光的偏振习题(附答案) (1)复习进程
光的偏振(有答案)
光的偏振一、光的偏振的相关知识(1)自然光:太阳、电灯等普通光源发出的光,包含着在垂直于传播方向上沿一切方向振动的光,而且沿各个方向振动的光波的强度都相同,这种光叫做自然光.(2)偏振:光波只沿某一特定的方向振动,称为光的偏振(3)偏振光:在垂直于传播方向的平面上,只沿某个特定方向振动的光,叫做偏振光.光的偏振证明光是横波.自然光通过偏振片后,就得到了偏振光.二、光的偏振的理解1、偏振光的产生方式(1)自然光通过起偏器:通过两个共轴的偏振片观察自然光,第一个偏振片的作用是把自然光变成偏振光,叫起偏器.第二个偏振片的作用是检验光是否为偏振光,叫检偏器.(2)自然光射到两种介质的交界面上,如果光入射的方向合适,使反射光和折射光之间的夹角恰好是90°时,反射光和折射光都是偏振光,且偏振方向相互垂直.特别提醒不能认为偏振片就是刻有狭缝的薄片,偏振片并非刻有狭缝,而是具有一种特征,即存在一个偏振方向,只让平行于该方向振动的光通过,其他振动方向的光被吸收了.2、偏振光的理论意义及应用(1)理论意义:光的干涉和衍射现象充分说明了光是波,但不能确定光波是横波还是纵波.光的偏振现象说明了光波是横波.(2)应用:照相机镜头、立体电影、消除车灯眩光等.三、相关练习1、如图所示,偏振片P的透振方向(用带有箭头的实线表示)为竖直方向.下列四种入射光束中,能在P的另一侧观察到透射光的是() A.太阳光B.沿竖直方向振动的光C.沿水平方向振动的光D.沿与竖直方向成45°角振动的光答案ABD解析偏振片只让沿某一方向振动的光通过,当偏振片的透振方向与光的振动方向不同时,透射光的强度不同,它们平行时最强,而垂直时最弱.太阳光是自然光,光波可沿任何方向振动,所以在P的另一侧能观察到透射光;沿竖直方向振动的光,振动方向与偏振片的透振方向相同,当然可以看到透射光;沿水平方向振动的光,其振动方向与透振方向垂直,所以看不到透射光;沿与竖直方向成45°角振动的光,其振动方向与透振方向不垂直,仍可看到透射光.2、如图所示,电灯S发出的光先后经过偏振片A和B,人眼在P处迎着入射光方向,看不到光亮,则()A.图中a光为偏振光B.图中b光为偏振光C.以SP为轴将B转过180°后,在P处将看到光亮D.以SP为轴将B转过90°后,在P处将看到光亮思路点拨偏振片A为起偏器,B为检偏器,当A、B的透振方向平行时透过B的亮度最大,垂直时没有光透过.解析自然光沿各个方向发散是均匀分布的,通过偏振片后,透射光是只沿着某一特定方向振动的光.从电灯直接发出的光为自然光,则A错;它通过A偏振片后,即变为偏振光,则B对;设通过A的光沿竖直方向振动,P点无光亮,则B偏振片只能通过沿水平方向振动的偏振光,将B转过180°后,P处仍无光亮,C错;若将B转过90°,则该偏振片将变为能通过竖直方向上振动的光的偏振片,则偏振光能通过B,即在P处有光亮,D对.答案BD3、(2012·江苏·12B(1))如图所示,白炽灯的右侧依次平行放置偏振片P和Q,A点位于P、Q之间,B点位于Q右侧.旋转偏振片P,A、B两点光的强度变化情况是________.A.A、B均不变B.A、B均有变化C.A不变,B有变化D.A有变化,B不变答案 C解析白炽灯光包含各方向的光,且各个方向的光强度相等,所以旋转偏振片P时各方向透射光强度相同,故A点光的强度不变;白炽灯光经偏振片P后变为偏振光,当Q旋转时,只有与P的偏振方向一致时才有光透过Q,因此B 点的光强有变化,选项C正确.4、光的偏振现象说明光是横波.下列现象中不能反映光的偏振特性的是()A.一束自然光相继通过两个偏振片,以光束为轴旋转其中一个偏振片,透射光的强度发生变化B.一束自然光入射到两种介质的分界面上,当反射光线与折射光线之间的夹角恰好是90°时,反射光是偏振光C.日落时分,拍摄水面下的景物,在照相机镜头前装上偏振滤光片可以使景像更清晰D.通过手指间的缝隙观察日光灯,可以看到彩色条纹答案 D解析在垂直于传播方向的平面上,沿着某个特定方向振动的光是偏振光,A、B选项反映了光的偏振特性,C是偏振现象的应用,D是光的衍射现象.5、下列有关光现象的解释正确的是()A.光在同一介质中沿直线传播B.无影灯利用的是光的衍射原理C.任何两束光都可以发生干涉D.为了司机在夜间安全行驶,汽车前窗玻璃常采用偏振玻璃答案 D解析光在同一种均匀介质中才会沿直线传播,选项A错误;海市蜃楼是光在密度分布不均匀的空气中传播时发生全反射而产生的,所以选项B正确;只有相干波才可以发生干涉,选项C错误;汽车前窗玻璃采用偏振玻璃,在夜间行驶时可以减弱对面车辆照射过来的光强,选项D正确.。
光的偏振习题(附答案)-(1)
光的偏振习题(附答案)-(1)解:由于e光在方解石中的振动方向与光轴相同, o光在方解石中的振动方向与光轴垂直, 所以e光和o光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但v e > v o ,所以e波包围o波.由图可知, 本题中对于e光仍满足折射定律sin sine ei nγ=由于 e 光在棱镜内折射线与底边平行,30eγ=︒sin sin30 1.490.50.745ei n==⨯=入射角4810oi'=又因为sin sino oi nγ=sin sin4810sin0.4491.66oooinγ'∴===故o光折射角2640ooγ'=1.有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I0. 求此自然光通过这一系统后, 出射光的光强.解:经过P1, 光强由I0变为I0/2, P2以ω转动, P1, P2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 2. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=3. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.4. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1,两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.5. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解:2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+ 缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=6. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe dn n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯7. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 一. 证明与问答题8. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.9. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
4.6 光的偏振 激光(分层作业)(解析版)
第6节光的偏振激光一、光的偏振1.在观看立体电影时,观众要戴上特制的眼镜,如果不戴这副眼镜,银幕上的图像就模糊不清了,这是利用了光的()A.全反射B.衍射C.偏振D.干涉【答案】C【详解】观众戴上特制眼镜观看立体电影时,利用了光的偏振现象。
故选C。
2.下列现象能说明光是横波的是()A.光的衍射现象B.光的折射现象C.光的偏振现象D.光的干涉现象【答案】C【详解】光的偏振现象能说明光是横波。
故选C。
3.如图所示,让太阳光或白炽灯光通过偏振片P和Q,以光的传播方向为轴旋转偏振片P或Q,可以看到透射光的强度会发生变化,这是光的偏振现象。
这个实验表明()A.光是电磁波B.光是一种横波C.光是一种纵波D.光是一种概率波【答案】B【详解】当以光的传播方向为轴旋转偏振片P或Q,可以看到透射光的强度会发生变化,说明偏振片的透振方向会影响到光的透射强度,则光的振动方向一定与传播方向垂直,所以这个实验表明光是一种横波。
故选B。
