建筑材料的物理性质
二建建筑的建筑材料性能
二建建筑的建筑材料性能建筑材料是指用于建造和修复各类建筑物的材料。
在二级建造师考试中,建筑材料的性能是一个重要的考点。
本文将从物理性能、力学性能和耐久性能三个方面介绍二建建筑常用材料的性能特点,帮助考生更好地理解和记忆相关知识。
一、物理性能物理性能是指建筑材料在外界环境下的各种物理特性。
常见的物理性能有密度、热传导性、声传导性、吸水性等。
1. 密度:密度是指单位体积内的质量,通常用千克/立方米表示。
在建筑中,不同材料的密度会对结构和施工产生影响。
例如,密度大的材料可以提供更好的隔音效果,而密度小的材料则更轻便。
2. 热传导性:热传导性是指材料传导热量的能力。
建筑材料的热传导性能对于保温和隔热非常关键。
一般而言,导热系数越小的材料,保温性能越好。
3. 声传导性:声传导性是指材料对声波的传导能力。
在建筑领域,隔音是一个重要的考虑因素。
各种建筑材料的声传导性能各异,如隔音板、隔音玻璃等可以有效隔离噪音。
4. 吸水性:受潮、吸湿是一些建筑材料的固有特性。
吸水性能对建筑物的耐久性和变形非常重要。
合理使用吸水性能较弱的建筑材料,可以减少由于湿度变化引起的开裂、变形等问题。
二、力学性能力学性能是指建筑材料在受力状态下的各种性质。
主要包括强度、刚度、韧性、抗压强度、抗拉强度等。
1. 强度:强度是指材料抵抗破坏的能力。
对于建筑材料来说,强度是一个至关重要的指标。
在结构设计中,需要根据不同材料的强度来合理选择建筑材料,以确保结构的稳定可靠。
2. 刚度:刚度是指材料对应力的反应能力。
刚度越大,表示材料越难变形。
刚度较大的材料适合用于承重结构,如钢材和混凝土。
3. 韧性:韧性是指材料在受力过程中能够吸收和耗散大量的能量而不发生断裂。
在建筑中,一些受冲击力作用较大的部位需要具备韧性较好的材料,以增加结构的抗震性能。
4. 抗压强度和抗拉强度:抗压和抗拉强度是材料承受压力和拉力的能力。
在构建承重结构时,需要考虑材料的抗压和抗拉强度,以保证结构的稳定性。
建筑材料的基本性质整理
建筑材料的基本性质整理-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、建筑材料的物理性质①材料的密度、表观密度、堆积密度(1)密度:材料在绝对密度状态下单位体积的重量。
(2)表观密度:材料在自然状态下单位体积德重量。
(3)堆积密度:粉状或散粒材料在堆积状态下单位体积德重量。
②材料的孔隙率空隙率(1)孔隙率:材料体积内空隙体积所占的比例。
(2)空隙率:散装粒状材料在某堆积体积中,颗粒之间的空隙体积所占的比列。
③材料的亲水性和憎水性(1)润湿角的材料为亲水材料,如建材中的混凝土、木材、砖等。
亲水材料表面做憎水处理,可提高其防水性能。
(2)润湿角的材料为亲水材料,如建材中的沥青、石蜡等。
④材料的吸水性和吸湿性(1)吸水性:在水中能吸收水分的性质。
吸水率(2)吸湿性:材料吸收空气中水分的性质。
含水率。
⑤材料的耐水性、抗渗性和抗冻性(1)耐水性:材料长期在饱和水的作用下不破坏,而且强度也不显着降低的性质。
(2)抗渗性:材料抵抗压力水渗透的性质。
一般用渗透系数K或抗渗等级P表示。
混凝土材料的抗渗等级P=10H-1,H-六个试件中三个试件开始渗水时的水压力。
K越小或P越高,表明材料的抗渗性越好。
(3)抗冻性:材料在吸水饱和状态下,能经受多次冻融循环作用而不破坏、强度又不明显降低的性质,常用抗冻等级F表示。
孔隙率小及具有封闭孔的材料有较高的抗渗性和抗冻性;具有细微而连通的空隙对材料的抗渗性和抗冻性不利。
(4)材料的导热性导热性:材料传到热量的性质。
用导热系数表示,通常将的材料称为绝热材料。
孔隙率越大、表观密度越小,导热系数越小。
