二次根式易错题集知识讲解

合集下载

八年级数学下学期《二次根式》易错题集

八年级数学下学期《二次根式》易错题集

《二次根式》易错题集易错题知识点1.忽略二次根式有意义的条件,只有被开方数a≥0时,式子a才是二次根式;若a<0,则式子a就不能叫二次根式,即a无意义。

2.易把2a与2)(a混淆。

3.二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算法则计算。

4.对同类二次根式的定义理解不透。

5.二次根式的混合运算顺序不正确。

典型例题选择题1.当a>0,b>0时,n是正整数,计算的值是()A.(b﹣a)B.(a n b3﹣a n+1b2)C.(b3﹣ab2)D.(a n b3+a n+1b2)考点:二次根式的性质与化简。

分析:把被开方数分为指数为偶次方的因式的积,再开平方,合并被开方数相同的二次根式.解答:解:原式=﹣=a n b3﹣a n+1b2=(a n b3﹣a n+1b2).故选B.点评:本题考查的是二次根式的化简.最简二次根式的条件:被开方数中不含开得尽方的因式或因数.2.当x取某一范围的实数时,代数式的值是一个常数,该常数是()A.29 B.16 C.13 D.3考点:二次根式的性质与化简。

分析:将被开方数中16﹣x和x﹣13的取值范围进行讨论.解答:解:=|16﹣x|+|x﹣13|,(1)当时,解得13<x<16,原式=16﹣x+x﹣13=3,为常数;(2)当时,解得x<13,原式=16﹣x+13﹣x=29﹣2x,不是常数;(3)当时,解得x>16;原式=x﹣16+x﹣13=2x﹣29,不是常数;(4)当时,无解.故选D点评:解答此题,要弄清二次根式的性质:=|a|,分类讨论的思想.3.当x<﹣1时,|x﹣﹣2|﹣2|x﹣1|的值为()A.2 B.4x﹣6 C.4﹣4x D.4x+4考点:二次根式的性质与化简。

分析:根据x<﹣1,可知2﹣x>0,x﹣1<0,利用开平方和绝对值的性质计算.解答:解:∵x<﹣1∴2﹣x>0,x﹣1<0∴|x﹣﹣2|﹣2|x﹣1|=|x﹣(2﹣x)﹣2|﹣2(1﹣x)=|2(x﹣2)|﹣2(1﹣x)=﹣2(x﹣2)﹣2(1﹣x)=2.故选A.点评:本题主要考查二次根式的化简方法与运用:a>0时,=a;a<0时,=﹣a;a=0时,=0;解决此类题目的关键是熟练掌握二次根式、绝对值等考点的运算.4.化简|2a+3|+(a<﹣4)的结果是()A.﹣3a B.3a﹣C.a+D.﹣3a考点:二次根式的性质与化简;绝对值。

初中数学二次根式易错题汇编及答案解析

初中数学二次根式易错题汇编及答案解析

初中数学二次根式易错题汇编及答案解析一、选择题L 使代数式G+Q •有意义的。

的取值范围为(♦*)A.。

>0B, a<0 C. a = 0 D.不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a>0,且-a20. 所以a=0.故选C.2.如果c 力>0,。

+ 〃<0,那么给出下列各式① ② = ③ J^X 正确的是()A.①②B.②③C.①③【答案】B【解析】【分析】由题意得。

<0, /7<0,然后根据二次根式的性质和乘法法则逐个判断即可.【详解】解::他〉。

,•••6和JF 无意义,故①错误;昌护后j 故②正确-Jab x 旧=Jabx^ = y/a^ = \a\ =-a ,故③正确;故选:B.【点睛】本题考查了二次根式的性质和乘法运算,熟练掌握运算法则是解题的关键.3 .下列计算中,正确的是(厂访D.①②③ B.(a>0, b>0)D.U 痴=口,=: (a>0, b>0),故原题计算正确;Vb \b ab b2“8= 32? x J(48 + 32)(48-32)= — xl6乔=24下,故原题计算错误;2故选:B.【点睛】此题主要考查了二次根式的乘除法,关键是掌握计算法则.4 .实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简J 户一心+ [的结果为()试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可:•・•由数轴可知,b>O>a,且|a|>|b|,**• yfcr — + /?| = —Cl +(4 + Z?) = b.故选c.考点:1,绝对值;2,二次根式的性质与化简;3.实数与数轴.5.使式子卷+在实数范围内有意义的整数、有()A. 5个B. 3个C. 4个D.2个7482-322x{(48 + 32)(48-32) = 6屈 【答案】B【解析】【分析】根据二次根式的乘法法则:>/a •芯=痴(a>0, b>0),二次根式的除法法则: 宗* (a>0, b>0)进行计算即可.【详解】A 、2=2石,故原题计算错误; 4 2B 、 x1=^785 ,故原题计算错误;D 、 A. 2a+b【答案】c【解析】B. -2a+bC. bD. 2a-b C【答案】C【解析】•・•式子~7工 + "-3x在实数范围内有意义,丫+3x + 3>0 ‘4 — 3x2 0 4 解得:一3<xV-,3又:工要取整数值,的值为:-2、-1、0、1.即符合条件的X的值有4个.故选C.6.化简”3F的结果是A. -2B. 2【答案】B【解析】7^7引-2| 二2故选:BC. -4D. 41 7 I __________7.如果一个三角形的三边长分别为万、鼠则化简“2T2k+ 36・|2k-5|的结果乙乙是()A. -k-1B. k+1C. 3k-11D. 11 - 3k 【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6H2k-5],根据绝对值性质得出6-k- (2k-5),求出即可. 【详解】1 7•・•一个三角形的三边长分别为;、k,2 2A3<k<4,1k2 -12k+ 36 T 2k-51,= J(j)L|2k-5|,=6-k- (2k-5),=-3k+ll,=ll-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.8.若有意义,则x的取值范围是()A. x>-lB. x>0C. A:>-1D.任意实数【答案】C【解析】【分析】要是二次根式々有意义,被开方数a必须是非负数,即a?0,由此可确定被开方数中字母的取值范围.【详解】若Jx + 1有意义,则x+120,故x之一1故选:C【点睛】考核知识点:二次根式有意义条件.理解二次根式定义是关键.9.使式子有意义的x的取值范围是()A. x>-lB. -1<A:<2C. X<2D. -1<X<2【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,fx+l>0则八,解得:-l<x<22-x>0故选:B.【点睛】本题考杳二次根式的性质.10.在下列各组根式中,是同类二次根式的是()A.应,历C.y/Acib, y]ab4D.y/a-1,\fa + l【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A、>/12 =25/3 »与不是同类二次根式;C、44ab = 2yfab, yjab4 = b2, "4ab与Jd 不是同类二次根式;D、JE与而T不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.11.下列根式中属最简二次根式的是()【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=正;C、原式=2加;D、原式=走考点:最简二次根式12.下列各式中,是最简二次根式的是()C. V18【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检杳定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.⑶C被开方数含能开的尽方的因数或因式,错误.⑷D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.13.若J(X—2)23)2 +/57)2 + “7_炉49,则X取值范围为()A. 2<A:<6B. 3<x<7C. 3<x<6D. l<x<7【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】+ J。

二次根式易错题和重点题

二次根式易错题和重点题

二次根式易错题和重点题摘要:一、二次根式的基本概念1.二次根式的定义2.二次根式的性质二、二次根式的运算1.二次根式的加减法2.二次根式的乘除法3.二次根式的指数运算三、二次根式的化简1.完全平方公式2.平方差公式3.分母有理化四、二次根式的应用1.求解二次方程2.计算几何图形的面积和周长3.应用二次根式的实际问题正文:二次根式是数学中常见的一种表达形式,它涉及到许多基本概念和运算。

首先,我们需要了解二次根式的定义和性质,这是解决二次根式问题的关键。

一、二次根式的基本概念二次根式,通常表示为√a,其中a是一个正实数。

它表示的是一个数的平方根,即a的算术平方根。

根据定义,我们可以知道二次根式的值必须是非负的。

此外,二次根式还有一些重要的性质,如:1.√a = a2.√a * √b = √(ab)3.(√a) = a二、二次根式的运算二次根式的运算主要包括加减法、乘除法和指数运算。