二、激光4.对于激光的认识,下列说法正确的是()A.激光是自然光被放大而产生的B.激光是原子受激辐射而得到的加强光C.激光的能量一定大于其他光的能量D.激光的传播速度比普通光的传播速度大【答案】B【详解】AB.激光是原子受激辐射而得到的加强光,也是相干光,而自然光是非相干光,即使放大强度也无法形成激光,故A错误,B正确;C.光的能量由频率决定,所以激光的能量不一定大于其他光的能量,故C错误;D.激光的传播速度和普通光的传播速度由介质的折射率决定,在真空中,两种光的光速相同,故D错误。
故选B。
5.激光具有相干性好,平行度好、亮度高等特点,在科学技术和日常生活中应用广泛。
下列关于激光的叙述正确的是()A.激光是纵波B.频率相同的激光在不同介质中的波长相同C.激光也是自然界的产物D.利用激光平行度好的特点可以测量月球到地球的距离【答案】D【详解】A.激光属于电磁波,电磁波为横波,选项A错误;B.频率相同的激光在不同介质中频率不变,但波速不同,由v=λf可知波长也不同,选项B错误;C.激光是原子受激辐射产生的光,自然界中的发光体不能发出激光,选项C错误;D.利用激光平行度好的特点可以测量月球到地球的距离,选项D正确;故选D。
光的偏振习题解答(试题复习)
第十九章 光的偏振一 选择题1. 把两块偏振片一起紧密地放置在一盏灯前,使得后面没有光通过。
当把一块偏振片旋转180︒时会发生何种现象:( )A. 光强先增加,然后减小到零B. 光强始终为零C. 光强先增加后减小,然后又再增加D. 光强增加,然后减小到不为零的极小值 解:)2π(cos 20+=αI I ,α从0增大到2π的过程中I 变大;从2π增大到π的过程中I 减小到零。
故本题答案为A 。
2. 强度为I 0的自然光通过两个偏振化方向互相垂直的偏振片后,出射光强度为零。
若在这两个偏振片之间再放入另一个偏振片,且其偏振化方向与第一偏振片的偏振化方向夹角为30︒,则出射光强度为:( )A. 0B. 3I 0 / 8C. 3I 0 / 16D. 3I 0 / 32 解:0000202032341432)3090(cos 30cos 2I I I I =⋅⋅=-=。
故本题答案为D 。
3. 振幅为A 的线偏振光,垂直入射到一理想偏振片上。
若偏振片的偏振化方向与入射偏振光的振动方向夹角为60︒,则透过偏振片的振幅为:( )A. A / 2B.2 / 3A C. A / 4 D. 3A / 4解:0222'60cos A A =,2/'A A =。
故本题答案为A 。
4. 自然光以60︒的入射角照射到某透明介质表面时,反射光为线偏振光。
则( )A 折射光为线偏振光,折射角为30︒B 折射光为部分偏振光,折射角为30︒C 折射光为线偏振光,折射角不能确定D 折射光为部分偏振光,折射角不能确定解:本题答案为B 。
光轴 e o 光波阵面 选择题5图。
11章光的偏振。习题答案
第11章 光的偏振 习题11.1 一束光强为I 0的自然光,相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为I = I 0/8。
已知P 1和P 3的偏振化方向互相垂直。
若以入射光为轴,旋转P 2,问P 2最少要转过多大角度,才能使出射光的光强为零?解 首先求P 2 与P 3 的偏振化方向之间夹角为多大时,穿过第三个偏振片的透射光强为301=8I I (1)自然光通过P 1后光强变为1012I I =(2) 设P 2 与P 1的偏振化方向之间夹角为θ,则由马吕斯定律可得透过P 2 的光强为222101cos cos 2I I I θθ==(3) 又由马吕斯定律可得透过P 3后的光强为()2222320011cos 90cos sin sin 228I I I I θθθθ=−==D (4) 将式(1)和式(4)联立求解,可得P 2 与P 1的偏振化方向之间夹角为θ=45º若以入射光为轴,旋转P 2,使出射光的光强为零,则由马吕斯定律得到()2222320011cos 90cos sin sin 2028I I I I αααα=−===D (5) 求解式(5)可得到P 2最少要转过的角度为α=45 º11.2 有三个偏振片堆叠在一起,第一块与第三块的偏振化方向互相垂直,第二块与第一块的偏振化方向互相平行。
设入射自然光的光强为I 0,若第二块偏振片以恒定角速度ω绕光的传播方向旋转,如图11-1所示。
试证明,此自然光通过这一系统后,出射光的光强为0(1cos 4)16I I t ω=−。
图11-1 题11.2图证 如图11-1所示,P 1的偏振化方向垂直于P 3的偏振化方向。
设入射自然光的光强为I 0,则通过P 1后强度为I 0/2。
若在时刻t , P 2的偏振化方向 与 P 1的偏振化方向的夹角为t ωθ=,则P 2 与P 3的夹角为θ−D 90。
根据马吕斯定律可得此时出射光强为222101cos cos 2I I I t θω==(1) ()()()2232222020200cos 90sin 1cos sin 212cos sin 81sin 2811cos 416I I I I t t I t t I t I t θθωωωωωω=−===⋅=⋅=−D11.3 使自然光通过两个偏振化方向相交60˚的偏振片,透射光的光强为I 。
2020高考物理专项复习试题:光的干涉、光的衍射、光的偏振、激光光的偏振练习(1)含答案
光的偏振课后练习(1)1.关于光的性质,下列说法正确的是()A.光在介质中的速度大于光在真空中的速度B.双缝干涉实验说明光具有波动性C.光的偏振现象说明光是纵波D.紫光的频率比红光的频率小2.对于光的偏振现象和激光以下说法中正确的是()A.光的偏振现象进一步证明了光的波动性,且光波是横波;B.偏振现象是光特有的现象;C.激光是原子受激辐射时产生的;D.激光具有亮度高.平行度好的特点,是一种相干光3.让自然光照到P、Q两个偏振片上,当两个偏振片P、Q的透振方向间夹角为度数时,透射光强度最弱。
4.使用一只眼睛通过偏振片去观察太阳,当不停地转动偏振片时,可以看到透射光()A.亮、暗交替变化B.亮度保持不变C.亮和次亮交替变化D.全暗5.下列关于使用和乘坐小汽车的说法,符合实际情况的是()A.小汽车的司机和前排乘客必须系好安全带,这样可以防止惯性的危害B.小汽车车尾的导电链是为了防止静电积聚C.小汽车前大灯和挡风玻璃覆盖的偏振片能使驾驶员消除对面车灯的强烈炫光D.小汽车防雾灯一般为橙黄色光,橙黄色光的波长较短,穿透力弱6.以下关于偏振片和增透膜的说法正确的是()A.为减小光在照相机镜面处的反射,使景物更加清晰,可在照相机镜头前加一偏振片B.照相机的增透膜厚度通常为绿光真空中波长的1/4C.立体电影利用了光的偏振原理、增透膜利用了光的干涉现象D.用偏振片制成的眼镜与普通有色眼镜比较,通过前者看到的物体颜色不会改变7.关于自然光和偏振光,下列说法正确的是()A.自然光能产生光的干涉现象和衍射现象,而偏振光却不能B.只有自然光透过偏振片才能获得偏振光C.自然光只能是白光,而偏振光不能是白光D.自然光和偏振光都能使感光底片感光8.将两个偏振片紧靠在一起,放在一盏灯的前面,眼睛通过偏振片看到的光很弱.如果将其中一个偏振片旋转180°,在旋转过程中会观察到( )A.灯光逐渐增强,然后逐渐减弱B.灯光强度保持不变C.灯光逐渐增强,没有减弱现象D.灯光逐渐增强,再减弱,然后增强到最亮9.下列说法中正确的是()A.光的偏振现象说明光是一种纵波B.玻尔理论可以解释所有原子的光谱现象C.用激光读取光盘上记录的信息是利用激光平行度好的特点D.当观察者向静止的声源运动时,接收到的声音频率小于声源发出的频率10.以下对物理学知识的相关叙述,其中正确的是()A.用透明的标准样板和单色光检查平面的平整度是利用了光的偏振B.变化的电场周围不一定产生变化的磁场C.交警通过发射超声波测量车速是利用了波的干涉原理D.狭义相对论认为,在惯性参照系中,光速与光源、观察者间的相对运动无关参考答案:1.答案: B解析:2.答案: ACD解析:激光特点,偏振是横波特有的现象3.答案: 90°解析:要想使透射光强度最弱,两偏振片的透振方向应互相垂直,即夹角为90°。
人教版高中物理选修3-4同步练习:《光的偏振》(1)(含答案)
光的偏振同步练习(一)
1、光源发出的光,沿各个方向振动的_________叫自然光,_______、________等普通光源发出的光是自然光,振动方向____________光叫偏振光.