2、建筑材料的力学性能①强度与比强度强度是材料抵抗外力破坏的能力。
强度分为抗拉强度、抗压强度、抗弯强度和抗剪强度。
孔隙率越大,强度越低。
比强度是按单位重量计算的材料强度,等于材料的强度与其表观密度之比。
②弹性与塑性(1)弹性:材料在外力作用下产生变形,当外力去除后,能完全恢复原来形状的性质。
建筑知识:不同材料的建筑物理性质分析
建筑知识:不同材料的建筑物理性质分析建筑物理性质是指建筑材料在物理方面的特性和表现。
建筑物理性质是建筑设计中至关重要的一部分,它涉及到建筑材料的强度、硬度、密度、导热性能等多个方面,这些性质直接影响到建筑物的使用寿命、稳定性、隔热性和施工难易度等方面。
本文将分析常见的建筑材料的物理性质,并探讨它们的适用范围及优劣势。
1.混凝土混凝土是一种由水泥、沙子、碎石等不同成分材料组成的建筑材料。
混凝土强度高、密封性好、施工方便,广泛应用于建筑中。
在物理性质方面,混凝土的密度较大,适合用于重建筑物或做建筑的冲击和振动承受体,并且由于混凝土具有良好的隔热性能,因此在温室和其他需要保温的结构中很常见。
然而,混凝土的耐久性较弱,耐候性不佳,容易出现裂纹和腐蚀,对于那些需要使用较长期的建筑物来说,它可能并不是一个理想的选择。
2.红砖红砖是一种由粘土制成的建筑材料。
红砖相对较小、重量轻,适合用于建造房屋和其他轻负荷建筑,它具有较好的隔热性和隔音性,可以有效地维护内部温度和保护住户免受噪声的干扰。
然而,红砖的强度低,它通常不适合用于大型和重负荷建筑物的建造,这限制了它的应用范围,此外,红砖的制造成本也比较高,制造和运输过程中产生的碳排放量也是一个问题。
3.钢结构钢结构由钢材构成,具有较高的强度和硬度,适用于建造大型和重负荷建筑物,如高层建筑、桥梁和广场等。
钢结构还具有较好的耐候性和抗腐蚀性,可以在各种气候条件下使用。
然而,钢结构的处理比较麻烦,需要特殊的设备和高技能的工人,同时钢结构具有较差的隔热性能并且易受火灾损坏,这些缺陷限制了钢结构的使用范围。
4.玻璃玻璃是一种透明的建筑材料,用于建造大型的、现代风格的建筑物,如大型写字楼和商场等。
玻璃具有良好的透光性和美观性,并且通常可以起到保温和隔热作用。
但是,玻璃的强度和硬度较低,不适合用于建造高负荷建筑,而且玻璃易碎,对建筑物的安全也会造成威胁。
5.瓦片瓦片是一种轻便且易于安装的建筑材料,它通常用于屋顶和墙面覆盖,可以有效地隔热并且比其他建筑材料更加经济。
材料的基本物理性质1
项目一建筑材料基本性质(1)真实密度(密度)岩石在规定条件(105土5)℃烘干至恒重,温度20℃)下,单位矿质实体体积(不含孔隙的矿质实体的体积)的质量。
真实密度用ρt表示,按下式计算:式中:ρt——真实密度,g/cm3 或kg/m3;m s——材料的质量,g 或kg;Vs——材料的绝对密实体积,cm3或m3。
因固测定方法:李氏比重瓶法将石料磨细至全部过的筛孔,然后将其装入比重瓶中,利用已知比重的液体置换石料的体积。
(2)毛体积密度岩石在规定条件下,单位毛体积(包括矿质实体和孔隙体积)质量。
毛体积密度用ρd表示,按下式计算:式中:ρd——岩石的毛体积密度, g/cm3或kg/m3;m s——材料的质量,g 或kg;Vi、Vn——岩石开口孔隙和闭口孔隙的体积,cm3或m3。
(3)孔隙率岩石的孔隙率是指岩石内部孔隙的体积占其总体积的百分率。
孔隙率n按下式计算:式中:V——岩石的总体积,cm3或m3;V0——岩石的孔隙体积,cm3或m3;ρd——岩石的毛体积密度,g/cm3或kg/m3ρt——真实密度, g/cm3或kg/m3。
2、吸水性岩石的吸水性是岩石在规定的条件下吸水的能力。
