2020年高考数学平行垂直关系的证明大题精做
2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)
专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。
2020版高考数学浙江专用二轮课件:2.4 解答题 1 空间中的平行与垂直
【题眼直击】
题眼 ①
②
思维导引 想到证明DF∥平面ACE 假设点G存在,证明点G
的位置
【自主解答】(1)在三棱台ABC-DEF中,AC∥DF,AC⊂平 面ACE,DF⊄平面ACE,所以DF∥平面ACE.又因为DF⊂平面 DEF,平面ACE∩平面DEF=a,所以DF∥a.
(2)线段BE上存在点G,且BG= 1 BE,使得平面DFG⊥平面
所以,四棱锥E-BB1C1C的体积V= 1 ×3×6
3
×3=18.
角度2 面面垂直的判定与性质 【例4】如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥BC. (1)设平面ACE∩平面DEF=a,求证: DF∥a.① (2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得 平面DFG⊥平面CDE?② 若存在,请确定G点的位置; 若不存在,请说明理由.
3
CDE. 证明如下: 取CE的中点O,连接FO并延长交BE 于点G,连接GD,
因为CF=EF,所以GF⊥CE.
在三棱台ABC-DEF中,AB⊥BC⇒DE⊥EF.
由CF⊥平面DEF⇒CF⊥DE.
又CF∩EF=F,所以DE⊥平面CBEF,所以DE⊥GF.
GF CE,
GF DE,
⇒GF⊥平面CDE.
2.(2019·洛阳一模)如图,四边形ABCD与ADEF均为平行 四边形,M,N,G分别是AB,AD,EF的中点. 求证:(1)BE∥平面DMF. (2)平面BDE∥平面MNG.
【证明】(1)如图,连接AE,则AE必过DF与GN的交点O, 连接MO,则MO为△ABE的中位线,所以BE∥MO, 又BE⊄平面DMF,MO⊂平面DMF, 所以BE∥平面DMF.
【变式训练】 (2019·全国卷Ⅱ)如图,长方体ABCD-A1B1C1D1的底面 ABCD是正方形,点E在棱AA1上,BE⊥EC1. (1)证明:BE⊥平面EB1C1. (2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的 体积.
2020高考数学冲刺核心考点 专题3 第2讲 立体几何(大题)
例3 (2019·临沂模拟)如图,平面ABCD⊥平面ABE,四边形ABCD是边长为2的正 方形,AE=1,F为CE上的点,且BF⊥平面ACE. (1)求证:AE⊥平面BCE;
证明 ∵BF⊥平面ACE,AE⊂平面ACE, ∴BF⊥AE, ∵四边形ABCD是正方形, ∴BC⊥AB, 又平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB, ∴CB⊥平面ABE, ∵AE⊂平面ABE, ∴CB⊥AE, ∵BF∩BC=B,BF,BC⊂平面BCE, ∴AE⊥平面BCE.
由-A--1-B→1 =12A→B,得 B1(- 3,1,4).
因为
E
是棱
BB1
的点,所以
E-
23,32,2,
所以E→A1=
23,-32,2,-A--1-C→1 =(-2
3,0,0).
设n=(x,y,z)为平面EA1C1的法向量, n·-A--1-C→1 =-2 3x=0,
证明 连接AB1,AC1, ∵点Q为线段A1B的中点,∴A,Q,B1三点共线,且Q为AB1的中点, ∵点P为B1C1的中点,∴PQ∥AC1. 在直三棱柱ABC-A1B1C1中,AC⊥BC, ∴BC⊥平面ACC1A1, 又AC1⊂平面ACC1A1,∴BC⊥AC1. ∵AC=AA1,∴四边形ACC1A1为正方形,∴AC1⊥A1C, 又A1C,BC⊂平面A1BC,A1C∩BC=C, ∴AC1⊥平面A1BC,而PQ∥AC1, ∴PQ⊥平面A1BC.
得-3y-2
3z=0, 2x=0.
令 y=1,则 n=(0,1, 3). 又P→B=( 2,1,- 3),
设直线PB与平面PCD所成的角为θ.
则
sin
θ=|cos〈n,P→B〉|=
高考数学复习—立体几何:(二)空间直线平面关系判断与证明—平行与垂直关系证明(试题版)
【考点2:空间直线、平面的平行与垂直关系证明】题型1:直线、平面平行的判断及性质【典型例题】[例1]►(1)如图,在四面体P ABC中,点D,E,F,G分别是棱AP,AC,BC,PB的中点.求证:DE∥平面BCP .►(2)(2013福建改编)如图,在四棱锥P-ABCD中,AB∥DC, AB=6,DC=3,若M为P A的中点,求证:DM∥平面PBC . ►(3)如图,在四面体A-BCD中,F,E,H分别是棱AB,BD,AC 的中点,G为DE的中点.证明:直线HG∥平面CEF .[例2]►(1)如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:①B,C,H,G四点共面;②平面EF A1∥平面BCHG .►(2)如图E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:①EG∥平面BB1D1D;②平面BDF∥平面B1D1H .【变式训练】1.(2014·衡阳质检)在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系为______.2.如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH .3.如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.4.如图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E 在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH∥平面BED1F .题型2:直线、平面垂直的判断及性质【典型例题】[例1]►(1)如图,在四棱锥P-ABCD中, P A⊥底面ABCD, AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC中点. 证明:①CD⊥AE;②PD⊥平面ABE .►(2)如图所示,在四棱锥P-ABCD中,AB⊥平面P AD,AB∥CD,PD=AD,E是PB的中点,F是DC上的点且DF=12AB,PH为△P AD中AD边上的高.①证明:PH⊥平面ABCD;②证明:EF⊥平面P AB.[例2]►(1)[2014·辽宁文]如图所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(I)求证:EF⊥平面BCG;(II)求三棱锥D -BCG的体积.►(2)(2012·课标全国)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点.(I)证明:平面BDC1⊥平面BDC;(II)平面BDC1分此棱柱为两部分,求这两部分体积的比.►(3)(2015·大庆质检) 如图,四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.①求证:PC⊥BC;②求点A到平面PBC的距离.【变式训练】1.如图,四棱锥P—ABCD中,P A⊥底面ABCD,AB⊥AD,点E 在线段AD上,且CE∥AB. (1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积.2.[2014·福建文]如图所示,三棱锥A-BCD中,AB⊥平面BCD,CD⊥BD.(1)求证:CD⊥平面ABD;(2)若AB=BD=CD=1,M为AD中点,求三棱锥A -MBC的体积.3.(2015·唐山统考)如图,在三棱锥P-ABC中,P A=PB=AB =BC,∠PBC=90°,D为AC的中点,AB⊥PD.(1)求证:平面P AB⊥平面ABC;(2)如果三棱锥P-BCD的体积为3,求P A.4.[2014·课标Ⅰ文]如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B1C1的高.☆题型3:直线、平面平行与垂直关系的综合【典型例题】[例1]►(1)已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题中真命题是(写出序号).①若l⊂α,m⊂α,l∥β,m∥β,则α∥β;②若l⊂α,l∥β,α∩β=m,则l∥m;③若α∥β,l∥α,则l∥β;④若l⊥α,m∥l,α∥β,则m⊥β.►(2)(2014·辽宁)已知m,n表示两条不同直线,α表示平面.下列说法正确的是()A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α►(3)(2015·江西七校联考)已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面►(4)(2013·课标Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l►(5)(2016·课标Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号) [例2]►(1)(2014·北京)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别为A1C1,BC的中点.(I)求证:平面ABE⊥平面B1BCC1;(II)求证:C1F∥平面ABE;(III)求三棱锥E-ABC的体积.►(2)[2014江苏文]如图,三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(I)直线P A∥平面DEF;(II)平面BDE⊥平面ABC.[例3]►(1)[2014·陕西文]四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(I)求四面体ABCD的体积;(II)证明:四边形EFGH是矩形.►(2)(2012·北京)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(I)求证:DE∥平面A1CB;(II)求证:A1F⊥BE;(III)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.【变式训练】1.(2016·浙江联考)已知a,b,c为三条不同的直线,α,β是空间两个平面,且a⊂α,b⊂β,α∩β=c.给出下列命题:①若a与b是异面直线,则c至少与a,b中的一条相交;②若a不垂直于c,则a与b一定不垂直;③若a∥b,则必有a∥c;④若a⊥b,a⊥c,则必有α⊥β. 其中正确命题的个数是()A.0B.1C.2D.32.(2012·四川)下列命题正确的是()A.若两直线和同一平面所成的角相等,则这两条直线平行B.若一平面内有三点到另一平面的距离相等,则这两平面平行C.若一直线平行于两相交平面,则这条直线与这两平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(2016·山东济南一模)设m,n是两条不同的直线,α,β是两个不同的平面.()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α5.(2016·浙江温州联考)关于直线a,b,l及平面α,β,下列命题中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,b⊥a,则b⊥αC.若a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,则l ⊥αD.若a ⊥α,a ∥β,则α⊥β 6.(2015·山东二模)设m ,n 是空间两条直线,α,β是空间两个平面,则下列命题中不正确的是( ) A.当n ⊥α时,“n ⊥β”是“α∥β”的充要条件B.当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件C.当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件D.当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件 7.(2016·浙江)已知互相垂直的平面α,β交于直线l ,若直线m ,n 满足m ∥α,n ⊥β,则( )A.m ∥lB.m ∥nC.n ⊥lD.m ⊥n 8.(2013北京)如图,四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .9.[2014·山东文]如图,四棱锥P -ABCD 中,AP ⊥平面PCD , AD ∥BC ,AB =BC=12AD ,E ,F 分别为线段AD ,PC 的中点. (1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面P AC .10.(2013全国Ⅱ文)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.11.(2013·辽宁)如图,AB 是圆O 的直径,P A 垂直圆O 所在的平面,C 是圆O 上的点. (1)求证:BC ⊥平面P AC ; (2)设Q 为P A 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .12.[2014·课标Ⅱ文]如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥平面ABCD ,E 为PD 的中点. (1)证明:PB ∥平面AEC ;(2)设AP =1,AD =3,三棱锥P - ABD 的体积V =34,求A到平面PBC 的距离.13.(2015江苏)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E . 求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.14.(2015广东文)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3. (1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.15.(2015课标Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16, BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值.16.(2015陕西)如图,直角梯形ABCD 中,AD ∥B C,∠BAD =π2, AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到如图2中△A 1BE 的位置,得到四棱锥A 1﹣BCDE . (Ⅰ)证明:CD ⊥平面A 1OC ;(Ⅱ)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1﹣BCDE 的体积为362,求a 的值.17.(2016·课标Ⅱ文)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置. (1)证明:AC ⊥HD ′(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ABCFE 的体积.18.(2016·课标Ⅲ文)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点. (1)证明MN ∥平面P AB ;(2)求四面体N -BCM 的体积.19.[2017全国I 文]如图,在四棱锥P-ABCD 中,AB//CD ,且∠BAP =∠CDP =90°.(1)证明:平面PAB ⊥平面PAD ; (2)若PA =PD =AB =DC ,∠ADP =90°,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.20.[2017全国II 文]如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 面积为27,求四棱锥P-ABCD 的体积.21.[2017全国III 文]在正方体ABCD-A 1B 1C 1D 1中,E 为棱CD 的中点,则( )A.A 1E ⊥DC 1B.A 1E ⊥BDC.A 1E ⊥BC 1D.A 1E ⊥AC22.[2017全国III 文]如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.。
高考数学《利用空间向量证明平行与垂直关系》复习
(4)线面垂直
l a a=kμ a1=ka3,b1=kb3,c=kc3 .
(5)面面平行
v =kv a3=ka4,b3=kb4,c3=kc4.
(6)面面垂直
v ·v=0 a3a4+b3b4+c3c4=0.
解题技巧
利用空间向量证明平行与垂直的方法与步骤 (1) 坐标运算法:一般步骤:①建立空间直角坐标系,建系时, 要尽可能地利用载体中的垂直关系; ②建立空间图形与空间向量之间的关系,用向量表示出问题中所涉及的点、 直线、平面的要素; ③通过空间向量的运算研究平行、垂直关系; ④根据运算结果解释相关问题.
解题技巧
4.利用空间向量求点到平面距离的方法 如图,设 A 为平面 内的一点,B 为平面 外的一点,n 为平面 的法向量,
AB n
则 B 到平面 的距离 d=
.
n
1.如图,某圆锥 SO 的轴截面 SAC 是等边三角形,点 B 是底面圆周上的一点,且 BOC 60 ,
点 M 是 SA 的中点,则异面直线 AB 与 CM 所成角的余弦值是( )
(4)点到平面的距离的向量求法
如图,设 AB 为平面 α 的一条斜线段,n 为平面 α 的法向量,
AB n
则点 B 到平面 α 的距离 d=
.
n
2.模、夹角和距离公式
(1) 设 a=(a1,a2,a3 ),b=(b1,b2,b3 ) ,则 a = a·a a12a22a32 , b = b·b b12b22b32 ,
B.3
ห้องสมุดไป่ตู้
√C.4
D.6
由直棱柱的性质,知直线 A1B1 到平面 ABO 的距离为棱柱的高,不妨设为 t t 0 .以 O 为坐标原
点, OA,OB,OO1 所在的直线分别为 x, y, z 轴,建立如图所示的空间直角坐标系, 则 O(0,0,0), B(0,6,0), A1(2,0,t) , B1(0,6,t) ,则 D(1,3,t) .所以 A1B (2, 6, t),OD (1,3,t) 所以 A1B OD 2 18 t2 0 ,所以 t 4 ,故选 C.