2、照相机镜头前装一片偏振滤光片可,使相片更清晰。
3.两个偏振片紧靠在一起将它们放在一盏灯的前面以致没有光通过.如果将其中的一片旋转180度,在旋转过程中,将会产生下述的哪一种现象()
A、透过偏振片的光强先增强,然后又减少到零
B、透过偏振片的光强光增强,然后减少到非零的最小值
C、透过偏振片的光强在整个过程中都增强
D、透过偏振片的光强先增强,再减弱,然后又增强
4、为什么说偏振现象说明光是横波?
5、如何用实验的方法证明太阳光是横波?
6、什么是自然光?什么是偏振光?
7、什么是光的偏振?
8、如何通过折射得到偏振光?
9、了解偏振光在生活中的应用。
答案:
1、光波强度都相同,太阳,电灯,一定
2、减弱反射光
3.A分析:起偏器和检偏器的偏振方向垂直时,没有光通过;偏振方向平行时,光强度达到最大当其中一个偏振片转动180度的过程中,两偏振片的方向由垂直到平行再到垂直,所以通过的光先增强,又减小到零,选项A 正确.
4、略
5、略
6、自然光:包含着在垂直于传播方向上沿一切方向振动的光,而且沿着各个方向振动的光波的强度都相同,这种光叫自然光.偏振光:自然光在通过一个偏振片后,在垂直于传播方向的平面上,只沿着与偏振片的透振方向一致的特定的方向振动,这种光叫偏振光.
7、略
8、略
9、略。
光的偏振习题(附答案)
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+ 当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e 光在方解石中的振动方向与光轴相同, o 光在方解石中的振动方向与光轴垂直, 所以e 光和o 光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但 v e > v o ,所以e 波包围o 波.由图可知, 本题中对于e 光仍满足折射定律sin sin e e i n γ=由于 e 光在棱镜内折射线与底边平行,30e γ=︒ 0sin sin 30 1.490.50.745e i n ==⨯=入射角 4810o i '= 又因为sin sin o o i n γ= sin sin 4810sin 0.4491.66o o o i n γ'∴===故o 光折射角2640o o γ'=12. 有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏 振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I 0. 求此自然光通过这一系统后, 出射光的光强.解:经过P 1, 光强由I 0变为I 0/2, P 2以ω转动, P 1, P 2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1, 两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解: 2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe d n n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396= 三. 证明与问答题19. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n =121tg 571017n n θ-'''== 由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.20. (问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。
光的偏振习题答案及解法
光的偏振习题答案及解法————————————————————————————————作者:————————————————————————————————日期:光的偏振习题、答案及解法一、 选择题1. 在双缝干涉实验中,用单色自然光照色双缝,在观察屏上会形成干涉条纹若在两缝封后放一个偏振片,则(B ) A 、 干涉条纹的间距不变,但明纹的亮度加强; B 、 干涉条纹的间距不变,但明纹的亮度减弱; C 、干涉条纹的间距变窄,但明纹的亮度减弱; D 、 没有干涉条纹。
2.一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片,若以入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的7倍,那么入射光束中自然光与线偏振光的光强比值为(B ) A 、 21 ; B 、 31 ; C 、 41 ; D 、 51 。
参考答案:()θηη200cos 12-+=I I I ()ηη-+=1200max I I I η20min I I = ()7212000minmax=-+=ηηηI I I I I ηη-=27 31=η 3.若一光强为0I 的线偏振光先后通过两个偏振片1P 和2P 。
1P 和2P 的偏振化方向与原入射光矢量振动方向的夹角分别为090和α,则通过这两个偏振片后的光强I (A ) A 、)2(sin 4120a I ; B 、 0 ; C 、 a I 20cos 41 ; D 、 a I 20sin 41。
参考答案: ⎪⎭⎫ ⎝⎛-=απα2cos cos 220I I )2(sin 4120a I I =4.一光强为0I 的自然光垂直通过两个偏振片,且两偏振片偏振化方向成030则穿过两个偏振片后的光强为(D )A 、 430I ;B 、 40I ;C 、 80I ;D 、 830I 。
参考答案: 836cos 2cos 202020II I I ===πα 5.一束光强为0I 自然光,相继通过三个偏振片321P P 、、P 后,出射光的光强为8I I =。
光的偏振计算题及答案
《光的偏振》计算题1. 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分I 1仍不变. 1分2. 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分1211cos 21αI I =', 2222cos 21αI I =' 2分 按题意,21I I '=',于是 222121cos 21cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分3. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏振片后的光强 I 1=I 0 / 2. 1分 透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ 2分 透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ 3分 由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5° 2分4. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230° 2分=3 I 0 / 4 1分透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16 2分(2) 原入射光束换为自然光,则I 1=I 0 / 2 1分I 2=I 1cos 260°=I 0 / 8 2分5.强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度. 解:透过第一个偏振片后的光强为2001cos 212121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=I I I 30° 2分 =5I 0 / 8 1分 透过第二个偏振片后的光强I 2=( 5I 0 / 8 )cos 260° 1分=5I 0 / 32 1分6.两个偏振片P 1,P 2叠在一起,一束强度为I 0的光垂直入射到偏振片上.已知该入射光由强度相同的自然光和线偏振光混合而成,且入射光穿过第一个偏振片P 1后的光强为0.716 I 0;当将P 1抽出去后,入射光穿过P 2后的光强为0.375I 0.