x x πϕϕ⎛⎫=+<⎪⎝⎭的图象向左平移6π个单位长度后,所得函数()g x 的图象关于原点对称,则函数()f x 在0,2π⎡⎤⎢⎥⎣⎦的最小值为 A .12- B .12C. D6.(2011年东城区期末15)函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()cos 2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值.考点三、四、五:同角三角函数的关系、 诱导公式、三角恒等变换7.已知函数2()2sin cos 2cos f x x x x ωωω=-(0x ω∈>R ,),相邻两条对称轴之间的距离等于2π. (Ⅰ)求()4f π的值; (Ⅱ)当02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.8.已知向量(cos ,sin ),a x x =向量(cos ,sin ),()b x x f x a b =-=⋅ (1)求函数()()sin 2g x f x x =+的最小正周期和对称轴方程; (2)若x 是第一象限角且'3()2()f x f x =-,求tan()4x π+的值.考点六:解三角形9.ABC ∆中,角,,A B C成等差数列是sin sin )cos C A A B =+成立的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知函数()cos f x x =,,,a b c 分别为ABC ∆的内角,,A B C 所对的边,且22233a b c +-4ab =,则下列不等式一定成立的是A .()()sin cos f A fB ≤ B .()()sin cos f A f B ≥C .()()sin sin f A f B ≥D .()()cos cos f A f B ≤ 11.(2014年课标I ,16)已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,2a =,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .12.(2014年河南焦作联考)在ABC ∆中,已知sin sin cos sin sin cos sin sin cos A B C A C B B C A =+,若,,a b c 分别是角,,A B C 所对的边,则2abc 的最大值为 . 13.(2015河北秦皇岛一模,17,12分)在ABC ∆中,角A B C ,,所对的边分别为,,a b c ,满足()222.AB AC a b c ⋅=-+(1)求角A 的大小; (2)求24sin()23C B π--的最大值,并求取得最大值时角,B C 的大小.14.(2009全国II , 17,10分) 设ABC ∆的内角A B C ,,的对边分别为,,a b c ,3cos()cos 2A CB +=-,2b ac =.求B ∠的大小.14.(2015课标II ,17,12分)△ABC 中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆的面积是ADC ∆面积的2倍. (1)求sin sin BC∠∠;(2)若1,AD DC ==,求BD 和AC 的长.15、(2011东城一模15)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC 面积的最大值.例题集锦答案:1.(2011年东城区示范校考试理15)如图,设A 是单位圆和x 轴正半轴的交点,Q P 、是 单位圆上的两点,O 是坐标原点,6π=∠AOP ,[)παα,0,∈=∠AOQ .(1)若34(,)55Q ,求⎪⎭⎫⎝⎛-6cos πα的值;(2)设函数()f OP OQ α=⋅,求()αf 的值域. ★★单位圆中的三角函数定义解:(Ⅰ)由已知可得54sin ,53cos ==αα……………2分6sin sin 6cos cos 6cos παπαπα+=⎪⎭⎫⎝⎛-∴………3分1043321542353+=⨯+⨯=…………4分(Ⅱ)()f OP OQ α=⋅ ()cos ,sin cos ,sin 66ππαα⎛⎫=⋅ ⎪⎝⎭………6分ααsin 21cos 23+=………………7分 sin 3πα⎛⎫=+⎪⎝⎭………………8分 [0,)απ∈ 4[,)333πππα∴+∈………9分 sin 123πα⎛⎫<+≤ ⎪⎝⎭…………12分()αf ∴的值域是⎛⎤⎥ ⎝⎦………………………………13分2.(2011年西城期末理15)已知函数2()22sin f x x x =-.(Ⅰ)若点(1,P在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域.★★三角函数一般定义解:(Ⅰ)因为点(1,P 在角α的终边上,所以sin 2α=-,1cos 2α=,………………2分 所以22()22sin cos 2sin f αααααα=-=-………………4分21(2(32=⨯-⨯=-.………………5分 (Ⅱ)2()22sin f x x x =-cos 21x x =+- ………………6分2sin(2)16x π=+-, ………………8分因为[,]63x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以1sin(2)126x π-≤+≤, ………………11分所以()f x 的值域是[2,1]-. ………………13分 3.(2011年东城区期末理15)函数()sin()(0,0,||)2f x A x A ωφωφπ=+>><部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()cos 2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值. 解:(Ⅰ)由图可得1A =,22362T πππ=-=, 所以T =π. ……2分 所以2ω=.当6x π=时,()1f x =,可得 sin(2)16ϕπ⋅+=, 因为||2ϕπ<,所以6ϕπ=. ……5分所以()f x 的解析式为()sin(2)6f x x π=+. ………6分 (Ⅱ)()()cos 2sin(2)cos 26g x f x x x x π=-=+-sin 2cos cos 2sin cos 266x x x ππ=+- 12cos 22x x =- sin(2)6x π=-. ……10分 因为02x π≤≤,所以52666x πππ-≤-≤. 当262x ππ-=,即3x π=时,()g x 有最大值,最大值为1; 当266x ππ-=-,即0x =时,()g x 有最小值,最小值为12-.……13分4.(2010年海淀期中文16)已知函数x x x f 2cos )62sin()(+-=π.(1)若1)(=θf ,求θθcos sin ⋅的值;(2)求函数)(x f 的单调增区间.(3)求函数的对称轴方程和对称中心 解:(1)22cos 16sin2cos 6cos2sin )(xx x x f ++-=ππ...3分(只写对一个公式给2分) 212sin 23+=x ....5分 由1)(=θf ,可得332sin =θ ......7分所以θθθ2sin 21cos sin =⋅ ......8分 63= .......9分 (2)当Z k k x k ∈+≤≤+-,22222ππππ,换元法 ..11即Z k k k x ∈++-∈],4,4[ππππ时,)(x f 单调递增.所以,函数)(x f 的单调增区间是Z k k k ∈++-],4,4[ππππ... 13分5.(2011年丰台区期末理15)已知函数2()2sin cos 2cos f x x x x ωωω=- (0x ω∈>R ,),相邻两条对称轴之间的距离等于2π.(Ⅰ)求()4f π的值;(Ⅱ)当 02x π⎡⎤∈⎢⎥⎣⎦,时,求函数)(x f 的最大值和最小值及相应的x 值.解:(Ⅰ)()sin 2cos 212sin(2)14f x x x x π=--=--ωωω. ω意义 ……4分因为22T π=,所以 T =π,1ω=. ……6分 所以 ()2sin(2)14f x x π=--.所以 ()04f π= ………7分(Ⅱ)()2sin(2)14f x x π=--当 0,2x π⎡⎤∈⎢⎥⎣⎦时, 32444x πππ-≤-≤, 无范围讨论扣分所以 当242x ππ-=,即8x 3π=时,max ()21f x =-, …10分 当244x ππ-=-,即0x =时,min ()2f x =-. ………13分6、(2011朝阳二模理15)已知函数2()2sin sin()2sin 12f x x x x π=⋅+-+ ()x ∈R .(Ⅰ)求函数()f x 的最小正周期及函数()f x 的单调递增区间;(Ⅱ)若02()23x f =,0ππ(, )44x ∈-,求0cos 2x 的值. 解: 2()2sin cos 2sin 1=⋅-+f x x x x ……………………………………1分 sin 2cos2=+x x ……………………………………2分π2sin(2)4x =+. 和差角公式逆用 ………………3分 (Ⅰ)函数()f x 的最小正周期2ππ2T ==. ……………………………………5分 令πππ2π22π242k x k -++≤≤()k ∈Z , ……………………………………6分所以3ππ2π22π44k x k -+≤≤. 即3ππππ88k x k -+≤≤.所以,函数()f x 的单调递增区间为3ππ[π, π]88k k -+ ()k ∈Z . ……………8分(Ⅱ)解法一:由已知得0002()sin cos 23x f x x =+=,…………………9分 两边平方,得021sin 29x += 同角关系式 所以 07sin 29x =-…………11分 因为0ππ(, )44x ∈-,所以0π2(, )22x π∈-.所以20742cos 21()99x =--=. ……………………………………13分 解法二:因为0ππ(, )44x ∈-,所以0ππ(0, )42x +∈. …………………………9分 又因为000ππ2()2)2)22443x x f x =⋅+=+=,得 0π1sin()43x +=. ……………………………………10分 所以20π12cos()1()433x +=-=. ……………………………………11分 所以,00000πππcos 2sin(2)sin[2()]2sin()cos()2444x x x x x π=+=+=++ 122422339=⋅⋅=. 诱导公式的运用7、(2011东城二模理15)(本小题共13分)已知π72sin()4A +=,ππ(,)42A ∈.(Ⅰ)求cos A的值;(Ⅱ)求函数5()cos2sin sin2f x x A x=+的值域.解:(Ⅰ)因为ππ42A<<,且πsin()4A+=,πcos()410A+=-.ππππcos()cos sin()sin4444A A+++31021025=-+=.所以3cos5A=.………6分(Ⅱ)由(Ⅰ)可得4sin5A=.212sin2sinx x=-+2132(sin)22x=--+,x∈R.因为sin[1,1]x∈-,所以,当1sin2x=时,()f x取最大值32;当sin1x=-时,()f x取最小值3-.所以函数()f x的值域为3[3,]2-.8.(2011年朝阳期末理15)已知△ABC中,2sin cos sin cos cos sinA B C B C B=+.(Ⅰ)求角B的大小;(Ⅱ)设向量(cos,cos2)A A=m,12(, 1)5=-n,求当⋅m n取最小值时,)4tan(π-A值.解:和差角公式逆用所以2sin cos sin()sin()sinA B B C A A=+=π-=. ………3分因为0A,所以sin0A.所以1cos2B=. ………5分3Bπ=. …………7分(Ⅱ)因为12cos cos25A A⋅=-+m n,…………………8分所以2212343cos2cos12(cos)5525A A A⋅=-+-=--m n. …10分所以当3cos5A=时,⋅m n取得最小值.A),于是tan同角关系或三角函数定义……12分所以tan11tan()4tan17AAAπ--==+. ……………13分9.(2011年石景山期末理15)已知函数23cossinsin3)(2-+=xxxxf()Rx∈.(Ⅰ)求)4(πf的值;(Ⅱ)若)2,0(π∈x,求)(xf的最大值;(Ⅲ)在ABC∆中,若BA<,21)()(==BfAf,求ABBC的值.解:(Ⅰ)234cos4sin4sin3)4(2-+=ππππf21=.4分(Ⅱ)2)2cos1(3)(xxf-=+232sin21-xxx2cos232sin21-=)32sin(π-=x.…6分2π<<x,32323πππ<-<-∴x.∴当232xππ-=时,即125π=x时,)(xf的最大值为1.…8分(Ⅲ) )32sin()(π-=xxf,若x是三角形的内角,则π<<x令21)(=xf,得解得4π=x或127π=x.……10分由已知,BA,是△ABC的内角,BA<且21)()(==BfAf,∴4π=A,127π=B,∴6π=--π=BAC.…11分又由正弦定理,得221226sin4sinsinsin==ππ==CAABBC.……13分10、(2011东城一模理15)(本小题共13分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 分,且满足2cos cos c b Ba A-=. (Ⅰ)求角A 的大小;(Ⅱ)若a =ABC 面积的最大值.解:(Ⅰ)因为2cos cos c b Ba A-=, 所以(2)cos cos c b A a B -⋅=⋅由正弦定理,得(2sin sin )cos sin cos C B A A B -⋅=⋅.边化角 整理得2sin cos sin cos sin cos C A B A A B ⋅-⋅=⋅. 所以2sin cos sin()sin C A A B C ⋅=+=. 在△ABC所以1cos 2A =,3A π∠=.(Ⅱ)由余弦定理2221cos 22b c a A bc +-==,a = 所以2220220b c bc bc +-=≥- 均值定理在三角中的应用所以20bc ≤,当且仅当b c =时取“=” . 取等条件别忘所以三角形的面积1sin 2S bc A =≤. 所以三角形面积的最大值为. ……………………13分 11、(2011丰台一模理15). 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且b 2+c 2-a 2=bc .(Ⅰ)求角A 的大小;(Ⅱ)设函数2cos 2cos 2sin 3)(2x x x x f +=,当)(B f 取最大值23时,判断△ABC的形状.解:(Ⅰ)在△ABC 中,因为b 2+c 2-a 2=bc可得cos A =12.(余弦定理或公式必须有一个,否则扣1分) ……3分 ∵, (或写成A 是三角形内角) ……………………4分 ∴3A π=.……………………5分 (Ⅱ)2cos2cos 2sin 3)(2x x x x f +=11cos 222x x =++ …7分 1sin()62x π=++, ……9分∵3A π=∴2(0,)3B π∈(没讨论,扣1分)…10分 ∴当62B ππ+=,即3B π=时,()f B 有最大值是23. …11分又∵3A π=, ∴3C π= ∴△ABC 为等边三角形. ……13分12、(2011海淀一模理15). (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ; (Ⅱ)求ABC ∆的面积. 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, …………………1分 代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =-- , …………………4分(B - 角关系 ………5分 (II )因为0180A <<,由(I )结论可得:135A =. …………………7分 因为11tan tan 023B C =>=>,所以090C B <<< . …………8分 所以sin B=sin C =. …………9分 由sin sin a cA C=得a = …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分 13、(2011石景山一模理15).在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且274sin cos222A B C +-=. (Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的最大值.解:(Ⅰ)∵ A 、B 、C 为三角形的内角,∴ π=++C B A .∵ 三角形中角的大小关系 ∴…………2分 ∴ 27)1cos 2(2cos 142=--+⋅C C .即 021cos 2cos 22=+-C C . ……4分∴ 21cos =C . 又∵ π<<C 0 , ∴ 3π=C . …7分(Ⅱ)由(Ⅰ)得 32π=+B A .∴ A A A sin 32cos cos 32sinsin ⋅-⋅+=ππ)6sin(3cos 23sin 23π+=+=A A A .…10分 ∵ 320π<<A ,∴ 6566πππ<+<A . ∴ 当26ππ=+A ,即 3π=A 时,B A sin sin +取得最大值为3.…………13分。