2020年高考数学专题复习两直线的位置关系
两直线的位置关系1.两直线的平行、垂直与其斜率的关系2.两直线的交点3.三种距离4.几种常见的直线系方程(1)平行于直线Ax +By +C =0的直线系方程:Ax +By +λ=0(λ≠C ). (2)垂直于直线Ax +By +C =0的直线系方程:Bx -Ay +λ=0.(3)过两条已知直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(不包括直线A 2x +B 2y +C 2=0).判断正误(正确的打“√”,错误的打“×”)(1)当直线l 1和l 2的斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.( ) (2)如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.( )(3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )(4)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.( )(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√(教材习题改编)直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则直线l 的方程是( )A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=0解析:选A.由题意知,直线l 的斜率是-32,因此直线l 的方程为y -2=-32(x +1),即3x +2y -1=0.已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( ) A . 2 B .2- 2 C .2-1D .2+1解析:选C.由题意知|a -2+3|2=1,所以|a +1|=2,又a >0,所以a =2-1.(教材习题改编)已知直线l 1:ax +3y +1=0,l 2:2x +(a +1)y +1=0互相平行,则实数a 的值是________.解析:由直线l 1与l 2平行,可得⎩⎪⎨⎪⎧a (a +1)=2×3,a ·1≠2,解得a =-3.答案:-3若三条直线2x +3y +8=0,x -y -1=0和x +by =0相交于一点,则b =________.解析:由⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0解得⎩⎪⎨⎪⎧x =-1,y =-2.将其代入x +by =0,得b =-12.答案:-12两条直线平行与垂直(1)(2019·金丽衢十二校高三联考)设两直线l 1:(3+m )x +4y =5-3m 与l 2:2x+(5+m )y =8,则“l 1∥l 2”是“m <-1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程为________.【解析】 (1)若l 1∥l 2,则(3+m )(5+m )=4×2⇒m =-1或-7,经检验,当m =-1时,l 1与l 2重合,所以m =-7,故是充分不必要条件,故选A.(2)由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2).因为l ⊥l 3,所以直线l 的斜率k =-43,所以直线l 的方程为y -2=-43x ,即4x +3y -6=0.【答案】 (1)A (2)4x +3y -6=0将本例(2)中条件“与直线l 3:3x -4y +5=0垂直”改为“与直线l 3:3x -4y +5=0平行”,求此时直线l 的方程.解:由方程组⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,得⎩⎪⎨⎪⎧x =0,y =2,即P (0,2). 因为l ∥l 3,所以直线l 的斜率k =34,所以直线l 的方程为y -2=34x ,即3x -4y +8=0.由一般式确定两直线位置关系的方法已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值. (1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)因为l 1⊥l 2,所以a (a -1)-b =0. 又因为直线l 1过点(-3,-1), 所以-3a +b +4=0.故a =2,b =2. (2)因为直线l 2的斜率存在,l 1∥l 2, 所以直线l 1的斜率存在.所以a b=1-a .① 又因为坐标原点到这两条直线的距离相等, 所以l 1,l 2在y 轴上的截距互为相反数,即4b=b .②联立①②可得a =2,b =-2或a =23,b =2.距离公式(高频考点)距离包括两点间、点到直线和两平行线间的距离.在高考中经常出现,试题难度不大.主要命题角度有:(1)求距离;(2)已知距离求参数值; (3)距离公式的综合应用.角度一 求距离已知A 、B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且线段AB的中点为P (0,10a),则线段AB 的长为________.【解析】 依题意,a =2,P (0,5),设A (x ,2x )、B (-2y ,y ),故⎩⎪⎨⎪⎧x -2y =02x +y =10,则A (4,8)、B (-4,2),所以|AB |=(4+4)2+(8-2)2=10. 【答案】 10角度二 已知距离求参数值(1)已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是( ) A .[-10,10] B .[-10,5] C .[-5,5]D .[0,10](2)若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.【解析】 (1)由题意得,点P 到直线的距离为 |4×4-3·a -1|5=|15-3a |5.又|15-3a |5≤3,即|15-3a |≤15, 解得0≤a ≤10,所以a 的取值范围是[0,10]. (2)依题意知,63=a -2≠c-1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪c 2+132+(-2)2=21313, 因此c =2或-6.【答案】 (1)D (2)2或-6角度三 距离公式的综合应用(1)P 点在直线3x +y -5=0上,且P 点到直线x -y -1=0的距离为2,则P 点的坐标为( )A .(1,2)B .(2,1)C .(1,2)或(2,-1)D .(2,1)或(-1,2)(2)在△ABC 中,A (1,1),B (m ,m )(1<m <4),C (4,2),则当△ABC 的面积最大时,m =________.【解析】 (1)设P 点坐标为(x ,5-3x ),则P 点到直线x -y -1=0的距离d =|x -(5-3x )-1|2=|4x -6|2=2,所以|2x -3|=1,所以x =1或x =2.所以P 点坐标为(1,2)或(2,-1).(2)由两点间距离公式可得|AC |=10,直线AC 的方程为x -3y +2=0,所以点B 到直线AC 的距离d =|m -3m +2|10,所以△ABC 的面积S =12|AC |·d =12|m -3m +2|=12|⎝ ⎛⎭⎪⎫m -322-14|,又1<m <4, 所以1<m <2,所以当m =32,即m =94时,S 取得最大值.【答案】 (1)C (2)94距离的求法 (1)点到直线的距离可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式. (2)两平行直线间的距离①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;②利用两平行线间的距离公式.1.已知A (2,0),B (0,2),若点C 在函数y =x 2的图象上,则使得△ABC 的面积为2的点C 的个数为( )A .4B .3C .2D .1解析:选A.设点C (t ,t 2),直线AB 的方程是x +y -2=0,|AB |=2 2. 由于△ABC 的面积为2,则这个三角形中AB 边上的高h 满足方程12×22h =2,即h = 2.由点到直线的距离公式得2=|t +t 2-2|2,即|t +t 2-2|=2,即t 2+t -2=2或者t 2+t -2=-2.因为这两个方程各有两个不相等的实数根,故这样的点C 有4个.2.与直线l 1:3x +2y -6=0和直线l 2:6x +4y -3=0等距离的直线方程是________. 解析:l 2:6x +4y -3=0化为3x +2y -32=0,所以l 1与l 2平行,设与l 1,l 2等距离的直线l 的方程为3x +2y +c =0,则:|c +6|=|c +32|,解得c =-154,所以l 的方程为12x+8y -15=0.答案:12x +8y -15=0对称问题已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (3)直线l 关于点A (-1,-2)对称的直线l ′的方程. 【解】 (1)设A ′(x ,y ),由已知⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎪⎨⎪⎧x =-3313,y =413.所以A ′⎝ ⎛⎭⎪⎫-3313,413.(2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N(4,3).又因为m′经过点N(4,3),所以由两点式得直线m′的方程为9x-46y+102=0.(3)设P(x,y)为l′上任意一点,则P(x,y)关于点A(-1,-2)的对称点为P′(-2-x,-4-y),因为P′在直线l上,所以2(-2-x)-3(-4-y)+1=0,即2x-3y-9=0.1.与直线Ax+By+C=0(A,B≠0)关于y轴对称的直线的方程为( )A.Ax-By-C=0 B.Ax+By-C=0 C.Ax-By+C=0 D.Bx+Ay+C=0 解析:选A.因为点(x,y)关于y轴的对称点为(-x,y),将直线Ax+By+C=0(A,B ≠0)中的x用-x代换得-Ax+By+C=0,即Ax-By-C=0,故选A.2.如图,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到点P,则光线所经过的路程是________.解析:直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.答案:210求两直线交点坐标及过交点的直线的设法 (1)设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,设方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0A 2x +B 2y +C 2=0有唯一一组解(x 0,y 0),即为两直线l 1与l 2的交点坐标. (2)过直线l 1与l 2交点的直线系方程为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(注:该直线系不包含直线l 2).与已知直线垂直及平行的直线系的设法与直线Ax +By +C =0(A 2+B 2≠0)垂直和平行的直线方程可设为: (1)垂直:Bx -Ay +m =0(m ∈R );(2)平行:Ax +By +n =0(n ∈R ,且n ≠C ).解决对称问题应抓住以下两点(1)已知点与对称点的连线与对称轴垂直.(2)已知点和对称点为端点的线段的中心在对称轴上.易错防范(1)在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据相应公式或性质判断,若直线无斜率,要单独考虑.(2)求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.(3)在运用两平行直线间的距离公式d =|C 1-C 2|A 2+B 2时,一定要注意将两方程中x ,y 的系数化为相同的形式.[基础达标]1.(2019·富阳市场口中学高三质检)已知直线l 1:x +ay +1=0与直线l 2:y =12x +2垂直,则a 的值是( )A .2B .-2C .12D .-12解析:选C.因为直线l 2的斜率为12,直线l 1:x +ay +1=0与直线l 2:y =12x +2垂直,所以直线l 1的斜率等于-2,即-1a=-2,所以a =12,故选C.2.(2019·金华十校联考)“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B.点(2,1)到直线3x +4y +C =0的距离为3等价于|3×2+4×1+C |32+42=3,解得C =5或C =-25,所以“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的充分不必要条件,故选B.3.(2019·义乌模拟)直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=0解析:选D.由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1).又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.4.已知点A (-1,2),B (3,4),P 是x 轴上一点,且|PA |=|PB |,则△PAB 的面积为( ) A .15 B .552C .6 5D .152解析:选D.设AB 的中点坐标为M (1,3),k AB =4-23-(-1)=12,所以AB 的中垂线方程为y -3=-2(x -1).即2x +y -5=0.令y =0,则x =52,即P 点的坐标为(52,0),|AB |=(-1-3)2+(2-4)2=2 5.P 到AB 的距离为|PM |=(1-52)2+32=352.所以S △PAB =12|AB |·|PM |=12×25×352=152.5.已知点P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D.因为点P (x 0,y 0)不在直线Ax +By +C =0上,所以Ax 0+By 0+C ≠0,所以直线Ax +By +C +(Ax 0+By 0+C )=0不经过点P ,排除A 、B ;又直线Ax +By +C +(Ax 0+By 0+C )=0与直线l :Ax +By +C =0平行,排除C ,故选D.6.两条平行线l 1,l 2分别过点P (-1,2),Q (2,-3),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间距离的取值范围是( )A .(5,+∞)B .(0,5]C .(34,+∞)D .(0,34 ]解析:选D.当PQ 与平行线l 1,l 2垂直时,|PQ |为平行线l 1,l 2间的距离的最大值,为(-1-2)2+[2-(-3)]2=34,所以l 1,l 2之间距离的取值范围是(0,34 ]. 故选D.7.已知坐标平面内两点A (x ,2-x )和B ⎝ ⎛⎭⎪⎫22,0,那么这两点之间距离的最小值是________.解析:由题意可得两点间的距离d =⎝ ⎛⎭⎪⎫x -222+(2-x )2=2⎝⎛⎭⎪⎫x -3242+14≥12,即最小值为12.答案:128.直线x +2y -3=0与直线ax +4y +b =0关于点A (1,0)对称,则b =________. 解析:在直线x +2y -3=0上取两点P 1(1,1)、P 2(3,0),则P 1、P 2关于点A 的对称点P ′1、P ′2都在直线ax +4y +b =0上.因为易知P ′1(1,-1)、P ′2(-1,0),所以⎩⎪⎨⎪⎧a -4+b =0,-a +b =0,所以b =2.答案:29.(2019·瑞安四校联考)若将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =________.解析:由题可知纸的折痕垂直平分点(0,2)与点(4,0)的连线,可得折痕所在直线为y =2x -3,又折痕也垂直平分点(7,3)与点(m ,n )的连线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,所以m +n =345.答案:34510.(2019·浙江新高考冲刺卷)已知m ∈R ,若点M (x ,y )为直线l 1:my =-x 和l 2:mx =y +m -3的交点,l 1和l 2分别过定点A 和B ,则|MA |·|MB |的最大值为________.