1.二次根式的加减法:对于两个二次根式√a和√b,它们的和与差分别为√(a + b)和√(a - b)。

2.二次根式的乘除法:二次根式的乘法可以简单地将根号下的数相乘,即√a * √b = √(ab)。

而除法运算则较为复杂,通常需要利用分母有理化来解决。

3.二次根式的指数运算:二次根式的指数运算可以表示为(√a),它的结果是a的1/2次方。

三、二次根式的化简二次根式的化简是解决二次根式问题的关键。

化简的方法主要包括完全平方公式、平方差公式和分母有理化。

1.完全平方公式:对于一个二次根式√(a + b),我们可以通过完全平方公式将其化简为√(a + b) = √a + √b。

2.平方差公式:对于一个二次根式√(a - b),我们可以通过平方差公式将其化简为√(a - b) = √a - √b。

3.分母有理化:在涉及到分数的二次根式中,我们可以通过分母有理化来化简。

例如,将√(a/b)化简为√(a/b) * √(b/b) = √(ab/b) = √(a/b)。

二次根式易错题汇编及答案解析

二次根式易错题汇编及答案解析
故选:C.
【点睛】
此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.
4.若代数式 在实数范围内有意义,则实数 的取值范围是( )
A. B. 且 C. D. 且
【答案】D
【解析】
【分析】
根据二次根式和分式有意义的条件,被开方数大于等于0,分母不等于0,可得;x+3≥0,x-1≠0,解不等式就可以求解.
17.下列二次根式是最简二次根式的是()
A. B. C. D.
【答案】D
【解析】
【分析】
检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A、被开方数含分母,故A不符合题意;
B、被开方数含开的尽的因数,故B不符合题意;
C、被开方数是小数,故C不符合题意;
D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.
【详解】
A、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
B、 与 的被开方数不同,所以它们不是同类二次根式;故本选项错误;
C、 与 的被开方数相同,所以它们是同类二次根式;故本选项正确;
D、 是三次根式;故本选项错误.
故选:C.
【点睛】
本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.
【详解】
解:A、 =2 ,故本选项错误;
B、 是最简根式,故本选项正确;
C、 = ,故本选项错误;
D、 = ,故本选项错误.
故选:B.
【点睛】
本题考查对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键.
12.下列计算正确的是
A. B. C. D.

《二次根式》的知识要点和习题

《二次根式》的知识要点和习题

《二次根式》的知识要点和习题知识要点1、二次根式的概念:形如a (a ≥0)的式子叫做二次根式。

二次根式a 的实质是一个非负数a 的算术平方根。

注意:在二次根式中,被开放数能够是数,也能够是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a ≥0是a 为二次根式的前提条件,如5,21x +,等是二次根式,而5-、2x -、12--x 等都不是二次根式;a 的根指数是2, 即2a ,可省略不写;b a 也是二次根式。

当b 为带分数时,要把b 改写成假分数。

538是二次根式,不能写成2532。

2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。

如 不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如 ,,..........都不是最简二次根式,而,,5,都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如 ,,就是同类二次根式,因为=2,=3,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

①的有理化因式为,②的有理化因式为,③的有理化因式为,④的有理化因式为,⑤的有理化因式为5.二次根式的性质:(1). (a≥0)是一个非负数, 即≥0;(2).非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);(3).某数的平方的算术平方根等于某数的绝对值,即=|a|=(4).非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。

(5).非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a≥0,b>0)。

6.二次根式的乘除(1). 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

二次根式问题易错点分析

二次根式问题易错点分析

分析: 条件中 没有给 出 a 、 b 的大 小关 系, 解题 时应该分 a > b 和 a < b 两种情况 讨论 . 1 2 2 | a- b | a - 2 ab + b = . a- b a- b a- b ( 1) 当 a > b 时 , 原式= = 1; a- b 正解 : ( 2) 当 a < b 时, 原式 = 综上 , 原式 = - ( a - b) a - b = - 1.
3 a + b 是同. 由题 意知 a - 1< 0, 所以 , a - 1= 正解 : ( a - 1) = - ( 1- a ) = = = ( 1- a ) 2
根式 , 则 a 、 b 的值为 ( ( A) a = 0, b = 2 ( D) a = 2, b = 0 错解 : 由题意, 得 解得 a = 1,
8 ab
是同类根式 ?
错解 : 由题意, 得 2 2 k - 3 k + 2= 2 k - 7 k + 5, 2k - k - 2= 3 k - 5 k + 1. 整理得 k - 4 k + 3= 0. 解方程, 得 k 1 = 3, k 2 = 1. 分析: 当 k = 1 时 , 2 k - 7 k + 5= 0, k 3 k + 2= 0, 此时两个根式的根指数为 0, 它们 没有意义 . 正解 : 由错解知 , 当 k = 3 时, 它们是同 类根式. 6. 未按/ 顺序0 计算 例6 计算 ( 2+ 1) A 1 @ ( 3- 1) . 3- 1
28
中学教与学
二次根式问题易错点分析

现就学生在解二次根式问题时经常出现 的错误类型归纳分析如下 , 供大家参考 . 1. 概念不清 例1 若

二次根式易错点和典型题

二次根式易错点和典型题

二次根式易错点和典型题二次根式是数学中的重要概念,也是高中数学中的重点内容之一。

然而,学生在学习二次根式时常常会遇到一些易错点和典型题。

本文将针对二次根式的易错点和典型题进行详细的讲解,帮助学生更好地理解和掌握这一知识点。

易错点一:二次根式的化简在化简二次根式时,学生常常容易遗漏或错误地进行操作。

化简二次根式的基本原则是尽量将根号内的式子化为最简形式,常用的化简方法有去除平方因子、合并同类项以及有理化等。

需要注意的是,在合并同类项时,要注意系数的合并和符号的运算,容易混淆。

此外,有时候还需要利用公式进行化简,例如平方差、平方和等。

易错点二:二次根式的运算在进行二次根式的运算时,学生常常会将根号外的系数运算错误,或是忽略运算规则。

例如,在计算二次根式乘法时,要注意乘法运算的顺序,同时要注意系数和指数的运算。

另外,对于二次根式的除法和加减法,一般需要先进行有理化处理,然后再进行运算。

典型题一:二次根式的简化题目:将 $\sqrt{12}$ 化简为最简形式。

解析:首先,我们找到根号内的平方因子,发现12可以写成4和3的乘积。

因此,我们可以将 $\sqrt{12}$ 化简为 $\sqrt{4 \cdot 3}$。

接下来,利用乘积的性质,我们可以将其进一步化简为 $\sqrt{4} \cdot \sqrt{3}$。

再利用平方根的性质,我们可以得到最终结果为 2$\sqrt{3}$。

典型题二:二次根式的运算题目:计算 $(\sqrt{2} + 3)(\sqrt{2} - 1)$。

解析:首先,我们利用乘法公式将括号内的乘积展开,得到 $\sqrt{2} \cdot\sqrt{2} + 3 \cdot \sqrt{2} - \sqrt{2} - 3$。

然后,我们化简相同项,得到 $2 +2\sqrt{2} - \sqrt{2} - 3$。

接下来,我们再次合并同类项,得到最终结果为 $-1 +\sqrt{2}$。

第05讲 实数与二次根式(易错点梳理+微练习)(解析版)

第05讲 实数与二次根式(易错点梳理+微练习)(解析版)

第05讲实数与二次根式易错点梳理易错点梳理易错点01混淆平方根与算术平方根对于正数a 来说,a ±表示a 的平方根,a 表示a 的算术平方根。

易错点02混淆平方根与立方根的性质正数的平方根有两个,它们互为相反数;负数没有平方根,实数a 的立方根只有一个,无论a 是正数、负数还是0。

易错点03二次根式概念理解错误对二次根式的定义理解不透,认为只要带二次根号即为二次根式,忽视了二次根式a 中0≥a 的条件,所以在平时做题中必须特别注意理解二次根式的被开方数是非负数。