岩石与水作用后,水很快湿润岩石的表面并填充了岩石的孔隙,因此水对岩石的破坏作用的大小,主要取决于岩石造岩矿物性质及其组织结构状态(即孔隙分布情况和孔隙率大小)。
为此,我国现行《公路工程岩石试验规程》规定,采用吸水率和饱水率两项指标来表征岩石的吸水性。
(1)吸水率岩石吸水率是指在室内常温(202℃)和大气压条件下,岩石试件最大的吸水质量占烘干(1055℃干燥至恒重)岩石试件质量的百分率。
吸水率wa的计算公式为:式中:m h——材料吸水至恒重时的质量(g);m g——材料在干燥状态下的质量(g)。
(2)饱和吸水率在强制条件下(沸煮法或真空抽气法),岩石在水中吸收水分的能力。
吸水率wsa 的计算公式为:式中:m b——材料经强制吸水至饱和时的质量(g);m g——材料在干燥状态下的质量(g)。
建筑材料的基本性质 亲水性、憎水性、吸水性、吸湿性
工程应用 选用材料时,必须考虑吸湿性对其性能的影响,并采取相应的防护措施。
1.2.2建筑材料与水有关的物理性质—亲水性、憎水性、吸水性、吸湿性
➢ 吸水性与吸湿性——吸湿性
材料吸水后对工程产生不良影响
表 观 密 度 增 大
导 热 性 增 大
强 度 降 低
保 温 性 降 低
抗 冻 性 降 低
1.2.2建筑材料与水有关的物理性质—亲水性、憎水性、吸水性、吸湿性
➢ 吸水性与吸湿性——吸湿性 吸湿性: 材料在潮湿空气中吸收水分的性质
评价指标:含水率(环境温度、空气湿度大小而变化)
平衡含水率(材料的吸湿性和干燥过程处于平衡状态, 材料的含水率与大气湿度相平衡,数值保持不变)
式中 Wh—材料的含水率(%)
Wh
ms mg mg
100%
ms —材料含水时的质量(g) mg— 材料干燥至恒重时的质量(g)
1.2.2建筑材料与水有关的物理性质—亲水性、憎水性、吸水性、吸湿性
➢ 亲水性与憎水性
材料被水湿润的情况可用润湿边角θ来 表示
湿润边角
憎水性性材料
亲水性材料
需要增加需增加被水润湿 材料状态
1.2.2建筑材料与水有关的物理性质—亲水性、憎水性、吸水性、吸湿性
憎水性材料 防水材料、防湿材料、亲水材料编码 的憎水处理
1.2.2建筑材料与水有关的物理性质—亲水性、憎水性、吸水性、吸湿性
➢ 吸水性与吸湿性——吸湿性 孔隙率和孔隙特征
材料的吸 水性、吸
湿性
亲水性和憎水性
一般来说孔隙率大则吸水性大,但若是闭口孔隙 水分则不易吸入, 粗大的开口孔隙,水分虽容易渗入,但不易存留, 仅能湿润孔壁表面不易吸满, 只有当材料具有微小而连通的孔隙时,其吸水性 和吸湿性才很强。
建筑材料的基本性质 耐水性、抗渗性、抗冻性
1.2.3建筑材料与水有关的物理性质-----耐水性、抗渗性、抗冻性
建筑材料的基本性质
物理性质
化学性质
与 质 量 有 关 性
与 水 有 关 性 质
与 热 有 关 性 质
质
亲水性与憎水 性、吸水性、 吸湿性、 耐水性、抗渗 性和抗冻性
导热性、比 热容和热容 量
力学性质
耐久性
1.2.3建筑材料与水有关的物理性质-----耐水性、抗渗性、抗冻性
➢ 耐水性
耐水性
材料长期在水作用下不破坏,强度也不显 著降低的性质材料在水中能吸收水分的性 质
评价指标:软化系数
kR
fb fg
式中: kR —材料的软化系数; fb—材料在饱水状态下的抗压强度(MPa); fg——材料在干燥状态下的抗压强度(MPa)。
例如:F15、F25、F50、F100、F 200等,分别表示此材料可承受15次、25 次、50次、100次、200次的冻融循环。
1.2.3建筑材料与水有关的物理性质-----耐水性、抗渗性、抗冻性
请你思考 问题1:软化系数大于0.80的材料称为耐水材料是否正确 问题2:抗渗系数P6中的6指的是什么? 问题3:混凝土抗冻等级F15号中15的含义? 问题4:耐水性、抗渗性、抗冻性与水作用的状态?