求P 1、P 2的偏振化方向之间的夹角.解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ1,已知透过P 1后的光强I 1=0.716I 0,则I 1=0.716 I 0=0.5(I 0 / 2)+0.5(I 0 cos 2θ1) 3分cos 2θ1=0.932 θ1=15.1°(≈15°) 1分设θ2为入射光中线偏振光的光矢量振动方向与P 2的偏振化方向之间的夹角.已知入射光单独穿过P 2后的光强I 2=0.375I 0,则由 ()22000cos 212121375.0θI I I +⎪⎭⎫ ⎝⎛= 得 θ2=60° 2分 以α 表示P 1、P 2的偏振化方间的夹角,α有两个可能值α=θ2+θ1=75° 2分或α=θ2-θ1=45° 2分7. 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.一束强度为I 0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I 0之比为9 /16,试求入射光中线偏振光的光矢量方向. 解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ,透过P 1后的光强I 1为 ()θ2001cos 212121I I I +⎪⎭⎫ ⎝⎛= 2分透过P 2后的光强I 2为 I 2=I 1 cos 2 30°()2022/32/cos 21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=I θ 3分 I 2 / I 1=9 / 16cos 2 θ=1 2分 所以 θ=0°即入射光中线偏振光的光矢量振动方向与P 1的偏振化方向平行.1分8.由两个偏振片(其偏振化方向分别为P 1和P 2)叠在一起,P 1与P 2的夹角为α.一束线偏振光垂直入射在偏振片上.已知入射光的光矢量振动方向与P 2的夹角为A (取锐角),A 角保持不变,如图.现转动P 1,但保持P 1与E ϖ、P 2的夹角都不超过A (即P 1夹在E ϖ和P 2之间,见图).求α等于何值时出射光强为极值;此极值是极大还是极小?解:入射光振动方向E ϖ与P 1、P 2的关系如图.出射光强为 ()αα2202cos cos -=A I I 3分 由三角函数“积化和差”关系,得20221cos 21cos 41⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=αA I I A 3分 因为A 为锐角,α≤A ,所以A A 2121≤-α (见图).所以 021cos 21cos >≥⎪⎭⎫ ⎝⎛-A A α 所以,I 2只在α = A / 2处取得极值,且显然是极大值. 2分 (用求导数的办法找极值点也可以)9.两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?解:以P 1、P 2表示两偏振化方向,其夹角记为θ,为了振动方向转过90°,入射光振动方向E ϖ必与P 2垂直,如图. 2分设入射光强为I 0,则出射光强为I 2=I 0 cos 2(90°- θ ) cos 2θ ()θθθ2sin 4/cos sin 20220I I == 3分当2θ=90°即θ=45°时,I 2取得极大值,且 I 2max =I 0 / 4, 2分 即 I 2max / I 0=1 / 4 1分10.两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?解:设I 0为入射光强,I 为连续穿过P 1、P 2后的透射光强.I =I 0cos 230°cos 2α 2分 显然,α=0时为最大透射光强,即I max =I 0 cos 230°=3I 0 / 4 1分 由 I 0cos 230°cos 2α =I max / 4 可得 cos 2α 1 / 4=, α=60° 2分P 1P 2 E ϖθ1 2 ϖ1 211.两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的2 / 3,求(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向的夹角θ为多大?(2) 连续穿过P 1、P 2后的透射光强与入射光强之比.解:设I 0为自然光强.由题意知入射光强为2 I 0. 1分(1) I 1=2·2 I 0 / 3=0.5 I 0+I 0cos 2θ4 / 3=0.5+cos 2θ所以 θ=24.1° 2分(2) I 1= (0.5 I 0+I 0 cos 224.1°)=2(2 I 0) / 3,I 2=I 1cos 230°=3 I 1 / 4所以I 2 / 2I 0 = 1 / 2 2分12.三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.解:(1) 连续穿过三个偏振片之后的光强为 I =0.5I 0cos 2α cos 2(0.5π-α ) 2分 =I 0sin 2(2α) / 8 1分(2) 画出曲线 2分13.如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角). 解:(1) 经P 1后,光强I 1=21I 0 1分 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ 1分 ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 01分 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 2分 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16 2分得 cos α=1 / 2 即 α =60° 1分I I 0 / 8π/4π/23π/45π/4π3π/2α I 0I P P P14.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33; 1分tg i 2=n 2 / n 1=1.57 / 1.333, 2分 由此得 i 1=53.12°, 1分 i 2=48.69°. 1分 由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π 2分 整理得 θ=i 2-r由布儒斯特定律可知,r =π / 2-i 1 2分 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8° 1分15.一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.解:设n 2为玻璃的折射率,由布儒斯特定律可得 n 2=1.33 tg49.5°3分=1.56 2分16.一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?解:(1) 由布儒斯特定律 tg i 0=1.33得 i 0=53.1°此 i b 即为所求的入射角 3分(2) 若以r 表示折射角,由布儒斯特定律可得r =0.5π-i 0=36.9° 2分17.一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.解:设此不透明介质的折射率为n ,空气的折射率为1.由布儒斯特定律可得n =tg 56°=1.483 2分 将此介质片放入水中后,由布儒斯特定律tg i 0=n / 1.33=1.112 i 0=48.03° (=48°2') 3分此i 0即为所求之起偏角.水玻璃(资料素材和资料部分来自网络,供参考。
6_6光的偏振习题
Dy 0 Dx0 1 , 2
此图D1, D2, D,是左旋圆偏振波
补充:用矢量波的波函数和Jones列矩阵
按照 D 矢量的波函数:
Dx Dx0 cos(kz t x0 ) Dy Dy0 cos(kz t y0 )
复指数函数形式:
Dx Dx0 exp j ( kz t ) x 0 Dy Dy0 exp j ( kz t ) y 0
都是线偏振光, 光轴
一般 o e ,光轴除外。