易错点04二次根式运算顺序出错由于乘除是同一级运算,因此按顺序哪个在前,要先算哪个运算。

易错点05错用二次根式的性质二次根式的性质有)0,0(≥≥∙=b a b a ab ;)0,0(>≥=b a ba ba ,切记不存在b a b a ±=±。

易错点06解题时忽视限制条件应用二次根式的运算性质)0,0(≥≥∙=b a b a ab ,)0,0(>≥=b a ba ba 时,必须要满足括号里的条件。

考向01平方根例题1:(2021·四川凉山·)A .9B .9和﹣9C .3D .3和﹣3【答案】D【思路分析】先化简,再根据平方根的地红衣求解.3±,故选D .【点拨】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a ,则这个数叫做a 的平方根,即x 2=a ,那么x 叫做a 的平方根,记作x =±.例题2:(2021·黑龙江齐齐哈尔·中考真题)下列计算正确的是()A .4=±B .()2234636m n m n =C .24833a a a ⋅=D .33xy x y-=【答案】A【思路分析】根据平方根,幂的乘方与积的乘方,单项式乘以单项式及合并同类项的运算法则分别对每一个选项进行分析,即可得出答案.【解析】A 、4=±,正确,故该选项符合题意;B 、()2234639m n m n =,错误,故该选项不合题意;C 、24633a a a ⋅=,错误,故该选项不合题意;D 、3xy 与3x 不是同类项,不能合并,故该选项不合题意;故选:A .【点拨】本题考查了平方根、幂的乘方与积的乘方,单项式乘以单项式以及合并同类项,熟练掌握平方根的定义、幂的乘方与积的乘方、单项式乘以单项式以及合并同类项的运算法则是解题关键.考向02立方根例题3:(2021·辽宁大连·中考真题)下列计算正确的是()A .2(3=-B=C1=D .1)3+=【答案】B【思路分析】根据二次根式的运算及立方根可直接进行排除选项.【解析】解:A 、(23=,错误,故不符合题意;B =,正确,故符合题意;C 1=-,例题4:(2021·江苏南京·中考真题)一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是()A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n为奇数时,2的n 次方根随n 的增大而增大【答案】C【思路分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【解析】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意;B.5232= ,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设x y =则155153232,28,x y ====1515,x y ∴>且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点拨】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.考向03实数例题5:(2021·山东日照·中考真题)在下列四个实数中,最大的实数是()A .-2BC .12D .0【答案】B【思路分析】根据实数的大小比较方法进行比较即可.【解析】解: 正数大于0,负数小于0,正数大于负数,∴1022>>>-,故选:B .【点拨】本题考查了实数的大小比较,理解“正数大于0,负数小于0,正数大于负数”是正确判断的关键.例题6:(2021·贵州毕节·中考真题)下列各数中,为无理数的是()A .πB .227C .0D .2-【答案】A【思路分析】根据无理数的定义逐项判断即可.【解析】A 、π是无理数,符合题意;B 、223.1428577= 小数点后的142857是无限循环的,则227是有理考向04二次根式的概念与性质例题7:(2021·湖北襄阳·中考真题)x 的取值范围是()A .3x ≥-B .3x ≥C .3x ≤-D .3x >-【答案】A【思路分析】根据二次根式有意义的条件,列出不等式,即可求解.在实数范围内有意义,∴x +3≥0,即:3x ≥-,故选A .【点拨】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键.例题8:(2021·浙江杭州·中考真题)下列计算正确的是()A2=B 2=-C 2±D 2=±【答案】A【思路分析】由二次根式的性质,分别进行判断,即可得到答案.2==,故A 正确,C 2=,故B 、D 错误;故选:A .【点拨】本题考查了二次根式的性质,解题的关键是掌握性质进行判断.考向05二次根式的乘除例题9:(2021·湖南株洲·中考真题)计算:4-=()A .-B .-2C .D .【答案】A化简,然后根据乘法法则运算即可.【解析】解:()44--⨯-A .【点拨】本题考查了二次根式的乘法运算,熟悉相关性质是解题的关键.例题10:(2021·广西桂林·中考真题)下列根式中,是最简二次根式的是()AB C D 【答案】D【思路分析】要选择属于最简二次根式的答案,就是要求知道什么是最简二次根式的两个条件:1、被开方最简二次根式,故本选项不符合题意;C |a ,不是最简二次根式,故本选项不符合题意;D 、符合最简二次根式的定义,是最简二次根式,故本选项正确.故选:D .【点拨】本题考查了满足是最简二次根式的两个条件:1、被开方数是整数或整式;2、被开方数不能再开方.考向06二次根式的加减例题11:(2021·广西梧州·中考真题)下列计算正确的是()A=B =C .2=D .2=2【答案】D【思路分析】根据二次根式的性质和二次根式的加法法则和除法法则逐一进行计算,从而得出答案;=A B=选项C 错误;)2=2,选项D 正确;故选:D【点拨】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键例题12:(2021·江苏泰州·中考真题)下列各组二次根式中,化简后是同类二次根式的是()ABC D 【答案】D【思路分析】把每个选项中的不是最简二次根式化为最简二次根式即可作出判断.【解析】A =B =与类二次根式,故此选项错误;C 故此选项错误;D ==,D .【点拨】本题考查了二次根式的化简,同类二次根式的识别等知识,注意二次根式必须化成最简二次根式.微练习一、单选题【答案】B<<∴56<,∴30的算术平方根介于5与6之间.故选:B .2.(2021·江苏·连云港市新海实验中学二模)下列计算:①222+=a a a ,②(1)x y x xy +=+,③46,④236() mn mn =,正确的有()A .1个B .2个C .3个D .4个【答案】B【分析】解:①23a a a +=,故①错误;②(1)x y x xy +=+,故②正确;③446+,故③正确;④2336() mn m n =,故④错误;故正确的有②,③,共2个,故选:B .3.(2021·湖南师大附中博才实验中学一模))A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】B∴56,5和6之间;故选B .4.(2021·广东·珠海市紫荆中学三模)下列四个实数中,最小的数是()A .5-B .14C .0D 【答案】A【分析】解:∵-5<0<14,A .227B C .3.1415926D 【答案】B【分析】解:A .227是分数,属于有理数;B 是无理数;C .3.1415926是有限小数,属于有理数;D 3=是整数,属于有理数;故选:B .6.(2021·重庆·西南大学附中模拟预测)在函数2y x =-中,自变量x 的取值范围是()A .1x >-B .1x ≥-C .1x ≥-且2x ≠D .1x >-且2x ≠【答案】C【分析】解:根据题意得:1020x x +≥⎧⎨-≠⎩,解得:x ≥−1且x ≠2.故选:C .7.(2021·山东兰陵·一模)实数a ,b 在数轴上对应的点的位置如图所示,化简a 的结果是()A .2a b -+B .2a b -C .b -D .b【答案】A【分析】解:由数轴可知,a <0<b ,∴a -b <0∴2a a b a b a =-+-=-;故选:A8.(2021·江苏建邺·二模)2b =-,则b 满足的条件是()A .2b >B .2b <C .2b ≥D .2b ≤【答案】D2b =-∴20b -≥∴2b ≤故选:D .9.(2021·内蒙古包头·三模)下列说法中,真命题有()有意义,则1x >;②已知27α∠=︒,则α∠的补角是153︒;③已知2x =是方程260x x c -+=的一个实数根,则c 的值为8;1≥x ,故错误;②已知27α∠=︒,则α∠的补角是153︒,故正确;③已知2x =是方程260x x c -+=的一个实数根,则22-12+c =0,解得c =8,故正确;④在反比例函数2k y x-=中,若0x >时,y 随x 的增大而增大,则k -2<0,则k 的取值范围是2k <,故错误;故选:B .10.(2021·重庆·字水中学三模))A .5和6之间B .6和7之间C .7和8之间D .8和9之间.【答案】C【分析】解:===== 78∴<介于7和8之间,故选:C .11.(2021·广西·南宁十四中三模)下列属于最简二次根式的是()AB C D 【答案】B【分析】A.3=开方数是分数,不是最简二次根式,故此选项不符合题意;B.是最简二次根式,故此选项符合题意;3=含有能开得尽方的因数,不是最简二次根式,故此选项不符合题意;D.10=被开方数是分数,不是最简二次根式,故此选项不符合题意;故选B 12.(2021·甘肃庆阳·二模))A B .3C .D .【答案】D【分析】解:S =D13.(2021·福建·厦门市第九中学二模))AB C .3D合题意;C.3 D.=故选D.14.(2021·广东·江门市第二中学二模)下列运算正确的是()B.AC.x5•x6=11x D.(x2)5=7x【答案】C【分析】解:A不是同类二次根式,不能合并,故A选项错误;B、12a,故B选项错误;C、x5•x6=11x,故C选项正确;D、(x2)5=10x,故D选项错误,故选:C.15.(2021·福建南平·二模)下列运算正确的是()A=B=C2=D=【答案】A【分析】解:A=B:选项错误,不符合题意;C:选项错误,不符合题意;D:选项错误,不符合题意;故答案选A.二、填空题16.(2021·陕西·交大附中分校模拟预测)______.【答案】1或2.【分析】解:∵23=∴23<<,1,2,故答案为:1或2.17.(2021·江苏·连云港市新海实验中学二模)______________.【答案】2【分析】解:原式=2,故答案为:2.|=__.18.(2021·宁夏·银川唐徕回民中学一模)30+|﹣119.(2021·陕西·西安市铁一中学模拟预测)112-⎛⎫= ⎪⎝⎭____________.【答案】2-【分析】解:原式2=2=.故答案为2-.20.(2021·黑龙江·哈尔滨市萧红中学三模)=_______.【答案】32【分析】解:原式=32=.故答案为:32.21.(2021·浙江·杭州市采荷中学二模)=______.【答案】22=,故答案为:2.22.(2021·山东·济宁学院附属中学三模)已知1y ==_______.【答案】2【分析】 1y =,2020x x -≥⎧⎨-≥⎩,解得2x =,1y =∴,∴2=.故答案为:2.23.(2021·山东省诸城市树一中学三模)已知1a =,1b -,则33a b ab -=__________.【答案】【分析】解:33a b ab -()22ab a b =-()()ab a b a b =+-,∵1a +,1b =,∴)11211ab ==-=,11a b +-=112a b -=+-=,24.(2021·陕西·交大附中分校模拟预测)21|3|()2--+-.【答案】4【分析】解:原式=3﹣3+4=4.25.(2021·湖南师大附中博才实验中学二模)计算:201332-⎛⎫+-+- ⎪⎝⎭【答案】【分析】解:原式=143+-+=26.(2021·浙江·绍兴市柯桥区杨汛桥镇中学二模)计算:11()(53--.【答案】2-【分析】解:11()(53--35=-+2=.27.(2021·陕西·西北工业大学附属中学模拟预测)1124-⎛⎫+ ⎪⎝⎭21124-⎛⎫+ ⎪⎝⎭42=+2=.。

