华师大版九年级数学上册知识总结华师版

合集下载

华师大版数学九年级上册全册复习课件精选全文

华师大版数学九年级上册全册复习课件精选全文

④解这两个一元一次方程,它们的解就是原方程的解.
第22章┃ 复习
3.一元二次方程根的判别式 由于一元二次方程的根的个数由代数式_b_2_-__4_a_c_____的符 号决定,因此把_b_2_-__4_a_c____叫做一元二次方程根的判别式. (1)当_b_2_-__4_a_c_>__0___时,一元二次方程 ax2+bx+c=0(a≠0) 有 x2=两_个__不_-_相_b_-等__的2_ba_实2_-_数_4_a根_c_,__即__x_1_=_____.-__b_+___2_ab_2-__4_a_c________,
•第二十一章 二次根式 •21.1《二次根式》 •21.2二次根式的乘除法 •21.3二次根式的加减法
第21章┃ 复习
1.二次根式的概念 一般地,我们把形如__a__(a≥0)的式子叫做二次根式.
第21章┃ 复习
2.二次根式的性质
(1) a≥___0___(a≥0);(2)( a)2=___a___(a≥0);
解:移项,得 x2-4x=1,两边都加上 4,得 x2-4x+4=1 +4,即(x-2)2=5,两边开平方,得 x-2=± 5,即 x= 2± 5,所以 x1=2- 5,x2=2+ 5.
Байду номын сангаас
第22章┃ 复习
方法技巧 如果方程具备(x+a)2=b(b≥0)型,用直接开平方法解较简 单,如果不具备,应考虑因式分解法.用因式分解法解方程时, 应先把右边化为 0,再把左边因式分解,因式分解法简单,但 有局限性.因式分解法不能用时,观察如果二次项系数是 1, 一次项系数是偶数,用配方法解较简单.如果都不行,就用公 式法,公式法是解一元二次方程的万能方法,但要先化成一般 式确定 a,b,c,计算 b2-4ac.

华师大数学九年级知识点

华师大数学九年级知识点

华师大数学九年级知识点华师大数学九年级知识点主要包括数与式、方程与不等式、函数、平面几何、空间几何、统计与概率六个部分。

下面将对这六个部分的知识点进行详细介绍。

一、数与式1. 整数、有理数、实数的概念及其性质。

2. 分数、小数与百分数的相互转化。

3. 简便运算法则,如整数的加减乘除法、分数的加减乘除法等。

4. 分式方程与分式不等式的解法。

二、方程与不等式1. 一元一次方程的解法,包括利用等式性质、移项变形法等。

2. 一元一次不等式的解集表示及其性质。

3. 二元一次方程与不等式的解法。

4. 二次方程与不等式的解集表示及其性质。

三、函数1. 函数的概念、定义域、值域及其表示方法。

2. 常用函数的图象与性质,包括一次函数、二次函数、反比例函数等。

3. 函数的运算,包括函数的加减乘除、函数的复合运算等。

4. 函数方程与函数不等式的解法。

四、平面几何1. 线段、角的概念与基本性质,包括线段的长、角的度量等。

2. 直线与平面的性质,包括平行线、垂直线等基本关系。

3. 三角形的性质,包括角的对应关系、边的关系、面积等。

4. 四边形的性质,包括平行四边形、矩形、正方形等特殊四边形的性质。

五、空间几何1. 空间图形的视图与展开图,包括正视图、侧视图、俯视图等。

2. 空间几何体的表面积与体积,包括长方体、正方体、棱锥、棱柱等。

六、统计与概率1. 统计图表的分析与应用,包括条形图、折线图、饼图等。

2. 概率的概念与计算,包括事件与样本空间、概率的加法法则、乘法法则等。

以上是华师大数学九年级知识点的主要内容,通过学习这些知识点,可以提高数学解题能力,丰富数学思维,为进一步学习高中数学打下坚实的基础。

希望同学们能够认真学习,并在实际问题中灵活运用所学知识,取得优异的成绩。

华师大九年级上数学知识点

华师大九年级上数学知识点

华师大九年级上数学知识点华师大九年级上的数学课程是学生在中学阶段的数学学习的重要一步。

本文将就华师大九年级上的数学知识点进行深入的分析和解读,帮助学生更好地理解和应用数学知识。

一、代数与函数在九年级上,代数与函数的学习是数学学习的核心内容之一。

代数是数学中非常重要的概念,它通过符号的运算和关系的建立来研究数量和运算的规律。

在代数学习中,学生将进一步巩固和扩展基础的代数运算,如整式的乘法和因式分解等。

此外,学生还将学习到一些新的概念和方法,如一次函数和二次函数的概念以及其图象的绘制和性质的研究。

这些知识将帮助学生更好地理解和描述现实世界中的各种变化。

二、几何与图形几何与图形是数学学习中的另一个重要方面。

在九年级上,学生将进一步学习平面图形和空间图形的性质和计算方法。

例如,学生将学习到平面图形的面积和周长的计算、正多边形的性质和判定以及球体、圆柱和圆锥等空间图形的体积和表面积的计算。

此外,学生还将学习到一些解决几何问题的方法,如相似性判定、射影原理等。

几何与图形的学习将帮助学生培养空间思维和解决实际问题的能力。

三、概率与统计概率与统计是数学学习中的实用内容,它帮助我们更好地理解和分析随机事件的规律。

在九年级上,学生将学习到概率的计算方法、事件的独立性和互斥性以及概率分布等概率知识。

同时,学生还将学习到统计的基本方法,如数据的收集和整理、频数分布表和直方图的绘制等。

概率与统计的学习将帮助学生更好地分析和解决实际生活中的问题。

四、数论与证明数论与证明是数学学习中的抽象和推理的重要部分。

在九年级上,学生将学习到素数与合数、最大公约数和最小公倍数等数论的概念和方法。

同时,学生还将学习到数学证明的基本方法和技巧,如直接证明、反证法和数学归纳法等。

数论与证明的学习将培养学生的逻辑思维和推理能力,帮助他们更好地理解数学的本质和方法。

五、数学建模数学建模是将数学的知识和方法应用于实际问题解决的过程。

在九年级上,学生将学习到一些数学建模的基本方法和技巧。

华师大版九年级数学上册 第22章 单元知识梳理

华师大版九年级数学上册 第22章 单元知识梳理

关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根
x1,x2,且有x1-x1x2+x2=1-a,则a的值是( )
A.1 B.-1 C.1或-1
D.2
【解析】选B.由题意得 x1+x2= 3a 1 , x1x2= 2a 2 ,因为x1-
a
a
x1x2+x2=1-a,所以
3a a
2y-3=17. 答:这块矩形场地的长为17m,宽为10m.
复习归纳
设未知数, 实际问题 列方程
实际问题的答案
检验
数学问题
ax2 bx c 0a 0
配方法



程 公式法

因式分解法
数学问题的解
x b b2 4ac b2 4ac≥0 2a
(1)直接开平方法
x2=b(b 0)
适应于没有一次项的 一元二次方程
考点分类
一 一元二次方程及根的有关概念
1.若(a-3) xa2 7+4x+5=0是关于x的一元二次方程,则a的值为
()
A.3
B.-3
C.±3
D.无法确定
【自主解答】选B.因为方程是关于x的一元二次方程,所以a2-
7=2,且a-3≠0,解得a=-3.
2.下列方程中,一定是一元二次方程的是( )
A.ax2+bx+c=0 C.3x2+2y- 1 =0
一 元
(2)因式分解法

1、提取公因式法 2、平方差公式 3、完全平方公式
适应于左边能分解 为两个一次式的积, 右边是0的方程
次 方 (3) 配方法 程 的
当二次项系数为1的时 候,方程两边同加上 一次项系数一半的平 方