解析:动直线l 1:my =-x 过定点A (0,0),动直线l 2:mx =y +m -3化为m (x -1)-(y -3)=0,得x =1,y =3.过定点B (1,3). 因为此两条直线互相垂直, 所以|MA |2+|BM |2=|AB |2=10, 所以10≥2|MA |·|MB |, 所以|MA |·|BM |≤5,当且仅当|MA |=|MB |时取等号. 答案:511.已知直线l 1:x +a 2y +1=0和直线l 2:(a 2+1)x -by +3=0(a ,b ∈R ). (1)若l 1∥l 2,求b 的取值范围; (2)若l 1⊥l 2,求|ab |的最小值.解:(1)因为l 1∥l 2,所以-b -(a 2+1)a 2=0,即b =-a 2(a 2+1)=-a 4-a 2=-⎝⎛⎭⎪⎫a 2+122+14,因为a 2≥0,所以b ≤0. 又因为a 2+1≠3,所以b ≠-6.故b 的取值范围是(-∞,-6)∪(-6,0]. (2)因为l 1⊥l 2,所以(a 2+1)-a 2b =0, 显然a ≠0,所以ab =a +1a,|ab |=⎪⎪⎪⎪⎪⎪a +1a ≥2,当且仅当a =±1时等号成立,因此|ab |的最小值为2. 12.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P . (1)点A (5,0)到直线l 的距离为3,求直线l 的方程; (2)求点A (5,0)到直线l 的距离的最大值. 解:(1)因为经过两已知直线交点的直线系方程为 (2x +y -5)+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0, 所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2. 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点P (2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离, 则d ≤|PA |(当l ⊥PA 时等号成立). 所以d max =|PA |=10. [能力提升]1.(2019·温州八校联考)已知M =⎩⎨⎧⎭⎬⎫(x ,y )|y -3x -2=3,N ={(x ,y )|ax +2y +a =0},且M ∩N =∅,则a =( )A .-6或-2B .-6C .2或-6D .-2解析:选A.集合M 表示去掉一点A (2,3)的直线3x -y -3=0,集合N 表示恒过定点B (-1,0)的直线ax +2y +a =0,因为M ∩N =∅,所以两直线要么平行,要么直线ax +2y +a =0与直线3x -y -3=0相交于点A (2,3).因此-a2=3或2a +6+a =0,即a =-6或a =-2.2.设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( )A .22,12B .2,22C .2,12D .24,14解析:选A.由题意知a ,b 是方程x 2+x +c =0的两个实根,所以ab =c ,a +b =-1. 又直线x +y +a =0,x +y +b =0的距离d =|a -b |2,所以d 2=⎝ ⎛⎭⎪⎫|a -b |22=(a +b )2-4ab 2=(-1)2-4c 2=12-2c , 而0≤c ≤18,所以12-2×18≤12-2c ≤12-2×0,得14≤12-2c ≤12,所以12≤d ≤22.3.(2019·浙江省名校协作体高三联考)在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,又与直线l 重合.若直线l 与直线l 1关于点(2,3)对称,则直线l 的方程是________.解析:由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位,沿y 轴正方向平移5个单位,得到直线l 1:y =k (x -3)+5+b ,再将直线l 1沿x 轴正方向平移1个单位,沿y 轴负方向平移2个单位,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b .所以b =3-4k +b ,解得k =34.所以直线l的方程为y =34x +b ,直线l 1为y =34x +114+b ,设直线l 上的一点P ⎝ ⎛⎭⎪⎫m ,b +3m 4,则点P 关于点(2,3)的对称点为⎝ ⎛⎭⎪⎫4-m ,6-b -34m ,所以6-b -34m =34(4-m )+b +114,解得b =18.所以直线l 的方程是y =34x +18,即6x -8y +1=0.答案:6x -8y +1=04.(2019·宁波效实中学高三月考)著名数学家华罗庚曾说过:“数形结合百般好,割裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(x -a )2+(y -b )2可以转化为平面上点M (x ,y )与点N (a ,b )的距离.结合上述观点,可得f (x )=x 2+4x +20+x 2+2x +10的最小值为________.解析:因为f (x )=x 2+4x +20+x 2+2x +10=(x +2)2+(0-4)2+(x +1)2+(0-3)2,所以f (x )的几何意义为点M (x ,0)到两定点A (-2,4)与B (-1,3)的距离之和,设点A (-2,4)关于x 轴的对称点为A ′,则A ′为(-2,-4).要求f (x )的最小值,可转化为|MA |+|MB |的最小值,利用对称思想可知|MA |+|MB |≥|A ′B |=(-1+2)2+(3+4)2=52,即f (x )=x 2+4x +20+x 2+2x +10的最小值为5 2.答案:5 25.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0. (1)证明:l 1与l 2相交;(2)证明:l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)反证法.假设l 1与l 2不相交,则l 1与l 2平行,有k 1=k 2,代入k 1k 2+2=0,得k 21+2=0.此与k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)由方程组⎩⎪⎨⎪⎧y =k 1x +1,y =k 2x -1,解得交点P 的坐标(x ,y )为⎩⎪⎨⎪⎧x =2k 2-k 1,y =k 2+k 1k 2-k 1,而2x 2+y 2=2⎝ ⎛⎭⎪⎫2k 2-k 12+⎝ ⎛⎭⎪⎫k 2+k 1k 2-k 12=k 21+k 22+4k 21+k 22+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.6.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.(1)求动点P 的轨迹方程;(2)设直线AP 和BP 分别与直线x =3交于点M ,N ,问:是否存在点P ,使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)因为点B 与A (-1,1)关于原点O 对称,所以点B 的坐标为(1,-1). 设点P 的坐标为(x ,y ). 由题意,得y -1x +1·y +1x -1=-13, 化简,得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1).(2)法一:设点P 的坐标为(x 0,y 0),点M ,N 的坐标分别为(3,y M ),(3,y N ). 则直线AP 的方程为y -1=y 0-1x 0+1(x +1), 直线BP 的方程为y +1=y 0+1x 0-1(x -1). 令x =3,得y M =4y 0+x 0-3x 0+1,y N =2y 0-x 0+3x 0-1.于是△PMN 的面积S △PMN =12|y M -y N |(3-x 0)=|x 0+y 0|(3-x 0)2|x 20-1|. 又直线AB 的方程为x +y =0,|AB |=22, 点P 到直线AB 的距离d =|x 0+y 0|2.于是△PAB 的面积S △PAB =12|AB |·d =|x 0+y 0|.当S △PAB =S △PMN 时,得|x 0+y 0|=|x 0+y 0|(3-x 0)2|x 20-1|. 又|x 0+y 0|≠0.所以(3-x 0)2=|x 20-1|,解得x 0=53.因为x 20+3y 20=4,所以y 0=±339. 故存在点P ,使得△PAB 与△PMN 的面积相等,此时点P 的坐标为⎝ ⎛⎭⎪⎫53,±339.法二:若存在点P 使得△PAB 与△PMN 的面积相等,设点P 的坐标为(x 0,y 0), 则12|PA |·|PB |sin ∠APB =12|PM |·|PN |·sin ∠MPN . 因为sin ∠APB =sin ∠MPN ,所以|PA ||PM |=|PN ||PB |,所以|x 0+1||3-x 0|=|3-x 0||x 0-1|,即(3-x 0)2=|x 20-1|,解得x 0=53.因为x 20+3y 20=4,所以y 0=±339. 故存在点P ,使得△PAB 与△PMN 的面积相等,此时点P 的坐标为⎝ ⎛⎭⎪⎫53,±339.。
2024届高考数学复习:精选历年真题、好题专项(直线、平面的平行与垂直关系)练习(附答案)
2024届高考数学复习:精选历年真题、好题专项(直线、平面的平行与垂直关系)练习一. 基础小题练透篇1.给出以下命题(其中a ,b 表示不同的直线,α表示平面): ①若a ∥α,b ∥α,则a ∥b ; ②若a ∥b ,b ∥α,则a ∥α; ③若a ∥α,b ⊂α,则a ∥b ;④若α的同侧有两点A ,B 到平面α的距离相等,则AB ∥α. 其中正确命题的个数是( )A .0B .1C .2D .3 2.[2023ꞏ湖北省襄阳市部分学校期中试题]某正方体的平面展开图如图所示,在这个正方体中,下列结论正确的是( )A .AF ∥平面BCEB .AD ⊥平面BCEC .AE ∥BCD .BF ⊥CE3.如图,在四棱柱ABCD -A 1B 1C 1D 1中,E ,F 分别是AB 1,BC 1的中点,则下列结论中正确的是( )A.EF ⊥BB 1B .EF ⊥平面BCC 1B 1 C .EF ∥平面D 1BC D .EF ∥平面ACC 1A 1 4.[2023ꞏ陕西省质量检测]如图,在正三棱柱ABC -A 1B 1C 1中,AB =1,AA 1=3 ,点D 是侧棱BB 1的中点,则直线C 1D 与平面ABC 所成角的正弦值为( )A .32B .217C .77 D .277 5.[2023ꞏ邯郸市摸底]如图,在正方体ABCD -A 1B 1C 1D 1中,E 是棱AB 的中点,F 是四边形AA 1D 1D 内一点(包含边界).EF ∥平面BB 1D 1D ,当线段EF 长度最大时,EF 与平面ABCD 所成角的余弦值为( )A .24B .33C .34D .366.在正四面体ABCD 中,E ,F 分别为△BCD ,△ACD 的中心,则下列说法中不正确的是( )A .EF ∥ABB .CD ⊥平面ABEFC .异面直线AB ,CD 所成的角为90°D .AE =13 EF7.如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则EF =________.二. 能力小题提升篇1.[2023ꞏ陕西省西安市模拟]已知直线l ⊥平面α,直线m ⊂平面β,给出下列命题中正确的是( )①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β. A .①②③ B .②③④ C .②④ D .①③2.[2023ꞏ辽宁省实验中学期中]已知m ,n 为两条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若α⊥β,γ⊥β,且α∩γ=m ,则m ⊥βC .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥βD .若m ⊥α,n ∥β,α⊥β,则m ⊥n3.[2023ꞏ四川省成都市月考]如图,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,N是AB1的中点,则()A.A1N∥C1AB.A1N∥平面BAMC.AB1⊥平面ABMD.BM⊥AB14.[2023ꞏ山西省临汾市联考]如图,在直三棱柱ABC - A1B1C1中,∠BAC=90°,AC=AB=12 AA1=1,设D,E分别是棱CC1上的两个动点,且满足DE=1,则下列结论错误的是()A.平面ABC⊥平面B1DEB.A1A∥平面B1DEC.AB1⊥平面ADED.三棱锥A - B1DE体积为定值5.如图所示,在四棱锥P - ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)6.[2023ꞏ聊城模拟]如图,矩形ABCD中,AB=2AD,E为AB的中点,将△ADE沿DE翻折至△A1DE(A1∉平面ABCD),若M为线段A1C的中点,则在△ADE翻折的过程中,下列结论正确的是________.(写出所有正确结论的序号)①VA- A1DE∶VA1- BCDE=1∶3;②存在某个位置,使DE⊥A1C;③总有BM∥平面A1DE;④线段BM的长为定值.三. 高考小题重现篇1.[2019ꞏ全国卷Ⅱ]设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2.[全国卷Ⅰ]如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()ABCD3.[全国卷Ⅲ]在正方体ABCD - A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC4.[2022ꞏ新高考Ⅰ卷](多选)已知正方体ABCD - A1B1C1D1,则()A.直线BC1与DA1所成的角为90°B.直线BC1与CA1所成的角为90°C.直线BC1与平面BB1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°5.[全国卷]α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有______.(填写所有正确命题的编号)6.[2019·全国卷Ⅰ]已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB 两边AC,BC的距离均为3,那么P到平面ABC的距离为________.四. 经典大题强化篇1.在如图所示的空间几何体中,AC⊥BC,四边形DCBE为矩形,点F,M分别为AB,CD的中点.求证:(1)FM∥平面ADE;(2)平面ACD⊥平面ADE.2.如图,四棱锥P - ABCD中,P A⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.(1)求证:CE⊥平面P AD;(2)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P - ABCD的体积.3.如图1,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2CD,DE⊥AB,沿DE将△AED折起到△A1ED的位置,连接A1B,A1C,M,N分别为A1C,BE的中点,如图2.(1)求证:DE⊥A1B;(2)求证:MN∥平面A1ED;(3)在棱A1B上是否存在一点G,使得EG⊥平面A1BC?若存在,求出A1GGB的值;若不存在,说明理由.参考答案一 基础小题练透篇1.答案:B答案解析:如图,在长方体ABCD A′B′C′D′中,A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交,故①错误;AB∥A′B′,A′B′∥平面ABCD,但AB⊂平面ABCD,故②错误;A′B′∥平面ABCD,BC⊂平面ABCD,但A′B′与BC异面,故③错误;④显然正确.2.答案:B答案解析:由题意可知,如图所示,对于A,由图可知,AF与平面BCE不平行,故A错误;对于B,易知BC⊥平面AFDE,AD⊂平面AFDE,所以BC⊥AD,同理EC⊥AD,BC∩EC=C,BC,EC⊂平面BCE,所以AD⊥平面BCE,故B正确.对于C,在正方形BDCF中,FD⊥BC,易知四边形AFDE为平行四边形,所以AE∥FD,所以AE⊥BC,故C错误.对于D,在正方形BDCF中,BF∥DC,所以∠DCE为异面直线BF与CE所成角,易知∠DCE =45°,所以BF与CE不垂直,故D错误.故选B.3.