(易错题精选)初中数学二次根式知识点总复习有解析

(易错题精选)初中数学二次根式知识点总复习有解析

(易错题精选)初中数学二次根式知识点总复习有解析一、选择题1的值是一个整数,则正整数a的最小值是()A.1 B.2 C.3 D.5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a的最小值即可.【详解】∴正整数a是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.2.下列各式中计算正确的是()=A+=B.2+=C=D2【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:不是同类二次根式,不能合并,故本选项错误;B.2=,原式计算错误,故本选项错误.故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.3.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.4.若代数式x 有意义,则实数x 的取值范围是( ) A .x≥1B .x≥2C .x >1D .x >2【答案】B【解析】【分析】根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x 的不等式组,解不等式组即可得.【详解】由题意得 200x x -≥⎧⎨≠⎩, 解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.5.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误; C 、(51)(51)514-+=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.6.下列运算正确的是( )A .3+2=5B .(3-1)2=3-1C .3×2=6D .2253-=5-3 【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:A.3+25≠,故本选项错误;B. (3-1)2=3-23+1=4-23,故本选项错误;C. 3×2=6,故本选项正确;D.2253-=25916-= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.7.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b<0<a,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.8.+在实数范围内有意义的整数x有()A.5个B.3个C.4个D.2个【答案】C【解析】∴30430xx+>⎧⎨-≥⎩,解得:433x-<≤,又∵x要取整数值,∴x的值为:-2、-1、0、1.即符合条件的x的值有4个.故选C.9.(的结果在()之间.A.1和2 B.2和3 C.3和4 D.4和5【答案】B【解析】【分析】的范围,再求出答案即可.【详解】(22==∵45<∴223<<∴()2232⨯-的结果在2和3之间 故选:B【点睛】 本题考查了无理数大小的估算,用有理数逼近无理数,求无理数的近似值.考查了二次根式的混合运算顺序,先乘方、再乘除、最后加减,有括号的先算括号里面的.10.如果代数式m mn -+有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.11.下列根式中属最简二次根式的是( )A .21a +B .12C .8D .2【答案】A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A 、无法化简;B 、原式=;C 、原式=2;D 、原式=. 考点:最简二次根式12.一次函数y mx n =-+22()m n n -的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m<0,n<0,再进行化简即可.【详解】∵一次函数y=﹣mx+n的图象经过第二、三、四象限,∴﹣m<0,n<0,即m>0,n<0,=|m﹣n|+|n|=m﹣n﹣n=m﹣2n,故选D.【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.13.式子有意义,则实数a的取值范围是()a+2A.a≥-1 B.a≤1且a≠-2 C.a≥1且a≠2D.a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】1-a≥0且a+2≠0,解得:a≤1且a≠-2.故选:B.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.14.下列各式中,是最简二次根式的是( )A B C D【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.(3) C被开方数含能开的尽方的因数或因式,错误.(4) D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.15.a的取值范围是()A.a>1 B.a≥1C.a=1 D.a≤1【答案】B【解析】【分析】根据二次根式有意义的条件可得a﹣1≥0,再解不等式即可.【详解】由题意得:a﹣1≥0,解得:a≥1,故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.16.下列各式中,运算正确的是()A2=C=D.2= =-B4【答案】B【解析】【分析】=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】=,故原题计算错误;A2B=,故原题计算正确;C=D、2不能合并,故原题计算错误;故选B.【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.17.已知1212a b ==+-,,则,a b 的关系是( ) A .a b =B .1ab =-C .1a b =D .=-a b 【答案】D【解析】【分析】根据a 和b 的值去计算各式是否正确即可.【详解】 A. 1122212121212a b -+-+-=--==---,错误; B. 12112ab +=≠--,错误; C. 12112ab +=≠-,错误; D. 112221201212a b +-+-+=++==--,正确; 故答案为:D .【点睛】本题考查了实数的运算问题,掌握实数运算法则是解题的关键.18.实数,a b 在数轴上对应的点位置如图所示,则化简22||a a b b +++的结果是( )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.19.若a b >,则化简二次根式3a b -的正确结果是( ) A .a ab --B .-a abC .a abD .-a ab【答案】D【解析】 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】解:∵二次根式3a b -有意义,∴-a 3b≥0∵a >b ,∴a >0,b <0∴23=a b ab a a ab --=-g ,故选:D .【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.20.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<42.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。

二次根式易错题和重点题

二次根式易错题和重点题

二次根式易错题和重点题一、二次根式的定义和性质二次根式是指在数学中关于平方根的表达式,它的一般形式可以表示为√a(其中a≥0)。

在学习二次根式时,常常会遇到一些易错题和重点题,下面将逐一讨论这些问题。

1. 二次根式的化简化简二次根式是学习二次根式的基本技能。

对于像√(4a^2)这样的二次根式,我们可以将指数提出来,得到2a√a。

类似地,对于√(9b^4),化简后可得3b^2√b。

化简二次根式可以使得运算更加简便,因此在解题过程中需要注意灵活运用化简技巧。

2. 二次根式的加减运算对于同类项的二次根式,可进行加减运算。

例如,对于√2 + √3,由于两个二次根式不具备相同的根次数和根数,无法进行简单的加减运算。

但是,如果是√2 + √2,则可以合并为2√2。

在进行二次根式加减运算时,需要注意根次数和根数是否相同。

3. 二次根式的乘法二次根式的乘法运算一般需要使用分配律。

例如,对于(√3 + √2)(√3 - √2),可以按照分配律展开,并利用√a * √a = a的性质得到3 - 2 = 1。

在进行二次根式乘法运算时,需要注意运用分配律以及二次根式的性质。

4. 二次根式的除法二次根式的除法运算需要利用有理化方法。

例如,对于√6 / √2,可以将分子和分母同时乘以√2,得到√12 / 2。

而√12可以继续化简为2√3,因此答案为√3。

在进行二次根式的除法运算时,需要注意利用有理化方法将分母中的二次根式消除。

二、常见易错题和重点题解析1. 题目:化简√(2+√3) - √(2-√3)解析:利用二次根式的加减运算,将两个二次根式合并。

根据公式(a+b)(a-b) = a^2 - b^2,可以得到(√2)^2 - (√3)^2 = 2 - 3 = -1。

因此答案为-1。

2. 题目:求解2√3 = √(x+4)解析:首先进行两边的平方运算,得到4 * 3 = x + 4。

化简后得到12 = x。

因此答案为x = 12。

二次根式易错题汇编附答案解析

二次根式易错题汇编附答案解析

9;因此这三个选项都不是最简二次根式.所以只有 C 选项符合最简二次根式的要求.
【详解】
解: A 、 1 2 ,被开方数含有分母,不是最简二次根式; 22
B 、 0.3 30 ,被开方数含有小数,不是最简二次根式; 10
D 、 18 3 2 ,被开方数含有能开得尽方的因数,不是最简二次根式;
所以,这三个选项都不是最简二次根式.
A.3
B.5
C.15
【答案】B
D.45
【解析】 【分析】 由题意可知 45n 是一个完全平方数,从而可求得答案. 【详解】 解: 45n 95n 3 5n ,
∵n 是正整数, 45n 也是一个正整数,
∴n 的最小值为 5. 故选:B. 【点睛】 此题考查二次根式的定义,掌握二次根式的定义是解题的关键.
∴ x2 y2 (x y)(x y) (3 2 2)(3 2 2) =1.
故选:B. 【点睛】 本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差
公式进行解题.
12.式子 1 a 有意义,则实数 a 的取值范围是( ) a2
A.a≥-1
B.a≤1 且 a≠-2
a2 | a b | b2 a a b b
a (a b) b
a a b b 2a.
故选 A. 【点睛】 本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.
17.若 a b ,则化简二次根式 a3b 的正确结果是( )
A. a ab
B. a ab
C. a ab
=m2+m,
∵m2+m 2 0,
∴m2+m 2 ,
∴原式 2 ,
故选:A. 【点睛】

二次根式问题易错点分析

二次根式问题易错点分析

二次根式问题易错点分析二次根式是初中数学的重要内容之一,学生在学习时经常遇到困难,下面就学生在解题中出现的错误分析如下,供大家参考。

一、概念不清例1 若a ,则a 、b 的值为( ) A. a =0,b =2 B. a =1,b =1C. a =0,b =2 或a =1,b =1D. a =2,b =0 错解 由题意,得2,43.a b b a b +=⎧⎨=+⎩解得1,1.a b =⎧⎨=⎩选B.辨析 未掌握同类二次根式的概念,因为a 2a ,所以3b a b =+,而不是43b a b =+.另外,通过验证知1,1.a b =⎧⎨=⎩也是错误的.正解 因为a 2a 由题意,得2,3.a b b a b +=⎧⎨=+⎩解得0,2.a b =⎧⎨=⎩选A.a =(a ≥0)未注意条件例2 化简(1a -错解 (1a -辨析 a =时,未注意它成立的条件0a ≥.由题意知101a ->-,即10a -<,所以1a -因此以上解答是错误的.正解(1a -=-(1a -=-=-三、运算未注意隐含条件例3 已知 a + b =-2,a b =12,.2.辨析由条件a+b=-2,a b=12可知a<0,b<0,.正解+=+=+=-a-b=-)a bab+=.四、分类讨论思想薄弱例4 化简1a b-a≠b)。