华师大九年级数学上知识点

华师大九年级数学上知识点

华师大九年级数学上知识点华师大九年级数学上的重要知识点数学作为一门重要的学科,是培养学生逻辑思维和分析问题能力的重要手段。

华师大九年级的数学教材包含了许多重要的知识点,掌握这些知识点对于学生打好数学基础,提高综合素质非常重要。

下面将重点介绍华师大九年级数学上的几个重要知识点。

一、代数ic745ic745代数是数学中非常重要的一部分,也是中学数学的重点内容之一。

在代数中,学生将学习如何用字母表示数,进而掌握各种数的加减乘除运算和代数式的展开与因式分解等技巧。

1. 代数式的运算代数式是数学中的核心概念之一,掌握代数式的运算是解决各种问题的基础。

学生需要掌握代数式的加减乘除运算规则,并能在实际问题中应用这些技巧。

2. 一元二次方程一元二次方程是数学中的经典问题之一,也是考查学生解决实际问题能力的常见题型。

掌握一元二次方程的解法,对于学生在构建模型求解实际问题时十分有帮助。

二、几何几何是数学中的一个重要分支,通过几何的学习,学生将培养空间想象和图形分析能力,进而解决与形状、位置、方向等相关的问题。

1. 平面图形的相关性质学生需要掌握平面图形的基本性质,如线段、角、三角形、四边形等的定义和性质。

特别是对于三角形和四边形,需要熟练掌握各种判定等著名定理和公式的使用。

2. 空间图形的相关性质学生需要了解立体图形的基本性质,如立方体、圆柱体、圆锥体、球体等的定义和性质。

掌握这些性质能够帮助学生解决立体图形的计算和判定问题。

三、概率统计概率统计是数学中比较实用的一门学科,通过学习概率统计,学生将掌握分析数据、做出统计推断和预测的技巧。

1. 数据的收集和整理学生需要学会有效地收集数据,并分析和整理数据。

采用合适的统计方法,能够更好地描述和总结数据,进而做出科学的推断。

2. 概率的计算和应用学生需要掌握概率的基本概念和计算方法。

理解事件发生的可能性和概率的性质,能够帮助学生在预测和决策中做出更合理的选择。

以上介绍了华师大九年级数学上的一些重要知识点,对于学生来说,掌握这些知识点将对他们的数学学习和应用能力有很大帮助。

最新华师大版九年级上册数学全册知识点总结

最新华师大版九年级上册数学全册知识点总结

最新华师大版九年级上册数学全册知识点总结或减去一个数使得方程左边成为一个完全平方,最后使用完全平方公式解方程.3)公式法:利用求根公式解一元二次方程的方法.求根公式:对于一元二次方程ax2bx c0,它的两个根分别为:x1,2b b24ac2a其中,b24ac叫做判别式.当b24ac0时,方程有两个不等实数根;当b24ac0时,方程有两个相等实数根;当b24ac0时,方程没有实数根.4)因式分解法:将一元二次方程变形,使其成为两个一次因式的乘积,然后利用积零原理”解方程.5)图像法:利用二次函数的图像解一元二次方程的方法.将一元二次方程化为二次函数的标准式y ax2bx c,然后根据二次函数的图像,求出方程的实数根.3.一元二次方程的应用:1)利用一元二次方程解决实际问题.2)利用一元二次方程的图像分析实际问题.1.一次项系数的一半的平方可以配成完全平方公式。

2.公式法是一种用求根公式解一元二次方程的方法,其中一元二次方程ax+bx+c=(a≠)的求根公式为x=(-b±√(b²-4ac))/2a。

3.因式分解法是一种利用因式分解求解方程的方法,其步骤为将方程右边化为0,然后利用提取公因式、公式法或十字相乘等方法将其化为乘积的形式。

4.一元二次方程的根的判别式为△=b²-4ac,其中当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相同的实数根;当△<0时,方程没有实数根。

5.XXX定理指出,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数,两根之积等于常数项除以二次项系数所得的商。

6.一元二次方程可以用二次函数来表示,当y=0时就构成了一元二次方程,而在平面直角坐标系中,一元二次方程的解就是二次函数与X轴的交点。

7.比例式中,a、d为外项,b、c为内项,b=c时,b为a、d的比例中项。

8.比例具有基本性质、更比性质、合比性质和等比性质。

华师大版数学九年级上第2讲 一元二次方程及解法

华师大版数学九年级上第2讲 一元二次方程及解法

第2讲 一元二次方程解法复习知识要点1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的 方程叫做一元二次方程。

通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。

2. 一元二次方程的解法:(1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个时,可以根据 的意义,通过开平方法求出这个方程的解。

(2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是:①化二次项系数为 ,即方程两边同时除以二次项系数;②移项,使方程左边为 项和 项,右边为 项;③配方,即方程两边都加上 的平方;④化原方程为2()x m n +=的形式,如果n 是非负数,即0n ≥,就可以用 法求出方程的解。

如果n <0,则原方程 。

(3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________(4)因式分解法:用因式分解法解一元二次方程的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个 的乘积;③令每个因式都等于 ,得到两个 方程;④解这两个方程,它们的解就是原方程的解。

3.一元二次方程的根的判别式 .(1)ac b 42->0⇔一元二次方程()002≠=++a c bx ax 有两个 的实数根,即----------==2,1x x(2)ac b 42-=0⇔一元二次方程有两个 的实数根,即-----==21x x ,(3)ac b 42-<0⇔一元二次方程()002≠=++a c bx ax 实数根。

4. 一元二次方程根与系数的关系(韦达定理)如果一元二次方程20ax bx c ++=(0)a ≠的两根为12,x x ,则12x x += ,12x x =提示:在应用一元二次方程根与系数的关系时,一定要保证元二次方程有实数根。

经典考题:例1、若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______变式1、已知关于x 的方程x 2-3x+2k=0的一个根是1,则k=变式2、一元二次方程230x mx ++=的一个根为1-,则另一个根为 .例2、一元二次方程x (x -2)=2-x 的根是( )A .-1B .2C .1和2D .-1和2变式1、一元二次方程x 2=16的解是 .变式2、方程240x -=的根是( )A .2x =B .2x =-C .1222x x ==-,D .4x = 例3、已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l =0有两个不相等的实数根,则a 的取值范围是( )A 、a <2B 、a >2C 、a <2且a≠lD 、a <﹣2变式1、若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠例4、若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )A .1B .5C .5-D .6变式1、已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .5 变式2、若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ) A .3 B .-3C .13D .13- 例5、用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=变式1、用配方法解方程23610x x -+=,则方程可变形为( )A .21(3)3x -=B .213(1)3x -=C .2(31)1x -=D .22(1)3x -= 变式2、用配方法解一元二次方程542=-x x 的过程中,配方正确的是( )A .(1)22=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x例6、解方程:(1)0)3(2)3(2=-+-x x x (2)2(3)4(3)0x x x -+-=.(3)2420x x ++=. (4) 2230x x --=(5)2310x x --=. (6)2220x x --=(7)x 2﹣2x ﹣1=0 (8)x 2﹣7=6x(9)(2x +1)2=(2﹣3x )2 (10)(x ﹣1)(x +2)=70.(11)(x ﹣1)2=4(x +1)2 (12) 3x (x ﹣2)=2(2﹣x )(13)x (x +4)=621 (14)(x ﹣5)2﹣32=0课堂练习题一.选择题(共10小题)1.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,则a的取值范围是()A.a<2 B.a>2 C.a<﹣2 D.a<2且a≠12.若一个三角形两边的长分别是3和7,且第三边的长恰好是方程x2﹣8x+12=0的一个实根,则这个三角形的周长为()A.12 B.15 C.16 D.12或153.若关于y的一元二次方程ky2﹣4y﹣3=3y+4有实根,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≤﹣D.k>﹣且k≠04.已知x1、x2是方程x2﹣(k﹣2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是()A.19 B.18 C.15 D.135.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则b a的值是()A.B.﹣C.4 D.﹣16.若关于x的一元二次方程x2+2x+k=0没有实数根,则一次函数y=(k﹣1)x+3的图象经过()A.第二、三、四象限 B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限7.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A.若x2=4,则x=2 B.若x2+2x+k=0有一根为2,则k=﹣8C.方程x(2x﹣1)=2x﹣1的解为x=1 D.若分式的值为零,则x=1,28.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一9.有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或10二.填空题(共8小题)11.如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是.12.若关于x的一元二次方程ax2+3x﹣1=0有两个不相等的实数根,则a的取值范围是.13.已知x=1是关于x的一元二次方程x2+mx+n=0的一个根,则m2+2mn+n2的值为.14.关于x的方程(1﹣2k)x2﹣2x﹣1=0有两不等实根,则k的取值范围是.15.设m、n是一元二次方程x2+3x﹣7=0的两个根,则m2+4m+n=.16.设m、n是一元二次方程x2+3x﹣7=0的两个根,则m+n=,m2+5m+2n=.17.如果把一元二次方程x2﹣3x﹣1=0的两根各加上1作为一个新一元二次方程的两根,那么这个新一元二次方程是.18.若m是方程x2+x﹣4=0的根,则代数式m3+5m2﹣5的值是.三.解答题(共10小题)19.已知关于x的方程x2+2(a﹣1)x+a2﹣7a﹣4=0.(1)若方程有两个不相等的实数根,求a的取值范围;(2)若方程的两个实数根为x1、x2,且满足x12+x22=32,求a的值.20.已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.21.已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.22.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求实数k的取值范围.(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.23.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0(1)求证:方程总有两个不相等的实数根;(2)设方程的两根分别为x1、x2,求x+x的最小值.24.已知关于x的一元二次方程x2﹣2kx+k2+2=2(1﹣x)有两个实数根x1、x2.(1)求实数k的取值范围;(2)若方程的两实数根x1、x2满足|x1+x2|=x1x2﹣1,求k的值.25.关于x的方程x2﹣2mx+m2﹣1=0的两根x1、x2满足(2x1+x2)(x1+2x2)=6,求m的值.26.已知x1、x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求a的取值范围;(2)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请说明理由.27.已知二次方程x2+(2m+1)x+m2﹣2m+=0的两个实数根为α和β,(1)求m的取值范围;(2)若|α|+|β|=2,求m的值.28.已知关于x的一元二次方程(x﹣k)2﹣2x+2k=0有两个实数根x1、x2.(1)求实数k的取值范围;(2)当实数k为何值时,代数式x12+x22﹣x1•x2+1取得最小值,并求出该最小值.。