答案:D答案解析:题中未涉及垂直条件,故排除A,B;连接BA1,CD1,则BA1与AB1交于点E,所以直线EF与平面CBA1D1相交,即直线EF与平面D1BC相交,故排除C;连接B1C交BC1于点F,由于平行四边形BCC1B1的对角线互相平分,故F是B1C的中点.因为E是AB1的中点,所以EF是三角形B1AC的中位线,故EF∥AC.又AC⊂平面ACC1A1,所以EF∥平面ACC1A1.故选D.4.答案:B答案解析:∵BB1⊥平面A1B1C1,∴C1D与平面A1B1C1所成的角为∠DC1B1.又B1C1=1,B1D=32,可得C1D=72,而平面A1B1C1∥平面ABC,∴C1D与平面ABC所成角的正弦值为B1DC1D=217. 5.答案:B答案解析:设正方体的棱长为a ,如图,取AD 的中点G ,连接EG ,过G 作GH ∥DD 1,与A 1D 1交于点H ,则点F ∈GH ,且HG ⊥平面ABCD ,则∠FEG 即为EF 与平面ABCD 所成角,当EF长度最大时,点F 与点H 重合,EG =22 a ,EH =a 2+12a 2 =62 a ,得cos ∠HEG =22a 62a=33. 6.答案:D答案解析:取CD 的中点O ,连接AO 、BO ,如图所示:对于A ,点A 、F 、O 和点B 、E 、O 分别共线, 因为点E 、F 分别为△BCD 和△ACD 的中心,所以AF FO =BEEO=2, 所以EF ∥AB ,所以选项A 正确;对于B ,因为AO ⊥CD ,BO ⊥CD ,AO ,BO ⊂平面ABO ,且AO ∩BO =O ,所以CD ⊥平面ABO ,即CD ⊥平面ABEF ,选项B 正确;对于C ,因为AB ⊂平面ABO ,所以CD ⊥AB ,选项C 正确;对于D ,因为EF ∥AB ,设AB =1,所以EF =13 ,易知BO =32,在Rt△AEB 中,BE =23 BO =23 ×32 =33 ,所以AE =AB 2-BE 2=1-(33)2 =63 ,AE ≠13EF ,选项D 错误. 7.答案:2答案解析:根据题意,因为EF ∥平面AB 1C ,所以EF ∥AC .又E 是AD 的中点,所以F 是CD 的中点.因为在Rt△DEF 中,DE =DF =1,故EF =2 .二 能力小题提升篇1.答案:D答案解析:①,由直线l ⊥平面α,直线m ⊂平面β,若α∥β⇒l ⊥β⇒l ⊥m ,故①正确;②,若α⊥β⇒l∥m或l、m异面或l、m相交,故②错误;③,利用面面垂直的判定,若l∥m⇒α⊥β,故③正确;④,若l⊥m⇒α∥β或α、β相交或α、β垂直,故④错误.所以①③正确.2.答案:B答案解析:对于选项A,若m∥α,n∥α,则m与n可以平行,相交,或为异面直线,因此不正确;对于选项B,若α⊥β,γ⊥β且α∩γ=m,则m⊥β,因此正确;对于选项C,若m⊂α,n⊂α,m∥β,n∥β,则α与β不一定平行,因此不正确;对于选项D,若m⊥α,n∥β,α⊥β,则m与n不一定垂直,因此不正确.综上,正确的命题是B.故选B.3.答案:D答案解析:因为A1N与C1A异面,所以A项错误;因为A1N的延长线必过点B,则直线A1N与平面BAM相交,所以B项错误;因为AB1与AB不垂直,所以AB1不垂直于平面ABM,所以C项错误;取BC的中点P,连接PB1,在正方形BCC1B1中,△B1BP与△BCM全等,可得BM⊥B1P,连接AP,则AP⊥BC,又平面BCC1B1⊥底面ABC,平面BCC1B1∩底面ABC=BC,所以AP⊥平面BCC1B1,因为BM⊂平面BCC1B1,所以BM⊥AP,又AP∩B1P=P,AP,B1P⊂平面B1AP,所以BM⊥平面B1AP,因为B1A⊂平面B1AP,所以BM⊥AB1.故选D.4.答案:C答案解析:A选项,过A作AF⊥BC,垂足为F,根据直三棱柱的性质可知BB1⊥平面ABC,由于AF⊂平面ABC,所以BB1⊥AF,由于BC∩BB1=B,BC,BB1⊂平面BCC1B1,所以AF⊥平面BCC1B1,即AF⊥平面B1DE,由于AF⊂平面ABC,所以平面ABC⊥平面B1DE,A选项正确.B选项,根据三棱柱的性质可知A1A∥CC1,即A1A∥DE,由于A1A⊄平面B1DE,DE⊂平面B1DE,所以A1A∥平面B1DE,B选项正确.C选项,若AB1⊥平面ADE,即AB1⊥平面AA1C1C,由于A1A⊂平面AA1C1C,所以AB1⊥A1A,这与已知AB1,A1A不垂直矛盾,C选项错误.D选项,VA B1DE=VB1 ADE,由于三角形ADE的面积为定值、B1到平面AA1C1C的距离为定值,所以VA B1DE=VB1 ADE为定值,所以D选项正确.故选C.5.答案:DM⊥PC(或BM⊥PC)答案解析:连接AC ,BD ,则AC ⊥BD ,∵PA ⊥底面ABCD ,BD ⊂底面ABCD ,∴PA ⊥BD . 又PA ∩AC =A ,PA ,AC ⊂平面PAC , ∴BD ⊥平面PAC , ∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD . 而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD . 6.答案:①③④答案解析:①设A 1到平面EBCD 的距离为h ,D 到AB 的距离为h ′,则VA -A 1DE ∶VA 1-BCDE =⎝ ⎛⎭⎪⎫13×S △ADE ×h ∶⎝ ⎛⎭⎪⎫13×S 梯形EBCD ×h =S △ADE ∶S 梯形EBCD =(12 ×AE ×h ′)∶⎝ ⎛⎭⎪⎫CD +BE 2×h ′ =1∶3,故①正确;②A 1C 在平面ABCD 中的射影在AC 上,AC 与DE 不垂直,∴DE 与A 1C 不垂直,故②错误;③取CD 的中点F ,连接MF ,BF ,则MF ∥A 1D 且MF =12A 1D ,FB ∥ED 且FB=ED ,可得平面MBF ∥平面A 1DE ,∴总有BM ∥平面A 1DE ,故③正确;易知∠MFB =∠A 1DE ,由余弦定理可得MB 2=MF 2+FB 2-2MF ·FB ·cos ∠MFB 是定值,故④正确.三 高考小题重现篇1.答案:B答案解析:对于A ,α内有无数条直线与β平行,当这无数条直线互相平行时,α与β可能相交,所以A 不正确;对于B ,根据两平面平行的判定定理与性质知,B 正确;对于C ,平行于同一条直线的两个平面可能相交,也可能平行,所以C 不正确;对于D ,垂直于同一平面的两个平面可能相交,也可能平行,如长方体的相邻两个侧面都垂直于底面,但它们是相交的,所以D 不正确.综上可知选B.2.答案:A答案解析:A 项,作如图①所示的辅助线,其中D 为BC 的中点,则QD ∥AB . ∵QD ∩平面MNQ =Q ,∴QD 与平面MNQ 相交,∴直线AB 与平面MNQ 相交.B 项,作如图②所示的辅助线,则AB ∥CD ,CD ∥MQ ,∴AB ∥MQ .又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,∴AB ∥平面MNQ .①②③④C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴ AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴ AB∥平面MNQ.D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴ AB∥NQ.又AB⊄平面MNQ,NQ⊂平面MNQ,∴ AB∥平面MNQ.3.答案:C答案解析:如图,∵ A1E在平面ABCD上的射影为AE,而AE不与AC,BD垂直,∴ B,D错;∵ A1E在平面BCC1B1上的射影为B1C,且B1C⊥BC1,∴ A1E⊥BC1(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴ BC1⊥平面CEA1B1.又A1E⊂平面CEA1B1,∴ A1E⊥BC1),故C正确;∵ A1E在平面DCC1D1上的射影为D1E,而D1E不与DC1垂直,故A错.4.答案:ABD答案解析:如图(1),连接B1C.因为DA1∥CB1,BC1⊥CB1,所以直线BC1与DA1所成的角为90°,所以A正确.如图(2),连接B1C.因为BC1⊥B1C,BC1⊥A1B1,B1C∩A1B1=B1,B1C,A1B1⊂平面A1B1C,所以BC1⊥平面A1B1C,所以BC1⊥CA1,所以B正确,如图(3),连接A1C1,交B1D1于点O,连接BO,A1B.易证A1C1⊥平面BDD1B1,所以∠C1BO为直线C1B与平面BDD1B1所成的角,∠C1BO=30°,所以C错误.如图(4),因为C1C⊥平面ABCD,所以∠C1BC为直线BC1与平面ABCD所成的角,且∠C1BC =45°,所以D正确.故选ABD.5.答案:②③④答案解析:若m⊥n,m⊥α,则n∥α或n⊂α,又n∥β,则α,β可能相交或平行,所以①错误;若m⊥α,n∥α,则m⊥n,所以②正确;若α∥β,m⊂α,由面面平行的性质可得m∥β,③正确;由线面所成角的定义可得④正确.故正确命题是②③④.6.答案:2答案解析:设PO⊥平面ABC于O,PE⊥AC于E,PF⊥BC于F,连接OE、OF、OC,∵PO⊥平面ABC,∴PO⊥AC,又PO∩PE=P,PO,PE⊂平面POE,∴AC⊥平面POE,OE⊂平面POE,∴AC⊥OE,同理有BC⊥OF,∴四边形OECF为矩形,∵PC=PC且PE=PF,∴Rt△PEC≌Rt△PFC,∴EC=FC=PC2-PE2=1,∴四边形OECF是边长为1的正方形,∴OC=2,在Rt△POC中,PO=PC2-OC2=2.四 经典大题强化篇1.证明:(1)取BE的中点N,连接MN,FN,因为F,M,N分别为AB,CD,BE的中点,所以MN∥DE,FN∥AE.又因为AE,DE⊂平面ADE,FN,MN⊄平面ADE,所以MN∥平面ADE,FN∥平面ADE.又MN∩FN=N,所以平面ADE∥平面FMN.又FM⊂平面FMN,所以FM∥平面ADE.(2)因为四边形DCBE为矩形,所以BC⊥DC.又AC⊥BC,AC∩DC=C,所以BC⊥平面ACD.又因为BC∥DE,所以DE⊥平面ACD.因为DE⊂平面ADE,所以平面ACD⊥平面ADE.2.答案解析:(1)证明:因为PA⊥底面ABCD,CE⊂平面ABCD,所以PA⊥CE. 因为AB⊥AD,CE∥AB,所以CE⊥AD.又PA∩AD=A,所以CE⊥平面PAD.(2)由(1)可知CE⊥AD.在Rt△ECD中,CE=CD·sin 45°=1,DE=CD·cos 45°=1,又因为AB=1,则AB=CE.又CE∥AB,AB⊥AD,所以四边形ABCE为矩形,四边形ABCD为梯形.因为AD=3,所以BC=AE=AD-DE=2,S ABCD=12(BC+AD)·AB=12(2+3)×1=52,V P ABCD=13 S ABCD·PA=13×52×1=56.于是四棱锥P ABCD的体积为56.3.答案解析:(1)证明:∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2CD,DE⊥AB,沿DE将△AED折起到△A1ED的位置,∴DE⊥A1E,DE⊥BE,∵A1E∩BE=E,∴DE⊥平面A1BE,∵A1B⊂平面A1BE,∴DE⊥A1B.(2)证明:取CD中点F,连接NF,MF,∵M,N分别为A1C,BE的中点,∴MF∥A1D,NF∥DE,又DE∩A1D=D,NF∩MF=F,DE⊂平面A1DE,A1D⊂平面A1DE,NF⊂平面MNF,MF⊂平面MNF. ∴平面A1DE∥平面MNF,∴MN∥平面A1ED.(3)取A1B的中点G,连接EG,∵A1E=BE,∴EG⊥A1B,由(1)知DE⊥平面A1BE,∵DE∥BC,∴BC⊥平面A1BE,∴EG⊥BC,又A1B∩BC=B,A1B,BC⊂平面A1BC,∴EG⊥平面A1BC.故棱A1B上存在中点G,使得EG⊥平面A1BC,此时A1GGB=1.。
解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)
十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。
本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。
三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。
(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。
高考数学 典型例题26 垂直与平行 试题
高考数学典型例题详解本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
垂直与平行垂直与平行是高考的重点内容之一,考察内容灵敏多样.本节主要帮助考生深入理解线面平行与垂直、面面平行与垂直的断定与性质,并能利用它们解决一些问题.●难点磁场(★★★★)斜三棱柱ABC—A1B1C1中,A1C1=B1C1=2,D、D1分别是AB、A1B1的中点,平面A1ABB1⊥平面A1B1C1,异面直线AB1和C1B互相垂直.(1)求证:AB1⊥C1D1;(2)求证:AB1⊥面A1CD;(3)假设AB1=3,求直线AC与平面A1CD所成的角.●案例探究[例1]两个全等的正方形ABCD和ABEF所在平面相交于AB,M∈AC,N∈FB,且AM=FN,求证:MN ∥平面BCE.命题意图:此题主要考察线面平行的断定,面面平行的断定与性质,以及一些平面几何的知识,属★★★★级题目.知识依托:解决此题的关键在于找出面内的一条直线和该平面外的一条直线平行,即线(内)∥线(外)⇒线(外)∥面.或者转化为证两个平面平行.错解分析:证法二中要证线面平行,通过转化证两个平面平行,正确的找出MN 所在平面是一个关键.技巧与方法:证法一利用线面平行的断定来证明.证法二采用转化思想,通过证面面平行来证线面平行.证法一:作MP ⊥BC ,NQ ⊥BE ,P 、Q 为垂足,那么MP ∥AB ,NQ ∥AB .∴MP ∥NQ ,又AM =NF ,AC =BF ,∴MC =NB ,∠MCP =∠NBQ =45°∴Rt △MCP ≌Rt △NBQ∴MP =NQ ,故四边形MPQN 为平行四边形∴MN ∥PQ∵PQ ⊂平面BCE ,MN 在平面BCE 外,∴MN ∥平面BCE .证法二:如图过M 作MH ⊥AB 于H ,那么MH ∥BC , ∴AB AH AC AM = 连结NH ,由BF =AC ,FN =AM ,得ABAH BF FN =∴MN∥平面BCE.[例2]在斜三棱柱A1B1C1—ABC中,底面是等腰三角形,AB=AC,侧面BB1C1C⊥底面ABC.(1)假设D是BC的中点,求证:AD⊥CC1;(2)过侧面BB1C1C的对角线BC1的平面交侧棱于M,假设AM=MA1,求证:截面MBC1⊥侧面BB1C1C;(3)AM=MA1是截面MBC1⊥平面BB1C1C的充要条件吗?请你表达判断理由.命题意图:此题主要考察线面垂直、面面垂直的断定与性质,属★★★★★级题目.知识依托:线面垂直、面面垂直的断定与性质.错解分析:(3)的结论在证必要性时,辅助线要重新作出.技巧与方法:此题属于知识组合题类,关键在于对题目中条件的考虑与分析,掌握做此类题目的一般技巧与方法,以及如何巧妙作辅助线.(1)证明:∵AB=AC,D是BC的中点,∴AD⊥BC∵底面ABC⊥平面BB1C1C,∴AD⊥侧面BB1C1C∴AD⊥CC1.(2)证明:延长B1A1与BM交于N,连结C1N∵AM=MA1,∴NA1=A1B1∵A1B1=A1C1,∴A1C1=A1N=A1B1∴C1N⊥C1B1∵底面NB1C1⊥侧面BB1C1C,∴C1N⊥侧面BB1C1C∴截面C1NB⊥侧面BB1C1C∴截面MBC1⊥侧面BB1C1C.(3)解:结论是肯定的,充分性已由(2)证明,下面证必要性.过M 作ME ⊥BC 1于E ,∵截面MBC 1⊥侧面BB 1C 1C∴ME ⊥侧面BB 1C 1C ,又∵AD ⊥侧面BB 1C 1C.∴ME ∥AD ,∴M 、E 、D 、A 一共面∵AM ∥侧面BB 1C 1C ,∴AM ∥DE∵CC 1⊥AM ,∴DE ∥CC 1∵D 是BC 的中点,∴E 是BC 1的中点∴AM =DE =21211CC AA 1,∴AM =MA 1.●锦囊妙计垂直和平行涉及题目的解决方法须纯熟掌握两类互相转化关系:每一垂直或者平行的断定就是从某一垂直或者平行开场转向另一垂直或者平行最终到达目的.例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.●歼灭难点训练一、选择题1.(★★★★)在长方体ABCD —A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,那么点A 1到截面AB 1D 1的间隔 是( )A.38 B.83 C.34 D.432.(★★★★)在直二面角α—l —β中,直线a ⊂α,直线b ⊂β,a 、b 与l 斜交,那么( )A.a 不和b 垂直,但可能a ∥bB.a 可能和b 垂直,也可能a ∥bC.a 不和b 垂直,a 也不和b 平行D.a 不和b 平行,但可能a ⊥b二、填空题3.