错解1a b-a ba b--=1.分析条件中没有给出a、b的大小关系,解题时应分a>b和a<b两种情况讨论。

正解1a b-a ba b--。

(1)当a>b时,原式=a ba b--=1;(2)当a<b时,原式=()a ba b---=-1.所以原式=()()1,1.a ba b>⎧⎪⎨-<⎪⎩五、忽视表达式的意义例5 k为何值时,23k k-与227k k-错解由题意,得222232275,2235 2.k k k kk k k k⎧-+=-+⎪⎨--=-+⎪⎩所以2430k k-+=。

二次根式易错点整理针对复习

二次根式易错点整理针对复习

二次根式易错点整理针对复习易错点一:二次根式定义及满足条件1.定义:我们把形如_____________的式子叫做二次根式,其中a叫做_______。

由上面定义我们知道二次根式被开方数应为非负数。

在我们遇到二次根式时,要考录被开方数的范围。

关键字:是二次根式,有意义,在实数范围内有意义等词语都是考察了二次根式的有意义条件。

例题1:式子2-x 是二次根式则x 需满足条件________ 例题2:式子152-+x x 在实数范围内有意义则x的取值范围________ 以上两题中,例一之考虑根式的性质即可及2x ≥,而例二要考虑分母不为零的情况,分开考虑分子根式性质25x -≥,分母1x ≠,这是两个取公共部分, {25x -≥且1x ≠} 练习题:求下列各式有意义x 的取值范围 1.5-x 2 2. x 23x -+ 3.x 233-x 2-+ 4.1x 2x ++ 5.1x 1x 2-+ 6.4x x 2+ 易错点二:有意义条件的延伸应用求值: 例题:已知533+-+-=x x y 求代数式y x +的值 解析:题中给出了“已知”表示题中出现的这个3-x 已经有意义,那么此时我们要想到x 的取值是3x x 33x ≤-≥的取值范围是,另一个要同时满足这两个条件则,X 可取数值只能是3,及x=3,从而的得到y=5,x+y=8练习题1.已知2x 233x 2y +-+-=,求代数式y x 的值2.已知22121+-+-=x x y ,求代数式x y 的值3.已知函数3x 294-x y +-+=,其中x 为正整数,求代数式y x +和y x +的值4.若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。

易错点三:带有未知字母的二次根式化简最简根式要求根式中不含有能开的尽方的因数或因式,那个对于字母来说只要指数大于等于2都是可以开方的。

例如2244b a b a =但是在很多字母化简题中会出现要判断符号的问题,对于题中给出的需要化简的根式来说已经有意义,也就是说要判断出根式中未知字母的范围,例下列式子中未知字母范围2ab -(b >0) b a 4 03<其中a ab - 判断出范围以后可以进行二次根式化简根据,将上式化简练习题1.若x<0,则x x x 2-的结果是__________________ 2.已知a<0,化简二次根式3b a -的结果是___________________3.把m m 1-根号外的因式移到根号内,得4.若m<0,求代数式33||m m +=__________5.化简二次根式()=--012>y y xy x6.化简二次根式()00822>,<y x y x x7.2216a cb (a >0,b <0,c >0)简单的混合运算1. 27121352722- 2.)(102132531-⋅⋅ 3. ()()2323+- 4.182********∙-+。

专题01二次根式(5个知识点7种题型1个易错点)(解析版)

专题01二次根式(5个知识点7种题型1个易错点)(解析版)