华师大版九年级数学上册课件:第二十二章单元知识梳理 (共23张PPT)

华师大版九年级数学上册课件:第二十二章单元知识梳理 (共23张PPT)

跟踪训练
x3=0,x4=-3
名师讲解
要点三:一元二次方程的解法
【例3】(1)方程x2-4x=0的解是
;
(2)方程x2-3x+1=0的解是
;(3)方程(x-1)2=4的解是
;
(4)解方程:x2+4x+1=0.
【分析】要注意对方程的结构及系数特征进行观察,以便选用最为
合适的方法.(1)可采用因式分解法,(3)可直接开方, (2)(4)可用公式法或配方法.
【解答】
跟踪训练
4.若(a2+b2)(a2+b2-2)=8,则a2+b2的值为 ( B )
A.4或-2 B.4 C.-2 D.-4 5.三角形的两边长分别是3和4,第三边长是方程x2-
13x+40=0的根,则该三角形的周长为 12 .
跟踪训练
跟踪训练
名师讲解
要点四:配方法的应用 【例4】用配方法证明,多项式2x4-4x2-1的值总大于x4-2x2-4的值. 【分析】此题首先将两式相减,然后再用配方法确定正负即可. 【解答】据题意得(2x4-4x2-1)-(x4-2x2-4)=2x4-4x2-1-
名师讲解
设销售单价定为x元,则月销售量为[500-(x-50)×10]千克, 每千克销售利润为(x-40)元, 月销售利润为{(x-40)[500-(x-50)×10]}元, 即(-10x2+1400x-40000)元, 由题意可列方程-10x2+1400x-40000=8000,解得x1=60,x2=80. 当x=60时,月销售成本是: 40×[500-(60-50)×10]=16000(元); 当x=80时,月销售成本是: 40×[500-(80-50)×10]=8000(元). 由于8000<10000<16000,所以销售单价应为每千克80元.