三角函数公式经典题型

三角函数公式经典题型

三角函数公式经典题型1. 正弦函数与余弦函数的基本关系问题描述:已知角度Θ的正弦值为sinΘ,余弦值为cosΘ,且0 ≤ Θ ≤ π/2,求解以下问题:a) sin^2Θ + cos^2Θ = ?b) sin(90° - Θ) = ?解答:a) 根据三角函数的基本关系,正弦函数与余弦函数满足sin^2Θ + cos^2Θ = 1,所以答案为 1。

b) 根据余弦函数的定义,cos(90° - Θ) = sinΘ,因此 sin(90° - Θ) = sinΘ。

2. 三角函数的和差公式问题描述:已知角度Θ和φ的正弦值分别为sinΘ和sinφ,余弦值分别为cosΘ和cosφ,求解以下问题:a) sin(Θ ± φ) = ?b) cos(Θ ± φ) = ?解答:a) 根据正弦函数的和差公式,sin(Θ ± φ) = sinΘ cosφ ± cosΘ sinφ。

b) 根据余弦函数的和差公式,cos(Θ ± φ) = cosΘ cosφ ∓ sinΘ sinφ。

3. 三角函数的倍角公式问题描述:已知角度Θ的正弦值为sinΘ,余弦值为cosΘ,求解以下问题:a) sin 2Θ = ?b) cos 2Θ = ?解答:a) 根据正弦函数的倍角公式,sin 2Θ = 2sinΘ cosΘ。

b) 根据余弦函数的倍角公式,cos 2Θ = cos^2Θ - sin^2Θ。

4. 三角函数的半角公式问题描述:已知角度Θ的正弦值为sinΘ,余弦值为cosΘ,求解以下问题:a) sin(Θ/2) = ?b) cos(Θ/2) = ?解答:a) 根据正弦函数的半角公式,sin(Θ/2) = ±√((1 - cosΘ)/2)。

b) 根据余弦函数的半角公式,cos(Θ/2) = ±√((1 + cosΘ)/2)。

以上是三角函数公式的经典题型解答。

高中三角函数常见题型与解法

高中三角函数常见题型与解法

三角函数的题型和方法一、思想方法1、三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

即倍角公式降次与半角公式升次。

(4)化弦(切)法。

将三角函数利用同角三角函数基本关系化成弦(切)。

(5)引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

(6)万能代换法。

巧用万能公式可将三角函数化成tan 2θ的有理式。

2、证明三角等式的思路和方法。

(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。

(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。

4、解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

二、注意事项对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面:1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。