正晶体:石英 .no 1.544 ne 1.553 单轴 负晶体 : 方解石.no 1.658 ne 1.486 双轴
四、偏振器件:
⒈尼科耳棱镜:可以作为起偏器,也可以作为检偏器。自然光通过平行尼 科耳时透射光最强;通过正交尼科耳时透射光强为0。 1 2 sin ( n o n e ) tg ⒉沃拉斯顿棱镜: 1 2 2 (n n )d . d — 晶片的厚度。 ⒊波片: ( 2 k 1 ) , ( 2 k 1 ) , ① 4 片: 4 2 能把圆偏振光→线偏振光;也能使线偏振光→椭圆、圆、线偏振光。
2 1 π (2) A2 y x A1
y
A2
o
A1
x
(2)
ˆD0 coskz t ˆ Di jD0 sinkz t
解:
D iD0 cos kz t jD0 cos kz t 2
Dy 0 Dx0 1 , 2
偏振光和偏振器件的琼斯矩阵
一、偏振光的矩阵表示 1、沿z方向传播单色偏振光矩阵表示 因为: 因此: 则有: 最后有:
第九章 光的偏振习题
第九章 光的偏振习题一、择填空题1、按照小说《隐形人》中所述,其主人公发明了一种特殊的化合物,喝了它以后,他就成为光的完全透明体,完全隐形了。
可是小说的作者忽略了一个重要的事实,那就是这位隐形人也看不见周围的东西,这是因为(A )光束正好干涉相消;(B )偏振光的布儒斯特定理;(C )透明的视网膜无法吸收光线;(D )入射光的全反射;(E )对于不同波长的入射光,眼睛的焦距会发生变化。
答案[ ]2、如图1所示,一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射。
已知反射光是完全偏振光,那么折射角r 的值为。
3、(1)如图2a 所示 ,一束自然光入射在方解石晶体的表面上,入射光线与光轴成一定角度。
这时将有 条光线从方解石透射出来;(2)如果把方解石切割成等厚的A 、B 两块,并平行地移开很短一段距离,如图2b 所示,此时光线通过这两块方解石后将有 条光线射出来;(3)在图b 中如把B 块绕光线转过一个角度,此时将有条光线从B 块射出来。
4、将自然光入射到两个主截面互成60°角的尼科耳棱镜上,可得到一偏振光。
若在两个尼科耳之间再放入一块偏振片,使其偏振化方向和两尼科耳的主截面各成30°角,则放入偏振片前入射光强与出射光强之比是 ;放入偏振片前与放入偏振片后两次出射光强之比是 。
5、一单色光通过偏振片P 投射到屏上形成亮点,若将P 以入射光线为轴旋转一周,发图2A B (b)(a)图1i 0现屏上亮点产生明暗交替的变化,由此,判定入射光是A .线偏振光;B .圆偏振光;C .部分偏振光;D .自然光。
答案 [ ]6、波长为λ的平行单色光垂直入射到缝宽为a 的单缝上,在缝后凸透镜的焦平面处有一观察屏,如图3所示。
若在缝前盖上两块偏振片P 1和P 2,两块偏振片各遮盖一半缝宽,而且P 1的偏振化方向与缝平行,而P 2的偏振化方向与缝垂直,试问:(1)屏上的衍射条纹宽度[A] 增为两倍; [B] 减为一半; [C] 不变;答案 [ ](2)自然光通过偏振片后,光强[A] 增强; [B] 减弱; [C] 不变。
光的偏振习题(附答案)-(1)汇编
光的偏振(附答案)填空题1. 一束光垂直入射在偏振片P上,以入射光为轴旋转偏振片,观察通过偏振片P 的光强的变化过程•若入射光是自然光或圆偏振光,则将看到光强不变;若入射光是线偏振光,则将看到明暗交替变化,有时出现全暗;若入射光是部_ 分偏振光或椭圆偏振光,则将看到明暗交替变化,但不出现全暗•2. 圆偏振光通过四分之一波片后,出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的14倍•4. 两个偏振片叠放在一起,强度为I o的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度, 若在两片之间再插入一片偏振片,其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I o.5. 某种透明媒质对于空气的临界角(指全反射)等于45°,贝比从空气射向此媒质的布儒斯特角是54.7°,就偏振状态来说反射光为完全偏振光,反射光矢量的振动方向垂直入射面,透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1),当折射角为30°时,反射光是完全偏振光,则此玻璃的折射率等于1.732.7. 一束钠自然黄光(入=589.3 X9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm,对钠黄光方解石的主折射率n o=1.6584 n e =1.4864, 则o、e两光透过晶片后的光程差为86um。
、e两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中,若用单色自然光照射狭缝S,在屏幕上能看到干涉条纹.若在双缝S1和S2后分别加一个同质同厚度的偏振片P1、P2,则当P1与P2的偏振化方向互相平行或接近平行时,在屏幕上仍能看到清晰的干涉条纹.计算题9. 有一束自然光和线偏振光组成的混合光,当它通过偏振片时改变偏振片的取向,发现透射光强可以变化7倍.试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为10,其中线偏振光的光强为101,自然光的光强为I 02.在该光束透过偏振片后,其光强由马吕斯定律可知:= I°1COSJ 」|2当口=0时,透射光的光强最大当「二二/2时,透射光的光强最小入射总光强为:I^ I 01 I 0210. 如图所示,一个晶体偏振器由两个直角棱镜组成(中间密合)•其中一个直 角棱镜由方解石晶体制成,另一个直角棱镜由玻璃制成,其折射率n 等于方 解石对e 光的折射率n e . 一束单色自然光垂直入射,试定性地画出折射光线, 并标明折射光线光矢量的振动方向.(方解石对o 光和e 光的主折射率分别 为 1.658 和 1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率,因此e 光进入方解石 后传播方向不变.而n=n e >n 。
光的偏振计算题及答案
《光的偏振》计算题1. 将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45︒和90︒角.(1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态.(2) 如果将第二个偏振片抽走,情况又如何?解:(1) 自然光通过第一偏振片后,其强度 I 1 = I 0 / 2 1分通过第2偏振片后,I 2=I 1cos 245︒=I 1/ 4 2分 通过第3偏振片后,I 3=I 2cos 245︒=I 0/ 8 1分 通过每一偏振片后的光皆为线偏振光,其光振动方向与刚通过的偏振片的偏振化方向平行. 2分(2) 若抽去第2片,因为第3片与第1片的偏振化方向相互垂直,所以此时I 3 =0. 1分I 1仍不变. 1分2. 两个偏振片叠在一起,在它们的偏振化方向成α1=30°时,观测一束单色自然光.又在α2=45°时,观测另一束单色自然光.若两次所测得的透射光强度相等,求两次入射自然光的强度之比.解:令I 1和I 2分别为两入射光束的光强.透过起偏器后,光的强度分别为I 1 / 2和I 2 / 2马吕斯定律,透过检偏器的光强分别为 1分1211cos 21αI I =', 2222cos 21αI I =' 2分 按题意,21I I '=',于是 222121cos 21cos 21ααI I = 1分 得 3/2cos /cos /221221==ααI I 1分3. 有三个偏振片叠在一起.已知第一个偏振片与第三个偏振片的偏振化方向相互垂直.一束光强为I 0的自然光垂直入射在偏振片上,已知通过三个偏振片后的光强为I 0 / 16.求第二个偏振片与第一个偏振片的偏振化方向之间的夹角.解:设第二个偏振片与第一个偏振片的偏振化方向间的夹角为θ.透过第一个偏振片后的光强 I 1=I 0 / 2. 1分 透过第二个偏振片后的光强为I 2,由马吕斯定律,I 2=(I 0 /2)cos 2θ 2分 透过第三个偏振片的光强为I 3,I 3 =I 2 cos 2(90°-θ ) = (I 0 / 2) cos 2θ sin 2θ = (I 0 / 8)sin 22θ 3分 由题意知 I 3=I 2 / 16所以 sin 22θ = 1 / 2,()2/2sin 211-=θ=22.5° 2分4. 