专题01二次根式(5个知识点7种题型1个易错点)【目录】【倍速学习四种方法】【方法一】脉络梳理法知识点1:二次根式的概念二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.①“”称为二次根号②a (a ≥0)是一个非负数;学习要求:理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.【变式1】下列式子,哪些是二次根式,哪些不是二次根式:,1x 0x >),,1x y+0,0x y ³³).0x >)、0,0x y ³³1x 、1x y+不是二次根式.的根指数分别为3、4,不是二次根式;1x 、1x y+是分式,不是二次根式.【变式2】下列各式中,二次根式的个数有 ()A .2个B .3个C .4个D .5个【答案】B .当0x <时就不是.【总结】考查二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数.知识点2:二次根式有意义的条件二次根式有意义的条件是被开方数是非负数.注意:①二次根式的被开方数为非负数;②分母不为零;③零没有零次幂.【例2】设x 是实数,当x 满足什么条件时,下列各式有意义?(1;(2.【答案】(1)12x ³;(2)2x £.【解析】(1)由12102x x -³³,得:;(2)由202x x -³£,得:.【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【变式】设x 是实数,当x 满足什么条件时,下列各式有意义?(1;(2.【答案】(1)0x >;(2)2x <.【解析】(1)由100x x x ì³ï>íï¹î,得:; (2)由102220x x x ì-³ï<-íï-¹î,得:.【总结】考查式子有意义的条件,式子有意义的时候式子的每一个部分都有意义.知识点3:二次根式的性质性质1(0)a a =³;性质2:2(0)a a =³;性质3=(0a ³,0b ³);性质4=(0a ³,0b >).【例3】求下列二次根式的值:(1;(2;(3(4.【答案】(1)4;(2)5;(3)4)3p -.【解析】(14==;(25==;(3===(433p p =-=-.【总结】考查二次根式的性质1,确保开方出来的结果非负.【例4】计算下列各式的值:(1)2;(2); (3)2;(4)2;(5)2;(6)22-;(7)2(0)x ³;(8)2 ;(9)2.【答案】(1)18;(2)23;(3)916;(4)0;(5)14;(6)30-;(7)1x +;(8)2a ;(9)221a a ++.【解析】根据二次根式性质2即可得出结果,注意(5)小题中两部分分别平方.【总结】考查二次根式的性质2.【例5】化简:(1(20)m ³;(3)(4【答案】(1)32);(3)232y x ;(4)2-【解析】(1)由二次根式非负性3270x ³,可得0x ³,原式3==;(2)由二次根式非负性3120mn ³,结合0m ³,可得0n ³,原式===;(3)原式=223642y y x x ==;(4)由二次根式非负性33240x y -³,即有()30xy £,可得0xy £,原式2==-.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例6】化简:(10)y <;(2).【答案】(1);(2【解析】(1)原式=(136y´-=;(2)原式() ()xx><,∴=.【总结】考查二次根式的被开方数的非负性和二次根式的性质3、性质4,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.(0)0(0)(0)a aaa a>=-<î.【例7】(2022秋•虹口区校级月考)已知,则x的取值范围是( )A.B.C.D.或【解答】解:等式左边=|2﹣3|x||,它要等于2+3x,则x≤0且2+3x≥0,所以≤x≤0.故选:B.【变式】(2022秋•浦东新区校级月考)若m,n为任意实数,则下列各式成立的是( )A .=m+nB.+=m+nC.=D.【解答】解:=|m+n|,A错误;+=|m|+|n|,B错误;≠+,C错误;=(m+n)2,D正确,故选:D.知识点5:化简二次根式利用二次根式的性质进行化简;化简二次根式的步骤:①把被开方数分解因式;②利用二次根式的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【变式1】化简:(100)ab bc ><,;(20)a b <<【答案】(1)-;(2)22a b -.【解析】(1=-; (2)原式=2222a b a b -=-.【变式2】化简下列二次根式:(100)x y ³³,;(2(3(0)a a -<.【答案】(1)5 (2) 3.14p -; (3)2a -.【解析】(15==(2 3.14 3.14p =-=-π;(32a a a a -=--=-.【方法二】实例探索法题型1:求二次根式被开方数中所含字母的取值范围2.若11)--有意义,则x 的取值范围是______.【答案】10x x ³¹且.【解析】∵11)--=,∴01010x x ³³ìí¹-¹î,解得:.3.求使下列二次根式有意义的实数x 的取值范围.(1;(2【答案】(1)1x ³或0x <;(2)12x ³-且1x ¹.【解析】(1)由110x -+³,得1x ³或0x <; (2)由21010x x +³ìí-¹î,得12x ³-且1x ¹.4.2成立,求a 的取值范围.【答案】24a ££.24a a +=-+-,由此进行分类讨论:①当2a <时,原式=()()2462a a a -+-=-;②当24a ££时,原式=()()242a a -+-=;③当4a >时,原式=()()2426a a a -+-=-;综上所述,可知a 的取值范围是24a ££.题型3:利用数轴和二次根式的性质进行化简或计算5.(2022秋•虹口区校级月考)设实数a ,b 在数轴上对应的位置如图所示,化简的结果是( )A .﹣2a +bB .2a +bC .﹣bD .b【解答】解:根据数轴上a ,b 的值得出a ,b 的符号,a <0,b >0,a +b >0,∴=﹣a +a +b =b ,故选:D .6.已知实数a ,b ,c 在数轴上的对应点位置如图所示:__________.【答案】2c -.【解析】根据点在数轴上的位置,可得0c b a <<<,由此0a c ->,0b a -<,0b c +<,原式=()()()2a c b a b c a c b a b c a c b a b c c ---++=-+--+=-+---=-.题型4:利用二次根式的非负性求值7.(2022秋•奉贤区期中)已知x ,y 为实数,且,求xy 的平方根.【解答】解:由题意得,,解得x =27,则y =,∴xy ==9,∴9的平方根是±=±3.8.若,x y 是实数,且2y <++,化简22y y --.【答案】1-.【解析】根据二次根式有意义的条件,可得:210120x x -³ìí-³î,即得:210x -=,由此可知2y <,所以22y y --=()212y y --=--.9.已知3y =,求22x xy y -+的值.【答案】7.【解析】根据二次根式的非负性,可知2020x x -³ìí-³î,由此20x -=,即2x =,此时3y =,原式=2222337-´+=.10.若a 、b是实数,且13b +1-+【答案】46b -+.【解析】根据二次根式的非负性,可知3030a a -³ìí-³î,由此30a -=,即3a =,此时13b <,原式=()()231213346b b a b b b -+-+=-+-+=-+.11.0=,求()x x y +的值.【答案】9.【解析】由题意得:203280x y x y -=ìí+-=î, \21x y =ìí=î. \()()2219xx y +=+=.12.若z+=+,求z 的值.【答案】3358.【解析】 Q 20160x y -+³, ∴2016x y +³.又 Q 20160x y --³, \2016x y +£, \2016x y +=.\0+=.即35230125302x y z x y z +--=ìí+-=îL L ()(), 解得:220143358x y z =ìï=íï=î.题型5:根据二次根式的值是整数,求字母的取值13.(2022秋•奉贤区校级期中)已知是正整数,则实数n 的最大值为 .【解答】解:由题意可知12﹣n 是一个完全平方数,且不为0,最小为1,所以n 的最大值为12﹣1=11.题型6:二次根式与三角形的综合15.在△ABC 中,a b c 、、2c a b --.【答案】33c a b --.【解析】根据三角形三边关系,任意两边之和大于第三边,可知0a b c -+>,0c a b --<,原式=()()22a b c c a b a b c c a b -+---=-++--22233a b c c a b c a b =-++--=--.16.在△ABC 中,a b c 、、0=,求最大边c 的取值范围.【答案】814c £<.【解析】根据题意,即为60a -+=,由此60a -=,80b -=,解得:6a =,8b =,根据三角形三边关系,且c 为最大边,可知b c a b £<+,即814c £<.17.解下列各式:(1)已知0a a +=(2)a b c 、、+.【答案】(1)12a -;(2)3a b c +-.【解析】(1)由0a a +=,即a a =-,可得0a £,原式=1112a a a a a -+=--=-;(2)根据三角形三边关系,可知0a b c --<,0b c a -+>,0c b a --<,原式=a b c b c a c b a--+-++--3b c a b c a a b c a b c =+-+-+++-=+-.18.(1)在△ABC 中,a b c 、、0=,求最大边c 的取值范围;(2)已知实数x y 、,满足2()x y +22x y +的平方根.【答案】(1)814c £<;(2)±.【解析】(1)根据题意,即为60a -+=,由此60a -=,80b -=,解得:6a =,8b =,根据三角形三边关系,且c 为最大边,可知b c a b £<+,即814c £<.(2)由题意得:2()0x y +=,∴053160x y x y +=ìí--=î,解得:22x y =ìí=-î,∴==±.题型7:二次根式的性质的应用19.(1(2);(3)2-;(4)(1)x -【答案】(1; (23);(4)【解析】(1=;(2)(3)(4)=.20.将x 移到根号内,不改变原来的式子的值:(11)x >;(2)(2)x x ->.【答案】(12)1.【解析】(1==;(2)(1x -==.【方法三】差异对比法易错点:忽略隐含条件,误将负数移到根号外21.(2022秋•虹口区校级期中)已知a <0,则二次根式化简后的结果为( )A .aB .aC .﹣aD .﹣a【解答】解:∵a<0,﹣a2b≥0,∴a<0,b≤0,∴=﹣a.故选:D.22.(2022秋•虹口区校级期中)已知a<0,那么可化简为( )A.2b B.﹣C.﹣D.【解答】解:∵a<0,﹣>0,∴b>0,∴原式=,故选:D.23.(2022秋•静安区校级期中)已知xy<0,化简二次根式的值是( )A.B.C.D.【解答】解:由题意可知﹣xy2≥0.因为y2>0,所以﹣x≥0,所以x≤0,又因为xy<0,所以x<0,y>0,所以==.故选:C.24.(2022秋•青浦区校级期中)化简:(a<0)= .【解答】解:原式=.故答案为:.25.(2022秋•嘉定区校级月考)化简:= .【解答】解:∵﹣a4b3≥0,∴b≤0,∴=﹣a2b,故答案为:﹣a2b.【方法四】成功评定法一、单选题三、解答题222 =-++--a b c c a b =--.33c a b。

二次根式易错题和重点题

二次根式易错题和重点题

二次根式易错题和重点题摘要:1.二次根式的概念和基本性质2.二次根式的运算法则3.二次根式的应用题类型及解题方法4.常见易错题分析及避免方法5.重点题解析及技巧正文:二次根式是数学中一个重要的概念,它在解决许多实际问题中都有着广泛的应用。

然而,由于其涉及的概念和运算较为复杂,许多学生在学习二次根式时往往会感到困难,容易出错。

本文将从二次根式的概念和基本性质、运算法则、应用题类型及解题方法等方面进行讲解,并分析常见的易错题,提供一些避免出错的技巧,最后解析一些重点题目及解题技巧。

首先,我们需要了解二次根式的概念和基本性质。

二次根式是指形如√ax+bx+c(a≠0)的代数式,其中a、b、c 为常数,x 为未知数。

二次根式的基本性质包括:非负性、奇偶性、周期性等。

了解这些性质对于解决二次根式的问题至关重要。

接下来,我们要熟悉二次根式的运算法则。

这包括:二次根式的加减法、乘除法,以及与代数式的乘法、除法等。

熟练掌握这些运算法则,可以有效地帮助我们解决二次根式的计算问题。

在实际应用中,二次根式问题通常以应用题的形式出现。

常见的应用题类型包括:求解二次方程的根、求解不等式、求解最值问题等。

解决这类问题,我们需要根据题目的具体情况,灵活运用二次根式的基本性质和运算法则。

在学习二次根式的过程中,许多学生容易在一些问题上出错。

例如,忽略二次根式的非负性、混淆奇偶性和周期性等。

为了避免这些错误,我们需要在解题过程中注意以下几点:1.对二次根式进行化简时,要保证结果是非负的;2.根据题目要求判断二次根式的奇偶性;3.注意区分周期性和非周期性等。

最后,我们来看一下二次根式的重点题目及解题技巧。

例如,求解二次方程的根的问题,我们可以通过求解判别式来判断方程的根的情况;对于求解不等式的问题,我们可以通过分析二次根式的符号来判断解集等。

在解题过程中,要善于利用数形结合的思想,将二次根式与几何图形相结合,从而更好地理解和解决问题。

二次根式易错题和重点题

二次根式易错题和重点题

二次根式易错题和重点题一、二次根式的定义和性质1. 二次根式的定义二次根式是形如√a的表达式,其中a是一个非负实数。

2. 二次根式的性质•二次根式的值是非负实数。

•二次根式的平方等于原来的数,即(√a)^2 = a。

•二次根式的积是可以进行合并的,即√a * √b = √(ab)。

二、二次根式的化简和合并1. 化简二次根式对于二次根式√a,可以将a进行因数分解,然后将每个因子的平方根提取出来。

例如,化简√12:√12 = √(2 * 2 * 3) = 2√32. 合并二次根式对于两个二次根式√a和√b,可以将它们合并成一个二次根式。

例如,合并√3和√5:√3 + √5 = √(3 * 5) = √15三、二次根式的运算1. 加减运算对于两个二次根式√a和√b,可以进行加减运算。

例如,计算√2 + √3:√2 + √3 = √2 * 1 + √3 * 1 = √2 * √2/√2 + √3 * √3/√3 = (√2 * √2 + √3 * √3) / √6 = (2 + 3) / √6 = 5 / √62. 乘法运算对于两个二次根式√a和√b,可以进行乘法运算。