1.2.3建筑材料与水有关的物理性质-----耐水性、抗渗性、抗冻性
➢ 抗渗性
抗渗性 材料抵抗压力水渗透的性质
渗透系数
Qd ks AtH
评价指标 渗透系数或抗渗等级
工程应用 渗透系数越小表示材料渗透的水量越少, 即抗渗性越好
式中 Ks——材料的渗透系数(cm/h); Q——渗透水量(cm3); d——材料的厚度(cm); A ——渗水面积(cm2); t——渗水时间(h); H——静水压力水头(cm)。
建筑材料物理性能
2.1 建筑材料的基本物理性质建筑材料在建筑物的各个部位的功能不同,均要承受各种不同的作用,因而要求建筑材料必须具有相应的基本性质。
物理性质包括密度、密实性、空隙率、孔隙率(计算材料用量、构件自重、配料计算、确定堆放空间)一、材料的密度、表观密度与堆积密度密度是指物质单位体积的质量。
单位为g/cm3或kg/m3。
由于材料所处的体积状况不同,故有实际密度(密度)、表观密度和堆积密度之分。
(1)实际密度 (True Density)以前称比重、真实密度),简称密度(Density)。
实际密度是指材料在绝对密实状态下,单位体积所具有的质量,按下式计算:式中: ρ-实际密度(g/cm3);m-材料在干燥状态下的质量(g);V-材料在绝对密实状态下的体积(cm3)。
绝对密实状态下的体积是指不包括孔隙在内的体积。
除了钢材、玻璃等少数接近于绝对密实的材料外,绝大多数材料都有一些孔隙,如砖、石材等块状材料。
在测定有孔隙的材料密度时,应把材料磨成细粉以排除其内部孔隙,经干燥至恒重后,用密度瓶(李氏瓶)测定其实际体积,该体积即可视为材料绝对密实状态下的体积。
材料磨得愈细,测定的密度值愈精确。
(2)表观密度 (Apparent Density)以前称容重、有的也称毛体积密度。
表观密度是指材料在自然状态下,单位体积所具有的质量,按下式计算:式中: ρ0-表观密度(g/cm3或kg/m3);m-材料的质量(g或kg);V0-材料在自然状态下的体积,或称表观体积(cm3或m3)。
材料在自然状态下的体积是指材料的实体积与材料内所含全部孔隙体积之和。
对于外形规则的材料,其测定很简便,只要测得材料的重量和体积,即可算得表观密度。
不规则材料的体积要采用排水法求得,但材料表面应预先涂上蜡,以防水分渗人材料内部而影响测定值。
(3)堆积密度 (Bulk Density)散粒材料在自然堆积状态下单位体积的重量称为堆积密度。
可用下式表示:式中: ρ0'-堆积密度(kg/m3);m-材料的质量(kg);V0'-材料的堆积体积(m3)。
建筑材料的物理性质
2010年1月份学习资料:建筑材料的物理性质建筑材料的物理性质可分为与质量有关的性质、与水有关的性质和与温度有关的性质。
1.与质量有关的性质(1)密度。
材料的密度是指材料在绝对密实状态下单位体积的质量,即材料的质量与材料在绝对密实状态下的体积之比。
(2)表观密度。
材料的表观密度是指材料在自然状态下单位体积的质量,即材料的质量与材料在自然状态下的体积之比。
(3)密实度。
材料的密实度是指材料在绝对密实状态下的体积与在自然状态下的体积之比。
(4)孔隙率。
材料的孔隙率是指材料内部孔隙的体积占材料在自然状态下的体积的比例。
2.与水有关的性质(1)吸水性。
可用材料的吸水率来反映。
材料的吸水率与其孔隙率正相关。
(2)吸湿性。
材料的吸湿性是指材料在潮湿的空气中吸收水蒸气的性质,可用材料的含水率来反映。
(3)耐水性。
材料的耐水性是指材料在饱和水作用下强度不显著降低的性质。
(4)抗渗性。
材料的抗渗性是指材料的不透水性,或材料抵抗压力水渗透的性质。
(5)抗冻性。
材料的抗冻性是指材料在多次冻融循环作用下不破坏,强度也不显著降低的性质。
3.与温度有关的性质(1)导热性。
材料的导热性是指热量由材料的一面传至另一面的性质。
(2)热容量。
材料的热容量是指材料受热时吸收热量,冷却时释放热量的性质。