华师大版数学九年级上华师大九上数学知识点总结

华师大版数学九年级上华师大九上数学知识点总结

第21章 二次根式知识点1 二次根式(重点)知识解读1)0a ≥a 称为被开方数(式).要点精析:(1)二次根式的定义是从代数式的结构形式....上界定的,必须含有二次根号的根指数为22”一般省略不写.(2)被开方数a 可以是一个数...,也可以是一个含有字母的式子..;但前提是...a 必须大于或等于0.(3)形如)0a ≥的式子也是二次根式.2.易错警示:(1(2()10a ≥这样的式子只能称为含有二次根式的式子,不能称为二次根式. 知识点2 二次根式有意义的条件(重点)知识解读1.二次根式有意义...的条件是被开方数(式)为非负数...;反之也成立,0a ⇔≥. 2.二次根式无意义...的条件是被开方数(式)为负数..;反之也成立,0a ⇔<. 要点精析:(1)如果一个式子含有多个二次根式,那么它有意义的条件是:各个二次根式中的被开方数都必须是非负数...........; (2)如果一个式子中既含有二次根式又含有分式,那么它有意义的条件是:二次根式中的......被开方数是非负数........;分式的分母不等于........0.; (3)如果一个式子中含有零指数或责整数指数,那么它有意义的条件是:底数不为....0..方法规律(1)本例通过式子有意义的隐含条件,求出点的横、纵坐标的符号,从而确定点在平面直角坐标系中所处的象限;这种由“数”确定符号到“形”确定位置的过程,体现了“数形结合思想”.(2)当题中指出式子有意义或说式子是什么式子时,都表示这个式子一定具备定义中的条件,解这类题一般都是先根据定义建立关于未知数的不等式(组),再通过解不等式(组)确定未知数的值或范围.知识点3 二次根式的性质(重难点)知识解读1.二次根式的性质:(1a≥≥即一个非负数的算术平方根是一个非负数;(2)()2a a=≥,即一个非负数的算术平方根的平方等于它本身;(3()()0,0,a aaa a≥⎧⎪=⎨-<⎪⎩即一个数的平方的算术平方根等于它的绝对值.要点精析:(1.....:①0a≥≥.(22的区别与联系:区别:a为全体实数,2中0a≥;先平方后开方,2是先开方后平方;③运算结果不同:()()0,0,a aaa a≥⎧⎪==⎨-<⎪⎩2a=.联系2均为非负数,且当0a≥2=.2.易错警示a=化简时,易忽略字母a的取值范围.方法规律本例与前面的例3都属于“数形结合思想”的经典例题,它们的不同点:例3是由“数”的符号确定“形”的位置;而本例则由“形”的位置来确定“数”(式)的符号;它充分体现了“数”与“形”是一个互相依存、不可分割的有机结合体;解答利用二次根式的性质化简题的关键是确.保去掉根号后的结果是非负数..............方法规律常见的非负数的类型有三种:绝对值、偶次方、二次根式(算术平方根).当它们的和.为.0.时,必须满足其中的每一项...都等于...0..方法规律形如(4)这类题目应充分运用分类讨论思想.另外,此类题中并不是所有的非负数都得写成二次根式的平方(不一定带根号)的形式,如242=,2164=,()22211x x x++=+等.方法规律解这类题的依据是二次根式有意义的条件:被开方数是非负数........,,它是限制字母取值范围的重要条件,也是易被忽略的隐含条件;b(其中被开方数x a-与a x-互为相反数)的式子的值是b.方法规律此题运用转化思想,把二次根式问题转化为绝对值问题,去绝对值符号时运用了分类讨论思想.当绝对值符号内的代数式大于或等于0时去掉绝对值符号后是它本身,当绝对值符号内的代数式小于o 时去掉绝对值符号后是它的相反数.此题有两处绝对值,故要分三种情况讨论,即:两个都小于0;一个大于0,另一个小于0;两个都大于0.等于0和这三种情况中任何一种合并都可以,只不过分段讨论时,同一个数不重复讨论,在一处出现即可.方法规律先通过二次根式的定义求自然数n 的范围,再由二次根式的性质确定12n -是一个完全平方数,最后通过分类讨论思想求出自然数n 的值.方法规律a =进行化简时,其关键步骤是去绝对值符号......,而去绝对值符号的关键是判.断绝对值符号内的代数式的符号..............;因此一定要结合具体问题:如数轴、几何图形特征等,先确定其符号,然后进行化简.21.2 二次根式的乘除知识点1 二次根式的乘法(重点)知识解读1)0,0a b =≥≥.这就是说,两个算术平方根的积,等于它们被开方数的积的算术平方根.要点精析:(1)法则中被开方数a 、b 既可以是数.,也可以是代数式...,但都必须是非负数...; (2)当二次根式根号外有因数(式)时,可类比单项式乘单项式的法则进行运算,即根号外因数(式)之积作为根号外因数(式),被开方数之积作为被开方数;(3)二次根式相乘的结果是一个二次根式或一个有理式;(4)如果没有特别说明,本章中的所有字母都表示正数.......... 拓展:(1)几个二次根式相乘,把被开方数相乘,)0,0,0a b c =≥≥≥;(2)几个二次根式相乘,可利用交换律、结合律使运算简便.(3)易错警示:不要把字母表示正数误认为含该字母的式子就是正数.知识点2 积的算术平方根(难点)知识解读1)0,0a b ≥≥,这就是说,积的算术平方根,等于各因式算术平方根的积.要点精析:(1)积的算术平方根的性质的实质是逆用.....二次根式的乘法法则,它对两个以上的积的算术平方根同样适用;(2)应用积的算术平方根的性质的前提条件....是乘积中的每个因数(式)必须是非负数;应用此性质的作用是化简二次根式;(3)在进行化简运算时,先将被开方数进行因数(式)分解,然后将能开得尽方的因数(式)开方后移到根号外.2.易错警示:积的算术平方根性质中的每个因式可以是数,也可以是代数式,但无论是数还是代数式都必须满足因数(式)都是非负数,才能运用性质进行化简或计算. 知识点3 二次根式的除法(重点)知识解读1)0,0a b =≥>.这就是说,两个算术平方根的商,等于它们被开方数的商的算术平方根.要点精析:(1)法则中的被开方数a 、b 既可以是数,也可以是代数式,但都必须是非负的...且.b .不.为.0.;(2)当二次根式根号外有因数(式)时,可类比..单项式除以单项式的法则进行运算;将根号外因数(式)之商作为根号外商的因数(式);被开方数之商作为被开方数.2.易错警示:(1)0,0a b =≥>中,特别注意0b >,若0b =,则代数式无意义;(2)二次根式的运算结果要尽量化到最简;(3这样的错误;(4)如果是几个二次根式相除,应按除法法则依次计算;也可以把除法运算转化为乘法运算来计算.方法规律利用二次根式的除法法则进行计算,被开方数相除时,可以用“除以一个不为零的数等于乘这个数的倒数”进行约分、化简.知识解读1)0,0a b=≥>.这就是说,商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.要点精析:(1)商的算术平方根的性质的实质是逆用.....二次根式的除法法则; (2)应用商的算术平方根的前提条件是商中被除式是非负数,除式是正数;(3)商的算术平方根的性质的作.用是化简二次根式........,将分母中的根号化去. 2.分母有理化:(1)定义:要化去分母中的根号,只要将分子、分母同乘以一个恰当的二次根式就可以了,通常这种化简过程称为分母有理化;(2)依据:分式的基本性质及()20a a =≥;(3)方法:将分子和分母都乘分母的有理化因式.拓展:(1)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式;(2)常用的有理化因式a a ;3.易错警示:在二次根式的计算中,最后结果的被开方数应不含开得尽的因数(式),同时分母不含二次根式.方法规律分每有理化一般经历如下三步:“一移..”,即将分子、分母中能尽方的因数(式)移到根号外;“二乘..”,即将分子、分母同时乘以分母的有理化因数(式);“三化..”,即化简计算.知识点5 最简二次根式(重点)知识解读1.定义:二次根式被开方数中不含分母,并且被开方数中所有因数(或因式)的幂的指数都小于2,像这样的二次根式称为最简二次根式.要点精析:最简二次根式必须满足:(1)被开方数不含分母,也就是被开方数必须是整数(式);(2)被开方数中每个因数(式)的指数都小于根指数2;即每个因数(式)的指数都是1.2.将一个二次根式化简成最简二次根式的方法步骤:(1)“一分”,即利用因数(式)分解的方法把被开方数的分子、分母都化成质因数(式)的幂的乘积形式;(2)“二移”,即把能开得尽方的因数(式)用它的算术平方根代替,移到根号外,其中把根号内的分母中的因式移到根号外时,要注意应写在分母的位置上;(3)“三化”,即将分母有理化一化去被开方数中的分母.3.易错警示:(1)分母中含有根式的式子不是最简二次根式;(2)去根号时,忽视隐含条件,误将负数移到根号外;(3)去根号后漏掉括号.方法规律二次根式乘除法的混合运算与整式乘除法的混合运算方法相同,整式乘除法的一些法则、公式在二次根式乘除法中同样适用....,在运算中要注意符号和顺序;最后的结果要注意将所含的二次根式化为最简二次根式.................,且分母中不含二次根式说明:对于二次根式的混合运算,也可先对每一个二次根式进行化简,再计算,能使计算简便,请读者试一试.方法规律本例利用探究规律法将蕴涵在数中内在的排列规律,猜想探究问题的结果用代数式表示.21.3 二次根式的加减知识点1 同类二次根式知识解读1.我们把像、-要点精析:(1)同类二次根式必须符合两个条件:①最简二次根式;②被开方数相同.(2)判断是否为同类二次根式时,先将二次根式都化为最简二次根式,然后比较被开方数,它与根号前面的系数无关.2.易错警示:判断两个二次根式是否为同类二次根式,不化简而直接判断易出错.方法规律判断几个二次根式是否为同类二次根式的步骤是:(1)将各二次根式化为最简二次根式;(2)看被开方数是否相同.知识点2 二次根式的加减知识解读1.法则:二次根式相加减,先把各个二次根式化简,再将同类二次根式合并.=+即:(m n2.二次根式加减运算的步骤:(1)“化”:将每个二次根式化成..最简二次根式;(2)“找”:找出..同类二次根式;(3)“并”:将同类二次根式合.并.成一项.3.整式加减运算中的交换律、结合律及去括号、添括号法则在二次根式的运算中仍然适用.4.易错警示:(1)合并同类二次根式时,根号外的因数与因数合并,剩下的部分保持不变,一定不要丢掉;(2)不能合并的二次根式不能丢掉,因为它们也是结果的一部分;(3)二次根式根号外的因数是带分数的要化为假分数.方法规律二次根式的加减法运算的步骤:(1)将每个二次根式都化为最简二次根式......,若被开方数中含有带分数,则要先化成假分数;若含有小数成分数,则要化成分数,进而化为最简二次根式;(2)原式中若有括号,要先去括号,再应用加法交换律、结合律将被开方数相同的二次根式进行合并.....方法规律本例是一道集“数”与“形”为一体的经典题,解答本例经过由非负数之和为零得方程(组),从方程(组)得到三条线段的长;再由任意两线段之和大于第三条线段;任意两线段之差小于第三条线段;得出这三条线段符合组成三角形的条件;最后求三角形的周长. 知识点3 二次根式的混合运算(难点)知识解读1.二次根式的混合运算:(1)运算种类:二次根式的加、减、乘、除、乘方(或开方)的混合运算.(2)运算顺序:先算乘方(开方),再算乘除,最后算加减,如果有括号就先算括号里面的.要点精析:(1)二次根式混合运算的结果应写成最简二次根式(或整式)的形式...................,并且分母中不含二次根式;(2)进行二次根式的开方运算时应使开出的因数(式)是非负数(式).2.二次根式的运算律:(1)实数运算中的运算律(交换律、结合律、分配律)和整式乘法中的乘法公式(平方差公式和完全平方公式)在二次根式的运算中仍然适用.(2)在进行计算时,能用乘法公式的要尽量使用乘法公式,同时注意合理地运用运算律.3.易错警示:(1)对被开方数相同的二次根式理解不透彻导致合并不彻底.(2)在计算过程中,忽略隐含已知条件中的字母的取值范围,导致出现符号错误. 