将两个偏振片叠放在一起,此两偏振片的偏振化方向之间的夹角为o 60,一束光强为I 0的线偏振光垂直入射到偏振片上,该光束的光矢量振动方向与二偏振片的偏振化方向皆成30°角.(1) 求透过每个偏振片后的光束强度;(2) 若将原入射光束换为强度相同的自然光,求透过每个偏振片后的光束强度.解:(1) 透过第一个偏振片的光强I 1I 1=I 0 cos 230° 2分=3 I 0 / 4 1分透过第二个偏振片后的光强I 2, I 2=I 1cos 260°=3I 0 / 16 2分(2) 原入射光束换为自然光,则I 1=I 0 / 2 1分I 2=I 1cos 260°=I 0 / 8 2分5.强度为I 0的一束光,垂直入射到两个叠在一起的偏振片上,这两个偏振片的偏振化方向之间的夹角为60°.若这束入射光是强度相等的线偏振光和自然光混合而成的,且线偏振光的光矢量振动方向与此二偏振片的偏振化方向皆成30°角,求透过每个偏振片后的光束强度. 解:透过第一个偏振片后的光强为2001cos 212121⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=I I I 30° 2分 =5I 0 / 8 1分 透过第二个偏振片后的光强I 2=( 5I 0 / 8 )cos 260° 1分=5I 0 / 32 1分6.两个偏振片P 1,P 2叠在一起,一束强度为I 0的光垂直入射到偏振片上.已知该入射光由强度相同的自然光和线偏振光混合而成,且入射光穿过第一个偏振片P 1后的光强为0.716 I 0;当将P 1抽出去后,入射光穿过P 2后的光强为0.375I 0.求P 1、P 2的偏振化方向之间的夹角.解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ1,已知透过P 1后的光强I 1=0.716I 0,则I 1=0.716 I 0=0.5(I 0 / 2)+0.5(I 0 cos 2θ1) 3分cos 2θ1=0.932 θ1=15.1°(≈15°) 1分设θ2为入射光中线偏振光的光矢量振动方向与P 2的偏振化方向之间的夹角.已知入射光单独穿过P 2后的光强I 2=0.375I 0,则由 ()22000cos 212121375.0θI I I +⎪⎭⎫ ⎝⎛= 得 θ2=60° 2分 以α 表示P 1、P 2的偏振化方间的夹角,α有两个可能值α=θ2+θ1=75° 2分或α=θ2-θ1=45° 2分7. 两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.一束强度为I 0的光垂直入射到偏振片上,已知该入射光由强度相同的自然光和线偏振光混合而成,现测得连续透过两个偏振片后的出射光强与I 0之比为9 /16,试求入射光中线偏振光的光矢量方向. 解:设入射光中线偏振光的光矢量振动方向与P 1的偏振化方向之间的夹角为θ,透过P 1后的光强I 1为 ()θ2001cos 212121I I I +⎪⎭⎫ ⎝⎛= 2分透过P 2后的光强I 2为 I 2=I 1 cos 2 30°()2022/32/cos 21⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=I θ 3分 I 2 / I 1=9 / 16cos 2 θ=1 2分 所以 θ=0°即入射光中线偏振光的光矢量振动方向与P 1的偏振化方向平行.1分8.由两个偏振片(其偏振化方向分别为P 1和P 2)叠在一起,P 1与P 2的夹角为α.一束线偏振光垂直入射在偏振片上.已知入射光的光矢量振动方向与P 2的夹角为A (取锐角),A 角保持不变,如图.现转动P 1,但保持P 1与E 、P 2的夹角都不超过A (即P 1夹在E 和P 2之间,见图).求α等于何值时出射光强为极值;此极值是极大还是极小?解:入射光振动方向E 与P 1、P 2的关系如图.出射光强为 ()αα2202cos cos -=A I I 3分 由三角函数“积化和差”关系,得20221cos 21cos 41⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=αA I I A 3分 因为A 为锐角,α≤A ,所以A A 2121≤-α (见图).所以 021cos 21cos >≥⎪⎭⎫ ⎝⎛-A A α 所以,I 2只在α = A / 2处取得极值,且显然是极大值. 2分 (用求导数的办法找极值点也可以)9.两个偏振片叠在一起,欲使一束垂直入射的线偏振光经过这两个偏振片之后振动方向转过了90°,且使出射光强尽可能大,那么入射光振动方向和两偏振片的偏振化方向之间的夹角应如何选择?这种情况下的最大出射光强与入射光强的比值是多少?解:以P 1、P 2表示两偏振化方向,其夹角记为θ,为了振动方向转过90°,入射光振动方向E 必与P 2垂直,如图. 2分设入射光强为I 0,则出射光强为I 2=I 0 cos 2(90°- θ ) cos 2θ ()θθθ2sin 4/cos sin 20220I I == 3分当2θ=90°即θ=45°时,I 2取得极大值,且 I 2max =I 0 / 4, 2分 即 I 2max / I 0=1 / 4 1分10.两个偏振片P 1、P 2叠在一起,一束单色线偏振光垂直入射到P 1上,其光矢量振动方向与P 1的偏振化方向之间的夹角固定为30°.当连续穿过P 1、P 2后的出射光强为最大出射光强的1 / 4时,P 1、P 2的偏振化方向夹角α是多大?解:设I 0为入射光强,I 为连续穿过P 1、P 2后的透射光强.I =I 0cos 230°cos 2α 2分 显然,α=0时为最大透射光强,即I max =I 0 cos 230°=3I 0 / 4 1分 由 I 0cos 230°cos 2α =I max / 4 可得 cos 2α 1 / 4=, α=60° 2分P 1P 2 E θ1 21 211.两个偏振片P 1、P 2叠在一起,其偏振化方向之间的夹角为30°.由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上.已知穿过P 1后的透射光强为入射光强的2 / 3,求(1) 入射光中线偏振光的光矢量振动方向与P 1的偏振化方向的夹角θ为多大?(2) 连续穿过P 1、P 2后的透射光强与入射光强之比.解:设I 0为自然光强.由题意知入射光强为2 I 0. 1分(1) I 1=2·2 I 0 / 3=0.5 I 0+I 0cos 2θ4 / 3=0.5+cos 2θ所以 θ=24.1° 2分(2) I 1= (0.5 I 0+I 0 cos 224.1°)=2(2 I 0) / 3,I 2=I 1cos 230°=3 I 1 / 4所以I 2 / 2I 0 = 1 / 2 2分12.三个偏振片P 1、P 2、P 3顺序叠在一起,P 1、P 3的偏振化方向保持相互垂直,P 1与P 2的偏振化方向的夹角为α,P 2可以入射光线为轴转动.今以强度为I 0的单色自然光垂直入射在偏振片上.不考虑偏振片对可透射分量的反射和吸收.(1) 求穿过三个偏振片后的透射光强度I 与α角的函数关系式;(2) 试定性画出在P 2转动一周的过程中透射光强I 随α角变化的函数曲线.解:(1) 连续穿过三个偏振片之后的光强为 I =0.5I 0cos 2α cos 2(0.5π-α ) 2分 =I 0sin 2(2α) / 8 1分(2) 画出曲线 2分13.如图,P 1、P 2为偏振化方向相互平行的两个偏振片.光强为I 0的平行自然光垂直入射在P 1上. (1) 求通过P 2后的光强I . (2) 如果在P 1、P 2之间插入第三个偏振片P 3,(如图中虚线所示)并测得最后光强I =I 0 / 32,求:P 3的偏振化方向与P 1的偏振化方向之间的夹角α (设α为锐角). 解:(1) 经P 1后,光强I 1=21I0 1分 I 1为线偏振光.通过P 2.由马吕斯定律有I =I 1cos 2θ 1分 ∵ P 1与P 2偏振化方向平行.∴θ=0.故 I =I 1cos 20°=I 1=21I 01分 (2) 加入第三个偏振片后,设第三个偏振片的偏振化方向与第一个偏振化方向间的夹角为α.