2、三角变换的一般思维与常用方法。

注意角的关系的研究,既注意到和、差、倍、半的相对性,如ααββαββαα22122)()(⨯=⨯=+-=-+=.也要注意题目中所给的各角之间的关系。

2023年高考数学解题技巧及规范答题:三角函数大题

2023年高考数学解题技巧及规范答题:三角函数大题

202 年高考数学解题技巧及规范答题三角函数大题【规律方法】1、正弦定理、余弦定理:正弦定理、余弦定理的作用是在已知三角形部分基本量的情况下求解其余基本量,基本思想是方程思想.正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.正弦定理、余弦定理解三角形问题是高考高频考点,其解题方法主要有: (1)化边为角:通过正弦定理和余弦定理,化边为角,如:,等,利用三角变换得出三角形内角之间的关系进行判断.此时要注意一些常见的三角等式所体现的内角关系,如:,或等.(2)化角为边:利用正弦定理、余弦定理化角为边,如,等,通过代数恒等变换,求出三条边之间的关系进行判断.注意:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.2、三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式;(2)构造;(3)和角公式逆用,得(其中φ为辅助角);(4)利用研究三角函数的性质;2sin a R A =2222cos a b c ab C +-=sin sin A B A B =⇔=sin 2sin 2A B A B =⇔=2A B π+=sin 2a A R =222cos 2b c a A bc+-=())f x x x =+())f x x ϕ=+())f x x ϕ=+3(5)反思回顾,查看关键点、易错点和答题规范.【核心素养】以三角形为载体,以正弦定理、余弦定理为工具,以三角恒等变换为手段考查解三角形问题是高考一类热点题型,考查的核心素养主要有“逻辑推理”、“数学运算”、“数据分析”.【典例】【2020年全国II 卷】中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求周长的最大值.【分析】(1)利用正弦定理角化边,配凑出的形式,进而求得;(2)利用余弦定理可得到,利用基本不等式可求得的最大值,进而得到结果.【详解】(1)由正弦定理可得:,,,. (2)由余弦定理得:,即.ABC ABC cos A A ()29AC AB AC AB +-⋅=AC AB +222BC AC AB AC AB --=⋅2221cos 22AC AB BC A AC AB +-∴==-⋅()0,A π∈ 23A π∴=222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=()29AC AB AC AB +-⋅=第二步,用定理、公式、性质:利用正弦定理、余弦定理、二倍角公式、辅助角公式等进行三角形中边角(当且仅当时取等号),,解得:(当且仅当时取等号),周长,周长的最大值为【解题方法与步骤】1、解三角形问题的技巧:(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. ①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍;②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.2、三角恒等变换要遵循的“三看”原则:一看“角”:通过看角之间的差别与联系,把角进行合理拆分,从而正确使用公式; 二看“函数名称”:看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;三看“结构特征”:分析结构特征,找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”等.3、解三角形与三角函数综合问题一般步骤:第一步,转化:正确分析题意,提炼相关等式,利用等式的边角关系合理将问题转化为三角函数的问题; 22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭AC AB =()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭AC AB +≤AC AB =ABC ∴ 3L AC AB BC =++≤+ABC ∴ 3+的的关系的互化;第三步,得结论:利用三角函数诱导公式、三角形内角和定理等知识求函数解析式、角、三角函数值,或讨论三角函数的基本性质等.【好题演练】1.(2021·河南中原高三模拟)在中,,,所对的角分别为,,,已知. (1)求;(2)若,为的中点;且,求的面积.【分析】(1)根据题意,由正弦定理得出,再由两角和的正弦公式化简得,由于,从而可求得,最后根据同角三角函数的平方关系,即可求出;(2)法1:在中由余弦定理得出,再分别在和中,由余弦定理得出和,再由,整理ABC a b c A B C 3cos 3a b A c +=sin B 3a =D AC BD =ABC sin 3sin cos3sin A B A C +=sin 3sin cos A A B =sin 0A >1cos 3B =sin B ABC 221936c b c+-=ABD △BCD △2cos ADB ∠=2cos CDB ∠=cos ADB cos DB 0∠+∠=C化简的出边,最后根据三角形的面积公式,即可求出结果. 法2:由平面向量的加法运算法则得出,两边平方并利用平面向量的数量积运算化简得,从而可求出边,最后根据三角形的面积公式,即可求出结果.【详解】(1)因为,由正弦定理得, 因为, 所以,因为,所以,所以,因为,所以(2)法1:在中,由余弦定理得,即, 在中,由余弦定理得, 在中,由余弦定理得因为,c 1sin2ABC S ac B =△12BD BA BC →→→⎛⎫=+ ⎪⎝⎭()213294c c =++c 1sin 2ABC S ac B =△3cos 3a b A c +=sin 3sin cos 3sin A B A C +=()sin sin sin cos cos sin C A B A B A B =+=+sin 3sin cos A A B =()0,A π∈sin 0A >1cos 3B =()0,B π∈sin B ===ABC 222cos 2a c b B ac +-=221936c b c+-=ABD △2cos ADB ∠=BCD △2cos CDB ∠=πADB CDB ∠+∠=220=即,所以, 整理得,解得:或(舍去), 所以. 法2:因为为的中点,所以,两边平方得,即,即,解得或(舍), 所以. 2.记中内角,,的对边分别为,,.已知. (1)求;(2)点,位于直线异侧,,.求的最大值.【分析】(1,利用正弦定理化边为角结合利用两角和的正弦公式展开整理可求得的值,即可得角; (2)结合(1化角为边可得,即,在中由余弦定理求,利用三角恒等式变换以及三角函数的性质可得最大值.2262b c =+()222296219366c c c b c c+-++-==2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△D AC 12BD BA BC →→→⎛⎫=+ ⎪⎝⎭222124B BD B BA C BC A →→→→→⎛⎫=+⋅+ ⎪⎝⎭()213294c c =++2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△ABC A B C a b c a =3cos sin B b A =+A A D BC BD BC ⊥1BD =AD cos sin B b A =+sin sin()C A B =+tan A A cos sin sin C A B B A =+cos sin B a B =+sin c B B =ABD △2AD(1)求 A ;【详解】(1,.. 因为,,所以,,,又因为, 可得:,所以; (2)由(1,, 即,由余弦定理得,所以当且仅当时,取得最大值,所以.3.在中,内角的对边分别为,且满足. 3cos sin B b A =+a =cos sin B b A =+cos sin sin C A B B A =+πA B C ++=,,(0,π)A B C ∈sin sin()sin cos cos sin C A B A B A B =+=+cos s cos sin s i in n A B A B A B B A +=+sin sin sin A B B A =sin 0B ≠sin A A =tan A =0πA <<π3A =cos sin sin C AB B A =+cos sin B a B =+cos sin c a B B B =+=+2222cos AD c BD c BD ABD =+-⋅∠()()()2sin 12sin sin B B B B B =+--222sin 3cos 212sin 2B B B B B =+++++42B =+π4B =2AD )241+=+AD 1+ABC 、、A B C ,,a b c 2sin cos b A B ()2sin c b B =-(2)若l 的取值范围.【分析】(1)由正弦定理得,化简得, 利用的范围可得答案;(2)由正弦定理得,利用的范围和三角函数的性质可得答案.【详解】(1)由正弦定理得, 因为,所以, 所以,即,解得,因为,所以.(2)由正弦定理得, 所以,所以,因为,所以, a =()2sin sin cos 2sin sin sin B A B CB B =-1cos2A =A 4sin ,4sin bB cC ==()4sin sin l B C =++B ()2sin sin cos 2sin sin sin BA B C B B=-0B π<<sin 0B ≠2sincos 2sin sin A BC B =-2sin cos 2sin cos 2sin cos sin A B A B B A B =+-1cos 2A =0A π<<3A π=4sin sin sin a b cAB C===4sin ,4sin b B c C ==()24sin sin sin sin 3l B C B B π⎡⎤⎛⎫=+++-+ ⎪⎢⎥⎝⎭⎣⎦314sin cos 22B B B B ⎛⎫⎫=+++ ⎪⎪ ⎪⎪⎝⎭⎭6B π⎛⎫=++ ⎪⎝⎭20,3B π⎛⎫∈ ⎪⎝⎭5,666B πππ⎛⎫+∈ ⎪⎝⎭所以, 所以.4.(2021·天津高考)在,角所对的边分别为,已知. (I )求a 的值;(II )求的值;(III )求的值.【分析】(I )由正弦定理可得(II )由余弦定理即可计算;(III )利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I )因为,由正弦定理可得,;(II )由余弦定理可得; (III ),, ,, 所以. 1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦(l ∈ABC ,,A B C ,,a bc sin:sin :sin 2A B C =b =cos C sin 26C π⎛⎫- ⎪⎝⎭::2a b c =2C sin :sin :sin 2A B C =::2:1:ab c=b =2a c ∴==2223cos 24a b c C ab +-===3cos 4C =sin C ∴==3sin 22sin cos 24C C C ∴===291cos 22cos 121168C C =-=⨯-=sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1182=⨯=5.(2021·南京市中华中学)在中,分别为内角的对边,且满足. (1)求的大小;(2)从①,②,③这三个条件中任选两个,补充在下面的问题中,并解决问题.问题:已知___________,___________,若存在,求的面积,若不存在,请说明理由.注:如果选择多个条件解答,按第一个解答计分.【分析】(1)由正弦定理进行边角互化,再结合辅助角公式化简运算,可求出角的范围.(2)若选择条件①②,由余弦定理可计算的值,面积公式计算面积;若选择条件②③,正弦定理计算边,两角和的正弦计算,可求面积;若选择条件①③,由大边对大角可知三角形不存在. 【详解】(1)因为,由正弦定理可得因为即因为所以因为即ABC ,,a b c ,,A B C b a =B 2a c =2b =4A π=ABC ABC ABC a c 、a sin C b a =sin sin B A =sin 0A ≠cos 1B B -=1sin()62B π-=0B π<<5666B πππ-<-<66B ππ-==3B π第 11 页 共 11 页(2)若选择条件①②,由余弦定理可得,解得, 故所以若选择条件②③由正弦定理可得,可得所以若选择条件①③这样的三角形不存在,理由如下: 在三角形中,, 所以, 所以,所以又因为所以与矛盾,所以这样的三角形不存在.2222cos b a c ac B=+-222442c c c +-=c =a =11sin sin 223ABC S ac B π=== sin sin a b A B =sin sin b A a B ==11sin 2sin 2234ABC S ab C ππ⎛⎫==⨯+= ⎪⎝⎭ ABC 43A B ππ==,53412C ππππ=--=A C <a c <2a c=a c >a c <。