(二)建筑材料的力学性质建筑材料的力学性质是指建筑材料在各种外力作用下抵抗破坏或变形的性质,包括强度、弹性、塑性、脆性、韧性、硬度和耐磨性。
1. 强度。
2.弹性与塑性。
材料的弹性是指材料在外力作用下产生变形,外力去掉后变形能完全消失的性质。
材料的这种可恢复的变形,称为弹性变形。
材料的这种不可恢复的残留变形,称为塑性变形。
3.脆性与韧性。
材料的脆性是指材料在外力作用下未发生显著变形就突然破坏的性质。
脆性材料的抗压强度远大于其抗拉强度,所以脆性材料只适用于受压构件。
建筑材料中大部分无机非金属材料为脆性材料。
材料的韧性是指材料在冲击或振动荷载作用下产生较大变形尚不致破坏的性质。
建筑材料的基本性质 建筑材料与质量有关的物理性质
式中 P — 材料的孔隙率(%) V0 — 材料在自然状态下的体积(cm3) V —材料总体积
1.2.1 建筑材料与质量有关的物理性质
➢ 空隙率与填充率
空隙率(P’):散颗材料(如砂、石子)堆积体积(V0’)中, 颗粒间空隙 体积所占的百分率。公式如下:
P'
V0' V0 V0 '
100 0 0
填充率:指在某堆积体积中,被散粒材料的颗粒所填充的程度。
1.2.1 建筑材料的基本
物理性质
化学性质
力学性质
建筑材料 的基本性
质
耐久性
将建筑材料应具备的各种技术性能,归纳起来可概括为物理性质、 力学性质、化学性质和耐久性四个基本技术性质。
1.2.1 建筑材料的物理性质
ρ0' ρ0 ρ
与质量有关性质 密 表 堆孔 空 度 观 积隙 隙
密 密率 率 度 度与 与
m
V
式中:ρ— 实际密度(g/cm3) m— 材料的质量(g) V— 材料在绝对密实 状态下的体积(cm3 )
1.2.1 建筑材料与质量有关的物理性质
➢ 密度
m
V
金属
玻璃
砖
混凝土
石材
排水法 李氏瓶
1.2.1 建筑材料与质量有关的物理性质
排水法
混凝土块
石材
➢ 表观密度 也称容重 ,是指材料在自然状态下,单位体积所具有的质量
m— 散粒材料的质量(g)
,
v 0 —材料在自然状态下的堆积体积(cm3)
1.2.1 建筑材料与质量有关的物理性质
➢ 孔隙率与密实度
孔隙率(P)Biblioteka 材料内部孔隙的体积占材料总体积的百分率 密实度(D):指材料体积内被固体物质所填充的程度
建筑材料的基本性质
混凝土强度等级:C30、C35等 硅酸盐水泥强度等级:42.5级、52.5级等
强度值与强度等级不能混淆,强度 值是表示材料力学性质的指标,强度等 级是根据强度值划分的级别。
(3)比强度
思考:不同的材料如何比较强度?
比强度是衡量材料轻质高强的一个 指标,材料的强度与其表观密度之比,即:
比强度 f
0
几种主要材料的比强度值
材料
低碳钢 烧结普通砖
松木 普通混凝土
表观密度
' 0
(kg/m3)
7850
1700
500
2400
强度f (MPa)
420 10 100 40
比强度(f/ρo)
0.054 0.006 0.200 0.017
1.2.2 弹性和塑性
材料在外力作用下产生变形,外力撤 掉后变形能完全恢复的性质,称为弹性。 相应的变形称为弹性变形。
V0
0
2)空隙率
指散粒材料在其堆积体积中,颗粒之 间空隙体积占材料堆积体积的百分率 。
P ' V0 V0 100% (1 0 ) 100% 1 D
V0
0
P’+D’=1
1.1.2 材料与水有关的性质
思考:水滴在粘土砖表面和塑料表面有什 么不同?
材料在与水接触时,不同材料遇水后 和水的互相作用情况是不一样的,根据材 料表面被水润湿的情况,分为亲水性材料 和憎水性材料。
W含
m含 - m干 m干
100%
影响吸湿性的因素:
材料本身的性质,如亲水性或憎水性; 孔隙大小及孔隙特征等; 周围空气的温度和湿度 。 平衡含水率:与空气湿度相平衡时的含水率。
例:有100g湿砂,含水率为10%, 请问干砂有多少?