例如,计算√2 * √3:√2 * √3 = √2 * √2/√2 * √3 = √(2 * 2 * 3) / √6 = √12 / √6 =√(12/6) = √23. 除法运算对于两个二次根式√a和√b,可以进行除法运算。

例如,计算(√2)/(√3):(√2)/(√3) = (√2 * √2/√2)/(√3 * √3/√3) = (√(2 * 2) * √2/√6) = (√4 * √2)/√6 = 2√2/√6 = (2√2 * √6)/(√6 * √6) = (2√12)/6 =√12/3四、二次根式的常见应用题1. 长方形面积问题若长方形的长为√2 cm,宽为1 cm,则面积为:面积 = 长 * 宽= √2 * 1 = √2 cm^22. 直角三角形斜边问题若直角三角形的两条直角边分别为1 cm和√3 cm,则斜边的长度为:斜边长度= √(1^2 + (√3)^2) = √(1 + 3) = √4 = 2 cm3. 几何平均值问题若a和b为正实数,则a和b的几何平均值为√(ab)。

二次根式的运算知识易错点剖析

二次根式的运算知识易错点剖析

二次根式运算中的易错点示例一、二次根式化简不彻底例 1计算错解:原式=.错解分析:二次根式结果中,被开方数不含有分母,0.2应看成分数15正解:原式 ===点拨:二次根式的结果中若被开方数是分式或分数(包括小数)一定要化简 , 然后再进行同类二次根式的合并.二、二次根式化简不正确例 2 计算:错解:原式=-+=-+0.40.4错解分析≠.0.4正解:原式 ==.例 3错解:原式=4错解分析≠4正解:原式=点拨:化简过程中,还容易出现以下错误11,=+=-23等 .三、合并同类二次根式错误例 4计算错解:原式 =错解分析,其被开方数不相同,故不能合并. 正解:原式=点拨:有时在计算过程中会出现这样的错误1=.四、运算定律误用例 5 计算:3. 错解:原式=3÷1=3.错解分析:3(33≠÷.该错解把乘法的结合律误用到乘除混合运算中. 正解:原式=31=. 五、忽略根式中或已知中隐含条件,导致错误 例6 如果b <0,那么二次根式ab化简为( ) (A )a ab (B )-a ab (C )a ab - (D )aab--错解:选A.原式=a abaab =2. 错解分析:本题二次根式ab中隐含了ɑ<0的条件,上述解答忽略了这个隐含条件,误认为ɑ>0,因而出现错误. 正解:选B .因为ab有意义,所以a b ≥0.又b <0,所以ɑ<0.原式=a aba ab aab -==2, 所以结果选B .例7 已知321+=a ,求式子a a a a a a a -+---+-22212112的值. 错解:原式=()()()111122-----a a a a a =()111----a a a a =aa 11--=()321321+--+=321--.错解分析:已知条件中321+=a 隐含了321+=a =32-<1,因而()a a a a a -=-=-=+-1111222,上述解答认为ɑ-1>0,因而出现错误.正解:原式=()()111122-----a a a a a =()111----a a a a =ɑa 11+-=()321321++-+=3.例8 把()a a --111中的ɑ-1移到根号内,则()aa --111= . 错解:原式=()a aa -=--11112. 错解分析:二次根式a-11中隐含了1-ɑ>0的条件,因而ɑ-1<0.逆用公式a a =2时,应特别注意,是将根号外的非负因式(数)移入根号内.正解:原式=()aa ---111=()aa ---1112=a --1. 答案:a --1六、忽略对字母的讨论,导致错误 例9 当m ,n 为何值时,n m 2有意义?错解:因为n m 2=n m ,所以要使原式有意义,只要n 有意义.错解分析:尽管化简n m 2=n m ,但是原式中m ,n 取值范围与变形后的式子中m ,n 取值范围是有区别的.上述解答中忽略了对字母m 的取值的讨论,而去求化简后式子中m ,n 的取值范围,因而导致错误.正解:要使n m 2有意义,必须n m 2≥0,当m ≠0时,则2m >0,所以n ≥0.当m =0时,则n m 2=0,所以n 可以为任意实数. 例10 化简2122-+aa (ɑ<1且ɑ≠0). 错解:原式=21⎪⎭⎫ ⎝⎛-a a =a a 1-.错解分析:本题中虽然给出了字母ɑ<1且ɑ≠0的条件,但ɑ与a1的大小关系不确定.上述解答忽略了对字母ɑ的讨论,认为aa 1->0,因而导致错误.所以解答本题的关键是对字母ɑ进行分类讨论.正解:原式=a a a a 112-=⎪⎭⎫ ⎝⎛-.(1)当0<ɑ<1时,a a 1-<0,原式==-a a 1a a -1; (2)当-1<ɑ<0时,aa 1->0,原式==-aa 1a a 1-;(3)当ɑ≤-1时,aa 1-≤0,原式==-a a 1a a-1. 综合(1)(2)(3)可知当0<ɑ<1或ɑ≤-1时,原式==-a a 1a a-1;当-1<ɑ<0时,原式==-aa 1a a 1-.七、运用公式2a =|ɑ|不当,导致错误例11 计算或化简:(1)2)7(-; (2)aa 1-(ɑ<0). 错解:;(2)原式==-⋅=-22aaa a a a a a a a -=-⋅. 分析:公式a a =2中,2a 表示ɑ2的算术平方根,因而是一个非负数,运用此公式将根号内的ɑ移到根号外时,一定要加绝对值符号,保证其为非负数,应特别注意.正解:(1)原式=77=-. (2)原式==-⋅=-a a a aa a 2a a a a --=--⋅. 八、忽视有关性质成立的条件例12错解- 2) ×( - 3) = 6.错解分析:错解错在没有考虑积的算术平方根的性质成立的条件是ɑ≥0, b ≥0.例13.错解错解分析:上述错解中忽视了分式性质,即A B =A MB M⋅⋅成立的条件是M ≠0,而0, 所以本题不能用此方法解,但可借用因式分解法.=九、思考问题不全面例14 若24m -和31m -是同一个数的平方根,求m 的值.错解:因为24m -和31m -是同一个数的平方根,根据一个数的两个平方根互为相反数,所以24310m m -+-=,所以解得1m =.错解分析:错解只考虑了两个不相同平方根的情况,漏掉了24m -可能与31m -相等的情况.当2431m m -=-时,3m =-.正解:因为24m -和31m -是同一个数的平方根,所以24310m m -+-=或2431m m -=-,解得1m =或3m =-.二次根式错解示例一、例1计算=9 . 错解: =93±.错解分析: 该解答的错误是没有弄清楚符号“”的意义,符号“”表示非负数的算术平方根,而“9”表示9的算术平方根,9的算术平方根应该是3.正解:=93.二、例2化简 312-. 错解:312-=9=3.错解分析: 该解答的错误是把被开方数相减,二次根式的加减不是把被开方数加减,而是先化简,然后再将同类二次根式进行合并. 正解:312-=3332=-. 三、例3 化简:2818-.错解:2818-=12349=-=-.错解分析: 该解答的错误是“4,928218==”,原因是错用了二次根式的除法法则,二次根式的除法法则不是“)0,0(>≥=b a ba ba ”,而是“)0,0(>≥=b a ba ba ”.正解:2818-=22223-=22.四、例4 化简)35(15+÷.错解:)35(15+÷=53315515+=÷+÷.错解分析: 该解答的错误是用15分别去除以5与3,原因是被除数对加法运算没有分配律,即c a b a c b a ÷+÷≠+÷)(,而除数对加法运算律有分配律,即 a c a b a c b ÷+÷=÷+)(.正解:)35(15+÷=25335)35)(35()35(15--+-=.五、例5 把式子mm 1- 根号外的因式移到根号内.错解:mm 1-=m m m-=-⋅)(12. 错解分析:该解答的错误是逆用公式“a a =2”时忽视了“0≥a ”这一条件,而本题中隐含着条件“m <0”;故本题中逆用公式“a a =2”时变形的过程为:m =-(-m )=-2)(m -,其中-m 代表公式“a a =2 ”中的“a ”.正解:mm 1-=m m m m 121)()(-⋅--=---=m m m--=-⋅--)()(12. 六、例6 把式子11+m 分母有理化.错解:11+m =11)1)(1(1---+-=m m m m m .错解分析:该解答的错误是未考虑式子1-m 的值有可能为0,若式子1-m 的值为0,则相当于原式的分子与分母同时乘以了0,这样原式变形后的式子就无意义了.正解:若1≠m ,则11+m =11)1)(1(1---+-=m m m m m ;若 1=m ,则11+m =21.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式易错题集一、二次根式的概念: 二次根式的性质: 1.()0≥a a 是一个非负数。