三角函数题型归纳总结及方法

三角函数题型归纳总结及方法

三角函数题型归纳总结及方法
三角函数是数学中的一类非常重要的函数,它们涉及的角度和边长的关系在很多实际问题中都有应用。

以下是对三角函数题型及方法的归纳总结:
1.角度和边长的关系:
在直角三角形中,三个内角和等于180度,并且-个角正弦值的平方等于余弦值的平方和。

这是三角函数的基础,也是解决许多问题的关键。

2.三角函数的定义:
三角函数是以角度为自变量,角度的正弦值、余弦值、正切值等为因变量的函数。

这些函数都可以用级数展开式来表示,而展开式又可以表示成多项式和幂级数的形式。

3.同角三角函数之间的关系:
在一个角度下,正弦值、余弦值和正切值之间有一定的关系,这些关系式可以用于简化问题或推导其他公式。

4.三角函数的恒等式:
恒等式是数学中非常有用的工具,它们可以帮助我们在不改变量的条件下推导出新的关系式。

三角函数也有一系列恒等式,如和差恒等式、积化和差恒等式等。

5.三角函数的图像:
图像是理解函数性质的重要工具。

对于三角函数,图像可以用来研究函数的周期性、最值、对称性等性质。

6.三角函数的应用:
三角函数在很多实际问题中都有应用,如物体运动轨迹的计算、振动问题的研究、电磁波的传播等。

解决三角函数问题的常用方法包括:
1.利用角度和边长的关系推导公式;
2.利用同角三角函数之间的关系简化问题;
3.利用恒等式推导新的关系式;
4.利用图像研究函数性质;
5.利用三角函数解决实际问题。

制表:审核:批准:。

三角函数基本题型及解题方法

三角函数基本题型及解题方法

三角函数基本题型及解题方法三角函数基本题型及解题方法对于三角函数的问题,特别是一些创新型问题,对大多数同学来说可能会感到陌生。

这些问题主要考查学生对于重要数学思想和方法的掌握以及在考试时对自己心态的调整。

但是,我们可以使用特殊化方法来解决这些问题。

特殊化方法的解题依据是,题目所叙述的一般情形成立,则对特殊情形也应该成立。

若不成立,则必然选项是错误的。

特殊化方法一般有赋特殊值、特殊函数等。

一、单调性类问题例11)若A、B是锐角三角形ABC的两个内角,则点P(cosB-sinA。

sinB-cosA)在哪个象限?选项为A、B、C、D。

2)设α、β是一个钝角三角形的两个锐角,下列四个不等式中不正确的是?选项为A、B、C、D。

分析:这是依托基本的几何图形三角形,创新型的考查三角函数的单调性等重要性质的题目。

常规解法运算繁杂,用特殊化方法则可出奇制胜。

对于(1),赋A=B=60°,可知选B;对于(2),赋α=β=30°,可知选D。

例2若A、B、C是△XXX的三个内角,且A<B<C(C≠π/2),则下列结论中正确的是哪个?选项为A、B、C、D。

分析:赋A=30°,B=70°,C=80°,可知B、D错;赋A=30°,B=50°,C=100°,知C错。

故选A。

例3函数y=xcosx-sinx在下面哪个区间内是增函数?选项为A、B、C、D。

分析:所给函数的定义域显然是R,又令f(x)=xcosx-sinx,则f(π/2)=f(3π/2)=-1,f(π)=-π,f(π/6)=1,f(2π)=2π。

如对选项A,x从π/3到2π/3,y从-1,-π到1,不符合题意,同理可排除C、D。

例4函数y=2sin(π/6-2x)(x∈[0,π])为增函数的区间是哪个?选项为A、B、C、D。

分析:只需考虑区间端点处的函数值,有①x=0,y=1;②x=π/12,y=√3/2;③x=π/3,y=-2;④x=5π/6,y=1.可知选项B为正确答案。

高三复习:三角函数-知识点、题型方法归纳

高三复习:三角函数-知识点、题型方法归纳

高三复习:三角函数-知识点、题型方法
归纳
一、知识点概述
1. 三角函数的定义和性质
- 正弦函数、余弦函数、正切函数的定义及其在数轴上的周期性;
- 三角函数的基本性质和关系:正弦函数与余弦函数的关系,正切函数与正弦函数、余弦函数的关系。

2. 三角函数的图像与性质
- 正弦函数、余弦函数的图像、特征和性质;
- 正切函数的图像、特征和性质。

3. 三角函数的基本变换
- 函数y = A · sin(Bx + C) + D的图像、特征和性质;
- 函数y = A · cos(Bx + C) + D的图像、特征和性质;
- 函数y = A · tan(Bx + C) + D的图像、特征和性质。