建筑材料的基本性质(7)
可整理ppt
7
堆积密度的测量
堆积体积-是指包含颗粒内部孔隙和颗粒 之间的空隙在内的体积。
堆积密度的测量:
1)容器法: 散粒材料装入容器-量测体积-称净重-
代入公式
2)自然堆积法: 堆积成一定形状-量测几何体积-称重-
代入公式
可整理ppt
8
常用材料的状态参数
见教材P5-表1-1
可整理ppt
9
二、材料的状态参数
第二章 建筑材料的基本性质
内容:
2.1材料的基本物理性质
2.2材料的基本力学性质
2.3材料的耐久性
可整理ppt
1
2.1 材料的基本物理性质
内容: 材料的状态参数 材料的结构参数 材料与水有关的性质 材料的热工性质
可整理ppt
2
一、材料的状态参数
1、实际密度(密度)-材料在绝对密实状态 下单位体积的质量。单位g/cm3或kg/m3。
1、密实度-指材料体积内被固体物质所充实的 程度。反映材料的致密程度。
公式
DV o 10% 0
Vo
影响材料的: 强度 吸水性 耐久性 导热性
可整理ppt
10
状态参数
2、孔隙率-指材料体积内,孔隙体积与总体积 之比。直接反映材料的致密程度。
公式
PV oV oV1V V o(1o)10 % 0
孔隙率与密实度的关系 P+D=1
依达西定律
K = Wd AtH
式中 K-材料的渗透系数(ml/cm2.s) W-透过材料试件的水量(ml) t-透水时间(s) A-透水面积( cm2 ) H-静水压力水头(cm) d-试件的厚度(cm)
可整理ppt
22
建筑材料的基本物理性质
建筑材料的基本物理性质建筑材料的基本物理性质二、建筑材料的基本物理性质(一)材料的密度、表观密度和堆积密度1.密度(ρ)密度是材料在绝对密实状态下,单位体积的重量。
按下式计算:ρ=m/V式中ρ一一密度, g/cm3;m一一材料的重量, g;V一一材料在绝对密实状态下的体积, cm3。
这里指的"重量"与物理学中的"质量"是同一含义,在建筑材料学中,习惯上称之为“重量”。
对于固体材料而言, rn是指干燥至恒重状态下的重量。
所谓绝对密实状态下的体积是指不含有任何孔隙的体积。
建筑材料中除了钢材、玻璃等少数材料外,绝大多数材料都含有一定的孔隙、如砖、石材等块状材料。
对于这些有孔隙的材料,测定其密度时,应先把材料磨成细粉,经干燥至恒重后,用比重瓶(李氏瓶)测定其体积,然后按上式计算得到密度值。
材料磨得越细,测得的数值就越准确。
2.表观密度(ρo)表现密度是指材料在自然状态下,单位体积的重量。
按下式计算:Ρo=m/V0ρo一一表观密度, g/cm3或kg/m3;m一一材料的重量, g或kg;Vo一一材料的自然状态下的体积, cm3或m3材料在自然状态下的体积包含了材料内部孔隙的体积。
当材料含有水分时,它的重量积都会发生变化。
一般测定表观密度时,以干燥状态为准,如果在含水状态下测定表度,须注明含水情况。
在试验室中测定的通常为烘干至恒重状态下的表观密度。
质地坚硬的散粒状材料,如砂、石,要磨成细粉测定密度需耗费很大的能量,一般测定其密度,在应用过程中(如混凝土配合比计算过程)近似代替其密度。
3.堆积密度(ρ'0)堆积密度是指粉状或散粒状材料在堆积状态下,单位体积的重量。
按下式计算:ρ'0=m/V'0(10-1-3 )其中ρ'0一一堆积密度, kg/m3;M一一材料的重量, kg;V'0一一材料的堆积体积, m3。
这里,材料的重量是指自然堆积在一定容器内材料的重量;其堆积体积是指所用容器的容积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料 低碳钢
表观密度 (kg/m3)
7860
强度f (MPa)
415
比强度 (f/ρo)
0.053
松木
500
34.3
0.059
混凝土
2400
60
0.025
三、弹性与塑性
σ ? 材料在外力作用下产生变形,
外力撤掉后变形能完全恢复 的性质,称为弹性。
E? ? ?