(★★★★★)设X 、Y 、Z 是空间不同的直线或者平面,对下面四种情形,使“X ⊥Z 且Y ⊥Z ⇒X ∥Y 〞为真命题的是_________(填序号).①X 、Y 、Z 是直线 ②X 、Y 是直线,Z 是平面 ③Z 是直线,X 、Y 是平面 ④X 、Y 、Z 是平面4.(★★★★)设a ,b 是异面直线,以下命题正确的选项是_________.①过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交②过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直③过a 一定可以作一个平面与b 垂直④过a 一定可以作一个平面与b 平行三、解答题5.(★★★★)如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,侧棱PA 垂直于底面,E 、F 分别是AB 、PC 的中点.(1)求证:CD ⊥PD ;(2)求证:EF ∥平面PAD ;(3)当平面PCD 与平面ABCD 成多大角时,直线EF ⊥平面PCD ?6.(★★★★)如图,在正三棱锥A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分别交AB、BD、DC、CA于点E、F、G、H.(1)断定四边形EFGH的形状,并说明理由.(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH,请给出证明.7.(★★★★)如图,正三棱柱ABC—A1B1C1的各棱长都相等,D、E分别是CC1和AB1的中点,点F在BC上且满足BF∶FC=1∶3.(1)假设M为AB中点,求证:BB1∥平面EFM;(2)求证:EF⊥BC;(3)求二面角A1—B1D—C1的大小.8.(★★★★★)如图,平行六面体ABCD—A1B1C1D1的底面是菱形且∠C1CB=∠C 1CD =∠BCD =60°,(1)证明:C 1C ⊥BD ;(2)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值; (3)当1CC CD 的值是多少时,可使A 1C ⊥面C 1BD ?参考答案难点磁场1.(1)证明:∵A 1C 1=B 1C 1,D 1是A 1B 1的中点,∴C 1D 1⊥A 1B 1于D 1,又∵平面A 1ABB 1⊥平面A 1B 1C 1,∴C 1D 1⊥平面A 1B 1BA ,而AB 1⊂平面A 1ABB 1,∴AB 1⊥C 1D 1.(2)证明:连结D 1D ,∵D 是AB 中点,∴DD 1CC 1,∴C 1D 1∥CD ,由(1)得CD ⊥AB 1,又∵C 1D 1⊥平面A 1ABB 1,C 1B ⊥AB 1,由三垂线定理得BD 1⊥AB 1,又∵A 1D ∥D 1B ,∴AB 1⊥A 1D 而CD ∩A 1D =D ,∴AB 1⊥平面A 1CD .(3)解:由(2)AB 1⊥平面A 1CD 于O ,连结CO 1得∠ACO 为直线AC 与平面A 1CD 所成的角,∵AB 1=3,AC =A 1C 1=2,∴AO =1,∴sin OCA =21=AC AO , ∴∠OCA =6π.歼灭难点训练 一、1.解析:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1,故平面AA 1O 1⊥AB 1D 1,交线为AO 1,在面AA 1O 1内过A 1作A 1H ⊥AO 1于H ,那么易知A 1H 长即是点A 1到平面AB 1D 1的间隔 ,在Rt △A 1O 1A 中,A 1O 1=2,AO 1=32,由A 1O 1·A 1A =h ·AO 1,可得A 1H =34.答案:C2.解析:如图,在l 上任取一点P ,过P 分别在α、β内作a ′∥a ,b ′∥b ,在a ′上任取一点A ,过A 作AC ⊥l ,垂足为C ,那么AC ⊥β,过C 作CB ⊥b ′交b ′于B ,连AB ,由三垂线定理知AB ⊥b ′,∴△APB 为直角三角形,故∠APB 为锐角.答案:C二、3.解析:①是假命题,直线X 、Y 、Z 位于正方体的三条一共点棱时为反例,②③是真命题,④是假命题,平面X 、Y 、Z 位于正方体的三个一共点侧面时为反例.答案:②③4.④三、5.证明:(1)∵PA ⊥底面ABCD ,∴AD 是PD 在平面ABCD 内的射影,∵CD 平面ABCD 且CD ⊥AD ,∴CD ⊥PD .(2)取CD 中点G ,连EG 、FG ,∵E 、F 分别是AB 、PC 的中点,∴EG ∥AD ,FG ∥PD∴平面EFG ∥平面PAD ,故EF ∥平面PAD(3〕解:当平面PCD 与平面ABCD 成45°角时,直线EF ⊥面PCD证明:G 为CD 中点,那么EG ⊥CD ,由(1)知FG ⊥CD ,故∠EGF 为平面PCD 与平面ABCD ∠EGF =45°,从而得∠ADP =45°,AD =AP由Rt △PAE ≌Rt △CBE ,得PE =CE又F 是PC 的中点,∴EF ⊥PC ,由CD ⊥EG ,CD ⊥FG ,得CD ⊥平面EFG ,CD ⊥EF 即EF ⊥CD ,故EF ⊥平面PCD .6.(1)证明:同理EF ∥FG ,∴EFGH 是平行四边形∵A —BCD 是正三棱锥,∴A 在底面上的射影O 是△BCD 的中心,∴DO ⊥BC ,∴AD ⊥BC ,∴HG ⊥EH ,四边形EFGH 是矩形.(2)作CP ⊥AD 于P 点,连结BP ,∵AD ⊥BC ,∴AD ⊥面BCP∵HG ∥AD ,∴HG ⊥面BCP ,HG ⊂面EFGH .面BCP ⊥面EFGH ,在Rt △APC 中,∠CAP =30°,AC =a ,∴AP =23a . 7.(1)证明:连结EM 、MF ,∵M 、E 分别是正三棱柱的棱AB 和AB 1的中点,∴BB 1∥ME ,又BB 1⊄平面EFM ,∴BB 1∥平面EFM .(2)证明:取BC 的中点N ,连结AN 由正三棱柱得:AN ⊥BC ,又BF ∶FC =1∶3,∴F 是BN 的中点,故MF ∥AN ,∴MF ⊥BC ,而BC ⊥BB 1,BB 1∥ME .∴ME ⊥BC ,由于MF ∩ME =M ,∴BC ⊥平面EFM ,又EF 平面EFM ,∴BC ⊥EF .(3)解:取B 1C 1的中点O ,连结A 1O 知,A 1O ⊥面BCC 1B 1,由点O 作B 1D 的垂线OQ ,垂足为Q ,连结A 1Q ,由三垂线定理,A 1Q ⊥B 1D ,故∠A 1QD 为二面角A 1—B 1D —C 的平面角,易得∠A 1QO =arctan 15.8.(1)证明:连结A 1C 1、AC ,AC 和BD 交于点O ,连结C 1O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,BC =CD又∵∠BCC 1=∠DCC 1,C 1C 是公一共边,∴△C 1BC ≌△C 1DC ,∴C 1B =C 1D∵DO =OB ,∴C 1O ⊥BD ,但AC ⊥BD ,AC ∩C 1O =O∴BD ⊥平面AC 1,又C 1C ⊂平面AC 1,∴C 1C ⊥BD .(2)解:由(1)知AC ⊥BD ,C 1O ⊥BD ,∴∠C 1OC 是二面角α—BD —β的平面角.在△C 1BC 中,BC =2,C 1C =23,∠BCC 1=60°,∴C 1B 2=22+(23)2-2×2×23×cos60°=413. ∵∠OCB =30°,∴OB =21,BC =1,C 1O =23,即C 1O =C 1C . 作C 1H ⊥OC ,垂足为H ,那么H 是OC 中点且OH =23,∴cos C 1OC =33 (3)解:由(1)知BD ⊥平面AC 1,∵A 1O ⊂平面AC 1,∴BD ⊥A 1C ,当1CC CD =1时,平行六面体的六个面是全等的菱形,同理可证BC 1⊥A 1C ,又∵BD ∩BC 1=B ,∴A 1C ⊥平面C 1BD .本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
高考数学大题规范解答(六)空间位置关系证明的答题模板
空间的位置关系,特别是平行与垂直的位置关系是整个立体几何的基础,也是立体几何的重点,是考查空间想象能力的“主战场”,所以空间直线、平面的位置关系,特别是线面、面面的平行与垂直关系的判定与证明,成为立体几何复习的重点内容之一,每年的高考数学试题对立体几何的考查,一方面以选择题、填空题的形式直接考查线线、线面、面面的位置关系,另一方面以多面体、棱柱、棱锥为载体,判断与证明几何体内线面的平行与垂直关系.“大题规范解答——得全分”系列之(六)空间位置关系证明的答题模板[典例] (2012山东高考·满分12分)如图,几何体E -ABCD 是四棱锥,△ABD 为正三角形,CB =CD ,EC ⊥BD .(1)求证:BE =DE ;(2)若∠BCD =120°,M 为线段AE 的中点,求证:DM ∥平面BEC .[教你快速规范审题]1.审条件,挖解题信息 观察条件―→△ABD 为正三角形,CB =CD ,EC ⊥BD ―――――→取BD 中点O 连接EO ,CO CO ⊥BD ―――――→EC ∩CO =CBD ⊥平面EOC 2.审结论,明解题方向观察所证结论―→求证BE =DE ―――――――――――→需证明△BDE 是等腰三角形应证明EO ⊥BD 3.建联系,找解题突破口CB =CD ―――――→O 为BD 中点CO ⊥BD ―――→EC ⊥BD BD ⊥平面EOC ――――――→OE ⊂平面EOC BD ⊥OE―――――→△BDE 是等腰三角形BE =DE1.审条件,挖解题信息观察条件―→△ABD 为正三角形∠BCD =120°,M 是AE 的中点―――――――→取AB 的中点N ,连接DM ,DN ,MNMN ∥BE ,DN ⊥AB ,CB ⊥AB2.审结论,明解题方向 观察所证结论―→DM ∥平面BEC ――――――→需证面面平行或线线平行平面DMN ∥平面BEC 或DM 平行于平面BEC 内的一条线3.建联系,找解题突破口结合条件与图形――→法一证明平面DMN ∥平面BEC ――――――――――→由面面平行推证线面平行DM ∥平面BEC ――→法二 在平面BEC 内作辅助线EF ∥DM ――――――――→利用线面平行的判定DM ∥平面BEC [教你准确规范解题](1)如图,取BD 的中点O ,连接CO ,EO .由于CB =CD ,所以CO ⊥BD .(1分)又EC ⊥BD ,EC ∩CO =C ,CO ,EC ⊂平面EOC ,所以BD ⊥平面EOC .(2分)因此BD ⊥EO .又O 为BD 的中点,所以BE =DE .(3分)(2)法一:如图,取AB 的中点N ,连接DM ,DN ,MN .因为M 是AE 的中点,所以MN ∥BE .(4分)又MN ⊄平面BEC ,BE ⊂平面BEC ,所以MN ∥平面BEC .(5分)又因为△ABD 为正三角形,所以∠BDN =30°.(6分)又CB =CD ,∠BCD =120°,因此∠CBD =30°.(7分)所以DN ∥BC .又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.(9分)又MN∩DN=N,所以平面DMN∥平面BEC.(10分)又DM⊂平面DMN,所以DM∥平面BEC.(12分)法二:如图,延长AD,BC交于点F,连接EF.(4分)因为CB=CD,∠BCD=120°,所以∠CBD=30°.(5分)因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°.(7分)因此∠AFB=30°,所以AB=12AF.(9分)又AB=AD,所以D为线段AF的中点.(10分)连接DM,由点M是线段AE的中点,得DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,(11分)所以DM∥平面BEC.(12分)[常见失分探因]由条件得出BD⊥平面EOC时,易忽视EC∩CO=C,EC⊂平面EOC这一条件.证明MN∥平面BEC时,易忽视“MN⊄平面BEC,BE⊂平面BEC,而直接写出MN∥平面BEC”.证明平面DMN∥平面BEC时,易漏步骤“MN∩DN=N”.——————————————[教你一个万能模板]———————————————第一步审清题意分析条件,挖掘题目中平行与垂直关系―→。
立体几何3直线与平面的位置关系(平行、垂直、异面)-高考数学专题复习
立体几何—直线与平面的位置关系(平行、垂直、异面)知识精要1、证明直线与平面的平行的思考途径:(1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行. 2、证明直线与平面垂直的思考途径:(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面。
3、证明平面与平面的垂直的思考途径:(1)转化为判断二面角是直二面角; (2)转化为线面垂直;(3) 转化为两平面的法向量平行。
4、 空间向量的直角坐标运算:设a =123(,,)a a a ,b =123(,,)b b b 则:(1) a +b =112233(,,)a b a b a b +++; (2) a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4) a ·b =112233a b a b a b ++; 5、 夹角公式:设a =123(,,)a a a ,b =123(,,)b b b ,则2cos ,a b a <>=.6、 异面直线间的距离 :||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、是12,l l 上任一点,d 为12,l l 间的距离).7、点B 到平面α的距离:||||AB n d n ⋅=(n 为平面α的法向量,A α∈,AB 是α的一条斜线段). 热身练习:1、A 、B 、C 表示不同的点,a 、l 表示不同的直线,α、β表示不同的平面,下列推理不正确的是 ( C )()A ααα⊂⇒∈∈∈∈l B l B A l A ,,,()B βα∈∈A A ,,AB B B =⇒∈∈βαβα ,直线 ()C αα∉⇒∈A l A l ,内不在()D α∈C B A ,,,β∈C B A ,,且C B A ,,不共线α⇒与β重合2、对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交. 其中,使三条直线共面的充分条件有 ( B )(1和4)()A 1个 ()B 2个 ()C 3个 ()D 4个3、在空间四边形ABCD 的边AB 、BC 、CD 、DA 上分别取点H G F E ,,,,如果EF 与HG 相交于一点M ,那么 ( A )()A M 一定在直线AC 上 ()B M 一定在直线BD 上 ()C M 可能在直线AC 上,也可能在直线BD 上 ()D M 既不在直线AC 上,也不在直线BD 上4、设ABCD 是空间四边形,E ,F 分别是AB ,CD 的中点,则,,满足( B ) (A ) 共线 (B ) 共面 (C ) 不共面 (D ) 可作为空间基向量 正确答案:B 错因:学生把向量看为直线。
2020高考数学(文)二轮专题课件:大题考法课立体几何
解:(1)证明:由题知,BD=AD=4 2,又 AB=8,∴AB2=AD2 +BD2,∴BD⊥AD. ∵平面 PAD⊥平面 ABCD,且两平面的交线是 AD,BD⊂平面 ABCD,BD⊥AD,∴BD⊥平面 PAD,又 BD⊂平面 MBD,∴ 平面 MBD⊥平面 PAD.
(2)过点 P 作 PO⊥AD 交 AD 于点 O,则 PO⊥平面 ABD,∴点
知 A1B1 綊 DC,可得 B1C 綊 A1D,故 ME 綊
ND,因此四边形 MNDE 为平行四边形,所以 MN∥ED.
又 MN⊄平面 C1DE,扣 1 分.
[微点提醒]
[微点提醒]
加红处若漏掉 MN⊄ 平面 C1DE,扣 1 分.
❶转化:线线平行⇒线面平行 MN∥ED⇒MN∥平面 C1DE.
(2)存在一个常数 m= 23,使得平面 PED⊥ 平面 PAB,理由如下: 要使平面 PED⊥平面 PAB,只需 AB⊥DE, 因为 AB=AD=2,∠DAB=30°, 所以 AE=ADcos 30°= 3, 又因为 PD⊥平面 ABCD,PD⊥AB,PD∩DE=D, 所以 AB⊥平面 PDE, 因为 AB⊂平面 PAB,所以平面 PDE⊥平面 PAB, 所以 m=AAEB= 23.
(2)取 CG 的中点 M,连接 EM,DM. 因为 AB∥DE,AB⊥平面 BCGE,所以 DE⊥平面 BCGE, 所以 DE⊥CG. 因为四边形 BCGE 是菱形,且∠EBC=60°, 所以 EM⊥CG, 又 DE∩EM=E,所以 CG⊥平面 DEM. 所以 DM⊥CG. 在 Rt△DEM 中,DE=1,EM= 3, 故 DM=2. 所以四边形 ACGD 的面积为 4.
[微点提醒]
[关键步骤]
加红处只作 CH⊥C1E,不进行证 明 CH⊥平面 C1DE 的扣 2 分.