方法规律二次根式的混合运算顺序与整式运算类似,先乘方...,再乘除...,最后再加减.....,在二次根式混合运算中,每一个二次根式可看成一个“单项式”,多个非同类二次根式之和可以看成一个“多项式”,因此整式运算法则、运算律及乘法公式在二次根式运算中仍然适用. 方法规律=,即它们是可以合并的二次根式,也就是说它们是被开方数相同的二次根式...........,利用这一特征解决问题,如按思维习惯把已知等式两边平方,这样一个等式两个未知量是无法求出a 、b 的.方法规律由5x y +=-,6xy =解出x ,y 的值比较困难,因此可以考虑用整体思想求解. 方法规律本题运用数形结合思想.先根据实数所对应的点在数轴上的位置,得出每个数的正负情况以及大小关系,再运用二次根式的性质和绝对值的性质来解决问题.方法规律本题运用了“.0.”点取值法.....,即令要讨论的每个代数式等于0,求出字母的值,然后分情况化简.体现了分类讨论思想的运用.方法规律参数法的实质是...在解题过程中,适当引入一些与题目研究的数学对象发生联系量(参数),以此作为媒介..,再进行分析和综合,从而解决问题.例如本例中的y 就是一个参数. 方法规律此例体现了从特殊到一般的思想,采用了归纳法来解题.仔细观察,找出规律是关键. 方法规律此例运用了反向推理法,对于一些题目,当我们从正面..不好解答时,不妨从它的反面..来考虑,可能有意想不到的效果.第22章 一元二次方程知识点1 一元二次方程的概念知识解读1.定义:整式方程中只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.要点精析:(1)理解定义:要掌握三个关键点:整式、未知数个数及最高次数;“一元”是指整个方程中只含有一个未知数;“二次”是指该未知数的最高次数是2.(2)一元二次方程的识别方法:整理前:①整式方程,②只含一个未知数;整理后:未知数的最高次数是2.2.易错警示:在判断一个式子是否是一元二次方程时常出现以下几种错误:(1)不整理合并直接判断;(2)不看是不是整式方程;(3)未知数的个数不是1或未知数的最高次数不是2.方法规律判断一个方程是否是一元二次方程,有两个关键点:(1)整理前足整式方程且只含一个未知数;(2)整理后未知数的最高次数是2;本例⑤()222322x x x -=-中易出现不整理就下结论,误认为是一元二次方程的错误.方法规律已知某方程为一元二次方程,则此方程必须符合一元二次方程的两个基本特征:只含一个未知数;未知数的最髙次数是2.当二次项系数是待定系数时还要考虑二次项系数不等于0.知识点2 一元二次方程的一般形式(重点)知识解读1.一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式:()200ax bx c a ++=≠.这种形式叫做一元二次方程的一般形式,其中2ax 是二次项,a 是二次项系数,bx 是一次项,b 次项系数,c 是常数项.2.理解要点:(1)20ax bx c ++=,当0a ≠时,方程才是一元二次方程,但b ,c 可以是0.(2)将一个一元二次方程化成一般形式,可以通过去分母、去括号、移项、合并同类项等步骤.(3)指出一元二次方程的某项时,应连同未知数一起;指出某项系数时应连同它前面的符号一起.(4)二次项系数不等于零既是一元二次方程的必要条件,也是一个隐含条件.3.易错警示:(1)忽略一元二次方程20ax bx c ++=中二次项系数0a ≠的条件.(2)确定一元二次方程各项系数时,不要忽略各项前面的符号.方法规律1.化一般形式一般要经历一去(去分母去括号)二移三并这三步;2.当整理为一般形式后,如果二次项系数是负数,一般要把它转化为正数,若有关系数是分数,一般要把它转化为整数.方法规律在一元二次方程的一般形式:20ax bx c ++=中,0a ≠是确定该方程为一元二次方程的唯一标准,在应用一元二次方程的定义求待定字母的值时,既要考虑未知数的最高次数是2,又要考虑二次项系数不为零.方法规律在由一元二次方程的定义求有关待定字母的值时,先要把方程整理成一元二次方程的一般形式,再由题中给出的条件及二次项系数不为0列式求出.知识点3 建立一元二次方程的模型知识解读1.一元二次方程模型:一元二次方程是刻画现实世界的一个有效数学模型,它是把实际问题中语言叙述的数量关系通过设未知数用一元二次方程来表达.2.建立一元二次方程模型的一般步骤:(1)审题,认真阅读题目,弄清未知量和已知量之间的关系;(2)设出合适的未知数,一般设为x ;(3)确定等量关系;(4)根据等量关系列出一元二次方程,有时要化为一般形式.3.常用一元二次方程来建模的问题有:圆形的面积、增长(利润)率、行程问题、工程问题等.4.易错警示:一元二次方程求得实际问题的解要检验,看其是否符合实际意义. 知识点4 一元二次方程的根(解)(难点)知识解读1.定义:能使一元二次方程左右两边相等的未知数的值叫做一元二次方程的根(解). 要点精析:(1)判断方程的根的必要条件是:使方程左右两边相等.(2)根据方程的根的定义可以判断解出的方程的根是否正确.(3)一元二次方程的根不止一个,只要符合条件的都是方程的根.方法规律检验一个数是否为方程的根,只要把这个数分别代入方程的左右两边算出数值,看它们是否相等.在找根时注意使一元二次方程左右两边相等的未知数的值不一定只有一个. 方法规律如果0x 是方程20ax bx c ++=的根,则有式子2000ax bx c ++=成立.当求含有0x 的代数式的值时,找出该代数式与2000ax bx c ++=相类似的结构进行整体代入求值. 方法规律判断未知数的值是否为所给一元二次方程的根的方法是将这个数代入原方程,判断方程左右两边的值是否相等.22.2 一元二次方程的解法22.2.1 直接开平方法和因式分解法知识点1 用直接开平方法解一元一次方程(重点)知识解读1.定义:利用平方根的意义,直接开平方求一元二次方程的解的方法叫做直接开平方法.2.直接开平方法求方程的解的方法:(1)()20x p p x =≥→=2)()()20x a p p x a +=≥→=;(3)()()20,0mx n p p m x +=≥≠→= 3.易错警示:直接开平方法是利用平方根的意义,所以要注意两点:(1)常常只取正的平方根而遗漏负的平方根;(2)只有非负数才有平方根,所以直接开平方法的前提条件是2x p =中0p ≥. 方法规律用直接开方法解一元二次方程时,首先将方程化成左边是含有未知数的完全平方式,右边是非负数的形式,然后根据平方根的意义求解.当整理后右边为0时,方程有两个相等的实数根.知识点2 用因式分解法解一元二次方程知识解读1.定义:先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解一元二次方程的方法叫做因式分解法.2.因式分解法解一元二次方程的一般步骤:(1)整理方程,使其右边为0;(2)将方程左边分解为两个一次式的乘积;(3)令每个一次式分别为0,得到两个一元一次方程;(4)分别解这两个一元一次方程,它们的解就是原方程的解.3.常用的因式分解的方法:(1)提取公因式法;(2)公式法;(3)()()()2x a b x ab x a x b +++=++.4.易错警示:(1)当方程没有化成一般形式时,不能把左边进行因式分解;(2)不是所有的一元二次方程都能用因式分解法求解.方法规律用因式分解法解一元二次方程时,不要急于将方程化为一般形式,要结合方程特点适当变形,发现并提取公因式或运用公式.方法规律采用因式分解法解一元二次方程的技巧为:右化零,左分解,两因式,各求解. 方法规律用直接开平方的方法解一元二次方程,如果方程化成()20x p p =≥的形式,则方程的两根互为相反数.方法规律本题运用了换元法,运用换元法解方程时,要'注意还元.如本题最后是要解出未知数x ,而不是未知数t ,所以先换元然后再还元.方法规律元二次方程的两个根,就可以知道用因式分解法求解的过程,即()()120,x a x b x a x b --=⇔==.方法规律确定三角形的三边长时,要考虑三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.22.2.2 配方法知识点1 用配方法解一元二次方程知识解读1.定义:通过方程的简单变形,将左边配成一个含有未知数的完全平方式,右边是一个非负数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.要点精析:(1)配方法是对二次项和一次项配方,所以一般先把常数项移到方程右边,再利用等式的性质将方程两边都加上一次项系数一半的平方(二次项_系数必须为1).(2)用配方法解一元二次方程,实质就是对一元二次方程变形,转化成直接开平方法所需要的形式.配方是为了降次,利用平方根的定义把一个一元二次方程转化为两个一元一次方程来解.2.用配方法解一元二次方程的步骤:简言之:一化二移三配四开方,即(1)化:①将方程化成一般形式;②将二次项系数化为1.(2)移:将常数项移到方程的另一边.(3)配:方程两边同时加上一次项系数一半的平方,使方程变为()2x m n ±=的形式.(4)开方:如果n 为非负数,直接开平方求根.3.易错警示:利用配方法解一元二次方程时:易忘记二次项系数化为1或方程的两边同时加上一次项系数一半的平方.方法规律(1)二次项系数为1时,已知一次项的系数,则常数项为一次项系数一半的平方;已知常数项,则一次项系数为常数项的平方根的两倍.注意有两个.(2)当二次项系数不为1时,则先化二次项系数为1,然后再配方.方法规律方程两边同时加上一次项系数一半的平方是配方法的关键,将二次项系数化成1是进行这一关键步骤的重要前提.方法规律当一个方程出现多个未知数,且方程中具备完全平方式的雏形时,可以考虑凑完全平方式,将方程化成几个非负数的和为零的情形,从而将一个方程化成多个方程来分别求解.22.2.3 公式法22.2.4 一元二次方程根的判别式知识点1 公式法解一元二次方程知识解读1.求根公式的定义:方程()200ax bx c a ++=≠的实数根可写为)240x b ac =-≥,这个式子叫做一元二次方程()200ax bx c a ++=≠的求根公式.2.用求根公式解一元二次方程的一般步骤:(1)把一元二次方程化成一般形式;(2)确定公式中a 、b 、c 的值;(3)求出24b ac -的值;(4)若240b ac -≥,则把a 、b 及24b ac -的值代入求根公式求解,当240b ac -<时,方程无实数解.方法规律用公式法解一元二次方程时,应首先将方程化为一般形式,然后确定二次项系数、一次项系数及常数项,在确定了a 、b 、c 后,先计算24b ac -的值,当240b ac -≥时,再用求根公式解.方法规律解含字母系数的一元二次方程时,与解一般的一元二次方程一,一,先将方程化成一般形式,然后利用公式法求出方程的解.方法规律利用公式法因式分解的理论依据:若一元二次方程20ax bx c ++=的两根为1x ,2x ,则方程可化成()()()1200a x x x x a --=≠的形式,因此()()()2120ax bx c a x x x x a ++=--≠,所以利用公式法进行代数式()20ax bx c a ++≠的因式分解时,可以先构造一元二次方程20ax bx c ++=,然后求出一元二次方程的两根,再代入()()()120a x x x x a --≠完成因式分解.知识点2 一元二次方程根的判别式知识解读1.式子24b ac -叫做方程()200ax bx c a ++=≠根的判别式,通常用符号∆表示,即24b ac ∆=-.2.一元二次方程根的个数的判断方法:(1)当0∆>时,方程()200ax bx c a ++=≠有两个不相等的实数根.(2)当0∆=时,方程()200ax bx c a ++=≠有两个相等的实数根.(3)当0∆<时,方程没有实数根.要点精析:(1)利用根的判别式可以不解方程判断方程根的情况,反之,已知方程根的情况可以确定方程待定字母系数的取值范围;(2)计算根的判别式时,先将方程化成一般形式,确定a 、b 、c 后再计算;(3)一元二次方程有实数根包括有两个相等的实数根和两个不相等的实数根,即0∆≥. 方法规律(1)关于一元二次方程根的情况的问题一般都与24b ac -有关,抓住24b ac -与零的大小关系推出一元二次方程根的三种不同情况是解题的关键.(2)判断方程根的情况的方。