则透过P 2的光强αα2202cos cos 21I I =α40cos 21I = 2分 由已知条件有 32/cos 21040I I =α ∴ cos 4α=1 / 16 2分得 cos α=1 /2 即 α =60° 1分I 014.有一平面玻璃板放在水中,板面与水面夹角为θ (见图).设水和玻璃的折射率分别为1.333和1.517.已知图中水面的反射光是完全偏振光,欲使玻璃板面的反射光也是完全偏振光,θ 角应是多大?解:由题可知i 1和i 2应为相应的布儒斯特角,由布儒斯特定律知tg i 1= n 1=1.33; 1分tg i 2=n 2 / n 1=1.57 / 1.333, 2分 由此得 i 1=53.12°, 1分 i 2=48.69°. 1分 由△ABC 可得 θ+(π / 2+r )+(π / 2-i 2)=π 2分 整理得 θ=i 2-r由布儒斯特定律可知, r =π / 2-i 1 2分 将r 代入上式得θ=i 1+i 2-π / 2=53.12°+48.69°-90°=11.8° 1分15.一束自然光自水(折射率为1.33)中入射到玻璃表面上(如图).当入射角为49.5°时,反射光为线偏振光,求玻璃的折射率.解:设n 2为玻璃的折射率,由布儒斯特定律可得 n 2=1.33 tg49.5°3分=1.56 2分16.一束自然光自空气入射到水(折射率为1.33)表面上,若反射光是线偏振光,(1) 此入射光的入射角为多大?(2) 折射角为多大?解:(1) 由布儒斯特定律 tg i 0=1.33得 i 0=53.1°此 i b 即为所求的入射角 3分(2) 若以r 表示折射角,由布儒斯特定律可得r =0.5π-i 0=36.9° 2分17.一束自然光由空气入射到某种不透明介质的表面上.今测得此不透明介质的起偏角为 56°,求这种介质的折射率.若把此种介质片放入水(折射率为1.33)中,使自然光束自水中入射到该介质片表面上,求此时的起偏角.解:设此不透明介质的折射率为n ,空气的折射率为1.由布儒斯特定律可得n =tg 56°=1.483 2分 将此介质片放入水中后,由布儒斯特定律tg i 0=n / 1.33=1.112i 0=48.03° (=48°2') 3分此i 0即为所求之起偏角.水玻璃。
高考物理复习 考题精选 光的偏振
拾躲市安息阳光实验学校高中物理考题精选(117)——光的偏振1、夜晚,汽车前灯发出的强光将迎面驶来的汽车司机照射得睁不开眼睛,影响行车安全.若将汽车前灯玻璃和汽车前窗玻璃都改用偏振玻璃,使双方司机都看不见对方炫目的灯光,但能看清自己车灯发出的光所照亮的物体,所有的汽车前窗玻璃、前灯玻璃的透振方向应该是( )A.前窗玻璃的透振方向是竖直的,前灯玻璃的透振方向是水平的B.前窗玻璃的透振方向是竖直的,前灯玻璃的透振方向是竖直的C.前窗玻璃的透振方向是斜向右上45°,前灯玻璃的透振方向是斜向左上45°D.前窗玻璃的透振方向和前灯玻璃的透振方向都是斜向右上45°答案 D 解析:对A选项,尽管使双方司机都看不见对方炫目的灯光,但也看不清自己车灯发出的光所照亮的物体;对C选项,双方司机恰能看见对方炫目的灯光,而看不清自己车灯发出的光所照亮的物体;B选项依然能看到对方炫目的灯光;只有D满足要求.2、如图所示,让灯光通过偏振片P,在偏振片P的后面再放置另一个偏振片Q,转动Q观察通过两块偏振片的透射光.当透射的光线最强时,记录P、Q放置的位置关系,如果在这一位置处将P转动90°,在Q的另一侧观察到的现象是( )A.射出光线的强度保持不变B.有光线射出,强度变弱C.有光线射出,强度变强D.无光线射出答案 D 解析:当P、Q的透光方向相同时,透过的光线最强,当P、Q 的透光方向垂直时,光线不能透过两个偏振片.透射光最强时,P、Q的透光方向相同,P转动90°,P、Q的透光方向垂直,无光线透过偏振片Q,选项D 正确.3、以下关于偏振片和增透膜的说法正确的是( )A.拍摄水下景物时,为减小光在水面处的反射,使景物更加清晰,可在照相机镜头前加一增透膜B.为减小光在照相机镜面处的反射,使景物更加清晰,可在照相机镜头前加一偏振片C.照相机的增透膜厚度通常为λ/2D.3D立体电影充分利用了光的偏振原理答案 D解析:水面的反射光是偏振光,减弱偏振光的影响,应该加偏振片,故选项A 错误;照相机镜头前应加增透膜,以减小反射光,故选项B错误;增透膜的厚度通常为绿光在增透膜这种介质中的波长的,故选项C错误;3D立体电影充分利用了光的偏振原理,故选项D正确。
人教版高中物理选择性必修第一册第四章光4-6光的偏振激光练习含答案
第四章光6 光的偏振激光基础过关练题组一光的偏振1.(2024甘肃天水第一中学月考)关于光的偏振现象,下列说法正确的是()A.自然界的光都是自然光B.自然光通过一个偏振片后成为偏振光,偏振光再通过一个偏振片后又还原为自然光C.光发生偏振现象说明光波是横波D.光学镜头上的增透膜利用了光的偏振现象2.(多选题)(2024山东济南实验中学月考)下面关于光的偏振现象及应用说法正确的是() A.自然光通过起偏振器后成为偏振光,利用检偏振器可以检验出偏振光的振动方向B.立体电影利用了光的干涉现象C.茶色眼镜利用了光的偏振现象D.拍摄日落时水面下的景物时,在照相机镜头前装一个偏振片可减弱水面反射光的影响3.(多选题)如图所示,一束自然光照射到偏振片上,偏振片右侧放置光屏,则图中光屏上发亮的有(偏振片上用箭头表示其透振方向)()4.(多选题)(2023福建泉州实验中学期末)旋光仪测糖溶液浓度原理:偏振光通过糖溶液后,迎着光看,偏振方向以传播方向为轴,旋转角θ,称“旋光角”,θ与糖溶液浓度有关,将θ测量值与标准值比较能确定含糖量。
如图,有自然光源S,偏振片A、B,转动B使O处光最强,然后把被测样品P置于A、B间,则()A.O处光强明显减弱B.O处光强不会明显减弱C.B转一角度使O处光强最大,B转过角度θD.A转一角度使O处光强最大,A转过角度θ题组二激光5.(多选题)(2024北京海淀人大附中期末)有关激光的特点与应用,下列说法正确的是() A.激光是一种人工产生的相干光,全息照相技术利用了激光相干性好的特点B.激光具有良好的单色性,光纤通信是激光和光导纤维相结合的产物C.激光在医学上被当做“光刀”使用,但其亮度还不足以在金属上打孔、切割、焊接D.用激光从各个方向照射参加核聚变的物质,利用光压可使反应物质“挤”在一起发生反应6.(2024重庆实验中学月考)2023年诺贝尔物理学奖颁发给在“为研究物质中的电子动力学,而产生阿秒激光的实验方法”方面作出贡献的三位科学家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光的偏振(附答案)一. 填空题1. 一束光垂直入射在偏振片P 上,以入射光为轴旋转偏振片,观察通过偏振片P的光强的变化过程. 若入射光是自然光或圆偏振光, 则将看到光强不变;若入射光是线偏振光, 则将看到明暗交替变化, 有时出现全暗;若入射光是部分偏振光或椭圆偏振光, 则将看到明暗交替变化, 但不出现全暗.2. 圆偏振光通过四分之一波片后, 出射的光一般是线偏振光.3. 要使一束线偏振光通过偏振片之后振动方向转过90度角,则至少需要让这束光通过2块理想偏振片,在此情况下,透射光强最大是原来的1/4 倍.4. 两个偏振片叠放在一起,强度为I 0的自然光垂直入射其上,若通过两个偏振片后的光强为I/8,则此两偏振片的偏振化方向间的夹角为(取锐角)是60度,若在两片之间再插入一片偏振片, 其偏振化方向间的夹角(取锐角)相等,则通过三个偏振片后的投射光强度为9/32 I 0.5. 某种透明媒质对于空气的临界角(指全反射)等于450, 则光从空气射向此媒质的布儒斯特角是54.70, 就偏振状态来说反射光为完全偏振光, 反射光矢量的振动方向垂直入射面, 透射光为部分偏振光.6. 一束自然光从空气透射到玻璃表面上(空气折射率为1), 当折射角为300时, 反射光是完全偏振光, 则此玻璃的折射率等于1.732.7. 一束钠自然黄光(λ=589.3×10-9m)自空气(设n=1)垂直入射方解石晶片的表面,晶体厚度为0.05 mm, 对钠黄光方解石的主折射率n 0=1.6584、n e =1.4864, 则o 、e 两光透过晶片后的光程差为 8.6 μm , o 、e 两光透过晶片后的相位差为91.7 rad.8. 在杨氏双缝干涉实验中, 若用单色自然光照射狭缝S, 在屏幕上能看到干涉条纹. 