高考数学(考点解读命题热点突破)专题13空间中的平行与垂直文
专题13 空间中的平行与垂直 文【考向解读】1.以选择题、填空题的形式考查,主要利用平面的基本性质及线线、线面和面面的判定与性质定理对命题的真假进行判断,属基础题.2.以解答题的形式考查,主要是对线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台或其简单组合体为载体进行考查,难度中等.【命题热点突破一】 空间线面位置关系的判定(1)根据空间线面平行、垂直关系的判定定理和性质定理逐项判断来解决问题;(2)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线面位置关系,并结合有关定理来进行判断.例1、【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析(2)在直三棱柱111ABC A B C -中,1111AA ⊥平面A B C因为11AC ⊂平面111A B C ,所以111AA⊥A C 又因为111111111111111,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂=,平面平面 所以11AC ⊥平面11ABB A因为1B D ⊂平面11ABB A ,所以111AC B D ⊥又因为1111111111111C F,C F,B D A AC A A F A AC A F A ⊥⊂⊂=F ,平面平面所以111C F B D A ⊥平面因为直线11B D B DE ⊂平面,所以1B DE 平面11.AC F ⊥平面【变式探究】(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交(2)平面α∥平面β的一个充分条件是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α【答案】 (1)D (2)D【特别提醒】解决空间点、线、面位置关系的组合判断题,主要是根据平面的基本性质、空间位置关系的各种情况,以及空间线面垂直、平行关系的判定定理和性质定理进行判断,必要时可以利用正方体、长方体、棱锥等几何模型辅助判断,同时要注意平面几何中的结论不能完全引用到立体几何中.【变式探究】已知m ,n 为两条不同的直线,α,β为两个不重合的平面,给出下列命题:①若m ⊥α,n ⊥α,则m ∥n ;②若m ⊥α,m ⊥n ,则n ∥α;③若α⊥β,m ∥α,则m ⊥β;④若m ⊥α,m ∥β,则α⊥β.A .0B .1C .2D .3【答案】 C【命题热点突破二】 空间平行、垂直关系的证明空间平行、垂直关系证明的主要思想是转化,即通过判定、性质定理将线线、线面、面面之间的平行、垂直关系相互转化.例2、 【2016高考江苏卷】(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .【答案】(1)详见解析(2)详见解析【变式探究】如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C到平面PDA的距离.【解析】 (1)证明因为四边形ABCD是长方形,所以BC∥AD,因为BC⊄平面PDA,AD⊂平面PDA,所以BC∥平面PDA.(2)证明因为四边形ABCD是长方形,所以BC⊥CD,因为平面PDC⊥平面ABCD,平面PDC∩平面ABCD =CD,BC⊂平面ABCD,所以BC⊥平面PDC,因为PD⊂平面PDC,所以BC⊥PD.(3)解如图,取CD的中点E,连接AE和PE.因为PD=PC,所以PE⊥CD,在Rt△PED中,PE=PD2-DE2=42-32=7.【特别提醒】垂直、平行关系的基础是线线垂直和线线平行,常用方法如下:(1)证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换;三是利用三角形的中位线定理证线线平行;四是利用线面平行、面面平行的性质定理进行平行转换.(2)证明线线垂直常用的方法:①利用等腰三角形底边中线即高线的性质;②勾股定理;③线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.【变式探究】如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.【命题热点突破三】 平面图形的折叠问题平面图形经过翻折成为空间图形后,原有的性质有的发生变化、有的没有发生变化,这些发生变化和没有发生变化的性质是解决问题的关键.一般地,在翻折后还在一个平面上的性质不发生变化,不在同一个平面上的性质发生变化,解决这类问题就是要根据这些变与不变,去研究翻折以后的空间图形中的线面关系和各类几何量的度量值,这是化解翻折问题的主要方法.例3、【2016高考新课标2理数】如图,菱形ABCD 的对角线AC 与BD 交于点O ,5,6AB AC ==,点,E F 分别在,AD CD 上,54AE CF ==,EF 交BD 于点H .将DEF ∆沿EF 折到D EF '∆位置,OD '(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.【答案】(Ⅰ)详见解析;【解析】【变式探究】如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?请说明理由.【解析】例3 (1)证明因为D,E分别为AC,AB的中点,所以DE∥BC.又因为DE⊄平面A1CB,BC⊂平面A1CB,所以DE∥平面A1CB.【特别提醒】(1)折叠问题中不变的数量和位置关系是解题的突破口;(2)存在探索性问题可先假设存在,然后在此前提下进行逻辑推理,得出矛盾或肯定结论.【变式探究】如图(1),四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2,作如图(2)折叠,折痕EF∥DC.其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF;(2)求三棱锥M-CDE的体积.【高考真题解读】9.【2016高考新课标2理数】,αβ是两个平面,,m n是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥. (2)如果,//m n αα⊥,那么m n ⊥. (3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 . (填写所有正确命题的编号) 【答案】②③④10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =.设AD x =,则0x <<,DC x =.在ABD ∆中,由余弦定理可得2222c o s B D A D A B A D A BA =+-⋅22222cos30x x =+-⋅24x =-+.故BD =.在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222222(33c o s 2222P D P BB D x BPD PD PBx +-+--+∠===⋅⋅⋅,所以30BPD ∠=.由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDCBAP11.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面AB B 1A 1=n ,则m 、n 所成角的正弦值为B13【答案】A【解析】如图,设平面11CBD 平面ABCD ='m ,平面11CBD 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F AB ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为2,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π(C )6π (D )323π【答案】B【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 1.(2015·安徽,5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 【答案】 D2.(2015·浙江,8)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′-CD -B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α 【答案】 B【解析】 极限思想:若α=π,则∠A ′CB <π,排除D ;若α=0,如图,则∠A ′DB ,∠A ′CB 都可以大于0,排除A ,C.故选B.3.(2015·浙江,13)如图,三棱锥A -BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是________.【答案】 784.(2015·江苏,16)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .(2)BC1⊥AB1.5.(2015·新课标全国Ⅱ,19)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【解析】6.(2015·新课标全国Ⅰ,18)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC,(2)求直线AE与直线CF所成角的余弦值.(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长,建立空间直角坐标系G -xyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 7.(2014·江苏,16)如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA =6,BC =8,DF =5.求证:(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .8.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.【解析】(1)证明连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点.21 又E 为PD 的中点,所以EO ∥PB .又因为EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)解 因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.可取n 1=⎝ ⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32.因为E 为PD 的中点,所以三棱锥E -ACD 的高为12,三棱锥E -ACD 的体积V =13×12×3×32×12=38.。
2020高考精品系列之数学(文)专题11 立体几何解答题(原卷版)
专题11立体几何解答题考纲解读三年高考分析1、对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.对于探索性问题用向量法比较容易入手.一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若有解且满足题意则存在,若有解但不满足题意或无解则不存在.2、空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.3、空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段P A,PB,PC两两互相垂直,且P A=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.垂直关系的证明和平行关系的证明是考查的重点,解题时常用到平行判定定理、垂直判定定理、垂直性质定理、平行性质定理,考查学生的数学逻辑推理能力、数学运算能力、直观想象能力,题型以选择填空题和解答题为主,中等难度.1、直线、平面平行的判定及其性质是高考中的重点考查内容,涉及线线平行、线面平行、面面平行的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.2、直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容.题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想.1.【2019年天津文科17】如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面P AC⊥平面PCD,P A⊥CD,CD=2,AD=3.(Ⅰ)设G,H分别为PB,AC的中点,求证:GH∥平面P AD;(Ⅱ)求证:P A⊥平面PCD;(Ⅲ)求直线AD与平面P AC所成角的正弦值.2.【2019年新课标3文科19】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.3.【2019年新课标2文科17】如图,长方体ABCD﹣A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E﹣BB1C1C的体积.4.【2019年新课标1文科19】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.5.【2019年北京文科18】如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E 为CD的中点.(Ⅰ)求证:BD⊥平面P AC;(Ⅱ)若∠ABC=60°,求证:平面P AB⊥平面P AE;(Ⅲ)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.6.【2018年新课标2文科19】如图,在三棱锥P﹣ABC中,AB=BC=2,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.7.【2018年新课标1文科18】如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ DA,求三棱锥Q﹣ABP的体积.8.【2018年新课标3文科19】如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.9.【2018年北京文科18】如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A⊥PD,P A=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面P AB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.10.【2018年天津文科17】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.11.【2017年新课标2文科18】如图,四棱锥P﹣ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.12.【2017年新课标1文科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.13.【2017年新课标3文科19】如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.14.【2017年北京文科18】如图,在三棱锥P﹣ABC中,P A⊥AB,P A⊥BC,AB⊥BC,P A=AB=BC =2,D为线段AC的中点,E为线段PC上一点.(1)求证:P A⊥BD;(2)求证:平面BDE⊥平面P AC;(3)当P A∥平面BDE时,求三棱锥E﹣BCD的体积.15.【2017年天津文科17】如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD =1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.1.【2019年湖南省娄底市高三上学期期末】如图1,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,22AB CD BC ==,BD 为梯形对角线,将梯形中的ABD ∆部分沿AB 翻折至ABE 位置,使ABE∆所在平面与原梯形所在平面垂直(如图2).(1)求证:平面AED ⊥平面BCE ;(2)探究线段EA 上是否存在点P ,使//EC 平面PBD ?若存在,求出EPEA;若不存在说明理由. 2.【四川省威远中学2020届高三上学期第一次月考】如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC ⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.3.【2019年山西重点中学协作体高三暑假联考】如图,在等腰梯形ABCD 中,AB CD ∥,1AD DC CB ===,60ABC =︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)求证:BC ⊥平面ACFE ; (2)求多面体ABCDEF 的体积.4.【2020年四川省雅安市雨城区雅安中学高三上学期开学摸底】如图,已知多面体ABCDEF 中,ABD ∆、ADE ∆均为正三角形,平面ADE ⊥平面ABCD ,AB CD EF P P ,::2:3:4AD EF CD =. (Ⅰ)求证:BD ⊥平面BFC ; (Ⅱ)若2AD =,求该多面体的体积.5.【安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试】如图所示,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,160,CBB A ∠=o在侧面11BB C C 上的投影恰为1B C 的中点O .(1) 证明:1B C AB ⊥; (2) 若1ACAB ⊥,且三棱柱111ABC A B C -的体积为38,求三棱柱111ABC A B C -的高.6.【湖南省衡阳市第八中学2020届高三上学期月考(二)】如图,在五面体ABCDFE 中,侧面ABCD 是正方形,ABE ∆是等腰直角三角形,点O 是正方形ABCD 对角线的交点EA EB =,26AD EF ==且//EF AD .(1)证明://OF 平面ABE ;(2)若侧面ABCD 与底面ABE 垂直,求五面体ABCDFE 的体积.7.【江西省南昌市2020届高三上学期开学摸底考试】如图,已知直三棱柱111ABC A B C -中,AB AC ⊥,12AB AC AA ===,E 是BC 的中点,F 是1A E 上一点,且12A F FE =.(Ⅰ)证明:AF⊥平面1A BC ;(Ⅱ)求三棱锥11C A FC -的体积.8.【2020年安徽省江淮十校高三第一次联考】如图,在四棱锥S ABCD -中,底面ABCD 是正方形,SA ⊥底面ABCD ,2SA AB ==,AE SC ⊥,垂足为E ,点A 在面SDC 上的投影为F 。