数学九年级上册华师大版

数学九年级上册华师大版

数学九年级上册华师大版一、二次函数。

1. 二次函数的概念。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数叫做二次函数。

其中x是自变量,a、b、c分别是二次函数的二次项系数、一次项系数和常数项。

例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。

2. 二次函数的图象与性质。

- 图象的形状:二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

- 对称轴:对称轴公式为x =-(b)/(2a)。

例如对于二次函数y=x^2-2x + 3,其中a = 1,b=-2,根据公式可得对称轴为x =-(-2)/(2×1)=1。

- 顶点坐标:把x =-(b)/(2a)代入二次函数y = ax^2+bx + c可得到顶点的纵坐标y=frac{4ac - b^2}{4a},所以顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 开口方向:当a>0时,抛物线开口向上,函数有最小值;当a < 0时,抛物线开口向下,函数有最大值。

3. 二次函数的平移。

- 二次函数y=a(x - h)^2+k(a≠0)的图象可以由y = ax^2的图象平移得到。

- 规律为“左加右减自变量,上加下减常数项”。

例如,将y = x^2的图象向右平移2个单位,再向上平移3个单位,得到的函数解析式为y=(x - 2)^2+3。

二、一元二次方程。

1. 一元二次方程的概念。

- 只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

一般形式为ax^2+bx + c = 0(a≠0),其中ax^2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

例如x^2+3x - 4 = 0,这里a = 1,b = 3,c=-4。

2. 一元二次方程的解法。

- 直接开平方法:对于方程x^2=k(k≥0),解得x=±√(k)。

九年级数学华师大知识点

九年级数学华师大知识点

九年级数学华师大知识点数学华师大知识点(九年级)在九年级的数学学习中,华师大知识点是我们需要重点掌握的内容之一。

本文将介绍一些九年级数学华师大知识点,帮助读者更好地理解和应用数学知识。

一、代数与函数1. 二次函数与一元二次方程华师大知识点中的二次函数与一元二次方程是九年级数学中的重点难点。

学生需要掌握如何从二次函数的图像中推断相关信息,以及如何解一元二次方程并应用于实际问题中。

2. 线性函数与一元一次方程在学习线性函数与一元一次方程时,要注意把握二者之间的关系。

线性函数的图像是一条直线,而一元一次方程则是线性函数的数学表达式。

学生需要学会在图像和方程之间相互转换,并能够解决实际问题。

二、几何与图形1. 三角形与平行四边形三角形和平行四边形是几何学中的重要概念。

掌握它们的性质、分类以及判定方法,能够帮助学生解决与角、边和面积相关的问题。

2. 相似与全等三角形相似与全等三角形是九年级几何学中的重要内容。

学生需要掌握相似与全等三角形的判定方法,以及它们之间的关系。

此外,了解三角形的比例关系和应用,能够帮助学生解决各类几何问题。

三、概率与统计1. 抽样与调查抽样与调查是九年级概率与统计学中的重点。

学生需要了解不同的抽样方法,并能够根据实际情况选择合适的抽样方法。

此外,学生还需要学会设计简单的调查问卷、收集数据,并进行分析和解读。

2. 数据的图表表示掌握数据的图表表示方法对于理解和分析数据至关重要。

学生需要熟悉各类图表的用途和特点,能够正确绘制和解读直方图、折线图、饼图等。

四、数与式1. 分数与小数分数与小数是基础的数学概念,但在九年级数学中仍然有一定难度。

学生需要掌握分数与小数之间的转换、运算以及应用,能够解决与分数与小数相关的实际问题。

2. 整式与分式整式与分式是九年级数学中的重要内容。

学生需要了解整式和分式的定义、性质以及运算法则,掌握合并同类项、提取公因式等技巧,能够化简和求解相关的数学表达式。

综上所述,九年级数学华师大知识点涵盖了代数与函数、几何与图形、概率与统计、数与式等多个方面。

华师大版九年级数学知识点

华师大版九年级数学知识点

华师大版九年级数学知识点
一、代数运算
1、指数的运算:了解指数的积的定义,能够运用乘方运算定理计算指数的乘积,除积,幂乘积,也能够用规律法与分段法运算指数表达式;
2、根式运算:能熟练求解一元二次方程,包括解析法、完全平方式以及使用公式计算;
3、混合运算:除此之外,熟练掌握一元多项式与根式的乘除,一元多项式与根式的
加减以及一元多项式与根式的加减;
4、分数:掌握分数的四则运算,学会令分母相等的两个分数的加减,乘除的计算方法;
二、三角函数
1、三角函数的定义域:搞清楚三角函数的定义域,用数值分析法分析三角函数;
2、三角函数的运算:学习三角函数的运算规则,包括加减乘除法,计算四边形的高、斜边条件;
3、三角函数的一元函数性质:掌握正弦函数的图形特征及求值方法,锐角与钝角的
判定及其弧度和角度的大小关系;
4、三角函数的三角恒等变换:学会已知两个边或边角的情况下求另外一条边的程序
及证明,学习三角恒等变换的应用;
三、微积分
1、函数及其图形:学习定义域上的函数图像的奇偶性,学习收展性、对称性和周期性;
2、函数的微分及求导法则:学习基本及高级求导法则;
3、函数的积分及求积法则:学习求积法则,包括换元法,求面积;
4、应用:学习H里氏定理及积分测定面积、体积问题,学习积分中的标准积及简单积,泰勒公式等应用。