若在双缝S 1和 S 2后分别加一个同质同厚度的偏振片P 1、P 2, 则当P 1与P 2的偏振化方向互相平行或接近平行时, 在屏幕上仍能看到清晰的干涉条纹.二. 计算题9. 有一束自然光和线偏振光组成的混合光, 当它通过偏振片时改变偏振片的取向, 发现透射光强可以变化7倍. 试求入射光中两种光的光强度各占总入射光强的比例.解:设入射光的光强为0I , 其中线偏振光的光强为01I ,自然光的光强为02I .在该光束透过偏振片后, 其光强由马吕斯定律可知:201021cos 2I I I α=+当α=0时, 透射光的光强最大,max 010212I I I =+,当α=π/2时, 透射光的光强最小,min 0212I I =max min 0102020102177322I I I I I I I =∴+=⇒=入射总光强为:00102I I I =+01020031,44I I I I ∴== 10. 如图所示, 一个晶体偏振器由两个直角棱镜组成(中间密合). 其中一个直角棱镜由方解石晶体制成, 另一个直角棱镜由玻璃制成, 其折射率n 等于方解石对e 光的折射率n e . 一束单色自然光垂直入射, 试定性地画出折射光线, 并标明折射光线光矢量的振动方向. (方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:由于玻璃的折射率n 等于方解石对e 光的折射率, 因此e 光进入方解石后传播方向不变. 而n=n e >n o , 透过因此o 光进入方解石后的折射角<450, 据此得光路图.11. 用方解石割成一个正三角形棱镜, 其光轴与棱镜的棱边平行, 亦即与棱镜的正三角形横截面垂直. 如图所示. 今有一束自然光入射于棱镜, 为使棱镜内的 e 光折射线平行于棱镜的底边, 该入射光的入射角i 应为多少? 并在图中画出 o 光的光路并标明o 光和e 光的振动方向. 已知n e = 1.49 (主折射率, n o =1.66.解:由于e光在方解石中的振动方向与光轴相同, o光在方解石中的振动方向与光轴垂直, 所以e光和o光在方解石内的波面在垂直于光轴的平面中的截线都是圆弧. 但v e > v o ,所以e波包围o波.由图可知, 本题中对于e光仍满足折射定律sin sine ei nγ=由于e 光在棱镜内折射线与底边平行,30eγ=︒sin sin30 1.490.50.745ei n==⨯=入射角4810oi'=又因为sin sino oi nγ=sin sin4810sin0.4491.66oooinγ'∴===故o光折射角2640ooγ'=12.有三个偏振片堆叠在一起, 第一块与第三块的偏振化方向相互垂直, 第二块和第一块的偏振化方向相互平行, 然后第二块偏振片以恒定角速度ω绕光传播的方向旋转, 如图所示. 设入射自然光的光强为I0. 求此自然光通过这一系统后, 出射光的光强.解:经过P1, 光强由I0变为I0/2, P2以ω转动, P1, P2的偏振化方向的夹角θ=ωt202cos 2I I t ω=P 2以ω转动, P 2, P 3的偏振化方向的夹角β=π/2-ωt22203222000cos cos sin 2(2sin cos )sin 2(1cos 4)8816I I I t t I I I t t t t βωωωωωω==⋅===- 13. 有一束钠黄光以50角入射在方解石平板上, 方解石的光轴平行于平板表面且与入射面垂直, 求方解石中两条折射线的夹角.(对于钠黄光n o =1.658, n e =1.486)解: 在此题的特殊条件下, 可以用折射定律求出o 光, e 光折射线方向. 设i 为入射角, o γ和e γ分别为o 光和e 光的折射角.由折射定律:sin sin o o i n γ=sin sin e e i n γ=sin sin /0.463o o i n γ∴==, 27.5o o γ=sin sin /0.516e e i n γ==, 31.0o e γ=31.027.5 3.5o o o e o γγγ∆=-=-=14. 如图所示的各种情况下, 以非偏振光和偏振光入射两种介质的分界面, 图中i 0为起偏角, i 试画出折射光线和反射光线, 并用点和短线表示他们的偏振状态.15. 如图示的三种透光媒质I 、II 、III, 其折射率分别为n 1=1.33、n 2=1.50、n 3=1,两个交界面相互平行, 一束自然光自媒质I 中入射到I 与II 的交界面上, 若反射光为线偏振光,(1) 求入射角I;(2) 媒质II 、III 交界面上的反射光是不是线偏振光?为什么?解:(1)由布儒斯特定律:()21/ 1.50/1.33tgi n n ==4826o i '=令介质II 中的折射角为γ,则/241.56o i γπ=-=此γ在数值上等于在II 、III 界面上的入射角.若II 、III 界面上的反射光是线偏振光, 则必满足布儒斯特定律()032/ 1.0/1.5tgi n n ==033.69o i =因为0i γ≠, 故II 、III 界面上的反射光不是线偏振光.16. 一块厚0.025mm 的方解石晶片, 表面与光轴平行并放置在两个正交偏振片之间, 晶片的光轴与两偏振片的偏振化方向均成45度角. 用白光垂直入射到第一块偏振片上, 从第二块偏振片出射的光线中, 缺少了那些波长的光.(假定n o =1.658, n e =1.486为常数)解:2()C o e n n d πφλ∆=-2()o e n n d πφπλ⊥∆=-+ 045α=相干相消:(21)k φπ⊥∆=+ 缺少的波长:()o e n n dk λ-=, 6,7,8,9,10k =717,614,538,478,430nm λ=17. 一方解石晶体的表面与其光轴平行, 放在偏振化方向相互正交的偏振片之间, 晶体的光轴与偏振片的偏振化方向成450角. 试求:(1)要使λ = 500nm 的光不能透过检偏器, 则晶片的厚度至少多大?(2)若两偏振片的偏振化方向平行, 要使λ =500nm 的光不能透过检偏器, 晶片的厚度又为多少?(方解石对o 光和e 光的主折射率分别为1.658和1.486.)解:(1)如图(a )所示, 要使光不透过检偏器, 则通过检偏器的两束光须因干涉而相消, 通过P 2时两光的光程差为0()e n n d ∆=-对应的相位差为:02π()2πππe n n d δφλλ-∆=+=+由干涉条件:(21)π(0,1,2......)k k φ∆=+=02π()π(21)πe dn n k λ-+=+当k=1时, 镜片厚度最小, 为760510 2.910(m)()(1.658 1.486)e d n n λ--⨯===⨯-- (2)由图(b)可知当P 1, P 2平行时, 通过P 2的两束光没有附加相位差π, '02π()(21)π(0,1,2..)e d n n k k φλ∴∆=-=+=当k=0时, 此时晶片厚度最小,7065102()2(1.658 1.486)1.4510(m)e d n n λ--⨯==-⨯-=⨯18. 一束平行的线偏振光在真空中的波长为589nm, 垂直入射到方解石晶体上,晶体的光轴与表面平行, 如图所示. 已知方解石晶体对该单色o 光和e 光的折射率分别为1.658、1.486, 方解石晶体中寻常光的波长和非常光的波长分别等于多少?解:方解石晶体中o 光和e 光的波长分别为o o n λλ=658.1589=)nm (2.355=e e n λλ=486.1589=)nm (4.396=三.四. 证明与问答题19.20. (证明题)一块玻璃的折射率为2 1.55n =, 一束自然光以θ角入射到玻璃表面, 求θ角为多少时反射光为完全偏振光?证明在下表面反射并经上表面透射的光也是完全偏振光.解:根据布儒斯特定律201tg n i n = 121tg 571017n n θ-'''==由折射定律:12sin sin n n θγ=π/2θγ+=πsin sin()cos 2θγγ=-=γ角满足布儒斯特定律.21.22.23.24.25.27.(问答题)用自然光源以及起偏器和检偏器各一件, 如何鉴别下列三种透明片:偏振片、半波片和1/4波片?答:令自然光先通过起偏器, 然后分别通过三种透明片, 改变起偏器的透振方向, 观察现象, 出现消光的透明片为偏振片, 再通过检偏器, 改变检偏器的透振方向, 出现消光的透明片为半波片.。