2020届高考数学大二轮刷题首选卷理数课件:第一部分 考点十四 空间中的平行与垂直关系
解析 因为在四边形 ABCD 中,AD∥BC,AD=AB,∠BCD=45°,∠ BAD=90°,所以 BD⊥CD,又平面 ABD⊥平面 BCD,且平面 ABD∩平面 BCD =BD,所以 CD⊥平面 ABD,则 CD⊥AB,又 AD⊥AB,所以 AB⊥平面 ADC, 则平面 ABC⊥平面 ADC,故选 D.
解 (1)证明:如图 1,在三棱柱 ABC-A1B1C1 中,连接 BM, 因为 BCC1B1 是矩形,所以 BC⊥BB1, 因为 AA1∥BB1,所以 AA1⊥BC, 又因为 AA1⊥MC,BC∩MC=C, 所以 AA1⊥平面 BCM,所以 AA1⊥MB, 又因为 AB=A1B,所以 M 是 AA1 的中点,
取 BC 的中点 P,连接 NP,AP, 因为 N 是 B1C 的中点,则 NP∥BB1 且 NP=12BB1, 所以 NP∥MA 且 NP=MA, 所以四边形 AMNP 是平行四边形,所以 MN∥AP, 又因为 MN⊄平面 ABC,AP⊂平面 ABC, 所以 MN∥平面 ABC.
(2)因为 AB⊥A1B,所以△ABA1 是等腰直角三角形, 设 AB= 2a,则 AA1=2a,BM=AM=a. 在 Rt△ACM 中,AC= 2a,所以 MC=a. 在△BCM 中,CM2+BM2=2a2=BC2, 所以 MC⊥BM, 由(1)知,则 MC⊥AA1,BM⊥AA1, 如图 2,以 M 为坐标原点,M→A1,M→B,M→C的方向分别为 x 轴、y 轴、z 轴的正方向建立空间直角坐标系,
解析 命题①是线面平行的判定定理,正确;命题②因为垂直同一平面 的两条直线平行,所以过空间一定点有且只有一条直线与已知平面垂直,故 正确;命题③平面内无数条直线均平行时,不能得出直线与这个平面垂直, 故不正确;命题④因为两个相交平面都垂直于第三个平面,从而交线垂直于 第三个平面,故正确.故答案为①②④.
高考文科数学精准培优专题十五平行垂直关系的证明 含答案
培优点十五平行垂直关系的证明.平行关系的证明1BCGAACDABCD?ABCDCCEHF,分别是正方体,,的棱例1:如图,,,,11111111的中点.求证:∥EGDBBD 1)平面;(11HBD∥BDF)平面平面.(211)见解析.【答案】(1)见解析;(2OBGOODB,证明(【解析】1)如图,取,连接,的中点111EGOB∥BEGOBEOGBECOGB,所以因为,,所以四边形为平行四边形,故∥∥∥112?EGOB?DBBDBBDBBDDD平面平面因为,,所以平面.∥EG111111FDDBD∥BHB,)由题意可知.连接,(2111DFBHBF∥HBFDHD因为,所以四边形是平行四边形,故∥111BDIHD=DBDH ∥BDF.平面又,所以平面,BBFBDI=1111112.垂直关系的证明ABCACAB=BC?AAC?ABCABM,的中点.,为棱在三棱柱:例2如图,侧棱中,底面1111=2ACAA=2,.1.ABM∥BC;(1)求证:平面11AC?ABM;平面(2)求证:11BNNCCAABB?ACN的(3)在棱平面上是否存在点?如果存在,求此时,使得平面1111BB1值;如果不存在,请说明理由.1.3)存在,)见解析;【答案】(1(2)见解析;(2OOMABBA.与,连接【解析】(1)证明:连接,两线交于点11OACABOMAC∥BC△BM,,分别为中,∵在的中点,∴,111OM?ABMBC?ABMABM∥CB.又∵,∴平面平面平面,11111ABCABCAA?AA?BM?BM,,,∴底面(2)证明:∵侧棱平面11ACAB=BCBM?ACM.,∴为棱又∵的中点,AC?ACCAACCAAAABM?ACAAAC=?BM平面,∴平面,,∴∵,1111111=2ACAA=2Rt△ACCRt△AAM1=AM中,,∴在∵和,∴.又∵111tan?ACC?tanAMA?2,11?ACC=?AMA,∴11?ACC??CAC??AMA??CAC?90?AM?AC,∴即111111BMAM?MAM?ABMAC?ABMBM.,∴,平面,平面∵11111BN1NBBCAAC?ACN的中点,即为3(时,平面)解:当点平面?11112BB1.证明如下:DNACCC∥DMACACDMMDD设分别为的中点为,,连接,,,,∵的中点,∴1111BN?∥BNDMNDMBBCC?DM的中点,∴.又∵,为且,且112DN∥BNDMBM为平行四边形,∴∴四边形,?DNDN?NACAACACCAC?BM平面平面平面,∴∵.又∵,11111CAAC?NAC ∴平面.平面111对点增分集训一、单选题nm,给出下列内的射影分别是和,如果1.平面外有两条直线和和在平面??nmmn11四个命题:m?nm??nn?m?n?mnm?nmm平③与④;②相交与相交或重合;①与;n11111111m?)行平行或重合;其中不正确的命题个数是(与n B.2C.31 A.D.4D【答案】D?ABCDACB中:结合题意逐一分析所给的四个说法,在如图所示的正方体【解析】1111ABCDACACn,BDmBD,,对于说法①:若取平面为分别为,,,分别为?nm,1111m?nADDnAm?m,为满足,但是不满足,,该说法错误;对于说法②:若取平面?11111m?nm?AC,BDnnAD,AD,,满足分别为,但是不满足,分别为n,m111111111ABCDAC,BDnm,,分别为该说法错误;对于说法③:若取平面为分别为,?n,m11AC,BD,11nADDAm,相交,但是与异面,该说法错误;对于说法④:若取平面满足与为?nm1111nAD,ADAC,BCnmm平行,分别为,、、与分别为,满足nm11111111但是与异面,该说法错误;综上可得:不正确的命题个数是4.本题选择D选项.nm?为两个不同的平面,则下列命题中正确的是()为两条不同的直线,2.已知、、?nm??ll?nl?m,且,则A.若,??nm,???的距离相等,则内有不共线的三点到平面B.若平面∥???∥n?m?nm C.若,,则????mm∥nn,.若,则D【答案】Dl?ml?n,且,则对于选项A,若l不一定垂直平面,∵,有可【解析】??mn?m,能和平行,n∴该选项错误;??可能相交或平行,内有不共线的三点到平面、的距离相等,则对于选项B,若平面??∴该选项错误;?,m?nm?,则有可能在平面内,∴该选项错误;对于选项C,若?n对于选项D,由于两平行线中有一条垂直平面,则另一条也垂直平面,∴该选项正确,??故答案为D.3.给出下列四种说法:a∥b????;,直线①若平面,则?,∥ba??∥baa∥???;,直线,则②若直线,直线∥∥b???;,直线,则③若平面∥a∥??a?∥a???.其中正确说法的个数为(④若直线,则),∥∥a A.4个 B.3个 C.2个 D.1个D【答案】b,a????可异面;【解析】若平面,则,直线?,a∥?b?ba,ba∥a∥???,直线可相交,此时,直线,则平行两平面的交线;若直线,∥b?b,a∥a???,则若直线,平行两平面的交线;可相交,此时,a∥????与a,直线;故选若平面D无交点,即,则.∥a∥??a?、4.已知为两条不同的直线,、)为两个不同的平面,则下列命题中正确的有(?nm????,)(1,,∥?n∥m∥????nm????mn?mn∥),(2???∥n?m?nm???,(3)),,(4n?m∥?n∥??m3 .个 D B.1个个A.0 C.2B【答案】baba,∥????与,若相交,则可得,,【解析】由,,若,则∥n∥m∥????m?n?可能平行也可能相交,故(1)错误;???mnm∥n?,故(根据线面垂直的第二判定定理可得,2若)正确;m∥n???或异面,故(若3,,)错误;,则?n∥?nm,m???∥nm?m?n或,故(4若,则)错误;故选,B.??n M,N,PCD,B?ACDBC,ADABCD的中点,则下列中,分别是.如图,在正方体511111111命题正确的是()MN∥APMN∥BD A.B.1MN∥平面BBDD C .D.BDP∥平面MN11C【答案】.MNAP是异面直线,故选项不正确;和A【解析】:MNBD是异面直线,故选项不正确;和B:1M,NCDBCD,BCABCD?A是的中点,:记C.∵正方体分别中,OACIBD?1111111ON∥DM∥CDMNODMN∥ODCD?DM?ON,为平行四边形,∴∴,∴,11112MN?MN∥BDDBDDBDD?OD.平面,∵,∴平面平面1111MN∥平面BBDDBBDDBDP相交,故选项不正确;故选C.,而面和面D:由C知1111??是两个不同的平面,则下列命题正确的是()是两条不同的直线,6.已知,n,m????与平行A.若垂直于同一平面,则,B.若平行于同一平面,则平行nm与n,m???平行的直线不平行,则在C.若内不存在与,?D.若不平行,则不可能垂直于同一平面nm与nm,【答案】D【解析】垂直于同一平面的两平面相交或平行,A不正确;平行于同一平面的两直线可相交、平行或异面,B不正确;平面不平行即相交,在一个平面内平行两平面交线的直线与另一平面平行,C不正确;D为直线与平面垂直性质定理的逆否命题,故D正确.故选D.??是三个两两不重合的平面,给出下列四个,7.已知是两条不重合的直线,,?nm,命题: ????;,则①若?,mm?∥??????;,则②若??,∥????;③若,则∥nmm?,n?∥,??????.其中真命题是(是异面直线,④若),则∥,?m∥,m?,nn∥nm,A.①和②.①和④D .③和④C .①和③BD【答案】【解析】逐一考查所给的命题:????,则,命题正确;①由线面垂直的性质定理可得若??m,m∥.???DABC?ABCD分别为平面中,取平面②如图所示的正方体,,1111ABBA,ADDA,ABCD,1111??????,命题错误;满足,但是不满足?,?∥??ABBA,ADD?ABCDAABCD,中,取平面分别为平面③如图所示的正方体,11111111????DDBB,,命题错误;,满足,但是不满足直线分别为∥nm?m,n?∥,n,m11??????,,由面面平行的性质定理易知④若是异面直线,∥m∥,n?nm?,,∥n,m命题正确;综上可得,真命题是①和④,本题选择D选项.E,FCAEF?2;则下列结论错误,线段,且上有两个动点8.如图,正方体的棱长为111的是().BD?CE.B. A ABCDEF∥平面△CEFE?FBCBEF△的体积为定值.三棱锥的面积与的面积相等 CD.【答案】DABCD?ABCDAACC?BD,平面在正方体【解析】中,111111CE?BD?CEACCA而平面正确.A,故,故11.ABCDABCD∥AC∥EF,故B又正确.平面平面,因此11CEFCEFACCCBBEF的距当的距离就是变化时,三角形到平面的面积不变,点到平面11E?FBCB?CEF的体积)的体积为定值(此时可看成三棱锥离,它是一个定值,故三棱锥,故C正确.6CEFBEF的距离为1,D是错误的,故选,而D到在正方体中,点.到的距离为2OVAOCA,BAB是圆周上不同于垂直于圆是圆所在的平面,点9.如图所示,的直径,M,NVA,VC的中点,则下列结论正确的是()的任意一点,分别为MN∥ABMNBC45?与..A所成的角为BVAC?VACVBC?OC DC..平面平面平面D【答案】MNAB项错;A对于项,异面,故与A【解析】?90BC?V AC?MNBC平面,故项,可证,因此项错;,∴所成的角为B对于B VACACOCOC与不垂直,∴项错;不可能垂直平面,故CC对于项,BCABC?VA?BCVABC?AC?ABC平面项,由于,∴,,平面,D对于VBCBC??VAC?VACBCVBC,∴.平面∵,,故选平面D,∴平面平面A=VAACICCBA?AACBAABC?AB是正三角,底面三角形中,侧棱.如图,在三棱柱10底面1111111111BCE中点,则下列叙述正确的是(形,是)AC?ABBAECCB A.平面与B.是异面直线1111ACC∥ABEBCAE?BAE.C.,平面D为异面直线且1111111C【答案】CCBE在同一个侧面中,故不是异面直线,∴A与错;【解析】对于A项,11AC?ABBA 不可能,∴B平面对于B项,由题意知,上底面是一个正三角形,故错;11BCAE为在两个平行平面中且不平行的两条直线,故它们是异面直线,∴项,∵,对于C11C正确;ACABEAC与交线有公共点,相交,且项,∵D所在的平面与平面对于11111AC∥ABE不正确,∴D项不正确;故选平面C故.111E,FDCAB?2,EF?1DABCD?ABC,给出下列11.设分别是正方体上两点,且的棱1111四个命题:45?DBDB?D?BEFEF平面与的体积为定值;②异面直线①三棱锥;③所成的角为11111160?EFDBBBEF.其中正确的命题为(与平面)所成的角为;④直线1111A.①② B.②③ C.①②④ D.①④A【答案】由题意得,如图所示,【解析】1112V?V??S?BC???EF?2?2?,∴体①中,三棱锥的体积的为1B?DBD△EF1EFD?EF332311111积为定值;EF∥CDDBDBCDEF所成所成的角就是直线与,∴异面直线②中,在正方体中,与11111111的角,即,∴这正确的;??45?BDC111DBDB?BEFEF不成立,∴是错误的;③中,由②可知,直线不垂直,∴与面11111DBBEF?BDC?45?,④中,根据斜线与平面所成的角,可知与平面所成的角,即为111111∴不正确.ABCDAD∥BCAD?AB?1,AD?AB,?BCD?45?△ABD沿中,将如下图,梯形,,12.??BCD?ABDBDAA.,并且平面给出下面四个命对角线折起.设折起后点平面的位置为题:2????BCD?BCACDA?DBDA;的体积为;③平面;②三棱锥①2??DCABCA?.其中正确命题的序号是(平面④平面)A.①②.②④D .①③C .③④BB【答案】??ABD?45ADB90?BAD??,AD?AB??①∵【解析】,∴,DCBD??AD∥BC,?BCD45?∵,∴,???BCDBD?CDBCD??ABDBDA,∴平面,且平面∵平面平面平面,IBDA????BC?CD?ADAD?DABDA,∴,故平面不成立,故①错误;∵2112?BCDA?②棱锥,故②错误;的体积为???2??26223.??CDBDA,故③正确;③由①知平面????B??ACDCD?BABDBDAA,,又∵平面,∴④由①知平面????DC?ACD?D?BAADA,,,且又、平面D?DCDA????BCAADC?AABB?,平面∴,又平面??DCAABC?,故④正确.故选B.∴平面平面二、填空题??是两个不同的平面,则下列命题正确的是13.设是两条不同的直线,,nm,________.(填序号)???∥m∥∥n∥nmm???;,则,则,,①若;②若∥m∥???∥mm??nm∥n???.,;④若③若,则,则,??m【答案】③??m∥nn∥m∥,,与可能相交也可能异面,∴①不正确;【解析】,则nm?∥m????可能相交,∴②不正确;,,还有,则与∥∥m?????nm∥nm,满足直线与平面垂直的性质定理,故③正确;,则,??∥m????,∴④不正确;,也可能,,也可能,则Am?∥??mm故答案为③.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论CM60?MNMN∥CDEFABEFAB?.与;③①是异面直线;④;②与所成的角为以上四个命题中,正确命题的序号是_________.【答案】①③把正方体的平面展开图还原成原来的正方体,如图:【解析】.MNAB∥CM,MN?CDEFEFAB?,只有①③正确.故答案为①③.则与异面,,ABCDAB?CD,AC?BD,AD?BC,给出下列结15.若四面体的三组对棱分别相等,即论:ABCD每组对棱相互垂直;①四面体ABCD每个面的面积相等;②四面体ABCD90?180?;而小于③从四面体每个顶点出发的三条棱两两夹角之和大ABCD每组对棱中点的线段相互垂直平分.④连接四面体其中正确结论的序号是__________.(写出所有正确结论的序号)【答案】②④ABCD的三组对棱分别看作平行六面体的对角线,由于三组对棱分别相【解析】①将四面体等,∴平行六面体为长方体.由于长方体的各面不一定为正方形,∴同一面上的面对角线不一定垂直,从而每组对棱不一定相互垂直.①错误;ABCD的每个面是全等的三角形,面积是相等的.②正确;②四面体ABCDABCD每个顶点出发的三条棱的每个面是全等的三角形,从四面体③由②,四面体180?.③错误;两两夹角能够等量代换为同一个三角形内的三个内角,它们之和为ABCD每组对棱中点构成菱形,线段互垂直平分④正确,故答案为②④.④连接四面体10?ABE,FAD,BCABCD2AD?10的中点,,,,分别为16.如图,一张矩形白纸△CDFBE,DFA、CBFDE△ABE同侧,下列命题正确的折起,且现分别将沿在平面,是____________(写出所有正确命题的序号).CDFAC∥BFDE∥ABE平面时,①当平面平面CDFAE∥CD∥ABE时,②当平面平面A、CPG?PDP③当时,重合于点A、C150?DEF?PP重合于点④当的外接球的表面积为时,三棱锥【答案】①④22ACD△ABE△中,,在在中,,【解析】?CADtan???ABEtan22?ABE??DAC,由题意,将∴沿折起,DFBE,△ABE,△CDFBEDF同侧,且在平面C,AAGHC?AG,四点在同一平面内,平面此时平面IHABEA,C,G,ABE∥CDFAG∥AGHC?CHCHCDFI,平面平面,当平面平面时,得到AG?CHAGHCAC∥GH,显然是平行四边形,∴,∴四边形AC∥BFDE,∴①正确的;进而得到平面CDCDAEAE不平行,∴②错误的;与为异面直线,∴由于折叠后,直线与直线10322210GD?PD?10,折叠后,可得,,其中,?PGGDPG?PD?3PGPD不垂直,∴③不正确;和∴△FCDEFD△PP?DEF均为直角三角形,时,在三棱锥重合于点当和中,C,A DF56DF,∴为外接球的直径,即?R?222??652DEFP???1504??4?R?的外接球的表面积为,∴④是正确,则三棱锥????2??综上正确命题的序号为①④.三、解答题P?ABCDAB?AD?2BC?2BC∥ADAB?AD△PBD为正.如图,四棱锥17,,,中,三角形.PA?23.且PBC?PAB;平面(1)证明:平面ABCDACEPDPE∥PB,求四面体2,平面(2)若点是线段到底面上一点,且的距离为A?CDE的体积.8【答案】(1)见解析;(2).9BD?222AD?ABAB?AD?,,且,∴【解析】(1)证明:∵PA?2223PB?PD?BD?2△PBD?ABAB?PB,,∴为正三角形,∴又,又∵,BC∥ADAB?BCAD?AB,,又∵,,∴BBC?PB PBC?ABPAB平面平面∴,又∵,?ABPBC?PAB 平面∴平面.AD∥OACBCBD(2)如图,连接,,交于点,∵AD?2BCOD?2OBOE,,∴且,连接ACEPB∥OEDE?2PE∥PB,,则,∴平面∵.ABCDP的距离为2到平面,由(1)点24ABCDh??2?E,的距离为∴点到平面3311148??V?V?S?h???2?2??,∴??ACD△E?A?CDEACD 33239??8A?CDE的体积为.即四面体9EF?1ABCD2?AB?4AEEFEA?∥AB.,平面 18.如图,四边形,为正方形,,,ABCDBC?AF;(1)求证:1ACFBCCACM?∥EMM;(2)若点在线段,求证:上,且满足平面4EBC?AF.3)求证:平面(【答案】(1)见解析;(2)见解析;(3)见解析.EF∥ABEFABEABF,(1)∵确定平面与,∴【解析】ABCDEA?BCAB?BC?EA且,∴.由已知得平面∵,AIAB=EABC?BC?AFEABFEABF?AF.,∴平面∴.又平面MN?BCNFNMN∥ABM.,连接(2)过,垂足为作,则11MN?ABEF??ACABCMABEF∥,且.又,∴又44 FNEFNM?MNEM∥EFEF∥MN.∴,∴四边形为平行四边形,∴且FBC?FBCEMFN?FBC∥EM 平面.平面又,∴平面,BCAF?)由(1.)可知,(3???BAE?AEF?902?AEABABFE?41EF?,,中,,,在四边形1???EBAtan?FAEtan?EBA??FAE.∴,则2?PAE??PAB?90?,设,∵P?AFIBE?PBA??PAB?90??APB?90?EB?AF.,即,则故.EBC?AF.,∴平面又∵BBCIEB?。