二、题型方法归纳
1. 计算题
- 利用三角函数的定义和性质,求解给定角的正弦、余弦、正切值;
- 利用三角函数的图像和性质,求解特定函数值。

2. 解方程和不等式
- 利用三角函数的定义和性质,解三角方程和三角不等式。

3. 图像分析题
- 分析三角函数的图像特征,如振幅、周期、对称轴等;
- 利用函数的基本变换,画出特定三角函数图像。

4. 证明题
- 利用三角函数的基本性质和关系,进行数学推导和证明。

三、总结
三角函数是高中数学的重要内容,通过复和掌握三角函数的知识点和题型方法,可以帮助学生提高解题能力和应用能力。

在复过程中,建议注重基本概念的理解、公式的记忆和方法的灵活运用,以及多做相关题目进行巩固和实践。

以上是三角函数复习的知识点和题型方法归纳,希望对你的高三复习有所帮助。

祝你学业进步,取得好成绩!。

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总

高三高考文科数学《三角函数》题型归纳与汇总高考文科数学题型分类汇总:三角函数篇本文旨在汇总高考文科数学中的三角函数题型,包括定义法求三角函数值、诱导公式的使用、三角函数的定义域或值域、三角函数的单调区间、三角函数的周期性、三角函数的图象变换和三角函数的恒等变换。

题型一:定义法求三角函数值这类题目要求根据三角函数的定义,求出给定角度的正弦、余弦、正切等函数值。

这类题目的难点在于熟练掌握三角函数的定义,以及对角度的准确度量。

题型二:诱导公式的使用诱导公式是指通过对已知的三角函数进行代数变形,得到新的三角函数值的公式。

这类题目需要熟练掌握各种诱导公式,以及灵活应用。

题型三:三角函数的定义域或值域这类题目要求确定三角函数的定义域或值域。

需要掌握各种三角函数的性质和图象,以及对函数的定义域和值域的概念和计算方法。

题型四:三角函数的单调区间这类题目要求确定三角函数的单调区间,即函数在哪些区间上单调递增或单调递减。

需要掌握各种三角函数的性质和图象,以及对函数单调性的判定方法。

题型五:三角函数的周期性这类题目要求确定三角函数的周期。

需要掌握各种三角函数的性质和图象,以及对函数周期的计算方法。

题型六:三角函数的图象变换这类题目要求根据给定的变换规律,确定三角函数图象的变化。

需要掌握各种三角函数的性质和图象,以及对图象变换的计算方法。

题型七:三角函数的恒等变换这类题目要求根据已知的三角函数恒等式,进行变形和推导。

需要掌握各种三角函数的恒等式,以及灵活应用。

2)已知角α的终边经过一点P,则可利用点P在单位圆上的性质,结合三角函数的定义求解.在求解过程中,需注意对角终边位置进行讨论,避免忽略或重复计算.例2已知sinα=0.8,且α∈[0,π2],则cosα=.答案】0.6解析】∵sinα=0.8,∴cosα=±√1-sin²α=±0.6XXXα∈[0,π2],∴cosα>0,故cosα=0.6易错点】忘记对cosα的正负进行讨论思维点拨】在求解三角函数值时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.同时,需根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型二诱导公式的使用例3已知tanα=√3,且α∈(0,π2),则sin2α=.答案】34解析】∵ta nα=√3,∴α=π/30<α<π/2,∴0<2α<πsin2α=sin(π-2α)=sinπcos2α-cosπsin2α=-sin2α2sin2α=0,∴sin2α=0sin2α=3/4易错点】忘记利用诱导公式将sin2α转化为sin(π-2α)思维点拨】在解决三角函数的复合问题时,可利用诱导公式将一个三角函数转化为其他三角函数的形式,从而简化计算.同时,需注意根据角度范围确定函数值的取值范围,避免出现超出范围的情况.题型三三角函数的定义域或值域例4已知f(x)=2sinx+cosx,则f(x)的值域为.答案】[−√5,√5]解析】∵f(x)=2sinx+cosx=√5(sin(x+α)+sin(α-x)),其中tanα=-121≤sin(x+α)≤1,-1≤sin(α-x)≤15≤f(x)≤√5f(x)的值域为[−√5,√5]易错点】忘记利用三角函数的性质将f(x)转化为含有同一三角函数的形式思维点拨】在确定三角函数的定义域或值域时,可利用三角函数的性质将其转化为含有同一三角函数的形式,从而方便计算.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其定义域或值域.题型四三角函数的单调区间例5已知f(x)=sin2x,则f(x)在区间[0,π]上的单调递增区间为.答案】[0,π/4]∪[3π/4,π]解析】∵f'(x)=2cos2x=2(2cos²x-1)=4cos²x-2f'(x)>0的充要条件为cosx12f(x)在[0,π/4]∪[3π/4,π]上单调递增易错点】忘记将f'(x)化简为含有同一三角函数的形式,或对于三角函数的单调性判断不熟练思维点拨】在求解三角函数的单调区间时,需先求出其导数,并将其化简为含有同一三角函数的形式.然后,利用三角函数的单调性进行判断,得出函数的单调区间.题型五三角函数的周期性例6已知f(x)=sin(2x+π),则f(x)的周期为.答案】π解析】∵sin(2x+π)=sin2xcosπ+cos2xsinπ=-sin2xf(x)的周期为π易错点】忘记利用三角函数的周期性质思维点拨】在求解三角函数的周期时,需利用三角函数的周期性质,即f(x+T)=f(x),其中T为函数的周期.同时,需注意对于复合三角函数,需先将其转化为含有同一三角函数的形式,再确定其周期.题型六三角函数的图象变换例7已知f(x)=sinx,g(x)=sin(x-π4),则g(x)的图象相对于f(x)的图象向左平移了.答案】π4解析】∵g(x)=sin(x-π4)=sinxcosπ4-cosxsinπ4g(x)的图象相对于f(x)的图象向左平移π4易错点】忘记利用三角函数的图象变换公式,或对于三角函数的图象不熟悉思维点拨】在求解三角函数的图象变换时,需利用三角函数的图象变换公式,即y=f(x±a)的图象相对于y=f(x)的图象向左(右)平移a个单位.同时,需对于各种三角函数的图象有一定的了解,以便准确判断图象的变化情况.题型七三角函数的恒等变换例8已知cosα=12,且α∈(0,π2),则sin2α的值为.答案】34解析】∵cosα=12,∴sinα=√3/2sin2α=2sinαcosα=√3/2×1/2=3/4易错点】忘记利用三角函数的恒等变换公式思维点拨】在求解三角函数的恒等变换时,需熟练掌握三角函数的基本恒等式和常用恒等式,从而简化计算.同时,需注意根据已知条件确定函数值的正负,避免出现多解或无解的情况.已知角α的终边所在的直线方程,可以通过设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义来解决相关问题。

高考三角函数题型归纳总结

高考三角函数题型归纳总结

高考三角函数题型归纳总结
高考解三角函数题型归纳总结
一、函数值的计算
1.由某个函数的定义求指定的函数值
2.由表达式求某个函数的值
3.由一切三角函数的基本等式求某个函数的值
二、函数的延长
1.函数的延长:对某个函数的符号或值作一定重新定义,以推广原函数的定义域,使原值可以成为新函数的值
2.求函数值时把原函数的值替换新定义的函数的值
三、函数的平移
1.对某个函数作一定的平移变换,使其实轴、值轴都做出一定的平移
2.函数按照平移变换规则,将原函数的值按比例地经过初始点再离开
四、函数的综合运用
1.记住一些常见的组合等式,如:sinα±cosα=sincosα、sin α-cosα=-2sinsinα/2
2.按延长或平移变换,用组合等式解决具体问题
3.用其他三角函数的关系转换,把一种函数转换成另一种,如tanα=sinα/cosα。