ε
? 材料在外力作用下产生变形, 若除去外力后仍保持变形后 的形状和尺寸,并且不产生 裂缝的性质称为塑性。
(三)吸湿性
? 定义:材料在空气中,吸收空气中水分的性 质,称为吸湿性。其大小用含水率表示。
W含
?
m含 - m 干 m干
? 100%
影响吸湿性的因素
影响吸湿性的因素: ? 材料的本身的性质,如亲水性或憎水性; ? 材料的孔隙率; ? 孔隙构造特征,如孔径大小、开口与否等; ? 周围空气的温度和湿度 。
(a) 亲水性材料
(b) 憎水性材料
请看亲水性与憎水性动画演示
(二)吸水性
? 定义:吸水性是指材料在水中吸收水分的性 质,其大小用吸水率表示。
W质 ?
m吸 ? m干 m干
? 100%
影响吸水性的因素
影响吸水性的因素: ? 材料的本身的性质,如亲水性或憎水性; ? 材料的孔隙率; ? 孔隙构造特征,如孔径大小、开口与否等 。
? 受潮较轻的或次要结构物的材料,其 K软≥0.75; ? K软≥0.80的材料,一般称为耐水的材料。
(五)材料的抗渗性
? 定义:材料抵抗压力水渗 H
透的性质称为抗渗性。
Q
衡量指标:
A
①渗透系数 k,单位cm/h
k越大,材料的抗渗性越差。
d
②抗渗等级 Pn
? 对于混凝土和砂抗浆,渗抗等渗级性常用抗渗等级(S)
表示: S=10H-1
H-试件开始渗水时的水压力( MPa)
? 影响材料抗渗性的因素:孔隙率、孔隙特征
? 地下建筑(地铁、人防建筑、地下室)、水 工结构、防水材料等均要求较高的抗渗性。
(六)材料的抗冻性
? 定义:材料在吸水饱和状态下,能经受多次 冻融循环作用而不破坏,强度也不显著降低 的性质。
? 衡量指标:抗冻性指标用抗冻等级Fn表示, 表示经过n次冻融循环次数后,质量损失不超 过5%,强度损失不超过25%。
(四)材料的耐水性
? 定义:材料在长期饱和水作用下,其强度也不 显著降低的性质,称为耐水性。其衡量指标为:
K软 ?
f饱 f干
? 软化系数越小,说明材料吸水饱和后的强度降 低越多,其耐水性越差。
工程材对料材软料化软系化数系的数要的求要求
? 对经常处于水中或受潮严重的重要结构物(如 地下构筑物、基础、水工结构)的材料,其 K软 ≥0.85;
请看材料脆性、韧性破坏动画演示
五、硬度和耐磨性
1.硬度-指材料表面的坚硬程度,是抵抗其他物体 刻划、压入其表面的能力 。
测定方法:刻划法、回弹法、压入法。
五、硬度和耐磨性
请看压入法测材料硬度动画演示
五、硬度和耐磨性
2.耐磨性-材料表面抵抗磨损的能力 。用磨损率表 示。
磨损率N ? m1 ? m2 A
冻融破坏的原因
? 材料有孔且孔隙含水; ? 水→冰,体积膨胀 9%,结冰压力高达 100MPa,
结冰压力超过材料的抗拉强度时,材料开裂; ? 裂缝的增加也进一步增加了材料的饱水程度,
饱水程度的增加进一步加剧了冻融破坏; ? 反复多次加剧破坏,最终材料崩溃; ? 严寒地区道路、桥梁、水坝、堤防、海上钻井平台、
一、材料的强度与强度等级
请看材料受拉破坏动画演示
第二节 材料的力学性质
一、材料的强度与强度等级
请看材料受压破坏动画演示
第二节 材料的力学性质
一、材料的强度与强度等级
请看材料受弯破坏动画演示
第二节 材料的力学性质
一、材料的强度与强度等级
请看材料受剪破坏动画演示
第二节 材料的力学性质
一、材料的强度与强度等级
跨海大桥等均需考虑冻融破坏。
三、材料的热工性质-导热性
导热性-材料传导热量的能力称为导热性。其大小用 热导率(λ)表示。
Q ? ? (T1-T2 ) ?A ?t
d
??