华师大版数学上册九年级知识点

华师大版数学上册九年级知识点

华师大版数学上册九年级知识点数学作为一门学科,为我们的学习和生活提供了重要的帮助和指导。

数学知识点密集,牵扯广泛。

今天,我们来探讨一下华师大版数学上册九年级的知识点。

第一章:有理数有理数是我们数学学习的基础,也是日常生活中常见的数。

在这一章中,我们学习了有理数的概念、性质和运算。

我们了解到有理数包括整数、分数和小数,并且学会了对有理数进行四则运算。

在习题中,我们通过解决实际问题来巩固对有理数的理解和应用。

第二章:代数式代数式是数学中非常重要的一个概念。

通过学习代数式,我们可以更好地理解和解决实际问题。

在这一章中,我们学习了代数式的定义、展开和化简。

我们掌握了基本的代数运算法则,例如加法交换律和分配律。

此外,我们还学会了如何通过代数式建立方程,解决实际问题。

第三章:一次函数一次函数是数学中的重要内容,也是解决实际问题的有效工具。

在这一章中,我们学习了一次函数的定义、性质和图像。

我们了解到一次函数是一条直线,可以通过截距和斜率来确定。

我们学会了如何根据函数的图像和相关信息,确定函数的表达式,并且通过一次函数解决了很多实际问题。

第四章:一次不等式一次不等式是我们解决实际问题的重要工具。

在这一章中,我们学习了一次不等式的概念、性质和解法。

我们掌握了如何利用图像和计算来解决一次不等式,并且应用于实际问题中。

通过许多习题的练习,我们提高了解决问题的能力和思维能力。

第五章:平方根与二次函数平方根和二次函数是数学中的重要内容,也是我们解决实际问题的有效工具。

在这一章中,我们学习了平方根的性质和运算法则。

我们了解到二次函数是一条抛物线,并且学会了通过顶点和轴对称性质确定二次函数的图像。

我们还学习了通过二次函数解决实际问题的方法。

第六章:点、线和平面点、线和平面是几何中的基本概念,也是我们解决几何问题的基础。

在这一章中,我们学习了点、线和平面的定义和性质。

我们了解到点无大小,线由无数个点组成,平面由无数个线组成。

我们还学会了通过点、线和平面来确定几何关系,并且解决了一些几何问题。

华师大版九年级数学上册考点

华师大版九年级数学上册考点

华师大版九年级数学上册考点数学起源于人类早期的生产活动,并能运用实际问题。

从数学本身看,他们的数学知识也只是视察和体会所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的奉献。

今天作者在这给大家整理了一些华师大版九年级数学上册考点,我们一起来看看吧!华师大版九年级数学上册考点角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形性质等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称直角三角形定理定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形九年级数学上册考点点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也相互平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等九年级数学考点1不在同一直线上的三点肯定一个圆。

(完整版)华师大版九年级上册第一章知识点

(完整版)华师大版九年级上册第一章知识点

第一章化学反应第一节(P2)一、质量守恒定律(1)定义:参加化学反应的各物质的质量总和等于反应后生成的各物质的质量总和,这个定律叫质量守恒定律。

(2) a.必须是真正参加反应的物质b.各物质的质量总和相等(3)质量守恒定律的解释宏观元素种类元素质量物质的总质量原子种类没有变化微观原子数目没有增减原子质量没有增减进行有关的计算应用推测一些物质的组成解释一些实验事实(3)化学反应前后一定不变的量:①原子种类②元素种类③原子数目④物质总质量用质量守恒定律解释下面两种现象:1、镁带在空气中燃烧后,生成物的质量比镁带的质量增加了,为什么?2、煤燃烧后留下的煤灰的质量,比煤的质量减少了,为什么?小练1.6克碳与一定量的氧气恰好完全反应,生成二氧化碳22克,有______克氧气参加了反应。

二、化学方程式(1)定义:用化学式来表示化学反应的式子(2)化学方程式的书写原则:一是以客观事实为依据;二是要遵守质量守恒定律(3)书写化学方程式的方法和步骤写:写出反应物和生成物的分子式配:配平化学方程式等:将短线改为等号注:注明反应条件,生成物的状态(4)化学方程式表示的意义①表示反应物和生成物的种类②表示反应的条件③表示反应物、生成物间原子、分子个数比④表示反应物、生成物间的质量练习:试写出下列反应的化学方程式(1)硫在氧气中燃烧生成二氧化硫(2)磷在氧气中燃烧生成五氧化二磷(3)氢气与灼热的氧化铜反应生成铜和水三、化学方程式的配平1.最小公倍数法配平方法是:求出方程式两边相同原子前系数的最小公倍数,然后用该最小公倍数除以各自的原子个数,所得的值就是对应物质的系数。

2.用奇数配偶数法用这一方法配平的化学方程式的特点是:某元素在式子里出现的次数较多,且各端的原子总数是一奇一偶。

配平方法:选定该元素作为配平的起点,先把奇数变为最小的偶数(即乘以2),再确定其它化学式的系数。

3.观察法配平方法是:(1)通过观察,从化学式比较复杂的一种生成物推求出有关各反应物和生成物的系数。

华师大版九年级数学上册 第21章单元知识梳理

华师大版九年级数学上册 第21章单元知识梳理

跟踪训练
C
B
跟踪训练
B
A
跟踪训练
跟踪训练
跟踪训练
跟踪训练
跟踪训练
跟踪训练
跟踪训练
跟踪训练

x的取值范围由x+2≥0得x≥-2.故选B;
名师讲解
• 【例1】(2)若x、y为实数,且
=0,则
(x+y)2018的值为
;
• 【解答】 本题考查二次根式与绝对值的非负性.两个非负式子 的和为0,则这两个式子必定都为0,即x=-2,y=3,所
以(x+y)2018=1;
• 【例1】(3)
名师讲解
• 【解答】
跟踪训练
C
D
跟踪训练
A
x≤2 0
跟踪训练
名师讲解
• 要点二:二次根式的化简及其混合运算
•2; (2)A不是同类项,不能合并;B
C正确;D ( 3)2 3 ,故选C;
82 2 ,
• 【例2】
名师讲解
• 【解答】
(3)原式= (m n)2 5mn 22 5(1) 3 ; (4)原式=2a2-6-a2+6a+6=a2+6a,代入值得4 2 -3.
第二十一章 二次根式
单元知识梳理
知识结构
名师讲解
• 要点一:二次根式的定义、性质及非负性的考查
• 【例1】(1)函数y= ()
中,自变量x的取值范围是
• A.x>-2
B.x≥-2
C.x≠-2 D.x≤-2
• 【解答】本题考查含二次根式的函数中自变量的取值范围,由
于二次根式 中a的取值范围是a≥0,∴y=

华师大版九年级数学知识点

华师大版九年级数学知识点

华师大版九年级数学知识点第22章 二次根式1.二次根式)0(≥a a 表示非负数a 的算术平方根,也就是说,)0(≥a a 是一个非负数,它的平方等于a ,即有:(1))0(0≥≥a a(2)())0(2≥=a a a形如)0(≥a a 的式子叫做二次根式。