- 1 -。

三角函数常考题型及解题方法

三角函数常考题型及解题方法

直线和圆的位置关系知识点补充知识点1:判断直线和圆的位置关系:(1)利用圆心到直线的距离等于半径。

(2)直线过一定点,此定点在圆内,则直线和圆相交。

知识点2 圆),(,00222y x r y x 经过圆上点=+的切线方程为200r yy xx =+;点),(00y x 为圆,)()(222r b y a x =-+-上一点,则过该点的切线方程为200))(())((r b y b y x x a x =--+--知识点 3 ;过圆外一点可作出圆的两条切线,求切线方程时,通常),(,00222y x r y x 经过点=+设切线的点斜式方程,若求出的k 只有一个,则说明还有一条切线必垂直于x 轴(无斜率),。

应补上。

三角函数的图象和性质知识点1 :只要求三角函数的周期,对称轴,对称中心,单调区间,值域,一般是将三角函数化为同角一次,在此使用辅助角公式。

)sin(ϕ+=wx A y ,使用对三角函数的整体思想去做。

知识点2 三角函数的两种图象平移:(1)先伸缩后平移;(2)先平移后伸缩知识点3 三角函数周期的求解方法(1)利用求解周期的定义(2)利用公式wT w T ππ==,2 (3)对于较为复杂的三角函数转化为)sin(ϕ+=wx A y +k 求解知识点4 确定三角函数的单调区间函数)sin(ϕ+=wx A y (A>0,w>0)的单调区间的确定:基本思路是讲ϕ+wx 看做一个整体,由函数名称对于的原单调区间求解对于的x 的范围若0<w ,方式(1)通过诱导公式将负号诱导,原函数的增区间变为减区间,减区间变为增区间。

(2)利用复合函数的单调性。

知识点5 已知函数图象上的点求解析式)sin(ϕ+=wx A y 的方法(1)绘出图象确定解析式)sin(ϕ+=wx A y 的题型,有时从寻找“五点法”的第一个零点()0,wϕ-作为突破口,要从图象的升降情况找准第一个零点的位置。

(2)已知函数图象求函数)sin(ϕ+=wx A y ()0,0>>w A 的解析式时,常用的解题方法是待定系数法,由图中的最大值或者最小值确定A ,由周期确定w 的取值,由适合解析式的点的坐标来确定ϕ,但由图象求得的)sin(ϕ+=wx A y )0,0(>>w A 的解析式一般不唯一,只有限定了也的取值范围,才能得出唯一解,否则ϕ的值就不确定,解析式也就不唯一。

高中数学 三角函数5部分25个考点100道典型题!

高中数学 三角函数5部分25个考点100道典型题!

三角函数超全考点与题型分析第一部分三角函数定义【思维导图】【常见考法】考点一:终边相同的角1.终边在第二、四象限的角平分线上的角可表示为。

【答案】180135,k k Z⋅︒+︒∈【解析】角的终边在第二象限的角平分线上,可表示为:13601352180135k k α=⋅︒+︒=⋅︒+︒,k Z ∈,角的终边在第四象限的角平分线上,可表示为:2360315(21)180135k k α=⋅︒+︒=+⋅︒+︒,k Z ∈.故当角的终边在第二、四象限的角平分线上时,可表示为:180135k α=⋅︒+︒,k Z ∈.2.下列各组角中,终边相同的角是。

A.2k π与()2k k Z ππ+∈B.3±k ππ与()3k k Z π∈C.()21+k π与()()41k k Z π±∈D.6k ππ+与()6k k Z ππ±∈【答案】C【解析】对于A 选项,()2k k Z π∈表示2π的整数倍,()()2122k k k Z πππ++=∈表示2π的奇数倍,2k π与()2k k Z ππ+∈的终边不一定相同;对于B 选项,()()3133k k k Z πππ±±=∈ ,()31k k Z +∈表示除3余数为1的整数,()()31312k k k Z -=-+∈表示除3余数为2的整数,而()3k k Z π∈表示3π的整数倍,所以,,,33k x x k k Z x x k Z πππ⎧⎫⎧⎫=±∈=∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则3±k ππ与()3k k Z π∈的终边不一定相同;对于C 选项,对于()41k π±,取1k k Z =∈得()()14141k k ππ±=±,对于()21+k π,取2k k Z =∈得()()22121k k ππ+=+,()()()()12121241214222k k k k k k ππππ+-+=-=- ,()()()()1212124121422221k k k k k k ππππ--+=--=--均为2π的整数倍,则()21+k π与()()41k k Z π±∈的终边相同;对于D 选项,显然,66x x k k Z x x k k Z ππππ⎧⎫⎧⎫=+∈=±∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则6k ππ+与()6k k Z ππ±∈的终边不一定相同.故选:C.3.已知集合|22,42k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭则角α的终边落在阴影处(包括边界)的区域是。

高考必考三角函数题型及解题方法

高考必考三角函数题型及解题方法

2、 0 ,且 cos( ) 1 , sin( ) 2 ,求 cos( ) 490
2
29
2
3
729
②三角函数名互化(切割化弦) 1、求值 sin 50 (1 3 tan10 ) 1
2、已知 sin cos 1, tan( ) 2 ,求 tan( 2) 的值
y sinx 的图象;
③ 函 数 y sin x 图 象 的 横 坐 标 不 变 , 纵 坐 标 变 为 原 来 的 A 倍 , 得 到 函 数
y Asin(x ) 的图象;
④函数 y Asin(x ) 图象的横坐标不变,纵坐标向上( k 0 )或向下( k 0 ),得
到 y Asin x k 的图象。
-
-可修编.
.
.
2.和差角公式
① sin( ) sin cos cos sin ② cos( ) cos cos sin sin ③
tan(
)
tan 1 tan
tan tan
3.二倍角公式及万能公式
① sin 2 2sin cos 2tan
1 tan 2
② cos 2
1 sin2
x cos2
x
sec2
x tan2
x
tan
x cot
x
tan 4
sin
2
已知 tan 2 ,求 sin2 sin cos 3cos2 3 5
⑦正余弦的存联系 “知一求二”
(sin cos )2 1 2sin cos 1 sin 2 1、若 sin x cos x t ,则 sin x cos x t2 1
D、 f (x) 的最大值是 A
3.对于函数
f
x

三角函数中的常考题型及其解法

三角函数中的常考题型及其解法

三角函数中的常考题型及其解法三角函数中常考题型及解法:一、求解三角函数值1、求正弦函数值解法:使用正弦定理进行求解,总结如下:(1)正弦定理(用于直角三角形):a/sinA=b/sinB=c/sinC;(2)正弦表:常记正弦值,如15°的正弦值是0.2588;(3)半角公式:sin(x/2)=±√[(1-cosx)/2];(4)倍角公式:sin2x=2sinxcosex。

2、求余弦函数值解法:使用余弦定理进行求解,总结如下:(1)余弦定理(用于直角三角形):a²=b²+c²-2bc·cosA;(2)余弦表:常记余弦值,如45°的余弦值是0.7071;(3)化简余弦值:常用公式或知识点化简余弦值,如极限化简,勾股定理等;(4)半角公式:cos(x/2)=±√[(1+cosx)/2];(5)倍角公式:cos2x=cos²x-sin²x。

三、求解三角函数表达式1、求正弦函数表达式解法:(1)可用图像法求解,如求函数y=2sin(x+π/6)的图形,可将之前已知的普通正弦图形向右移动π/6,并放大2倍;(2)也可用公式求解,如求函数y=2sin(x+π/6),用单位正弦函数表示法,则有y=2sin(x)·cos(π/6)+2cos(x)·sin(π/6)。

2、求余弦函数表达式解法:(1)可用图像法求解,如求函数y=2cos(x+π/6)的图形,可先求出正弦函数的图像,再进行垂直翻转;(2)也可用公式求解,如求函数y=2cos(x+π/6),用单位余弦函数表示法,则有y=2cos(x)·cos(π/6)-2sin(x)·sin(π/6)。