专题08 利用空间向量证明平行、垂直(原卷版)
2020年高考数学立体几何突破性讲练 08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系 二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可. 三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,P ABCD -ABCD PA PD ⊥,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.为GC的中点,FO=3,且FO⊥平面ABCD.(1)求证:AE∥平面BCF;(2)求证:CF⊥平面AEF.2.如图所示,在直三棱柱ABC-A1B1C1中,侧面AA1C1C和侧面AA1B1B都是正方形且互相垂直,M为AA1的中点,N为BC1的中点.求证:(1)MN∥平面A1B1C1;(2)平面MBC1⊥平面BB1C1C.3.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF⊥平面ABCD,DE=2,M为线段BF的中点.(1)求M到平面DEC的距离及三棱锥M-CDE的体积;(2)求证:DM⊥平面ACE.4.如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面P AD⊥底面ABCD,且P A=PD=22AD,设E,F分别为PC,BD的中点.(1)求证:EF∥平面P AD;(2)求证:平面P AB⊥平面PDC.5.如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.6. 如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:(1)P A⊥BD;(2)平面P AD⊥平面P AB.7.如图所示,在四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.。
2024届高考数学专项立体几何大题含答案
立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。
【高考数学二轮复习-经典微专题】第52讲 用空间向量判断,证明平行与垂直-解析版
第52讲 用空间向量判断,证明平行与垂直知识与方法1用空间向量判断证明线面平行或垂直,面面平行或垂直的思路 (1)直接利·用向量运算的几何意义进行证明.(2)通过建立三维坐标系,用向量的坐标形式进行运算和证明. 2用向量证明直线与平面平行的方法(1)证明直线的方向向量与平面某一法向量垂直. (2)证明直线的方向向量与平面内某直线的方向向亘平行. (3)证明直线的方向向量可以用平面内的两个不共线的向量线性表示. 3用向量证明直线与平面垂直的方法(1)证明直线的方向向量与平面的某一法向量平行.(2)证明直线的方向向量与平面内两条相交直线的方向向量垂直. (3)证明直线的方向向量与平面内的任意一条直线的方向向量垂直. 4证明空间两个平面的平行与垂直关系的方法(1)利用两个平面的法向量的平行与垂直关系进行证明,关键是求出两个平面的法向量. (2)将证明两个平面的平行和垂直关系转化为证明直线与平面的平行与垂直关系,再 利用上述介绍的证明方法进行证明.(3)利用面面平行、面面垂直判定定理的向量表示进行证明.典型例题【例1】 如图52-1所示,在正方体111ABCD A BC D 中,M N ,分别是111C C B C ,的中点.证明://MN 平面1.A BD【解析】【解法1】 ∵1111111111111()2222MN C N C M C B C C D A D D D A =-=-=-=1//.MN DA ∴又∵MN 与1DA 不共线,∴1//.MN DA 又MN ⊄平面11,A BD A D ⊂平面1A BD ,//MN ∴平面1A BD .【解法2】设正方体的棱长为1,以D 为原点,分别以1,,DA DC DD 所在直线为x 轴、y 轴、z 轴,建立如图52-2所示空间直角坐标系,则1110,1,,,1,1,(0,0,0),(1,0,1),(1,1,0).22M N D A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭于是111,0,,(1,0,1),(1,1,0)22MN DA DB ⎛⎫=== ⎪⎝⎭.设平面1A BD 的一个法向量为(),,n x y z =,则0,,0n DA n DB ⎧⎪⋅⎨⎪⎩=⋅= 得00x z x y ⎧⎨⎩+=+=,取1x =,得1,1y z =-=-,∴()1,1,1n =--.又1111,0,(1,1,1)10(1)(1)02222n MN ⎛⎫⋅=⋅--=⨯+⨯-+⨯-= ⎪⎝⎭,MN n ∴⊥,又MN ⊄平面1A BD .∴//MN 平面1.A BD【解法3】 如图52-2所示,1DA (1,0,1),(1,1,0),DB ==设1MN sDA tDB =+ , 即11,0,(1,0,1)(1,1,0),22s t ⎛⎫=+ ⎪⎝⎭12012s t t s ⎧+=⎪⎪∴=⎨⎪⎪=⎩解得1,0,2s t ==∴1,2MN DA =∴MN 与1DA 共线,∵MN ⊄平面1A BD ,∴//MN 平面1.A BD【例2】如图524-所示,四棱锥S ABCD -中,///,.CD AB CD BC ⊥侧面SAB 为等边三角形,2,1AB BC CD SD ====. (1)证明:SD ⊥平面SAB .(2)求点A 到平面SBC 的距离.【解析】(1)【证明】以C 为原点,射线CD 为x 轴的正半轴建立如图525-所示的空间直角坐标系C xyz -.设(1,0,0)D ,则(2,2,0),(0,2,0)A B 又设(,,)S x y z ,则0,0,0.x y z >>>(2,2,),(,2,),(1AS x y z BS x y z DS x =--=-=-,)y z .由||||AS BS ==故1x =.由||1DS =,得221y z +=,又由||2BS =,得222(2)4x y z +-+=.即2410x y -+=,即可解得1,22y z ==,于是1333311,,1,,,1,,,0,222222S AS BS DS ⎛⎛⎫⎛⎫⎛=--=-= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭. 0,0DS AS DS BS ∴⋅=⋅=,故S ,AS B DS DS ⊥⊥,又BS AS S ⋂=,SD ∴⊥平面SAB .(2)设平面SBC 的法向量(,,)a m n p =,则BS 0,CB 0a a ⋅=⋅=.又331,,,(0,2,0)22BS CB ⎛⎫=-= ⎪ ⎪⎝⎭,故30220m n p n ⎧-+=⎪⎨⎪=⎩则(a =,又(2,0,0),AB =-故点A 到平面SBC 的距离为||2||a AB d a ⋅==。
高考数学复习 空间位置关系的判断与证明.板块五.平行与垂直关系综合证明.学生版
【例1】 已知PA 垂直于正方形ABCD 所在的平面, ,E F 分别是PB 和AC 的中点, 求证:①EF ∥平面PAD ;②EF AB ⊥IH G F EDC B A P【例2】 (2008新课标江苏16)如图,在四面体ABCD 中,CB CD =,AD BD ⊥,点E 、F 分别是AB 、BD 的中点.求证:⑴直线EF ∥面ACD ;⑵面EFC ⊥面BCD .FD EABC【例3】 已知:四棱锥P ABCD -,PA ⊥平面ABCD ,底面ABCD 是直角梯形,90A ∠=,且AB CD ∥,12AB CD =,点F 为线段PC 的中点. 典例分析板块五.平行与垂直关系综合证明EFDB AP⑴求证:BF ∥平面PAD ;⑵求证:BF CD ⊥.【例6】 (2010年二模·丰台·文·题16)如图,在四棱锥S ABCD -中,底面ABCD 是菱形,SA ABCD ⊥底面,M 为SA 的中点,N 为CD 的中点.⑴ 证明:平面SBD ⊥平面SAC ;若垂直,请加以证明;若不垂直,请说明理由.【例8】 如图,已知PA O ⊥⊙所在的平面,AB 是O ⊙的直径,2AB =,C 是O ⊙上一点,且AC BC =,PC 与O ⊙所在的平面成45︒角,E 是PC 中点.F 为PB 中点. ⑴求证:EF ABC 面∥;⑵求证:EF PAC ⊥面;⑶求三棱锥B PAC -的体积.C A【例9】 如图,在正方体1111ABCD A B C D -中,EF ⊥1A D ,EF ⊥AC ,求证:⑴1BD ⊥平面11A C D ;⑵1//EF BD .FEA B C DA 1B 1C 1D 1【例10【例11】 (2010年二模·西城·文·题17)如图,已知四棱柱1111ABCD A B C D -的底面是菱形,侧棱1BB ⊥底面ABCD ,E 是侧棱1CC 的中点.⑴ 求证:AC ⊥平面11BDD B ;⑵ 求证:AC ⊥平面1B DE .【例13】 如图所示,在直四棱柱1111ABCD A B C D -中,DB BC =, DB AC ⊥,点M 是棱1BB 上一点.⑴求证:11B D ∥面1A BD ;⑵求证:MD AC ⊥.⑶试确定点M 的位置,使得平面1DMC ⊥平面11CC D D .MD 1C 1B 1A 1D CBA【例14】 (2009山东文18)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为等腰梯形,AB CD ∥,4AB = 2BC CD ==,12AA =,E ,1E 分别是棱AD ,1AA 的中点.⑴设F 是棱AB 的中点,证明:直线1EE ∥平面1FCC ;⑵证明:平面1D AC ⊥平面11BB C C .D 1EE 1FC 1B 1A 1D CB A【例15】 如图,已知111A B C ABC -是正三棱柱,D 是AC 的中点,11AB ==,⑴证明:BD ⊥平面11ACC A ,1//AB 平面1BDC ;⑵求点D 到平面11BCC B 的距离.⑶证明:11AB BC ⊥.D CBA A 1B 1C 1【例16】 (2006天津)如图,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,面CDE 是等边三角形,棱12EF BC ∥. ⑴证明FO ∥平面CDE ;⑵设BC ,证明:EO ⊥平面CDF .OF ED C B A【例17】 (2009江苏高三调研)如图,在三棱柱111ABC A B C -中,11AB BC BC BC AB BC ⊥⊥=,,,E F G ,,分别为线段1111AC AC BB ,,的中点,求证:⑴平面ABC ⊥平面1ABC ;⑵EF ∥面11BCC B ;⑶GF ⊥平面11AB C . C 1B 1A 1G F EC BA【例18】 如图,ABC ∆为正三角形,EC ⊥平面ABC ,BD CE ∥,2CE CA BD ==,M 是EA 的中点,求证:⑴DE DA =;⑵平面BDM ⊥平面ECA ;⑶平面DEA ⊥平面ECA . MEDCB A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学平行垂直关系的证明大题精做
1.如图,三棱柱111ABC A B C -的侧面11BCC B 是平行四边形,11BC C C ⊥,平面11A C CA ⊥平面11BCC B ,且E ,F 分别是BC ,11A B 的中点.
(1)求证:11BC A C ⊥; (2)求证://EF 平面11A C CA ;
(3)在线段AB 上是否存在点P ,使得1BC ⊥平面EFP ?若存在,求出AP
AB
的值;若不存在,请说明理由.
2.在四棱锥P ABCD -中,锐角三角形PAD 所在平面垂直于平面PAB ,AB AD ⊥,AB BC ⊥.
(1)求证:BC∥平面PAD;
(2)求证:平面PAD⊥平面ABCD.
3.在四棱锥P ABCD
⊥.
∥,AD DC -中,平面ABCD⊥平面PCD,底面ABCD为梯形,AB CD
(1)求证:AB∥平面PCD;
(2)求证:AD⊥平面PCD;
(3)若M是棱PA的中点,求证:对于棱BC上任意一点F,MF与PC都不平行.
4.如图,直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直.π
2
AEB ∠=,AB CD ∥,AB BC ⊥,22AB CD BC ==.
(1)求证:AB DE ⊥;
(2)求证:平面AED ⊥平面BCE ;
(3)线段EA 上是否存在点F ,使EC ∥平面FBD ?若存在,求出EF
EA
的值;若不存在,说明理由.
1.【答案】(1)详见解析;(2)详见解析;(3)当点P 是线段AB 的中点时,1BC ⊥平面EFP .此时,1
2
AP AB =. 【解析】(1)∵11BC C C ⊥,又平面11A C CA ⊥平面11BCC B ,且平面11A C CA I 平面111BCC B C C =, ∴1BC ⊥平面11ACC A .
又∵1A C ⊂平面11A C CA ,∴11BC A C ⊥.
(2)取11A C 中点G ,连FG ,连GC .
在111A B C △中,∵F ,G 分别是11A B ,11A C 中点,∴11FG B C ∥,且111
2
FG B C =. 在平行四边形11BCC B 中,∵E 是BC 的中点,∴11EC B C ∥,且111
2
EC B C =
. ∴//EC FG ,且EC FG =.∴四边形FECG 是平行四边形.∴//FE GC . 又∵FE ⊄平面11A C CA ,GC ⊂平面11A C CA ,∴//EF 平面11A C CA .
(3)在线段AB 上存在点P ,使得1BC ⊥平面EFP . 取AB 的中点P ,连PE ,连PF .
∵1BC ⊥平面11ACC A ,AC ⊂平面11ACC A ,CG ⊂平面11ACC A ,∴1BC AC ⊥,1BC CG ⊥. 在ABC △中,∵P ,E 分别是AB ,BC 中点,∴//PE AC . 又由(2)知//FE CG ,∴1BC PE ⊥,1BC EF ⊥. 由PE EF E =I 得1BC ⊥平面EFP .
故当点P 是线段AB 的中点时,1BC ⊥平面EFP .此时,1
2
AP AB =.
2.【答案】(1)见解析;(2)见解析.
【解析】(1)四边形ABCD 中,∵AB AD ⊥,AB BC ⊥, ∴BC AD ∥,BC 在平面PAD 外,∴BC ∥平面PAD . (2)作DE PA ⊥于E ,
∵平面PAD ⊥平面PAB ,而平面PAD I 平面PAB PA =, ∴DE ⊥平面PAB ,∴DE AB ⊥,
又AD AB ⊥,DE AD D =I ,∴AB ⊥平面PAD , 又AB 在平面ABCD 内,∴平面PAD ⊥平面ABCD . 3.【答案】(1)见证明;(2)见证明;(3)见证明.
【解析】(1)∵AB CD ∥,CD ⊂平面PCD ,AB ⊄平面PCD ,∴AB ∥平面PCD . (2)法一:∵平面ABCD ⊥平面,平面ABCD I 平面PCD CD =, AD CD ⊥,AD ⊂平面ABCD ,∴AD ⊥平面PCD .
法二:在平面PCD 中过点D 作DH CD ⊥,交PC 于H ,
∵平面ABCD ⊥平面,平面ABCD I 平面PCD CD =,DH ⊂平面PCD , ∴DH ⊥平面ABCD ,
∵AD ⊂平面ABCD ,∴DH AD ⊥,
又AD PC ⊥,PC DH H =I ,∴AD ⊥平面PCD . (3)法一:假设存在棱BC 上点F ,使得MF PC ∥, 连接AC ,取其中点N ,
在PAC △中,∵M ,N 分别为PA ,CA 的中点,∴MN PC ∥, ∵过直线外一点只有一条直线和已知直线平行,∴MF 与MN 重合, ∴点F 在线段AC 上,∴F 是AC ,BC 的交点C , 即MF 就是MC ,而MC 与PC 相交,矛盾, ∴假设错误,问题得证.
法二:假设存在棱BC 上点F ,使得MF PC ∥,显然F 与点C 不同 , ∴P ,M ,F ,C 四点在同一个平面α中,
∴FC α⊂,PM α⊂,∴B FC α∈⊂,A PM α∈⊂,
∴α就是点A ,B ,C 确定的平面ABCD ,且P α∈, 这与P ABCD -为四棱锥矛盾,∴假设错误,问题得证. 4.【答案】(1)详见解析;(2)详见解析;(3)存在点F ,且
1
3
EF EA =时,有EC ∥平面FBD . 【解析】(1)证明:取AB 中点O ,连结EO ,DO .由等腰直角三角形ABE 可得, ∵EB EA =,EA EB ⊥,∴EO AB ⊥,
∵四边形ABCD 为直角梯形,22AB CD BC ==,AB BC ⊥,
∴四边形OBCD 为正方形,∴AB OD ⊥,OD OE O =I ,AB ⊥平面ODE , ∴AB ED ⊥.
(2)∵平面ABE ⊥平面ABCD ,平面ABE I 平面ABCD AB =,且AB BC ⊥, ∴BC ⊥平面ABE ,∴BC AE ⊥,
又∵EA EB ⊥,BC BE B =I ,∴AE ⊥平面BCE ,AE ⊂平面AED , ∴平面AED ⊥平面BCE . (3)解:存在点F ,且
1
3
EF EA =时,有EC ∥平面FBD ,连AC 交BD 于M , ∵四边形ABCD 为直角梯形,22AB CD BC ==,∴1
2
CM CD MA AB ==, 又
12EF FA =,∴CM EF
MA FA
=
,∴CE FM ∥, ∵CE ⊄平面FBD ,FM ⊂平面FBD , ∴EC ∥平面FBD .即存在点F ,且1
3
EF EA =时,有EC ∥平面FBD .。