二次根式的性质:⎩⎨⎧<-≥=)0()0(2a a a a a2.二次根式的乘法 :两个二次根式相乘,将它们的被开方数相乘。

)0,0(≥≥=⋅b a ab b a3.积的算术平方根:积的算术平方根,等于各因式算术平方根的积(主要用于二次根式的化简))0,0(≥≥⋅=b a b a ab4.二次根式的除法:两个二次根式相除,将它们的被开方数相除。

)0,0(>≥=b a baba 1. 商的算术平方根:商的算术平方根,等于各因式算术平方根的商(主要用于分母有理化,就是使分母中不含有二次根式,并且二次根式中不含有分母))0,0(>≥=b a ba ba2. 最简二次根式:被开方数中不含分母或分母中不含二次根式且被开方数中所有因式的幂的指数都小于28.二次根式化简主要包括两方面(1)如果被开方数中含有分母,通常可利用分式的基本性质将分母配成完全平方,再“开方”出来 (2)如果被开方数中含有完全平方的因式(或因数),可利用积的算术平方根的性质,将它“开方”出来9.同类二次根式:像33与32-, a 3、 a 2-与 a 4这样的几个二次根式,称为同类二次根式。

二次根式的加减,先把各个二次根式化简,再将同类二次根式合并。

第23章 一元二次方程1.一元二次方程只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程。

一般形式:c b a c bx ax ,,(02=++是已知数,)0≠a 。

其中c b a ,,分别叫做二次项的系数,一次项的系数,常数项。

2.一元二次方程的解法:(1)直接开平方法 (2)因式分解法(3)配方法(4)公式法 ()042422≥--±-=ac b aacb b x 3.根的判别式,ac b 42-=∆当0>∆时,方程有两个不相等的实根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.二次根式:式子a (a ≥0)叫做二次根式。

2.二次根式有意义的条件:被开方数a ≥0
3. 二次根式的性质: (1)(
a )2=a (a ≥0); (2)==a a 2
4.二次根式的乘法---------
)0,0(≥≥⇔⋅b a ab b a
5.二次根式的除法---------)0,0(>≥⇔
b a b
a
b
a 6.最简二次根式:
⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母; ⑶分母中不含根式。

7.同类二次根式--------化成最简二次根式后,被开方数相同。

8.二次根式的加减--------先把各个二次根式化简,再将同类二次根式合并。

9.分母有理化:把分母中的根号化去。


a 的有理化因式是a ;
②a 的有理化因式是a。

1. 一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程。

2.一般形式:c b a c bx ax ,,(02
=++是已知数,)0≠a 。

其中c b a ,,分别叫做二次项的系数,一次项的系数,常数项。

3. 一元二次方程的解---------- 使方程左、右两边相等的未知数的值叫做方程的解。

4.一元二次方程的解法
(1)直接开平方法-----------若()02
≥=a a x
,则a x ±=
(2)配方法-----步骤:①把常数项移到方程的右边;②把二次项的系数化为1;③方程两边同时 加上1次项的系数的一半的平方,配成完全平方公式;④直接开平方。

(3)公式法-------求根公式:)04(242
2≥--±-=
ac b a
ac b b x 步骤:①把方程化为()002
≠=++a c bx ax 的形式,确定的值c b a .,(注意符号);②求出ac b 42-的值;③若042
≥-ac b ,
则.,b a 把及ac b 42
-的值代入求根公式,求出21,x x 。

(4)因式分解法-----------要求方程右边必须是0,左边能分解因式。

注意:形如“
()()为常数b a b a x b a x ,02=+++可将左边分解因式,方程变形为()()0=++b x a x ,则
00=+=+b x a x 或,即b x a x -=-=21,。

5.一元二次方程根的判别式-----------------△=ac b 42
- ①△=ac b 42
-﹥0⇔方程有两个不相等的实数根; ②△=ac b 42-=0⇔方程有两个相等的实数根;
a (a >0)
a -(a <0)
0 (a =0);
③△=ac b 42
-﹤0⇔方程没有实数根。

注意:逆用根的判别式求未知数的值或取值范围,不能忽略二次项系数不为0这一条件。

6. 一元二次方程的根与系数的关系
若21,x x 是一元二次方程()002
≠=++a c bx ax 的两个根,则有a b
x x -=+21
, a
c x x =21
常用变形:①()
212
212
22
12x x x x x x -+=+ ②2
121
211
1x x x x x x +=+
7.一元二次方程的应用
知识点一 列一元二次方程解应用题的一般步骤
① 审题 ②设未知数 ③列方程 ④解方程 ⑤检验 ⑥作答。

关键点:找出题中的等量关系。

知识点二 增长率问题与降低率问题的数量关系及表示法:
(1)若基数为a ,增长率x 为,则一次增长后的值为()x a +1,两次增长后的值为()2
1x a +;
(2)若基数为a ,降低率x 为,则一次降低后的值为()x a -1,两次降低后的值为()2
1x a -。

知识点三 与市场经济有关的问题----------如:营销问题、水电问题等,常用关系式有: (1)每件利润=销售价-成本价; (2)利润率=(销售价—进货价)÷进货价×100%; (3)销售额=售价×销售量; (4)总利润=单个利润×销售数量
第24章 图形的相似
1.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即d
c
b a =(或a :b=
c :
d ),那么,这四条线段叫做成比例线段。

(注意:线段单位要统一)
2.比例性质的基本性质: bc ad d c
b a =⇔= (两外项的积等于两内项积)
3.黄金分割:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果
AC
BC
AB AC =
,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

其中AB AC 2
1
5-=
≈0.618AB 。

4.相似三角形:两个三角形中,如果三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。

如△ABC 与△DEF 相似,记作△ABC ∽△DEF 。

5.相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。

通常用k 来表示。

相似比具有顺序性.
6. 相似三角形的性质
①相似三角形对应角相等、对应边成比例.
②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比。

③相似三角形对应面积的比等于相似比的平方.
7.三角形相似的判定定理:
(1)平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

(2)两角对应相等,两三角形相似.
(3)两边对应成比例且夹角相等,两三角形相似. (4)三边对应成比例,两三角形相似.
(5)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

射影定理:CD2=AD ·BD , AC2=AD ·AB ,BC2=BD ·BA
六种相似基本模型:
DE∥BC ∠B?∠AED ∠B?∠ACD
X型母子型
AC∥BD ∠B?∠C AD是Rt△ABC斜边上的高
中位线
①三角形的中位线:连结三角形两边中点的线段。

(3条)
②三角形的中位线平行于第三边且等于第三边的一半。

③重心:三角形三条中线相交于一点,这个交点叫做三角形的重心.
④重心的性质:三角形的重心到一个顶点的距离,等于它到对边中点的距离的两倍.
⑤梯形的中位线:连结梯形两腰中点的线段。

⑥梯形的中位线平行于两底边,且等于两底和的一半
⑦梯形的面积=中位线╳高=1
2
(上底+下底)╳高
射影定理:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相
CD2=AD·BD, AC2=AD·AB,BC2=BD·BA
10.位似(1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

(2)性质:①位似图形的对应边平行或共线。

②位似图形上任意一对对应点到位似中心的距离之比等于相似比。

11.图形的变换与坐标
①轴对称:图形关于x轴对称,横不变,纵为相反数;关于y轴对称,纵不变,横为相反数。

②中心对称:图形关于原点对称,横纵皆为相反数。

③平移:横坐标右加左减,纵坐标上加下减。

④位似:以原点为位似中心,位似比为K进行变换,P(a,b)变换后为(ka,kb)或(-ka,-kb)。

1.在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
2.特殊
(重要)
3.解直角三角形:已知边和角→所有未知的边和角。

只有两种情况:(1)已知两条边(2)已知一条边和一个锐角
4.应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

(2)坡角:坡面与水平面的夹角。

记作α。

坡度:坡面的铅直高度h 和水平宽度l 的比。

用字母i 表示,即tan h i l
α==。

一般写成1:m 的形式。

随机事件的概率
1.
概率
(1)表示一个事件发生的可能性大小的这个数,叫做该事件的概率. P (所关注的事件)=所关注的结果/所有等可能的结果. 2.
概率的预测
(1)要清楚我们关注的是发生哪个或哪些结果. (2)要清楚所有机会的结果.
(1)、(2)两个结果个数之比就是关注的结果发生的概率. 方法:画树状图、列表法.。

相关文档
最新文档