三角函数解题技巧和公式(已整理)技巧归纳以及练习题

三角函数解题技巧和公式(已整理)技巧归纳以及练习题

浅论关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。

下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,33cos sin -=-求。

分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。

解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。

例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。

三角函数的题型及解题方法

三角函数的题型及解题方法

三角函数的题型及解题方法
1.转化思想
转化思想贯穿于本章的始终.例如,利用三角函数定义可以实现边与角的转化,利用互余两角三角函数关系可以实现“正”与“余”的互化;利用同角三角函数关系可以实现“异名”三角函数之间的互化.此外,利用解直角三角形的知识解决实际问题时,首先要把实际问题转化为数学问题.
2.数形融合思想
本章从概念的引出到公式的推导及直角三角形的解法和应用,无一不体现数形结合的`思想方法.例如,在解直角三角形的问题时,常常先画出图形,使已知元素和未知元素更直观,有助于问题的顺利解决.
3.函数思想
锐角的正弦、余弦、正切、余切都是三角函数,其中都蕴含着函数的思想.例如,任意锐角a与它的正弦值是一一对应的关系.也就是说,对于锐角a任意确定的一个度数,sina都有惟一确定的值与之对应;反之,对于sina在(01)之间任意确定的一个值,锐角a都有惟一确定的一个度数与之对应.
4.方程思想
在解直角三角形时,若某个元素无法直接求出,往往设未知数,根据三角形中的边角关系列出方程,通过解方程求出所求的元素.。

高中数学解决三角函数问题的五种方法(带答案)

高中数学解决三角函数问题的五种方法(带答案)

高中数学解决三角函数问题的五种方法(带答案)方法一:角度法1. 计算给定角度的三角函数值。

2. 利用已知三角函数值的关系进行运算或计算未知三角函数值。

3. 根据问题给出的条件,确定需要解决的三角函数问题类型,如求角度、边长等。

4. 根据已知和未知的三角函数值,利用三角函数的简单性质和公式解决问题。

5. 最后,确保结果符合问题的要求,有必要的话进行合理的近似处理。

方法二:等式法1. 将问题中的三角函数转换成等式形式。

2. 根据已知的等式,利用等式的性质和公式进行推导和运算。

3. 通过求解等式,得到未知三角函数值或角度。

4. 判断结果是否符合问题的要求,并进行必要的近似处理。

方法三:图像法1. 根据给定的角度,画出三角函数图像。

2. 根据图像性质分析问题中的条件,确定需要求解的问题类型。

3. 利用图像,在合适的位置找到所需的三角函数值或角度。

4. 确认结果是否符合问题的要求,如有需要,进行近似处理。

方法四:三角恒等式法1. 根据问题中的条件,利用已知的三角恒等式进行变形和推导。

2. 将问题转化为包含已知三角函数的等式。

3. 通过求解等式,得到所需的三角函数值或角度。

4. 验证结果是否符合问题的要求,如有需要,进行近似处理。

方法五:三角函数特性法1. 根据问题中的条件,利用三角函数的特性进行分析。

2. 根据已知的特性,推导出所需的三角函数值或角度。

3. 判断结果是否满足问题要求,如有必要,进行近似处理。

这些方法是解决高中数学中三角函数问题常用的方法。

通过选择合适的解决方法,结合问题中给出的条件,可以有效地解决各种三角函数问题。

请注意,以上所提供的答案仅供参考,具体问题的解决方法可能因具体条件而有所不同。

解决数学问题时,请始终独立做出决策,并确保所引用的内容能够得到确认。

三角函数专题三角函数中ω的取值范围问题(6大题型)(原卷版)

三角函数专题三角函数中ω的取值范围问题(6大题型)(原卷版)

三角函数专题:三角函数中ω的取值范围问题一、求ω取值范围的常用解题思路 1、依托于三角函数的周期性因为f(x)=Asin(ωx +φ)的最小正周期是T =2π|ω|,所以ω=2πT,也就是说只要确定了周期T ,就可以确定ω的取值. 2、利用三角函数的对称性(1)三角函数两条相邻对称轴或两个相邻对称中心之间的“水平间隔”为T2,相邻的对称轴和对称中心之间的“水平间隔”为T4,也就是说,我们可以根据三角函数的对称性来研究其周期性,进而可以研究ω的取值。

(2)三角函数的对称轴比经过图象的最高点或最低点,函数的对称中心就是其图象与x 轴的交点(零点),也就是说我们可以利用函数的最值、零点之间的“差距”来确定其周期,进而可以确定ω的取值.3、结合三角函数的单调性函数f (x )=Asin(ωx +φ)的每一“完整”单调区间的长度(即两相邻对称轴的间距)恰好等于T 2,据此可用来求ω的值或范围。

反之,从函数变换的角度来看ω的大小变化决定了函数图象的横向伸缩,要使函数f (x )=Asin(ωx +φ)在指定区间上具有单调性,我们忘完可以通过调整周期长度来实现,犹如通过弹簧的伸缩来抬举三角函数在区间上的单调性和最值等。

二、已知函数y =Asin(ωx +φ)在给定区间上的单调性,求ω的取值范围已知函数y =Asin(ωx +φ)(A >0,ω>0),在[x 1,x 2]上单调递增(或递减),求ω的取值范围 第一步:根据题意可知区间[x 1,x 2]的长度不大于该函数最小正周期的一半,即x 2−x 1≤12T =πω,求得0<ω≤πx2−x 1.第二步:以单调递增为例,利用[ωx 1+φ,ωx 2+φ]⊆[−π2+2kπ,π2+2kπ],解得ω的范围; 第三步:结合第一步求出的ω的范围对k 进行赋值,从而求出ω(不含参数)的取值范围. 三、结合图象平移求ω的取值范围 1、平移后与原图象重合思路1:平移长度即为原函数周期的整倍数;思路2:平移前的函数()f x =平移后的函数()g x .2、平移后与新图象重合:平移后的函数()f x =新的函数()g x .3、平移后的函数与原图象关于y 轴对称:平移后的函数为偶函数;4、平移后的函数与原函数关于x 轴对称:平移前的函数()f x =平移后的函数()g x ;5、平移后过定点:将定点坐标代入平移后的函数中。

高中数学解题方法系列:三角函数最值问题的6种方法(按题型分类版)

高中数学解题方法系列:三角函数最值问题的6种方法(按题型分类版)

高中数学解题方法系列:三角函数最值问题的 6 种方法(按题型分类版)三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。

其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中, 作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。

题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。

掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。

1.y=asinx+bcosx 型的函数特点是含有正余弦函数,并且是一次式。

解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。

应用课本中现成的公式即可: y= tan φ= basin(x+φ ), 其中例 1 已知函数 f (x )=2cos x sin(x + π)-3 sin 2x +sin x cos x (1)求函数 f (x )的最小正周期; (2)求 f (x )的最小值及取得最小值时相应的 x 的值; (3)若当 x ∈[ π , 7π]时,f (x )的反函数为 f -1(x ),求 f --1(1)的值.12 12解:(1)f (x )=2cos x sin(x + π)- 3=2cos x (sin x cos π+cos x sin π)-sin 2x +sin x cos x sin 2x +sin x cos x 3 3=2sin x cos x + cos2x =2sin(2x + π)3∴f (x )的最小正周期 T =π (2)当 2x + π=2k π- π,即 x =k π- 5π (k ∈Z )时,f (x )取得最小值-2.3 2 12 (3)令 2sin(2x + π)=1,又 x ∈[ π, 7π],3 2 2 ∴2x + π∈[ π, 3π],∴2x + π= 5π,则3 3 2 3 6x = π,故 f --1(1)= π.4 42.y=asin 2x+bsinxcosx+cos 2x 型的函数。