2.()02≥=a a a3.()()⎩⎨⎧-≥==002 a a a a a a 错题:1.=25 52.()=-23 -(-3)=33.()=--21255-1=44.()=263()54696322=⨯=∙或()=263()()545463222==⨯5.()=--2666-=-- 6.=-2551515122=⎪⎭⎫ ⎝⎛= 7.根据条件,请你解答下列问题:(1)已知n -20是整数,求自然数n 的值;解:首先二次根式有意义,则满足,020≥-n 所以,20≤n 又因为n -20是整数,所以根号内的数一定是一个平方数,即n -20必定可化为()0,202≥=-a a a n 且为整数这种形式,即()0,202≥=-a a a n 且为整数。

所以满足条件的平方数2a 有0,1,4,9,16。

所以.4,11,16,19,20=n(2)已知n 20是整数,求正整数n 的最小值解:因为n 20是整数,所以根号内的数一定是一个平方数,即n 20必定可化为()为整数a a n 220=这种形式,即()为整数a a n 220=,而()为整数a a n 25420⨯⨯=,4可以开平方,剩下不能开平方的数5,所以正整数n 的最小值就是5,因2555=⨯能被开平方。

所以我们要把常数先进行分解,把能开平方的数分解出来,剩下的不能开平方的数与字母相乘再配成能开平方的数,而字母的最小值就是这个不能开平方的数。

7-2.(2)已知n -12是正整数,求实数n 的最大值;解:因为n -20是正整数,所以满足,012 n -所以,12 n 所以根号内的数一定是一个平方数,即n -20必定可化为()0,202 a a a n 且为整数=-这种形式,即()0,202 a a a n 且为整数=-。

所以满足条件的平方数2a 有1,4,9。

所以.3,8,11=n 最大值为11.易错点:1.在计算或求值时,容易疏忽()0≥a a 是一个非负数。

2.在开方时,易出现()02 a a a =的错误。

3.二次根式的三个性质是正确进行二次根式化简、运算的重要依据。

它们的结构相似,极易混淆,因此同学们必须弄清它们之间的区别与联系8.计算()()222-+x x9.计算:若()()()()=-+-=-+-2222,094b b a a b a 则10.已知32552--+-=x x y ,则xy 2的值为 。

11.若等式1230=⎪⎪⎭⎫ ⎝⎛-x 成立,则x 的取值范围是 。

11-1.已知()03≤-a a ,若a b -=2,则b 的取值范围是 。

解:对于含字母的代数式,首先应考虑使它有意义或使代数式成立的条件。

对于本题,首先有根式a ,则应考虑根式成立的条件是0≥a 。

又题目()03≤-a a ,所以03≤-a ,3≤a ,所以30≤≤a .不等式两边都乘以-1得03≤-≤-a ,不等式两边同加2得,2232≤-≤-a 11-2.已知()03 -a a ,若a b -=2,则b 的取值范围是 。

解:对于含字母的代数式,首先应考虑使它有意义或使代数式成立的条件。

对于本题,首先有根式a ,则应考虑根式成立的条件是0≥a 。

又题目()03 -a a ,所以0≠a ,所以03 -a ,得3 a ,所以30 a .不等式两边都乘以-1得03 a --,不等式两边同加2得,2232 a --12.已知c b a ,,满足04122212=+-+++-c c c b b a ,求()c b a +-的值。

13.已知实数c b a ,,满足32388++-+--=--+-+c b a c b a b a b a ,请问:长度分别为c b a ,,的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由。

14.已知实数b a ,为两个连续的整数,且b a 28,则b a += 。

15.选择:已知实数n m ,为两个连续的整数()n m ,mn q =,设m q n q p -++=,则p = 。

A. 总是奇数 B.总是偶数 C. 有时是奇数,有时是偶数 D.有时是有理数,有时是无理数 16.在实数范围内分解因式(1)52-a (2)2222+-x x 17.化简求值:(1)()()22b a b a a +-+,其中2012=a ,2013=b ;(2)aa a a a a 112122++++++,其中51--=a 19.(2010江苏南京)如图,下列各数中,数轴上点A 表示的可能是A.4的算术平方根B.4的立方根C.8的算术平方根D.8的立方根【答案】C20.(2010浙江杭州)4的平方根是A. 2B. ± 2C. 16D. ±16 【答案】B21.(2010浙江嘉兴)设0>a 、0>b ,则下列运算中错误..的是( ▲ ) (A )b a ab ⋅=(B )b a b a +=+(C )a a =2)((D )bab a =【答案】B22.(2010江苏常州)下列运算错误的是 A.235+= B. 236⋅= C.623÷= D.2(2)2-=【答案】A23.(2010江苏淮安)下面四个数中与11最接近的数是A .2B .3C .4D .5 【答案】B23.(2010湖北荆门)若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为 A .2B .0C .-2D .以上都不对【答案】C24.(2010湖北恩施自治州)()24-的算术平方根是:A. 4B. 4±C. 2D. 2± 【答案】A25.下列命题是真命题的是( )A .若2a =2b ,则a =b B .若x =y ,则2-3x ﹥2-3y C .若2x =2,则x =±2 D .若3x =8,则x =±2 【答案】C26.(2010湖北襄樊)下列说法错误的是( )A .16的平方根是±2B .2是无理数C .327-是有理数D .22是分数 【答案】D27.(2010湖北襄樊)计算132252⨯+⋅的结果估计在( ) A .6至7之间B .7至8之间C .8至9之间D .9至10之间【答案】B28.(2010 四川绵阳)要使1213-+-x x 有意义,则x 应满足( ). A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤3【答案】D29.(2010 四川绵阳)下列各式计算正确的是( ).A .m 2 · m 3 = m 6B .33431163116=⋅= 53232333=+=+ D .a aa a a --=-⋅--=--111)1(11)1(2(a <1) 【答案】D30.(2010 湖南湘潭)下列计算正确的是A.3232=+B.32a a a =+ C.a a a 6)3()2(=⋅ D.2121=- 【答案】D31.(2010 贵州贵阳)下列式子中,正确的是(A )10<127<11 (B )11<127<12 (C )12<127<13 (D )13<127<14 【答案】B32.(2010 四川自贡)已知n 是一个正整数,n 135是整数,则n 的最小值是( )。

A .3B .5C .15D .25解:n 135是整数,那么n 135肯定能化为2135a n =的形式,所以2135a n =,将的135分解因式2353953135⨯⨯=⨯⨯=,要使2135a n =,那么必须再乘以3×5=15才行,所以n=15.【答案】C33.(2010 天津)比较2,5,37的大小,正确的是(A )3257<< (B )3275<< (C )3725<<(D )3572<<解 :2=3378 ,而52 ,所以5273【答案】C34.(2010 福建德化)若整数m 满足条件2)1(+m =1+m 且m <52,则m 的值是 .【答案】035.(2010 福建三明)观察分析下列数据,寻找规律:0,3,,32,3,6……那么第10个数据应是 。

解:300⨯=,313⨯=,32326⨯=⨯=,333⨯=,3432322⨯=⨯=,第n 个数应为31⨯-n ,第10个数为33393110=⨯=⨯- 【答案】3336.已知:a 、b 为两个连续的整数,且a <15< b ,则a + b = . 因为16159 ,即4153 ,所以4,3==b a ,7=+b a 【答案】7 37.已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.【答案】解法一:原式=2)21(-+x ……………………………2分 =2)1(-x ……………………………4分 当31=-x 时原式= 2)3( ……………………………6分 =3 ……………………………8分 解法二:由31=-x 得13+=x ……………………………1分化简原式=444122+--++x x x ……………………………3分=122+-x x ……………………………4分=1)13(2)13(2++-+ …………………………5分=12321323+--++ …………………………7分 =3 ……………………………8分38.(2010山东烟台)(本题满分6分)先简化,再求值:其中【答案】解:2222442yxy x y x y x y x +--÷--=y x y x y x y x y x y x y x +-=-+-⋅--2))(()2(22 当时,原式=21232121)21(221-=-++--+39.(2010 福建晋江)(8分)先化简,再求值:x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--,其中22-=x 【答案】解一:原式=()()()()()()x x x x x x x x x x 111111132-⋅⎥⎦⎤⎢⎣⎡+---+-+ = ()()xx x x x x x x 11133222-⋅+-+-+= ()()xx x x x x 1114222-⋅+-+ =()()()()()xx x x x x x 111122-+⋅+-+ =()22+x当22-=x 时,原式=()2222+-=22解二:原式=xx x x x x x x 1111322-⋅+--⋅- =()()()()xx x x x x x x x x 1111113+-⋅+-+-⋅- = ()()113--+x x = 133+-+x x =42+x当22-=x 时,原式=2224-+()=2240.(2010湖北武汉)先化简,再求值:423)252(+-÷+--x x x x ,其中x=32-. 【答案】答案: 原式=3)2(2)2524(2-+∙+-+-x x x x x =292+-x x 3)2(2-+∙x x =2)3)(3(+-+x x x 3)2(2-+∙x x =2x+6.当x=32-时,原式=2(32-)+6=22. 41.若等式1)23(0=-x成立,则x 的取值范围是 . 0次幂的底数不能为0,为0时无意义。

相关文档
最新文档