Qd
A ?T1 ? T2 ??t
式中 λ-导热系数( W/m.K)
Q -传导的热量( J)
Q
A -热传导面积( m2)
d -材料的厚度( m)
t -热传导时间( s) t1
(T2-T1)-材料两侧温差( K) A
t2
导热系数λ的物理意义:
表示单位厚度的材料,当两侧温差为 1K时,在单位 时间内通过单位面积的热量。
影响材料导热系数的因素有:
? 材料的组成与结构 ? 孔隙率及孔隙特征 ? 含水情况
第二节 材料的力学性质
第二节 材料的力学性质
V0?
?0
图1-2 材料空隙率示意图
(三)填充率与空隙率 ? 空隙率
空隙率是指散粒材料在 其堆积体积中,颗粒之 间的空隙体积占材料堆 积体积的百分率 。
图1-2 材料空隙率示意图
P ' ? V0?? V0 ? 100% ? (1? ? 0?)? 100% ? 1 ? D?
V0?
?0
二、材料与水有关的性质 (一)材料的亲水性与憎水性
(二)密实度与孔隙率 ? 孔隙率
孔隙率是指材料体 积内,孔隙体积占 总体积的百分率。
P ? V0 ? V ? 100%=(1- ? 0 ) ? 100%
V0
?
图1-1 材料孔隙率示意图
(三)填充率与空隙率 ? 填充率
填充率是指散粒材料 在其堆积体积中,被 其颗粒填充的程度 。
D ' ? V0 ? 100% ? ? 0? ? 100%
m1--试件磨损前的质量( g); m2--试件磨损后的质量( g); A--试件受磨面积( cm2)。
第三节 材料的耐久性
第三节 材料的耐久性
一、概念
材料的耐久性是指材料在使用期间,受到各种内在的 或外来因素的影响,能经久不变质不破坏,能保持原 有性能不影响使用的性质。这是一个综合性指标。
二、提高耐久性的措施 ? 减轻介质对材料的破坏作用 ? 提高材料密实度 ? 对材料进行憎水或防腐处理 ? 在材料表面设置保护层
?强度--指材料抵抗破坏的能力。
?材料的抗压、抗拉、抗剪强度。 单位:MPa ,1MPa=1N/mm2
f? F A
?材料的抗弯强度
3Fl f弯 ? 2bh2
比强度
二、材料的比强度 衡量材料轻质高强的一个指标,材料的强度与其 表观密度之比,即: 比强度 ? f
?0
比强度材料的强度与其表观密度的比值(f/ρ o), 它是评价材料是否轻质高强的指标。
v ? 0 ? m o
㎏/m3或 g/cm3
堆积密度
材料在堆积状态下,单 位体积的质量。
? 0? ?
m v0 '
㎏/m3
请看密度试验动画
请看堆积密度试验动画
(二)密实度与孔隙率 ? 密实度
密实度是指材料体 积内,被固体物质 所充实的程度。
D ? V ? 100%= ? 0 ? 100%
V0
?
图1-1 材料孔隙率示意图
第一章 建筑材料的基本性质
本章教学目标
掌握:材料各种基本性质的概念、指标的计算。
熟悉:主要技术性质的物理意义、影响因素及 对其它性质的影响。
了解:材料的各性质在工程实践中的意义。
本章内容
? 第一节 材料的基本物理性质 ? 第二节 材料的力学性质 ? 第三节 材料的耐久性
建筑材料的分类
? 按化学组成分为:无机材料、有机材料及复 合材料。
四、材料的脆性与韧性
1.脆性-在外力作用下,当外力达到一定限度后, 材料突然破坏而又无明显的塑性变形的性质 。
脆性材料(如混凝土、玻璃、石材)抵抗冲击或震动 荷载的能力很差。
2.韧性-在冲击、震动荷载的作用下,能吸收较大能 量而不破坏的性质称为韧性。如钢材、木材、纤维等。
桥梁、牛腿柱、电梯井、高层建筑等处所用的材料须 有较好的韧性。
? 按材料的使用功能:结构材料、墙体材料、 装饰材料及其他功能材料。
第一节 材料的基本物理性质
一、材料与质量有关的基本物理性质 (一)材料的密度、表观密度与堆积密度
名称
定义
表达式 单位 备注
密度
材料在绝对密实状态下, 单位体积的质量。
??m
v
g/cm3
表观密度
材料在自然状态下,单 位体积的质量。