高考数学三角函数常考题型及解答方法总结

高考数学三角函数常考题型及解答方法总结
任意两角和与第三个角总互补任意两半角和与第三个角的半角总互余三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方注意
高考数学三角函数常考题型及解答方法总结
1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。
如(1)已知 , ,那么 的值是_____(答: )
(2)已知 ,且 , ,求 的值(答: );
(2)三角函数名互化(切割化弦),
如(1)求值 (答:1);
(2)已知 ,求 的值(答: )
(3)公式变形使用( 。
如(1)已知A、B为锐角,且满足 ,则 =_____(答: );
(2)设 中, , ,则此三角形是____三角形(答:等边)
(4)三角函数次数的降升(降幂公式: , 与升幂公式: , )。
如(1)若 ,化简 为_____(答: );
(2)函数 的单调递增区间为___________(答: )
(5)常值变换主要指“1”的变换(
等),
如已知 ,求 (答: ).
(6)正余弦“三兄妹— ”的内存联系――“知一求二”,
如(1)若 ,则 __(答: ),特别提醒:这里 ;
(4)函数 的最小值是_____,此时 =__________(答:2; );
(5)若 ,求 的最大、最小值(答: , )。特别提醒:在解含有正余弦函数的问题时,你深入挖掘正余弦函数的有界性了吗?
(3)周期性:① 、 的最小正周期都是2 ;② 和 的最小正周期都是 。
如(1)若 ,则 =___(答:0);

高考中常见的三角函数题型和解题方法-数学秘诀

高考中常见的三角函数题型和解题方法-数学秘诀

第12讲 三角函数一、方法技巧1.三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

(4)化弦(切)法。

(4)引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

2.证明三角等式的思路和方法。

(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。

(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。

3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。

4.解答三角高考题的策略。

(1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。

(2)寻找联系:运用相关公式,找出差异之间的内在联系。

(3)合理转化:选择恰当的公式,促使差异的转化。

四、例题分析例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=. 说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数经典解题方法与考点题型(教师)1.最小正周期的确定。

例1 求函数y =s in (2co s|x |)的最小正周期。

【解】 首先,T =2π是函数的周期(事实上,因为co s(-x )=co s x ,所以cos |x |=co s x );其次,当且仅当x =k π+2π时,y =0(因为|2co s x |≤2<π), 所以若最小正周期为T 0,则T 0=mπ, m∈N +,又s in (2co s0)=s in 2≠s in (2co sπ),所以T 0=2π。

过手练习1.下列函数中,周期为2π的是 ( ) A .sin 2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x =2.()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= 3.(04全国)函数|2sin |x y =的最小正周期是( ).4.(1)(04北京)函数x x x f cos sin )(=的最小正周期是 .(2)(04江苏)函数)(1cos 22R x x y ∈+=的最小正周期为( ). 5.(09年广东文)函数1)4(cos 22--=πx y 是 ( )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数6.(浙江卷2)函数的最小正周期是 . 2.三角最值问题。

例2 已知函数y =s inx +x 2cos 1+,求函数的最大值与最小值。

【解法一】 令s inx =⎪⎭⎫ ⎝⎛≤≤=+ππθθ4304sin 2cos 1,cos 22x ,则有y =).4sin(2sin 2cos 2πθθθ+=+因为ππ4304≤≤,所以ππθπ≤+≤42, 所以)4sin(0πθ+≤≤1,所以当πθ43=,即x =2k π-2π(k ∈Z )时,y m in =0, 当4πθ=,即x =2k π+2π(k ∈Z )时,y m ax =2. 2(sin cos )1y x x =++【解法二】 因为y =s inx +)cos 1(sin 2cos 1222x x x ++≤+,=2(因为(a +b )2≤2(a 2+b 2)),且|s inx|≤1≤x 2cos 1+,所以0≤s inx +x 2cos 1+≤2, 所以当x 2cos 1+=s inx ,即x =2k π+2π(k ∈Z )时, y m ax =2, 当x 2cos 1+=-s inx ,即x =2k π-2π(k ∈Z )时, y m in =0。

注:三角函数的有界性、|s inx |≤1、|co s x |≤1、和差化积与积化和差公式、均值不等式、柯西不等式、函数的单调性等是解三角最值的常用手段。

过手练习1.(09福建)函数()sin cos f x x x =最小值是= 。

2.(09上海)函数22cos sin 2y x x =+的最小值是 .3.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A .6π7 B .3π C .6π D .2π 4.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1 BCD .25.函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1B.12+ C.323.换元法的使用。

例4 求xx xx y cos sin 1cos sin ++=的值域。

【解】 设t =s inx +co s x =).4sin(2cos 22sin 222π+=⎪⎪⎭⎫ ⎝⎛+x x x 因为,1)4sin(1≤+≤-πx所以.22≤≤-t又因为t 2=1+2s inxco s x ,所以s inxco s x =212-t ,所以211212-=+-=t t x y ,所以.212212-≤≤--y 因为t ≠-1,所以121-≠-t ,所以y ≠-1.所以函数值域为.212,11,212⎥⎦⎤⎝⎛--⎪⎪⎭⎫⎢⎣⎡-+-∈Y y4.函数单调性练习 1.(04天津)函数]),0[()26sin(2ππ∈-=x x y 为增函数的区间是( ).A. ]3,0[πB. ]127,12[ππC. ]65,3[ππ D. ],65[ππ 2.函数sin y x =的一个单调增区间是 ( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭, C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭, 3.函数()sin ([,0])f x x x x π=-∈-的单调递增区间是( ) A .5[,]6ππ--B .5[,]66ππ--C .[,0]3π-D .[,0]6π- 4.(07天津卷) 设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间34ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数5.函数22cos y x =的一个单调增区间是 ( )A .(,)44ππ-B .(0,)2πC .3(,)44ππD .(,)2ππ6.若函数f (x)同时具有以下两个性质:①f (x)是偶函数,②对任意实数x ,都有f (x +4π)= f (x -4π),则f (x)的解析式可以是( )A .f (x)=cosxB .f (x)=cos(2x 2π+) C .f (x)=sin(4x 2π+) D .f (x) =cos6x5. 函数对称性练习 1.(08安徽)函数sin(2)3y x π=+图像的对称轴方程可能是 ( )A .6x π=-B .12x π=-C .6x π=D .12x π=2 函数πsin 23y x ⎛⎫=+ ⎪⎝⎭的图象 ( ) A.关于点π03⎛⎫ ⎪⎝⎭,对称B.关于直线π4x =对称 C.关于点π04⎛⎫ ⎪⎝⎭,对称 D.关于直线π3x =对称 3(09全国)如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为 ( ) (A)6π (B) 4π (C) 3π (D) 2π6.综合练习1. (04年天津)定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为 2.(04年广东)函数f(x)22sin sin 44f x x x ππ=+--()()()是( )A .周期为π的偶函数B .周期为π的奇函数C . 周期为2π的偶函数D ..周期为2π的奇函数3.( 09四川)已知函数))(2sin()(R x x x f ∈-=π,下面结论错误..的是( )A. 函数)(x f 的最小正周期为2πB. 函数)(x f 在区间[0,2π]上是增函数 C.函数)(x f 的图象关于直线x =0对称 D. 函数)(x f 是奇函数 4.(07安徽卷) 函数)32sin(3)(π-=x x f 的图象为C , 如下结论中正确的是①图象C 关于直线π1211=x 对称; ②图象C 关于点)0,32(π对称;③函数125,12()(ππ-在区间x f )内是增函数;④由x y 2sin 3=的图象向右平移3π个单位长度可以得到图象C.5.(08广东卷)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数6.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4 7.若α是第三象限角,且cos2α<0,则2α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角8.已知函数()2sin()f x x ωϕ=+对任意x 都有()()66f x f x ππ+=-,则()6f π等于( )A 、2或0B 、2-或2C 、0D 、2-或07.解答题练习 1.(05福建文)已知51cos sin ,02=+<<-x x x π. (Ⅰ)求x x cos sin -的值;(Ⅱ)求xxx tan 1sin 22sin 2-+的值.2(06福建文)已知函数22()sin cos 2cos ,.f x x x x x x R =+∈(I )求函数()f x 的最小正周期和单调增区间;(II )函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样的变换得到?3.(2006年辽宁卷)已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求:(I) 函数()f x 的最大值及取得最大值的自变量x 的集合; (II) 函数()f x 的单调增区间.。

相关文档
最新文档